八年级初二数学二次根式单元测试附解析
八年级下册数学《二次根式》单元测试题及答案
八年级下册数学《二次根式》单元测试卷一、单选题1n 的最小值是( )A .4B .6C .8D .122.式子x 1-有意义的x 的取值范围是( ) A .1x 2≥-且x≠1 B .x≠1 C .1x 2≥- D .1x>2-且x≠13.x ﹣5,则x 的取值范围是( )A .x <5B .x ≤5C .x ≥5D .x >5 4.下列根式中是最简二次根式的是( )A B C D 5.下列计算中,正确的是( )A =B .()2=8C =3D .⨯26.已知x +y -x 2y +xy 2=( )A .B .C .D .7.下列二次根式中,与 是同类二次根式的是( )A B C D8. )A .B .2C .D .29.下列计算正确的是( )A.5=B2= C.=D= 10.如图,在矩形ABCD 中无重叠放入面积分别为16cm 2和12cm 2的两张正方形纸片,则图中空白部分的面积为( )cm 2.A .16-B .-12+C .8-D .4-二、填空题11.若a 、b 为实数,且b+4,则a+b =_____. 12有意义,则m 的取值范围是__.13.把二次根式(x-1__. 14.计算:112-⎛⎫⎪⎝⎭=__. 15.计算:(﹣1)2018+()(2__.16a=_____.17_____. 18cm 、cm ,则这个三角形的周长是______.三、解答题19.计算:2﹣3.20(21.已知x =,求x 2+x+y 2﹣2xy ﹣y 的值.22.有理数a 、b 、c b c +.23.(1)已知a +3与2a ﹣15是一个正数的平方根,求a 的值;(2)已知x ,y 为实数,且y 的值. 利用二次根式有意义的条件分析得出答案.24.解答下列各题(1)计算:(2)当a ,b 时,求代数式a 2﹣ab +b 2的值.25m、n,使m2+n2=a且mn=a±将变成m2+n2±2mn,即变成(m±n)2+±2,所以,简.例如:5±22请仿照上例解下列问题:参考答案1.B【解析】【分析】=则6n 是完全平方数,满足条件的最小正整数n 为6.【详解】∵=∴6n 是完全平方数,∴n 的最小正整数值为6.故选B .【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.2.A【解析】根据二次根式被开方数必须是非负数和分式分母不为0的条件,要使x 1-在实数范围内有意义,必须12x 10x 1{{x 2x 102x 1+≥≥-⇒⇒≥--≠≠且x 1≠.故选A . 3.C【解析】【分析】(a≤0),由此性质求得答案即可.【详解】,∴5-x≤0∴x≥5.故选C .【点睛】(a≥0)(a≤0).4.B【详解】A,故此选项错误;3B是最简二次根式,故此选项正确;C,故此选项错误;D=故选B.考点:最简二次根式.5.C【解析】【分析】根据二次根式的乘除运算法则和二次根式的性质逐一计算可得.【详解】A3=,故A选项错误;B、(232=,故B选项错误;C3,故C选项正确;D、D选项错误;故答案选:C.【点睛】本题主要考查二次根式的乘除法,解题的关键是掌握二次根式的性质和运算法则.6.B【解析】【分析】把x2y+xy2分解因式,然后将x、y值代入进行计算即可得.【详解】∵x,y=xy(x+y)=+××)]=故选B .【点睛】本题考查了代数式求值,涉及了因式分解,二次根式的混合运算,解题时灵活运用二次根式的乘法与加法法则是解题的关键.7.C【解析】【分析】先将各二次根式化简为最简二次根式,然后根据同类二次根式的定义判断即可.【详解】解:A 的被开方数是6、不符合题意;BC ,符合题意;D 2故选C .【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键. 8.D【解析】【分析】先化简各二次根式,再计算乘法,最后合并同类二次根式可得.【详解】原式=﹣12×==,2故选:D.【点睛】本题主要考查二次根式的混合运算,解题的关键是掌握二次根式的性质和运算法则.9.B【解析】【分析】根据二次根式的加减法对A进行判断;根据二次根式的除法法则对B、D进行判断;根据二次根式的乘法法则对C进行判断.【详解】解:A、与不能合并,所以A选项错误;B、原式,所以B选项正确;C、原式,所以C选项错误;D、原式=,所以D选项错误.2故选:B.【点睛】本题考查了二次根式的运算:熟练掌握二次根式的加法法则、二次根式的乘除法法则及二次根式的性质是解答本题的关键.10.B【解析】【分析】根据正方形的面积求出两个正方形的边长,从而求出AB、BC,再根据空白部分的面积等于长方形的面积减去两个正方形的面积列式计算即可得解.【详解】∵两张正方形纸片的面积分别为16cm2和12cm2,∴4=cm ,=cm ,∴AB=4cm,BC=4)cm ,∴空白部分的面积=4)×4−12−16=(12-+ cm 2.故选B.【点睛】此题考查二次根式的应用,解题关键在于将正方形面积直接开根即是正方形的边长. 11.5或3【解析】【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负. 12.m≤12. 【解析】让二次根式的被开方数1-2m 为非负数列式求值即可.解:由题意得:1-2m≥0,解得m≤12.故答案为m≤12.13.【解析】【分析】根据二次根式有意义的条件可以判断x-1的符号,即可化简.【详解】解:x1x1=-=-=((故答案是:.【点睛】本题主要考查了二次根式的化简,正确根据二次根式有意义的条件,判断1-x>0,从而正确化简|1-x|是解决本题的关键.14【解析】【分析】按照实数的运算法则依次计算,112-⎛⎫⎪⎝⎭=2【详解】原式==2【点睛】此题考查的知识有:数的负指数幂,二次根式的分母有理化,熟练掌握相应的运算法则是解答此题的关键.15.2【解析】【分析】先计算乘方、二次根式的乘法,再计算加减可得.【详解】原式=1+4﹣3=2,故答案为:2.【点睛】本题主要考查二次根式的混合运算,解题的关键是熟练掌握二次根式的运算法则.16.5【解析】【分析】根据同类二次根式的被开方数相同列方程求解即可.【详解】∵∴4+a=2a-1解得a=5.故答案为5.【点睛】本题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.17【解析】【分析】可先将各二次根式化为最简,然后根据同类二次根式的被开方数相同即可作出判断.【详解】4【点睛】此题主要考查同类二次根式的定义,属于基础题,化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.18.【解析】【分析】将三边相加,化简各二次根式后合并即可得.【详解】=cm),故答案为.【点睛】本题主要考查二次根式的应用,解题的关键是掌握二次根式的混合运算顺序和运算法则.19.【解析】【分析】先将各二次根式进行化简,再合并同类二次根式即可得解.【详解】+26=.【点睛】此题考查二次根式的混合运算,先化简,再合并同类二次根式,注意选择合适的方法简算.20.-【解析】试题分析:按二次根式的乘除的运算法则计算即可.试题分析:原式=-=-==-.621.【解析】【分析】先利用完全平方公式变形得到原式=(x﹣y)2+(x﹣y),然后利用整体代入的方法计算.【详解】原式=x2﹣2xy+y2+(x﹣y)=(x﹣y)2+(x﹣y).∵x=y,∴x﹣y=原式=(2=.【点睛】本题考查了二次根式的化简求值.二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.22.b-a+2c【解析】【分析】根据数轴得出a-b<0,b+c<0,b-c>0,进而化简得出即可.【详解】解:b c + =a b b c b c --+--=b-a+b+c-b+c=b-a+2c【点睛】此题主要考查了二次根式以及绝对值的性质与化简,正确化简二次根式是解题关键. 23.(1)a 的值为 4 或 18;(2)5.【解析】【分析】(1)直接利用平方根的定义分析得出答案;(2)利用二次根式有意义的条件分析得出答案.【详解】解:(1)根据平方根的性质得,32150a a ++-=,解得 :a=4, 3215a a ,+=- 解得:a=18, 答:a 的值为 4 或 18;(2)满足二次根式9090,x x -≥⎧⎨-≥⎩ 解得:x=9,∴y=4,32 5.==+=【点睛】此题主要考查了二次根式有意义的条件,正确得出 x ,y 的值是解题关键.24.【解析】【分析】(1)先化简各二次根式,再合并同类二次根式即可得;(2)将a、b的值代入原式,根据完全平方公式和平方差公式计算可得.【详解】(1)原式=(2)当a,b2)+)2=﹣(3﹣2)+5﹣=9.【点睛】本题主要考查二次根式的化简求值,解题的关键是熟练掌握二次根式的性质与运算法则.25.11【解析】【分析】(1)把3分成2+1计算即可;(2)把4分成3+1,根据二次根式的性质进行化简即可.【详解】(11;(2.【点睛】本题考查的是二次根式的性质和化简,正确理解阅读材料所示内容、掌握二次根式的性质是解题的关键.。
