北师大版九年级上册数学 《图形的位似》图形的相似PPT(第1课时)PPT教学课件

合集下载

课件北师大版九年级数学上册 图形的位似精美PPT课件

课件北师大版九年级数学上册 图形的位似精美PPT课件

画法二:△ABC与△DEF异侧
解:画射线OA,OB,OC;
A
沿着射线OA,OB,OC反方向上分别取点D,E,F, 如(1)果两两个个位相似似形多一边定形是任相意似一形组;对应顶点P,P̍ 所在的直线都过同一点O,且OP ̍ =k· OP (k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.
在射线OA,OB,OC上反分向别延取长点线D上,E分,F别,使取O点DD=,E2,FO,A使,OEA = 2OBD,,OOFB== 22OOCE;,
顺序连接D,E,F,使△DEF 用问橡题皮 :筋下放面大两图个形多的边方形法相放似大,图将形两:个图形的顶点相连,观察发现连接的直线相交于点O.
(解1):两画个射位线似O形A一,O定B,是O相C;似形;


。。





O


• 1.若△ABC与△A’B’C’的相似比为:
1:2,则OA:OA’=( 1:2 A’)。
A
B
B’
O
C
C’
性质:位似图形上任意一对对应点到位似中心的距离 之比等于相似比.
归纳
画位似图形的关键是画出图形中顶点
的对应点,画图的方法大致有两种:一是每
对对应点都在位似中心的同侧,二是每对对
探索与思考☞ 观察下列图形的特点
A
B
C
P
D
特征: (1)是相似图形 (2)每组对应点所在的直线都经过同一个点
问题:下面两个多边形相似,将两个图形的顶点相连,
观察发现连接的直线相交于点O. OA' ,OB' ,OC' ,OD' ,OE'
OA OB OC OD OE 有什么关系?

初中数学《图形的位似》优秀ppt北师大版1

初中数学《图形的位似》优秀ppt北师大版1


2.它由一系列展示人物性格,反映人物 与人物 、人物 与环境 之间相 互关系 的具体 事件构 成。

3.把握好故事情节,是欣赏小说的基础,也是整 体感知 小说的 起点。 命题者 在为小 说命题 时,也必 定以情 节为出 发点,从整体 上设置 理解小 说内容 的试题 。通常 从情节 梳理、 情节作 用两方 面设题 考查。

7.阅历之所以会对读书所得产生深浅 有别的 影响, 原因在 于阅读 并非是 对作品 的简单 再现, 而是一 个积极 主动的 再创造 过程, 人生的 经历与 生活的 经验都 会参与 进来。

8.少年时阅历不够丰富,洞察力、理 解力有 所欠缺 ,所以 在读书 时往往 容易只 看其中 一点或 几点, 对书中 蕴含的 丰富意 义难以 全面把 握。
26
17
解:画法一:将四边
形 OABC 各顶点的坐
标都乘 2 ;在平面直 3
角坐标系中描点O (0,
0),A' (4,0),B' (2, 4),C′ (-2,2),用 线段顺次连接O,A', B',C'.
y 6
4 C
C' 2
-4
O
-2
-4
B B'
A' A 6x
4
26
18
画法二:将四边形 OABC 各顶点的坐
B 6x
B' ( 2 ,0); A" (-2 ,-1),
B" (-2 ,0 ).
26
8
2.
△ABC
y 三个顶点坐标6分别为
A
(A2',3),B
(2,1),
C△(A5B,C2放),大以,点观O察为对位42应似顶中A点心坐,标B相'的似变比化为. 2,C'将 BC

新北师大版九年级数学上册《图形的位似(1)》公开课课件.ppt

新北师大版九年级数学上册《图形的位似(1)》公开课课件.ppt

一、教材分析
(三)实践验证
二、目标分析
三、过程设计
做 数
学 四、教学反思
①每组对应点到位似中心的距离
之比都等于相似比。

②两图形可位于位似中心的同侧
或异侧。

③位似中心可位于图形外或图形
内或图形的某条边上。

④本对质应区线别段:平行或共线。 位似多边形是具有特殊位置关系的相似多
面向全体,巩固双基 1.两个位似多边形中的对应角相___等______,对应线
一、教材分析
二、目标分析
理解位似多边形的概念、性质;弄 清位似与相似的关系;利用位似知 识对图形进行放大与缩小。
三、过程设计
四五、、教教说学学反设明思计
让学生自主探究、总结归纳、理 解应用新知。
一、教材分析 二、目标分析 三、过程设计 四、教学反思
理解位似的概念、
性质;弄清位似与相
似的关系;利用位似
• 14、Thank you very much for taking me with you on that splendid outing to London. It was the first time that I had seen the Tower or any of the other famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about.
思考:位似多边形具有哪些一般相 似多边形所不具备的性质?
(一)观察猜想
想 ①对应线段有可能平行,也可能共线。