八年级数学下册《二次根式》单元测试卷(附答案)
八年级数学下册《二次根式》单元测试卷(附答案)一、单选题(本大题共12小题,每小题3分,共36分)162x -x 的取值范围是( ) A .3x < B .3x ≥ C .3x ≤ D .3x ≠235x -3x +是同类二次根式,那么x 的值是( )A .1B .2C .3D .43212133m m m m ----m 的取值范围是( )A .3m >B .12m ≥C .132m ≤<D .12m <或3m >4.已知24234832y x x =--xy )A .4±B .2±C .4D .252a +有意义,则a 的取值范围是 ( )A .2a ≥-且1a ≠B .2a ≤-且1a ≠C .2a ≥-且1a ≠-D .2a ≤-且1a ≠-6.若25522m n n =--,则m n -=( )A .425 B .254 C .254- D .425-7.下列计算正确的是( )A 1262=B 82=10C 1233=-D .)32321=82a +12能够合并,那么a 的值为( )A .1B .2C .4D .109.下列各式中是最简二次根式的是( )A 8B 12C 0.25D 10103(235)的值应在( )A .10和11之间B .9和10之间C .8和9之间D .7和8之间11.把1(1)1m m --m -1)移到根号内得 ( ) A 1m -B 1m -C .1m --D .1m --123 )A 13B 75C 23D 27二、填空题(本大题共8小题,每小题3分,共24分)13.在函数1x y -=x 的取值范围为_______. 14.若已知a ,b 5a -102a -b +4,则a +b =_____.15()22x x x x -=-x 的取值范围是______.16.已知a 、b 、c 在数轴上的位置如图所示.2a a b ++2()c a b c -+-33b .178x -为整数,x 为正整数,则x 的值是_______________.18.已知a 10b 是它的小数部分,则210a b +=______. 19.262y x x=+-x 的取值范围是________. 20.已知:(10132a -⎛⎫=+ ⎪⎝⎭,()(3232b =a b +=_____________.三、解答题(本大题共5小题,每小题8分,共40分)21.计算: 1486273(2)(23521022.如图,正方形ABCD的面积为8,正方形ECFG的面积为32.(1)求正方形ABCD和正方形ECFG的边长;(2)求阴影部分的面积.23.计算:(1)836(2)((223-252-524.计算题:(1)(3112)÷33(2)11)2+(3(23.325.有一块矩形木板,木工采用如图的方式,在木板上截出两个面积分别为232dm的正18dm和2方形木板.(1)截出的两块正方形木料的边长分别为________dm,________dm;(2)求剩余木料的面积;(3)如果木工想从剩余的木料中截出长为1.5dm,宽为1dm的长方形木条,最多能截出几块这样的木条,并说明理由.参考答案:1.A2.D3.A4.C5.C6.A7.C8.A9.D10.B11.D12.C13.x≥1且x≠214.115.x⩾2.16.2b c a+-17.4或7或818.319.30-≤<x20.221.(1)31445-22.(1)正方形ABCD的边长为2ECFG的边长为2(2)阴影部分的面积为1223.(1)4332(2)843+.24.(1)4;(2)723325.(1)3242 (2)26dm (3)2。
(完整版)八年级数学下册二次根式单元测试题及答案,推荐文档
验证: 2 2 23 23 2 2 2 22 1 2 2 2
33
22 1
22 1
3
Hale Waihona Puke 式②: 3 3 3 38
8
验证: 3 3 33 33 3 3 3 32 1 3 3 3
88
32 1
32 1
8
⑴ 针对上述式①、式②的规律,请再写出一条按以上规律变化的式子;
C. x 2 2x 1 x 1
D. (2.5)2 ( 2.5)2
9.化简 8 2( 2 2) 得(
)
A.—2 B. 2 2 C.2 D. 4 2 2
10.如果数轴上表示 a、b 两个数的点都在原点的左侧,且 a 在 b 的左侧,则
a b (a b)2的值为( )A. 2b B. 2b C. 2a D. 2a
21、在实数范围内分解因式:(每小题 4 分)
(1) 9a4 25
(2) a4 4a2 4
(5) ( 1 )1 ( 3 2)0 4 2
2
8
(7) ( 3 2)2010 ( 3 2)2011
(4)
6. 2
b
ab5
3 2
a3b
3
b a
(8) 2 9x (x 1 x )
3
x
22.计算:((每小题 4 分))
x2
1 x2
2
的值。(5
分)
29.阅读下面问题: 1 1 ( 2 1) 2 1
1 2 ( 2 1)( 2 1)
建议收藏下载本文,以便随时1 学 习3! 2 3 2; 3 2 ( 3 2)( 3 2)
25.若10 17的整数部分是a,小数部分是b,求2ab b2的值 。(5 分)
2022-2023学年人教新版八年级下册数学《第16章 二次根式》单元测试卷(有答案)
2022-2023学年人教新版八年级下册数学《第16章二次根式》单元测试卷一.选择题(共12小题,满分36分)1.化简(﹣)2的结果是()A.﹣5B.5C.±5D.252.下列各式中,一定是二次根式的是()A.B.C.D.3.若二次根式有意义,则x的取值范围是()A.x≥0B.x≥5C.x≥﹣5D.x≤54.二次根式的值等于()A.﹣2B.±2C.2D.45.下列计算正确的是()A.=±3B.C.D.6.若是最简二次根式,则a的值可能是()A.﹣2B.2C.D.87.的有理化因式是()A.B.C.D.8.下列二次根式中能与合并的是()A.B.C.D.9.若是整数,则正整数n的最小值是()A.4B.5C.6D.710.如图,在数轴上所表示的x的取值范围中,有意义的二次根式是()A.B.C.D.11.已知二次根式,则下列各数中能满足条件的a的值是()A.4B.3C.2D.112.如果+有意义,那么代数式|x﹣1|+的值为()A.±8B.8C.与x的值无关D.无法确定二.填空题(共10小题,满分30分)13.化简的值是,把4化成最简二次根式是.14.计算:÷=.15.若是整数,则最小正整数n的值为.16.使得二次根式在实数范围内有意义的x的取值范围是.17.化简=.18.如果最简二次根式与是同类二次根式,那么x的值为.19.若是整数,则正整数n的最小值是.20.已知n是正整数,是整数,则n的最小值是.21.已知+=0,则+=.22.小明做数学题时,发现=;=;=;=;…;按此规律,若=(a,b为正整数),则a+b=.三.解答题(共5小题,满分54分)23.已知二次根式.(1)求x的取值范围;(2)求当x=﹣2时,二次根式的值;(3)若二次根式的值为零,求x的值.24.(1)通过计算下列各式的值探究问题:①=;=;=;=.探究:对于任意非负有理数a,=.②=;=;=;=.探究:对于任意负有理数a,=.综上,对于任意有理数a,=.(2)应用(1)所得的结论解决问题:有理数a,b在数轴上对应的点的位置如图所示,化简:﹣﹣+|a+b|.25.当a取什么值时,代数式取值最小?并求出这个最小值.26.阅读下面解题过程,并回答问题.化简:解:由隐含条件1﹣3x≥0,得x∴1﹣x>0∴原式=(1﹣3x)﹣(1﹣x)=1﹣3x﹣1+x=﹣2x按照上面的解法,试化简:.27.已知+2=b+8.(1)求a的值;(2)求a2﹣b2的平方根.参考答案与试题解析一.选择题(共12小题,满分36分)1.解:(﹣)2=5.故选:B.2.解:A、x<0时,不是二次根式,故此选项错误;B、x<﹣2时,不是二次根式,故此选项错误;C、是二次根式,故此选项正确;D、当x>0时,不是二次根式,故此选项错误;故选:C.3.解:∵x﹣5≥0,∴x≥5.故选:B.4.解:原式=|﹣2|=2.故选:C.5.解:A、=3,故本选项错误;B、=,故本选项错误;C、=5,故本选项错误;D、==,故本选项正确.故选:D.6.解:∵是最简二次根式,∴a≥0,且a为整数,中不含开的尽方的因数因式,故选项中﹣2,,8都不合题意,∴a的值可能是2.故选:B.7.解:的有理数因式是,故选:A.8.解:A、,不能与合并,错误;B、,能与合并,正确;C、,不能与合并,错误;D、,不能与合并,错误;故选:B.9.解:∵=3,∴正整数n的最小值是5;故选:B.10.解:从数轴可知:x≥﹣3,A.当﹣3≤x<3时,无意义,故本选项不符合题意;B.当x≥﹣3时,有意义,故本选项符合题意;C.当﹣3≤x≤3时,无意义,故本选项不符合题意;D.当x=﹣3时,无意义,故本选项不符合题意;故选:B.11.解:由题意可知:1﹣a≥0,解得:a≤1.故选:D.12.解:∵+有意义,∴x﹣1≥0,9﹣x≥0,解得:1≤x≤9,∴|x﹣1|+=x﹣1+9﹣x=8,故选:B.二.填空题(共10小题,满分30分)13.解:=;4=4×=.故答案是;.14.解:原式===4.故答案为:4.15.解:∵是整数,∴最小正整数n的值是:5.故答案为:5.16.解:∵二次根式在实数范围内有意义,∴x﹣2≥0,解得x≥2.故答案为:x≥2.17.解:原式===2,故答案为:2.18.解:∵最简二次根式与是同类二次根式,∴2x﹣1=5,∴x=3.故答案为:3.19.解:原式=5,则正整数n的最小值是3时,原式是整数.故答案为:3.20.解:==3,∵是整数,∴n的最小值是3,故答案为:3.21.解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.22.解:根据题中的规律得:a=8,b=82+1=65,则a+b=8+65=73.故答案为:73.三.解答题(共5小题,满分54分)23.解:(1)根据题意,得:3﹣x≥0,解得x≤6;(2)当x=﹣2时,===2;(3)∵二次根式的值为零,∴3﹣x=0,解得x=6.24.解:(1)①=4;=16;=0;=.探究:对于任意非负有理数a,=a.故答案为:4,16,0,,a;②=3;=5;=1;=2.探究:对于任意负有理数a,=﹣a.综上,对于任意有理数a,=|a|.故答案为:3,5,1,2,﹣a,|a|;(2)观察数轴可知:﹣2<a<﹣1,0<b<1,a﹣b<0,a+b<0.原式=|a|﹣|b|﹣|a﹣b|+|a+b|=﹣a﹣b+a﹣b﹣a﹣b=﹣a﹣3b.25.解:∵≥0,∴当a=﹣时,有最小值,是0.则+1的最小值是1.26.解:由隐含条件2﹣x≥0,得x≤2,则x﹣3<0,所以原式=|x﹣3|﹣(2﹣x)=﹣(x﹣3)﹣2+x=﹣x+3﹣2+x=1.27.解:(1)由题意知a﹣17≥0,17﹣a≥0,则a﹣17=0,解得:a=17;(2)由(1)可知a=17,则b+8=0,解得:b=﹣8,故a2﹣b2=172﹣(﹣8)2=225,则a2﹣b2的平方根为:±=±15.。
八年级数学下册《二次根式》单元测试能力提升卷 含答案 (原卷+详解)
人教版数学八年级下册单元测试能力提升卷《二次根式》一.选择题1有意义,且关于x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( ) A .7-B .6-C .5-D .4-2.若23a <<( ) A .52a -B .12a -C .25a -D .21a -3.把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为4)cm 的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A .B .16cmC .4)cm +D .4)cm -4.已知10a -<<( )A .2aB .22a a+ C .2a D .2a-5.已知:a ,b =,则a 与b 的关系是( )A .0a b -=B .0a b +=C .1ab =D .22a b =6.计算201820193)3)-的值为( )A .1B 3C 3D .3-7.若实数x 满足|3|7x -=,化简2|4|x +( ) A .42x + B .42x -- C .2- D .28.如果22()1xf xx=+并且f表示当x12f==,f表示当x=值,即13f==,那么f f f f f f f+++++⋯++的值是()A.12n-B.32n-C.52n-D.12n+9()======A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错10.下列各式中,正确的是个数有()2=a b=+=A.1个B.2个C.3个D.0个11.若实数m满足|4||3|1m m-=-+,那么下列四个式子中与(m-相等的是() AB.CD.二.填空题12a为.13.若x,y4y=,则xy的值为.14.=⋯观察下列各式:请你找出其中规律,并将第(1)n n个等式写出来.15.已知m是实数,且m+1m-都是整数,那么m的值是.16.已知ABC∆的三边长分别为AB=BC=AC=其中7a>,则ABC ∆的面积为 .17.已知a ,b 是实数,且)1a b =,问a ,b 之间有怎样的关系: .18.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘2122222(2)===, (1分母有理化可得 ;(2)关于x 的方程132x -的解是 .19.已知252a a +=-,225b b +=-,且a b ≠,则化简 .20.(1)(2)02(3)ππ--(3)-(4)21.已知a 为实数,且a +与1a-a 的值是 .三.解答题 22.计算:(1-(2)21)(3)解分式方程:1111x x x+=--;(4)已知:22112()1121x A x x x x -=-÷+-++;①当1x =时,先化简,再求值; ②代数式A 的值能不能等于3,并说明理由.23.已知:12y 的值.24.若x ,y 是实数,且13y =,求2(3-的值.25.已知:a 、b 、c 是ABC ∆26.化简求值:x =,y =的值.27.阅读下面的文字再回答问题甲、乙两人对题目:“化简并求值:2a 14a =”有不同的解答.甲的解答是:22213474a a a a a a a +==+-=-=;乙的解答是22211174a a a a a a a ==+-=+= (1)填空: 的解答是错误的;(2)解答错误的原因是未能正确运用二次根式的性质?请用含字母a 的式子表示这个性质(3)请你正确运用上述性质解决问题:当35x <<28.