北师大版九年级数学上册教学课件:4.8图形的位似 (共46张PPT)

北师大版九年级数学上册教学课件:4.8图形的位似 (共46张PPT)

拓展点一
拓展点二
解:(1)如图:
(2)C(-6,-2),D(-4,2).
拓展点一
拓展点二
(3)∵DE=4,OE=2,OF=2,EF=4,CF=6, ∴S△OCD=S 梯形 CDEF-S△ODE-S△OCF =2(DE+CF)· EF-2DE· OE-2CF· OF,
1 1 1 =2×(4+6)×4-2×4×2-2×6×2=10. 1 1 1
分析:两个位似图形的主要特征是:每对位似对应点与位似中心 共线;不经过位似中心的对应线段平行.则位似中心就是两对对应 点的延长线的交点.
拓展点一
拓展点二
解: ①当两个位似图形在位似中心同旁时,连接 CF 并延长交 x 轴于点 O'. 位似中心就是点 O',设直线 CF 的表达式为 y=kx+b,将 C(4,2),F(1,1)代入,得
知识点一
知识点二
知识点三
例3 如图,矩形OABC的顶点O是坐标原点,边OA在x轴上,边OC 在y轴上.若矩形OA1B1C1与矩形OABC关于点O位似,且矩形 1 OA1B1C1的面积等于矩形OABC面积的 4 ,则点B1的坐标是( ) A.(3,2) B.(-2,-3) C.(2,3)或(-2,-3) D.(3,2)或(-3,-2)
=
������������' ������������
=
������������' ������������
= 2;
1
顺次连接 A'B',B'C',C'D',D'A',得到所要画的四边形 A'B'C'D'.
知识点一

北师大版中学数学九年级上册 图形的位似(第一课时 位似图形及其画法 ) 课件PPT

北师大版中学数学九年级上册 图形的位似(第一课时 位似图形及其画法 )   课件PPT

知识讲解
位似图形的画法
例1:如图,已知△ABC,以点O为位似中心画△DEF, 使其与△ABC位似,且位似比为2.
解:画射线OA,OB,OC;在射
D
线OA,OB,OC上分别取点
D,E,F,使OD = 2OA,OE = 2OB,OF = 2OC;顺序连接
A E
D,E,F,使△DEF与△ABC位
B
似,相似比为2.
下面我们就一起来学习一种把图形放大或缩小的方法。
3
知识讲解
位似图形的定义 通过对这几幅图案的观察你发现了什么?有什么特点?
这些图案虽大小不同,但形状相同且有特殊的位置关系。
4
知识讲解
以上五幅图片是由一组形状相同的图片组成,在图片 ①和图片②上任取一组对应点A,B,直线AB经过镜头中 心点P吗?换其他的对应点试一试,还有类似规律吗?
O
C
F
想一想:你还有其他的画法吗?
知识讲解
画法二:△ABC与△DEF异侧 解:画射线OA,OB,OC;沿着射线OA,OB,OC 反方向上分别取点D,E,F,OD = 2OA,OE = 2OB,OF = 2OC;顺序连接D,E,F,使△DEF与 △ABC位似,相似比为2.
O F
A
B C
E
D
随堂训练
为 7∶4 ;△OAB与 △OA′B′ 是位似图形,位似比为
7∶4 .
2.如图,图中两个四边形是位似图形,它们的位似中
心是( D )
A.点M
B.点N
C.点O
D.点P
第1题图
第2题图
15
当堂检测
3.下列相似图形是否是位似图形?如果是请指出位似中心,如
果不是请说明理由。

北师大版九年级数学上册 (图形的位似)图形的相似课件(第1课时)