先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当1x =时,求32122x x x --+的值,为解答这题,若直接把1x 代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一 将条件变形.因1x =,得1x -=(1)x -的表达式.原式321(22)22x x x =--+21[(1)(1)3]22x x x x x =----+ 21[(1)3]22x x x =--+ 1(33)22x x =-+ 2=方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由1x -=得2220x x --=,即,222x x -=,222x x =+. 原式21(22)22x x x x =+--+ 222x x x x =+--+2=请参以上的解决问题的思路和方法,解决以下问题: (1)若2310a a -+=,求32232531a a a --++的值;(2)已知2x =,求432295543x x x x x x ---+-+的值.29.(1(2)已知1x ,1y =,求代数式22x y xy +的值.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如23(1+.善于思考的小明进行了以下探索:若设222(22a m m n ++=++a 、b 、m 、n 均为整数), 则有222a m n =+,2b mn =.这样小明就找到了一种把类似a + 请你仿照小明的方法探索并解决下列问题:(1)若2(a m +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:a = ,b = ;(2)若2(a m +=+,且a 、m 、n 均为正整数,求a 的值;(3.人教版数学八年级下册单元测试能力提升卷《二次根式》答案详解版一.选择题1有意义,且关于x 的分式方程3211m x x +=--有正数解,则符合条件的整数m 的和是( ) A .7-B .6-C .5-D .4-【解析】去分母得,2(1)3m x -+-=, 解得,52m x +=, 关于x 的分式方程3211m x x +=--有正数解, ∴502m +>, 5m ∴>-,又1x =是增根,当1x =时,512m +=,即3m =- 3m ∴≠-,有意义,20m ∴-,2m ∴,因此52m -<且3m ≠-, m 为整数,m ∴可以为4-,2-,1-,0,1,2,其和为4-, 故选:D .2.若23a <<( ) A .52a -B .12a -C .25a -D .21a -【解析】23a <<,∴2(3)a a =---23a a =--+ 25a =-.故选:C .3.把四张形状大小完全相同宽为1cm 的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为,宽为4)cm 的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分的周长和是( )A .B .16cmC .4)cmD .4)cm【解析】设小长方形卡片的长为x ,宽为y ,根据题意得:2x y += 则图②中两块阴影部分周长和是2(42)2(4)4442162(2)1616()y x y x x y cm -+-=⨯--=-+=-.故选:B .4.已知10a -<<( )A .2aB .22a a+C .2a D .2a-【解析】10a -<<,∴==11()a a a a=--+2a =-.故选:D . 5.已知:a ,b =,则a 与b 的关系是( )A .0a b -=B .0a b +=C .1ab =D .22a b =【解析】分母有理化,可得2a =+,2b =(2(2a b ∴-=+--=A 选项错误;(2(24a b +=++=,故B 选项错误;(2(2431ab =+⨯=-=,故C 选项正确;22(2437a =+=+=+22(2437b ==-=-22a b ∴≠,故D 选项错误;故选:C .6.计算201820193)3)-的值为( )A .1B 3C 3D .3【解析】原式201820183)3)3)=⨯20183)]3)=⨯2018(109)3)=-⨯13)=⨯3=,故选:B .7.若实数x 满足|3|7x -=,化简2|4|x +( ) A .42x + B .42x --C .2-D .2【解析】|3|7x -,|3||4|7x x ∴-++=,43x∴-,2|4|x∴+2(4)|26|x x=+--2(4)(62)x x =+--42x=+,故选:A.8.如果22()1xf xx=+并且f表示当x12f==,f表示当x=值,即13f==,那么f f f f f f f+++++⋯++的值是()A.12n-B.32n-C.52n-D.12n+【解析】代入计算可得,1f f+=,1f f+=,⋯,1f f+=,所以,原式11(1)22n n=+-=-.故选:A.9()======A.两人解法都对B.甲错乙对C.甲对乙错D.两人都错【解析】甲同学在计算时,将分子和分母都乘以是有可能等于0,此时变形后分式没有意义,所以甲同学的解法错误;乙同学的解法正确;故选:B .10.下列各式中,正确的是个数有( )2=a b =+= A .1个 B .2个C .3个D .0个【解析】2不能合并,故①错误,若1a =,2b =a b ≠+,故②错误,,故③正确,3a +=故选:B .11.若实数m 满足|4||3|1m m -=-+,那么下列四个式子中与(m -( )A B .C D .【解析】由|4||3|1m m -=-+得,3m ,40m ∴-<,30m -,(m ∴-故选:D . 二.填空题12a 为 2 .a 为2, 故答案为:2.13.若x ,y 4y =,则xy 的值为 2 .【解析】x ,y 4y =,210x ∴-=,4y =,则12x =,故1422xy =⨯=.故答案为:2.14.(2019秋•===,⋯观察下列各式:请你找出其中规律,并将第(1)n n (n =+===,⋯得(n =+(n =+15.已知m 是实数,且m +1m-都是整数,那么m 的值是 3-3- 【解析】22m +是整数,m a ∴=-,(其中a 为整数),∴1m ==,又1m -是整数,281a ∴-=,3a ∴=±,3m ∴=-或3m =--故答案为:3-3--.16.已知ABC ∆的三边长分别为AB =BC AC =其中7a >,则ABC ∆的面积为 168 .【解析】2AB ==BC =AC =如图,点(,24)A a ,(,24)B a --,(7,0)C11124247242168222ABC S OC OC ∆∴=⨯+⨯=⨯⨯⨯=故答案为:168.17.已知a ,b 是实数,且)1a b =,问a ,b 之间有怎样的关系: 0a b += .【解析】2(1)1a ab +=,等式的两边都乘以)a b a =①,等式的两边都乘以)b -a b +②,①+b a b a =,整理,得220a b += 所以0a b += 故答案为:0a b +=18.阅读以下材料:将分母中的根号化去,叫做分母有理化.分母有理化的方法,一般是把分子分母都乘2122222(2)===,(11 ;(2)关于x的方程132x -=+ 的解是 . 【解析】(11==1;(2)132x -=,132x -=,132x -=+⋯+,113122x -=+,611x -=-+6x =x =,故答案为:2.19.已知252a a +=-,225b b +=-,且a b ≠,则化简+=【解析】252a a +=-,225b b +=-,即2520a a ++=,2520b b ++=,且a b ≠,a ∴、b 可看做方程2520x x ++=的两不相等的实数根,则5a b +=-,2ab =,0a ∴<,0b <,则原式=-==(254)2-=-=故答案为:20.(1)(2)02(3)ππ--(3)-(4)【解析】(1)原式==(2)原式2(3)1ππ=---+231ππ=--++2=;(3)原式=3=;(4)原式322=-+3=.21.已知a 为实数,且a +1a-a 的值是 5-5-【解析】a +a ∴是含-1a -∴化简后为1a 为含5a ∴=-5--故答案为:5-5--. 三.解答题(共9小题) 22.计算:(1-(2)21)(3)解分式方程:1111x x x +=--; (4)已知:22112()1121x A x x x x -=-÷+-++;①当1x =+时,先化简,再求值; ②代数式A 的值能不能等于3,并说明理由.【解析】(1)原式11=-=-;(2)原式426=-=- (3)两边都乘以1x -,得:11x x -=-, 解得:1x =,检验:当1x =时,10x -=,1x ∴=是原分式方程的增根,则原分式方程无解;(4)①原式211(1)[](1)(1)(1)(1)2x x x x x x x -+=-+-+-- 22(1)(1)(1)2x x x x x -+=+--11x x +=-,当1x 时,原式===;②若代数式A 的值为3,则131x x +=-,解得2x =,当2x =时,原式没有意义,∴代数式A 的值不可能为3.23.已知:12y =的值. 【解析】180x -,18x810x -,18x,18x ∴=,12y =,∴原式4===.24.若x ,y 是实数,且13y =,求2(3-的值.【解析】x ,y 是实数,且13y ,410x ∴-且140x -,解得:14x =,13y ∴=,2(3∴-的值.2===18=25.已知:a 、b 、c 是ABC ∆【解析】a 、b 、c 是ABC ∆的三边长,a b c ∴+>,b c a +>,b a c +>,∴原式||||||a b c b c a c b a =++-+-+--()()a b c b c a b a c =++-+-++-a b c b c a b a c =++--+++- 3a b c =+-.26.化简求值:x =,y的值.【解析】22x ===-,2y ===,∴====27.阅读下面的文字再回答问题甲、乙两人对题目:“化简并求值:2a+14a =”有不同的解答.甲的解答是:22213474a a a a a a a +==+-=-=;乙的解答是22211174a a a a a a a =+-=+= (1)填空: 乙 的解答是错误的;(2)解答错误的原因是未能正确运用二次根式的性质?请用含字母a 的式子表示这个性质(3)请你正确运用上述性质解决问题:当35x <<【解析】(1)乙的做法错误.当14a =时,10a a ->1a a =-,故乙的做法错误.故答案为:乙(2)当0a <a -;(3)35x <<,70x ∴-<,250x ->.7252x x x =-+-=+28.先阅读,再解答问题.恒等变形,是代数式求值的一个很重要的方法,利用恒等变形,可以把无理数运算转化为有理数运算,可以把次数较高的代数式转化为次数较低的代数式.如当1x =时,求32122x x x --+的值,为解答这题,若直接把1x 代入所求的式中,进行计算,显然很麻烦.我们可以通过恒等变形,对本题进行解答.方法一 将条件变形.因1x =,得1x -=(1)x -的表达式.原式321(22)22x x x =--+21[(1)(1)3]22x x x x x =----+ 21[(1)3]22x x x =--+ 1(33)22x x =-+ 2=方法二 先将条件化成整式,再把等式两边同时平方,把无理数运算转化为有理数运算.由1x -=得2220x x --=,即,222x x -=,222x x =+. 原式21(22)22x x x x =+--+ 222x x x x =+--+2=请参以上的解决问题的思路和方法,解决以下问题:(1)若2310a a -+=,求32232531a a a --++的值;(2)已知2x =,求432295543x x x x x x ---+-+的值. 【解析】(1)2310a a -+=,231a a ∴-=-,213a a +=,13a a +=,32232531a a a ∴--++2232(3)(3)333a a a a a a a =-+-+-+ 12(1)(1)33a a a =⨯-+-+-+12133a a a =--+-+ 14a a =-+ 34=-1=-;(2)2x =+,2x ∴-= ∴432295543x x x x x x ---+-+322(2)(2)7(2)19(2)33(2)1x x x x x x x x -+------=--======962-=32=.29.(1(2)已知1x ,1y =,求代数式22x y xy +的值.【解析】(1)原式92=-+7=;(2)22x y xy +()xy x y =+11)=+1=⨯=.30.阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式了的平方,如23(1+.善于思考的小明进行了以下探索:若设222(22a m m n ++=++a 、b 、m 、n 均为整数),则有222a m n =+,2b mn =.这样小明就找到了一种把类似a +请你仿照小明的方法探索并解决下列问题:(1)若2(a m +=+,当a 、b 、m 、n 均为整数时,用含m 、n 的式子分别表示a 、b ,得:a = 227m n + ,b = ;(2)若2(a m +=+,且a 、m 、n 均为正整数,求a 的值;(3.【解析】(1)设222(72a m m n +=+=++a 、b 、m 、n 均为整数),则有227a m n =+,2b mn =;故答案为227m n +,2mn ;(2)62mn =,3mn ∴=, a 、m 、n 均为正整数,1m ∴=,3n =或3m =,1n =,当1m =,3n =时,22313928a m n =+=+⨯=;当3m =,1n =时,22393112a m n =+=+⨯=;即a 的值为为12或28;(3t =,则244t =8=+8=+81)=+6=+21)=,1t ∴=.。
人教版八年级下册数学《二次根式》单元测试卷(含答案)
人教版八年级下册数学《二次根式》单元测试卷姓名:__________班级:__________考号:__________一 、选择题(本大题共10小题,每小题3分,共30分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.2得( ).A.2B.C. D.2.化简后,与2的被开方数相同的二次根式是( ).A .12B .18C .41 D .61 3.下列式子中,是二次根式的是( ).A ..x4.下列计算正确的是( )= =5.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11 C .44- D .446.下列各式中,一定是二次根式的是( ).A .23-B .2)3.0(-C .2-D .x7.设22a b c ====,则a ,b ,c 的大小关系是( )A.a b c >>B.a c b >>C.c b a >>D.b c a >>8.若x x +=-11 )A .1x -B .1x -C .1D .1-9.=( )A BC D .不同于以上三个答案10.计算:下列三个命题:①若α,β是互不相等的无理数,则αβαβ+-是无理数;②若α,β是互不相等的无理数,则αβαβ-+是无理数;③若α,β其中正确命题的个数是( )A . 0B .1C .2D .3二 、填空题(本大题共5小题,每小题3分,共15分) 11.485127-=______.12.的有理化因式是 ;y 的有理化因式是 .的有理化因式是 .14.是可以合并的二次根式,则____a =.15.已知254245222+-----=x x x x y ,则22y x += .三 、解答题(本大题共7小题,共55分)16.