北师大版九年级数学上册 (图形的位似)图形的相似课件(第1课时)
A′(-66,0,0))
B(2B,3()2,3)
B′(-44,6,-)6)
知识讲解
Байду номын сангаас
知识讲解
y
5
4
C
3
B
2
1
O 1 2 3 4 5A
x
知识讲解
在平面直角坐标系中,将一个多边形每个顶 点的横、纵坐标都乘以同一个数k(k≠0),所对 应的图形与原图形有什么关系?
知识讲解
6
5
4

3

2
1
O 1234567
A.左上 C.右上
B.左下 D.右下
强化训练 3.如图,△DEF是由△ABC经过位似变换得到的,点O是位似中心,D,E, F分别是OA,OB,OC的中点,则△DEF与△ABC的面积比是( B )
A.1:2 B.1:4 C.1:5 D.1:6
强化训练
4.如图,四边形ABCD与四边形AEFG是位似图形,且 AC:AF=2:3,则下列结论不正确的是( B ) A.四边形ABCD与四边形AEFG是相似图形 B.AD与AE的比是2:3 C.四边形ABCD与四边形AEFG的周长比是2:3 D.四边形ABCD与四边形AEFG的面积比是4:9
九年级数学北师版·上册
第四章 图形的相似
图形的位似
第1课时
新课引入 如图是一幅电影宣传海报,它由一组形状相同的图片组成,在 图片①上取一点A,它与另一图片(如图片②)上相应的点B 之间的连线经过镜头中心点P.在图片上换其他的点试一试,也 能发现类似的现象.
P
知识讲解
如图,如果两个相似多边形任意一组对应顶点A,A1的连线都经 过同一个点O,且有OA1=k·OA(k≠0),那么这样的两个多边形叫 做位似多边形.点O叫做位似中心.实际上,k就是这两个相似多边形 的相似比.

图形的位似课件北师大版数学九年级上册

图形的位似课件北师大版数学九年级上册
E

E' O C'

A' B'
A
B
知识精讲
2. 位似图形的性质
(1)对应点所在的直线经过位似中心;
(2)任意一组对应点到位似中心的距离之比等于相似比;
(3)对应边平行或在同一条直线上.
D
′ ′′
=
.


D'
O
C'
E'
A'
D
C
E
B'
B

A
′ ′′
=
.


C
E
D'C'
E'
A A'OB' B

知识精讲
3. 位似图形的画法(将一个图形放大或缩小)
(1)确定位似中心和图形上的关键点;
(2)连接位似中心与关键点并延长所得线段;
(3)根据相似比确定位似图形上的关键点;
A'
(4)顺次连接位似图形上的关键点,得到位似图形.
A
画一个△A′B ′C ′,使它与∆位似,且相似比为2.
C'
C
O
B

分析: 设 = .
由矩形的周长
矩形与矩形′ ′ ′是位似图形


=
′ ′
D'
D
A
C'
C
B
用表示的长
用表示AB ′ , ′的长
B'
典例精讲
【例题3】如图,矩形与矩形′ ′ ′是
位似图形,为位似中心.已知矩形的周长为
24,′ = 4,′ = 2,求, 的长.

《图形的位似》图形的相似PPT(第1课时)教学课件

《图形的位似》图形的相似PPT(第1课时)教学课件
作位似图形:关键是确定位似中心、 相似比和找关键点的对应点.
导入新课
第四章 图形的相似
图形的位似
第2课时
讲授新课
当堂练习
课堂小结
学习目标
1.理解位似图形的坐标变换规律.(难点) 2.能熟练在坐标系中根据坐标的变化规律做出位似图形.(重点)
导入新课
问题:将图(1)图形如何变换得到图(2)?
y
y
O
例1:在平面直角坐标系中,四边形OABC的顶点坐标分别为O(0,0),A(6,
0),B(3,6),C(-3,3).以原点O为位似中心,画出四边形OABC的位似图形,使
它与四边形OABC的相似是2:3.
画法一:如右图所示,
解:将四边形OABC各顶点的坐标都
2
乘 ;在平3面直角坐标系中描点
C C'
yB
OA'
连接的直线A相交于点O. OA
, OB' OB
, OC' OC
, OD' OD
,
OE' OE
有什么关系?
A'
B
E
E'
B'
O
D'
D
C'
C
OA' OB' OC' OD' OE' . OA OB OC OD OE
A
A'
B
E
E'
B'
O
如果C两个相似多D边形任意一组对C应' 顶点PD,' P̍ 所在的直线都过同一点O,且
当堂练习
1.选出下面不同于其他三组的图形( B )
A
B