计算:(1) (2(3(417.先化简,再求值:((6)a a a a -+--,其中215+=a18.若最简二次根式a 2b a -的值19.已知x ,求32353x x x +-+的值.20.若a a ,b 的值.21.已知1018222=++a a a a,求a 的值.22.比较大小(1(2人教版八年级下册数学《二次根式》单元测试卷答案解析一 、选择题1.A ;因为230x -≥,23232x x ≥=-,所以210|21|21x x x ->=-=-221(23)2x x =---=.2.B .3.A4.A5.D6.B7.A ;1a ===,同理1122bc ==220>+,所以1110,c b a c b a >>><<.8.B9.C =====10.A ;①1)1)1)]123++-=+=是有理数;13==是有理数; 0=是有理数.二 、填空题11.-12.直接比较大小,无从入手,所以可以通过做差的方法比较大小.0=<,13.(1(2)y ; (3).14.4;依题意,得,3a-5=a+3 ,解得a=4 .15.6;因一个等式中含两个未知量,初看似乎条件不足,不妨从二次根式的定义入手. 由题可知:22222205420,262045x x x y x y x x⎧-≥⎪⎪-→-==→+=⎨-⎪≥⎪-⎩.三 、解答题16.(1)2;(2)(3)2;(4.17.原式223663a a a a =--+=-,把215+=a 代入得原式=16)32⨯-=.18.222a b a b a b +=⎧⎨+=+⎩,解得11a b =⎧⎨=⎩,∴原式211=-=-.19.由条件得2x ,即2x +=两边平方并整理得 2410x x +-=故原式322(4)(41)2x x x x x =+--+-+22(41)(41)22x x x x x =+--+-+=20.11a b =⎧⎨=⎩. 21.先化原方程中的二次根式为最简二次根式,然后按着解一般整式方程的步骤去解即可.10102a=22.(1====+65(2==,,2011+∴(1(2。
新人教版初中数学八年级数学下册第一单元《二次根式》测试卷(包含答案解析)
一、选择题1.下列式子中正确的是( )A =B .a b =-C .(a b =-D .22== 2.若x=,则2x 2x -=( )A B .1 C .2D 13.x 的取值范围是( )A .x <1B .x >1C .x≥1D .x≤14.已知0<x<3,化简=的结果是( )A .3x-4B .x-4C .3x+6D .-x+6 5.下列计算正确的是( ). A .()()22a b a b b a +-=-B .224x y xy +=C .()235a a -=-D .=6.下列算式中,正确的是( )A .3=B =C =D 4= 7.下列四个数中,是负数的是( )A .2-B .2(2)-C .D 8.下列计算正确的是( )A 7=±B 7=-C 112=D =9x 的取值范围是( )A .1≥xB .1x >C .1x ≤D .1x = 10.下列各式计算正确的是( )A +=B .26=(C 4=D = 11.下列计算正确的是( )A .336a a a +=B .1=C .()325x x =D .642b b b ÷=12. )A B .C D .二、填空题13.计算:()235328-+---=__________.14.如果代数式1x -有意义,那么实数x 的取值范围是____15.实数a ,b 在数轴上的位置如图所示,化简:|a +1|﹣22(1)()b a b -+-=_____.16.若224y x x =-+-+,则y x 的平方根是__________.17.如图,在长方形内有两个相邻的正方形A ,B ,正方形A 的面积为2,正方形B 的面积为6,则图中阴影部分的面积是__________.18.13a a+=a a =______. 19.计算:232)(32)=______.20.2121=-+3232=+4343=+,请从上述等式找出规律,并利用规律计算(20082)32435420082007++⋅⋅⋅++=++++_________. 三、解答题21.(1)计算:503248- (2)计算:16215)362(3)解方程组:25214323x y x y -=-⎧⎨+=⎩(4)解方程组:4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 22.计算:(1)121850322(2)21)-.23.计算:(12- (2) 248(31)(31)(31)(31)1++++- 24.阅读下列简化过程:1===;==== ……解答下列问题:(1)请用n (n 为正整数)表示化简过程规律________;(2++⋯+; (3)设a =,b =c =,比较a ,b ,c 的大小关系.25()201220202π-⎛⎫+-- ⎪⎝⎭26.计算:.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A 、不是同类二次根式,不能合并,故错误,不符合题意;B 、计算错误,不符合题意;C 、符合合并同类二次根式的法则,正确,符合题意.D 、计算错误,不符合题意;【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 2.B解析:B【分析】直接将已知分母有理化,进而代入求出答案.【详解】解:∵ x==1=, ∴ ()2x 2x x x 2-=- )112=- 21=-1=.【点评】此题主要考查了分母有理化,正确化简二次根式是解题关键.3.C解析:C【分析】直接利用二次根式有意义的条件分析得出答案. 【详解】∵∴x−1≥0,解得:x≥1.故选:C .【点睛】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.4.A解析:A【分析】先根据0<x<3判定2x+1和x-5的正负,然后再根据二次根式的性质和绝对值的性质化简,最后合并同类项即可.解:∵0<x<3∴2x+1>0,x-5<0∴=2x+1+x-5=3x-4.故答案为A.【点睛】本题主要考查了二次根式的性质和绝对值的性质,根据0<x<3判定2x+1和x-5的正负是解答本题的关键.5.D解析:D【分析】根据平方差公式、合并同类项、幂的乘方、二次根式的运算法则即可求出答案.【详解】A.原式=a2−b2,故A错误;B.2x与2y不是同类项,不能合并,故B错误;C.原式=a6,故C错误;D.原式=D正确;故选:D.【点睛】本题考查了平方差公式、合并同类项、幂的乘方、二次根式,解题的关键是熟练运用运算法则,本题属于基础题型.6.C解析:C【分析】根据二次根式的除法与加减法法则逐项判断即可得.【详解】A、=B235=+=,此项错误;C==D2==,此项错误;故选:C.【点睛】本题考查了二次根式的除法与加减法,熟练掌握运算法则是解题关键.7.C解析:C先根据绝对值的性质,有理数的乘方,二次根式的性质对各式化简,再利用正数和负数的定义对各选项分析判断后利用排除法求解.【详解】-=>,不符合题意;A、220-=>,不符合题意;B、()2240C、0<,符合题意;D20=>,不符合题意;故选:C.【点睛】本题考查了正数和负数,主要利用了有理数的乘方和绝对值的性质以及二次根式的性质,熟记正数和负数的定义是解题的关键.8.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A77=-=,故该选项错误;B77=-=,故该选项错误;C====,故该选项正确;D2故选:D.【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键.9.A解析:A【分析】根据二次根式有意义的条件可得x-1≥0,再解即可.【详解】解:由题意得:x-1≥0,解得:x≥1,故选:A.【点睛】本题考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数. 10.D解析:D【分析】根据二次根式的运算法则一一判断即可.【详解】AB 、错误,212=(;C ==D ==故选:D .【点睛】本题考查二次根式的运算,解题的关键是熟练掌握二次根式的加减乘除运算法则,属于中考常考题型. 11.D解析:D【分析】依次根据合并同类项法则,二次根式的加减、幂的乘方和同底数幂的除法判断即可.【详解】解:A. 3332a a a +=,故该选项错误;B. =C. ()32236x x x ⨯==,故该选项错误;D. 64642b b b b -÷==,故该选项正确.故选:D .【点睛】本题考查幂的相关计算,合并同类项和二次根式的加减.掌握相关运算法则,能分别计算是解题关键.12.C解析:C【分析】先根据二次根式的性质化简各项,再根据同类二次根式的定义逐项判断即得答案.【详解】解:A 不是同类二次根式,故本选项不符合题意;B 、=C =D、=,所以2故选:C.【点睛】本题考查了二次根式的性质和同类二次根式的定义,属于基础题型,熟练掌握上述知识是解题的关键.二、填空题13.7-【分析】首先利用绝对值的性质和二次根式算术平方根立方根的性质化简然后再计算加减即可【详解】解:【点睛】此题主要考查了实数运算关键是掌握绝对值的性质和二次根式的性质解析:【分析】首先利用绝对值的性质和二次根式、算术平方根、立方根的性质化简,然后再计算加减即可.【详解】3()--=322=32+2=7【点睛】此题主要考查了实数运算,关键是掌握绝对值的性质和二次根式的性质.14.x≥1【分析】直接利用二次根式有意义的条件分析得出答案【详解】解:∵代数式有意义∴∴x≥1故答案为:x≥1【点睛】此题主要考查了二次根式的有意义的条件列出不等式是解题关键解析:x≥1.【分析】直接利用二次根式有意义的条件分析得出答案.【详解】解:∵x-≥,∴10∴x≥1.故答案为:x≥1.【点睛】此题主要考查了二次根式的有意义的条件,列出不等式是解题关键.15.﹣2a【分析】依据数轴即可得到a+1<0b﹣1>0a﹣b<0即可化简|a+1|﹣【详解】解:由题可得﹣2<a <﹣11<b <2∴a+1<0b ﹣1>0a ﹣b <0∴|a+1|﹣=|a+1|﹣|b ﹣1|+|解析:﹣2a .【分析】依据数轴即可得到a +1<0,b ﹣1>0,a ﹣b <0,即可化简|a +1|.【详解】解:由题可得,﹣2<a <﹣1,1<b <2,∴a +1<0,b ﹣1>0,a ﹣b <0,∴|a +1|=|a +1|﹣|b ﹣1|+|a ﹣b |=﹣a ﹣1﹣(b ﹣1)+(﹣a +b )=﹣a ﹣1﹣b +1﹣a +b=﹣2a ,故答案为:﹣2a .【点睛】本题考查了二次根式的性质,绝对值的意义,数轴的定义,解题的关键是熟练掌握所学的知识,正确的进行化简.16.【分析】根据二次根式的有意义的条件得出x 值进而求出y 代入计算即可【详解】解:要使有意义则:∴∴∴∴的平方根为故答案为:【点睛】本题考查了二次根式的有意义的条件解题的关键是掌握被开方数大于或等于零 解析:4±【分析】根据二次根式的有意义的条件得出x 值,进而求出y ,代入计算即可.【详解】解:要使4y =有意义,则:2020x x -≥⎧⎨-≥⎩, ∴2x =,∴4y =, ∴=4=±,∴y x 的平方根为4±,故答案为:4±.【点睛】本题考查了二次根式的有意义的条件,解题的关键是掌握被开方数大于或等于零.17.【分析】设两个正方形AB的边长是xy(x<y)得出方程x2=2y2=6求出x=y=代入阴影部分的面积是(y-x)x求出即可【详解】解:设两个正方形AB的边长是xy(x<y)则x2=2y2=6x=y=解析:2【分析】设两个正方形A,B的边长是x、y(x<y),得出方程x2=2,y2=6,求出,,代入阴影部分的面积是(y-x)x求出即可.【详解】解:设两个正方形A,B的边长是x、y(x<y),则x2=2,y2=6,,,则阴影部分的面积是(y-x)x=-=2-,故答案为:2-.【点睛】本题考查了二次根式的应用、算术平方根性质的应用,主要考查学生的计算能力.18.【分析】把平方后得到取算数平方根即可求解【详解】∵∴∴(舍负)故答案为:【点睛】此题考查了完全平方公式熟练掌握完全平方公式是解决此题的关键【分析】平方后,得到13aa+=,取算数平方根即可求解.【详解】∵13aa+=,∴212325aa=++=+=,∴=.【点睛】此题考查了完全平方公式,熟练掌握完全平方公式是解决此题的关键.19.【分析】先将化成再运用平方差公式计算从而可得解【详解】解:===故答案为:【点睛】此题主要考查了二次根式的混合运算熟练运用乘法公式是解答此题的关键【分析】先将2化成,再运用平方差公式计算,从而可得解.【详解】解:2==22⎡⎤-⎣⎦=【点睛】此题主要考查了二次根式的混合运算,熟练运用乘法公式是解答此题的关键. 20.2006【分析】所求代数式第一个括号内可由已知的信息化简为:然后利用平方差公式计算【详解】解:原式故答案为:2006【点睛】本题考查了数字型规律二次根式的混合运算解答此类题目的关键是认真观察题中式子解析:2006【分析】 所求代数式第一个括号内可由已知的信息化简为:,然后利用平方差公式计算.【详解】解:1===⋯ ∴原式==20082=-2006=.故答案为:2006.【点睛】本题考查了数字型规律,二次根式的混合运算,解答此类题目的关键是认真观察题中式子的特点,找出其中的抵消规律.三、解答题21.(1)72;(2)-2)25x y =⎧⎨=⎩;(4)368x y =⎧⎨=⎩【分析】(1)由二次根式的性质进行化简,再计算加减运算即可;(2)由二次根式的性质和乘法运算进行化简,再计算加减运算即可;(3)利用加减消元法解二元一次方程,即可得到答案;(4)利用加减消元法解二元一次方程,即可得到答案;【详解】解:(1)4=4 =142-=72; (2)=-=-;(3)25214323x y x y -=-⎧⎨+=⎩①②, 由②-①⨯2,得1365y =,∴5y =,把5y =代入①,得22521x -=-,∴2x =,∴方程组的解为25x y =⎧⎨=⎩; (4)4314x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩①②, 由①-②,得334x x -=, ∴36x =,把36x =代入①,得124y -=,∴8y =, ∴方程组的解为368x y =⎧⎨=⎩【点睛】本题考查了二次根式的混合运算,二次根式的性质,二元一次方程组的解法,解题的关键是熟练掌握运算法则,正确的进行解题.22.(1);(2)﹣【分析】(1)先化为最简二次根式,然后根据二次根式的运算法则即可求出答案.(2)根据完全平方公式以及平方差公式即可求出答案.【详解】解:(1)==(2)21)-=5﹣6﹣(5﹣)=﹣1﹣(6﹣=﹣1﹣=﹣【点睛】此题主要考查了二次根式的混合运算,熟练掌握运算法则是解答此题的关键. 23.(1)52;(2)16332- 【分析】(1)先由二次根式的性质、立方根、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)由平方差公式进行化简,然后得到答案.【详解】解:(1)原式31322=++52=; (2)原式248(31)(31)(31)(31)(31)12-++++=-16163133122--=-=. 【点睛】本题考查了平方差公式,实数的混合运算,二次根式的性质,以及绝对值的化简,解题的关键是熟练掌握运算法则进行计算.24.(1==2)1;(3)c b a >>【分析】(1)根据已知可得:两个连续正整数算术平方根的和的倒数,等于分子分母都乘以这两个连续正整数算术平方根的差,化简得这两个连续正整数算术平方根的差;(2)利用分母有理化分别化简,再合并同类二次根式得解;(3)将a 、b 、c 分别化简,比较结果即可.【详解】(1== (21=+1=1=.(3)a ==2b ==2c ==, 22>,a b ∴>, 又53>b c ∴>,c b a ∴>>.【得解】此题考查代数式计算规律探究,分母有理化计算,根据例题掌握计算的规律并解决问题是解题的关键.25.7-【分析】 先化简二次根式、绝对值、负整数指数幂运算、零指数幂运算,再计算加减法.【详解】()201220202π-⎛⎫+-- ⎪⎝⎭=2241+-=7-【点睛】此题考查实数的混合运算,熟练掌握二次根式的化简、绝对值的化简、负整数指数幂运算、零指数幂运算是解题的关键.26.【分析】根据二次根式混合运算的运算顺序,先算乘除,再将二次根式化成最简二次根式,最后合并同类二次根式即可得出结果.【详解】解:====【点睛】本题考查了二次根式的混合运算,掌握二次根式混合运算的相关运算法则是解题的关键.。