4.8《图形的位似》第1课时 数学北师大版 九年级上册教学课件

4.8《图形的位似》第1课时 数学北师大版 九年级上册教学课件

A'
B'
O
C'
ห้องสมุดไป่ตู้
课堂练习
画法一(1)以点O为端点,分别作射线OA′,OB ′ ,OC ′ ;
(2)分别在射线OA′,OB′,OC′上取点A,B,C,使
OA OB OC 3
OA' OB' OC'
A
(3)连接AB,BC,AC,
△ABC就是所求作的三角形.
A' B
B'
O
C'
C
课堂练习
画法二(1)以点A′为端点作射线A′O,以点B′为端点作射线
第四章 图形的相似
4.8 图形的位似 第 1 课时
学习目标
1.了解位似多边形的有关概念. 2.能利用位似将一个图形放大或缩小.
情境引入
它们是相似图形吗?图形位置间有什么关系?找出规律.
探究新知
如图是两个相似五边形,设直线AA′与BB′相交于点O,那
么直线CC′ ,DD′ ,EE′是否也都经过点O?
探究新知
利用下面的方法可以近似地将一个图形放大: (1)将两根长短相同的橡皮筋系在一起,联结处形成一个结点 (2)选取一个图形,在图形外取一个定点 (3)将系在一起的橡皮筋的一端固定在定点, 把一支铅笔固定在橡皮筋的另一端 (4)拉动铅笔,使两根橡皮筋的结点沿所选图 形的边缘运动,当结点在已知图形上运动一圈 时,铅笔画出一个新的图形.
OA' ,OB' ,OC' ,OD' ,OE' 有什么关系?
OA OB OC OD OE
直线CC',DD',EE'也都经过点O A
OA' OB' OC' OD' OE' B OA OB OC OD OE

北师大版九年级数学上册课件:4.8图形的位似(一) (共18张PPT)

北师大版九年级数学上册课件:4.8图形的位似(一) (共18张PPT)
1.下列图形中不是位似图形的是( )
2.如果两个位似图形的对应线段长分别为3cm和 5cm,且较小图形周长为30cm,则较大图形周 长为 _____.
3.如图,已知五边形ABCDE,以点P为位似中心, 求作这个五边形的位似图形,使新图形与原 图形的位似比为2∶1.
1.C 2.50cm 3.解:(1)分别过五边形ABCDE的五个顶点作射线AP、 BP、CP、DP、EP; (2)在这些射线上依次截取PA1=2PA,PB1=2PB; PC1=2PC,PD1=2PD,PE1=2PE; (3)顺次连结A1,B1,C1,D1,E1,所得图形就是 符合要求的图形.
课堂小结
本堂课你学到了位似多边形的概 念与性质.
作业布置
课本习题 知识技能1、2
方法归纳
要放大或缩小一个多边形,只要 调整对应点与位似中心的距离,使其 比值等于放缩的比例.位似多边形上 任意一对对应点到位似中心的距离之 比k等于相似比.
想一想
请观察:以上每组相似图中的两个多边形是位似多边形吗? 你能把它们分类吗?你的依据是什么? 位似中心在哪里?
图(2)(3)(5)中对应点在位似中心的同一侧,图(1)(4) (6)中对应点在位似中心的两侧.两种方法都能起到把图形放大 或缩小的效果.
试一试
判断一下两组多边形是否是位似多边形.
想一想
一、判断正误: 1、位似多边形一定是相似多边形. 2、相似多边形一定是位似多边形. 3、两个位似多边形每一对对应点到 位似中心的距离之比为2︰3,则两个 多边形的面积之比为4︰9. 4、两个位似多边形的对应边互相平 行或在同一直线上.
自主探究
例1:已知△ABC,求作△DEF,使它与△ABC 位似,并且相似比为2. 先任意取一个点 若 D 与 A 是对应点, 作为位似中心 O 。 若D 在射线 OA 上 D在哪儿? D D 点还可以取在哪 距离 O点多远? F 儿?

北师大版九年级数学上册:4.8 图形的位似 课件(共24张PPT)

北师大版九年级数学上册:4.8 图形的位似  课件(共24张PPT)

(3)等边三角形ABC与等边三角形A´B´C´
D
C
C´ A


A
B
B B´ C´

B

C
观察下列位似图形的位似中心,你发现了什么?
结论:位似中心的位置由两个图形的位置决定,可能在两个
图形的同侧、异侧,图形的内部、边上或顶点上。
精讲点拨
将△ ABC放大到(为)原来的2倍。
E
B
O
C
F
D
A
对应边互相平行或共线
位似图形的概念
对应边互相平行(或共线)且每对 对应点所在的直线都经过同一点的两 个相似多边形叫做位似图形。这个点 叫做位似中心。
跟踪练习

判断下列图形是不是位似图形. E

D

C
(1)相似五边形ABCDE与五边形A´B´C´D´E´
A
(2)正方形ABCD与正方形A´B´C´D´ A´
精讲点拨
例2 如图 ,四边形 OABC 的顶点坐标分别为 (0,0),(2,0),(4,4),(-2,2) (1)如果四边形 O'A'B'C' 与四边形 OABC 位似, 位似中心是原点,它的面积等于四边形 OABC面积 的倍,分别写出点 A',B',C' 的坐标. (2)画出四边形 OA'B'C'.
规律总结
位似变换中对应点的坐标的变化规律:
在平面直角坐标系中,如果位似变换是以原点为位 似中心,相似比为k,那么位似图形对应点的坐标的比 等于k或-k。
实验与探究
(3)如图 ,已知△OAB 的顶点 O 是坐标原点, 顶点 A,B 的坐标分别为(-1,2),(-3,0)。 把△OAB 各个顶点的横、纵坐标都扩大到原来的 3 倍,得到点 O',A',B' 。 连接 O'A',O'B',A'B', △O'A'B' 与△OAB 是位似图形吗?如果是,位似 中心是哪个点?

北师大版九年级数学上册图形的位似(一)课件

北师大版九年级数学上册图形的位似(一)课件
D.OA1∶A1A=2∶3
例题欣赏2::
在直角坐标系中,四边形OABC的 顶点坐标分别为O(0,0),A( 6,0),B(3,6),C(-3,3).以 原点O为位似中心画一个四边形, 使它与四边形OABC位似,且类似 比是2:3。(自己动手画另一个图 形)
y
原坐标 O(0,0) 8 A(6,0)
标是 (D )
,则点 B1)
B.(-2,-3)
C.(2,3)或(-2,-3)
D.(3,2)或(-3,-2)
通过本节课的学习,你在知识上和方法上 有哪些收获?请说说看
1、位似图形、位似中心、类似比的定义。 2、在直角坐标系中,以O为位似中心的两个位 似多边形的坐标和类似比之间有什么关系?
B(3,6)
横纵坐标×-32 O′(0,0) A′(-4,0) B′(-2,-4)
6
B
C(-3,3) C′(2,-2)
4
C
2
以原点O为位 似中心,与 四边形OABC
类似比为2:
- - - -2 O 2 4 6 8 x 3的位似图形
8 64 -
有两个,它
原坐标 横纵坐标×32
24-
们关于原点 成中A 心对称。
问题2:
OA',OB',OC',OD',OE' OA OB OC OD OE'
有什么关系?
位似概念:
如果两个类似多边形每组对应点所在的 直线都经过同一个点O且每组对应点与
与O 点的距离之比都等于一个定值k, 例如OA′=k·OA(k≠0),那么这样的
两个多边形叫做位似多边形,点O叫做 位似中心。
位似比与类似比的关系
位似多边形上任意一对对应点到位似 中心的距离之比k等于类似比。

九年级数学北师大版上册课件:4.8 图形的位似(共39张PPT)

九年级数学北师大版上册课件:4.8 图形的位似(共39张PPT)

A B′ B
0 4
C′ C 8 12
放大后对应 点的坐标分 别是多少?
C″
B″
A″
A′( 4 ,6 ), B′( 4 ,2 ), C′( 12 ,4 ) A"( -4 ,-6 ), B"( -4 ,-2 ), C"( -12 ,-4 )
位似变换中对应点的坐标变化规律:
在平面直角坐标系中,如果位似变换 是以原点为位似中心,相似比为k,那么 位似图形对应点的坐标的比等于k或-k, 则图像上的对应点的坐标为(kx,ky)或 (-kx,-ky)。

(2)正方形ABCD与正方A′B′C′D′
×
(3)等边三角形ABC与等边三角形A′B′C′

2. 下面的说法对吗?为什么?
(1)分别在△ABC的边AB,AC上取点D、E,使DE∥BC,那 么△ADE是△ABC缩小后的图形。

(2)分别在△ABC的边AB,AC的延长线上取点D、E,使
DE∥BC,那么△ADE是△ABC放大后的图形。 √ (3)分别在△ABC的边AB,AC的反向延长线上取点D、E, 使DE∥BC,那么△ADE是△ABC缩小后的图形。 A E B C
例2.在平面直角坐标系中, 四边形ABCD的四个顶点的坐标
分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O 1 为位似中心,相似比为 的位似图形 . y
2
A
D
A′
B
D′ B′ C" x
C
C′
o B" D"
A′( -3,3 ), B′( -4,1 ), C′( -2,0 ), D′( -1,2 )
注:图形这些不同的变换是我们学习几何必不可少 的重要工具,它不但装点了我们的生活,而且是学习 后续知识的基础.

北师大版九年级上册图形的位似精品课件PPT

北师大版九年级上册图形的位似精品课件PPT
3.拉动铅笔,使结点沿 图形的边缘移动一周, 这样铅笔就画出一个新 的图形。试试看,它们 相似吗?
北师大版九年级上册4.8.1 图形的位似课件
北师大版九年级上册4.8.1 图形的位似课件
课堂小结
回味无穷
❖ 位似图形的概念: 如果两个图形不仅形状相同,而且所在的直线都
经过同一个点,那么这样的两个图形叫做位似图形, 这个点叫做位似中心,这时的相似比又称为位似比. ❖ 位似图形的性质: 1.位似图形是相似图形,具备相似图形的所有性质 2.位似图形上的任意一对对应点到位似中心的距离 之比等于位似比 3.位似图形上对应点和位似中心在同一直线上。
4.位似图形中的对应线段平行(或在一条直线上).
北师大版九年级上册4.8.1 图形的位似课件
北师大版九年级上册4.8.1 图形的位似课件
布置作业:
北师大版九年级上册4.8.1 图形的位似课件

1、在困境中时刻把握好的机遇的才能 。我在 想,假 如这个 打算是 我往履 行那结 果必定 失败, 由于我 在作决 策以前 会把患 上失的 因素斟 酌患上 太多。
位似多边形上任意一组对应点和位似中心在同一直线上
北师大版九年级上册4.8.1 图形的位似课件
议一议☞ 北师大版九年级上册4.8.1 图形的位似课件
观察下图中的五个图,回答下列问题:
(2)任意一组对应线段的位置关系是什么?
位似多边形中的对应线段平行(或在一条直线上).
北师大版九年级上册4.8.1 图形的位似课件
呢?
3.在这些图片中任取一组对应点,这组对应点有什么 样的特征?
北师大版九年级上册4.8.1 图形的位似课件
概念与性质
位似多边形的概念
如果两个相似多边形任意一组对应顶点P,P’ 所在的直线都经过同一点O,且有 OP'=k·OP(k≠0),那么这样的两个图形叫做位 似多边形,点O叫做位似中心.

北师版九年级数学上册《图形的位似》PPT课件

北师版九年级数学上册《图形的位似》PPT课件

感悟新知
知3-导
第二步;画出图形各顶点与位似中心O的连线; 第三步:按相似比取点; 第四步:顺次连接各点,所得的图形就是所求的图形.
感悟新知
知3-导
2.要点精析: (1)位似中心的选取要使画图方便且符合要求,一般以多边形
的一个顶点为位似中心画图最简便. (2)画位似图形时,要弄清相似比,即分清是已知图形与新图
课堂小结
图形的位似
知识总结
知识方法要点
关键总结
注意事项
每组对应点所在直线交于一 画位似图形时要找准对应点,

点的相似多边形是位似多边 理解相似比.注意位似中心的位
似 多
形; 位似多边形的对应边平 置:①位似中心在多边形的一

行或在一条直线上,多边形 侧;②两个多边形分居在位似

上任意一组对应点到位似中 中心的两侧;③位似中心在两
感悟新知
知识点 3 位似图形的画法
知3-导
1.画位似图形的步骤:
第一步:确定位似中心O(位似中心可以在图形外部,也可以在
图形内部,还可以在图形的边上,还可以在某一个顶点上);
特别提醒: ◆位似中心的选取一般考虑使画图方便且符合要求. ◆以一点为位似中心画位似图形时,符合要求的图形往往
不唯一,一般情况下,同一个位似中心的两侧各有一 个符合要求的图形.
求出AD的长,然后根据△OAD∽△OBG,求出
OB的长,即可确定C点的坐标.
∵正方形BEFG的边长是6,∴BE=EF=6,
∵两正方形的相似比为1∶3. ∴ CB CB 1 .
EF 6 3
∴AB=BC=CD=AD=2.
根据位似图形的性质可知,OA=1,即 OB 2 1 .
OB 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
导入新课
第四章 图形的相似
图形的位似
第1课时
讲授新课
当堂练习
课堂小结
2020/11/08
1
学习目标
1.了解位似多边形的有关概念及位似与相似的联系与区别.(重点) 2.掌握位似图像的性质,会画位似图形.(重点) 3.会利用位似将一个图形放大或缩小.(难点)
2020/11/08
2
讲授新课
一 位似多边形的概念
解:画射线OA,OB,OC;沿着射线OA,OB,OC反
方向上分别取点D,E,F,OD,E,F,使△DEF与△ABC
位似,相似比为2. F
O
A
B C
E
2020/11/08
D
6
例2:已知点O在△ABC内,以点O为位似中心画一个三角形,使
它与△ABC位似,且位似比为1:2.
A
2OA , OF = 2OB , OG = 2OC , OH = 2OD;
顺序连接E,F,G,H使正方形ABCD与正方形
B
EFGH位似,相位似比为1:2.
F
H
D O
C G
2020/11/08
10
谢谢您的聆听与观看
THANK YOU FOR YOUR GUIDANCE.
感谢阅读!为了方便学习和使用,本文档的内容可以在下载后随意修改,调整和打印。欢迎下载!
问题:下面两个多边形相似,将两个图形的顶点相连,观察发现
OA'
连接的直线A相交于点O. OA
, OB' OB
, OC' OC
, OD' OD
,
OE' OE
有什么关系?
A'
B
E
E'
B'
O
D'
D
C'
C
OA' OB' OC' OD' OE' . OA OB OC OD OE
2020/11/08
3
A
2020/11/08
11
A'
B
E
E'
B'
O
如果C两个相似多D边形任意一组对C应' 顶点PD,' P̍ 所在的直线都过同一点O,且
OP ̍ =k· OP (k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中 心.其中k为相似多边形的相似比.
下面两组也位似多边形.
2020/11/08
4
二 位似多边形的画法
例1:如图,已知△ABC,以点O为位似中心画△DEF,使其与
中心的异侧.
2020/11/08
8
当堂练习
1.选出下面不同于其他三组的图形( B )
A
B
2020/11/08
C
D
9
2.已知边长为1的正方形ABCD,以它的两条对角线的交点为位似 中心,画一个边长为2且与它位似的正方形.
解:画射线OA,OB,OC,OD;在射线
E
OA,OB,OC,OD上分别取点D,E,F,使OE =
画法一:△ABC与△DEF在同侧 A
D
解:画射线OA,OB,OC;在射线
BE
F C
OA,OB,OC上分别取点D,E,F,使 OA = 2OD,OB = 2OE,OC = 2OF; 顺序连接D,E,F,使△DEF与
2020/11/08
△ABC位似,位似比为1:2. 7
画法二: △ABC与△DEF在异侧
解:画射线OA,OB,OC;在射线OA,OB,OC 反向延长线上分别取点D,E,F,使OA =
A F
2OD,OB = 2OE,
B
OC = 2OF;顺序连接D,E,F,使△DEF与
D
△ABC位似,位似比为1:2.
E C
归纳 画位似图形的关键是画出图形中顶点的对应点,画图的方法大致
有两种:一是每对对应点都在位似中心的同侧,二是每对对应点在位似
△ABC位似,且位似比为2.
D
解:画射线OA,OB,OC;在射线OA,OB,OC
上分别取点D,E,F,使OD = 2OA,OE = 2OB,OF = 2OC;顺序连接D,E,F,使△DEF
A E
与△ABC位似,相似比为2.
B
O
C
F
想一想:你还有其他的画法吗?
2020/11/08
5
画法二:△ABC与△DEF异侧
相关文档
最新文档