人教版数学八年级下册第十六章二次根式 单元测试卷(含答案解析)
人教版数学八年级下册第十六章二次根式单元测试卷(含答案解析)一、单选题(共12小题,每小题4分,共计48分)1A.4b B.CD2.下列各数中,与的积不含二次根式的是A.B.CD3m为()A.-10B.-40C.-90D.-1604.若a,b-5,则a,b的关系为A.互为相反数B.互为倒数C.积为-1D.绝对值相等5.下列计算正确的是3==6=3=;a b=-.A.1个B.2个C.3个D.4个6合并的是()A B C D7.若6的整数部分为x,小数部分为y,则(2x)y的值是() A.5-B.3C.-5D.-38.如图,a,b,c的结果是()a c+A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b9.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间 D.8和9之间10有意义,那么直角坐标系中点A(a,b)在() A .第一象限 B .第二象限 C .第三象限D .第四象限11.下列计算正确的是AB . CD12.如果,,那么各式:,,,其中正确的是()A .①②③B .①③C .②③D .①②二、填空题(共5小题,每小题4分,共计20分)13.如果表示a 、b 的实数的点在数轴上的位置如图所示,那么化简|a﹣的结果是_____.14.已知a 、b满足(a ﹣1)2=0,则a+b=_____.15有意义,则实数x 的取值范围是_____.16.若a ,b 都是实数,b﹣2,则a b 的值为_____. 17.已知实数,互为倒数,其中__________. ()=3=2==0ab > 0a b +<=1=b =-a b a 2=+三、解答题(共4小题,每小题8分,共计32分)18=b+8.(1)求a 的值;(2)求a 2-b 2的平方根.19.已知实数a 满足|300﹣a =a ,求a ﹣3002的值.20.已知点A(5,a)与点B(5,-3)关于x 轴对称,b 为求(1)的值。
八年级下册数学《二次根式》单元测试卷含答案
八年级下册数学《二次根式》单元测试卷1 .使代数式」三有意义的自变量X 的取值范围是()x-42 .下列根式中,最简二次根式是(3 .若Jx+y-l+(y + 3『=0,则不一丁的值为()A. 1个B. 2个C. 3个D. 4个5 .如果式子底可一lx —21化简的结果为5-2x,则x 的取值范围是()126 .化简行+石的结果为(7 .已知x = 2-JJ ,则代数式(7 + 46)/+(2 + /» +6的值是()A. 2->/3B. 2 + 73C.小D. 08 .等腰三角形中,两边长为26和5直,则此等腰三角形的周长为() A. 46+5近B. 2/+10^C 46 + 50或2褥+10" D.以上都不对A. x>3B. x>3 且 xW4C. x ,3 且 xW4D. x>3A. >/24C. D.A. 1B. -1C. -7D.4.下歹ij 计算或判断:(1) ±3是27的立方根;(2) 17=a府的平方根是2; (4)疤>±8:(5)]V6-V5= #+",其中正确的有(A. x>3B. x<2C. x>2D. 2<A <3A. V3 + V2B. y/3-42C. y/2 + 2y/3D.百+ 2应一、单选题评卷人 得分二、填空题13.后输再(a>0,b>0)=i ----214 .化简计算:正2尸= ___________ ,百p15 .计算:(2j?-3)237x (2jI + 3)刈三16 .实数a 在数轴上的位置如图所示,化简Ja2—2“ + l+|2a _4卜.-------- 1~1 ------------------ ■ -------------- »o I a 217 .已知a, b 是正整数,若JJ+秒是不大于2的整数,则满足条件的有序数对(。
【3套试卷】人教版数学八年级下第16章二次根式单元考试题(有答案)
人教版数学八年级下第16章二次根式单元考试题(有答案)人教版八年级数学下册第十六章二次根式单元检测卷总分:150分,时间:120分钟;姓名:;成绩:;一、选择题(4分×12=48分)1、下列二次根式是最简二次根式的是()C.B.2)A. B.C.3a能够取的值是()A. 0B. 1C. 2D.34有意义的条件是()A.x≥1B.x≤1C.x≠1D.x<15、若135a是整数,则a的最小正整数值是( )A.15 B.45 C.60 D.1356、则实数x的取值范围在数轴上的表示正确的是( )=-)7aA. -B.C. -D.8、已知(5m=n,如果n是整数,则m可能是()A. 5 C. 9、下列计算正确的是( )A. 4B. 1C. 3 210、若a 、b 、c ) A. 2a -2c B. -2c C. 2b D.2a11、已知a ,b a 、b ,则下列表示正确的是( ) A. 0.3ab B. 3ab C. 0.1ab D.0.9ab12、定义:m Δn =(m+n )2,m ※n =mn -2,则[(]Δ)的值是( )C. 5二、填空题(4分×6=24分)13= ;14、已知矩形的长为cm cm ,则矩形的面积为 ;15、当a = 时,16、已知a =,b =,则a 2b+ab 2= ;171x =成立的条件是 ;1822510b b +=,则a+b 的平方根是 ;三、22a 10分×2=20分)19、计算(1)21+( (2)2019+(-1)20、计算:(1)220,0)a a b >>(2)2(0,0)a a b m n ÷>>四、解答题(9分×4=36分)21、用四张一样大小的长方形纸片拼成一个正方形ABCD ,如图所示,它的面积是75,AE=22、化简求值:2(2)(2)(2)(43)a b a b a b b a b +-+--+,其中a 1,b ;23、观察下列各式,通过分母有理化,把不是最简二次根式的化成最简二次根式:121212)12)(12()12(1121-=--=-+-⨯=+ 232323)23)(23()23(1231-=--=-+-⨯=+同理可得:32321-=+从计算结果中找出规律,并利用这一规律计算.......1)的值24、已知a,b,c在数轴上如图所示,化简:+b c五、解答题(10分+12分=22分)25、现有一组有规律的数:1,-1,2,-2,3,-3,1,-1,2,-2,3,-3,…,其中1,-1,2,-2,3,-3这6个数按此规律重复出现.(1)第50个数是什么数?(2)把从第1个数开始的前2018个数相加,结果是多少?(3)从第1个数起,把连续若干个数的平方相加,如果和为520,那么一共是多少个数的平方相加?26、小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+()2.善于思考的小明进行了以下探索:设=()2(其中a、b、m、n均为整数),则有=m2+2n2∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若=()2,用含m、n的式子分别表示a、b,得:a= ,b= ;(2)利用所探索的结论,找一组正整数a、b、m、n填空:+ =(+ )2;(3)若)2,且a 、m 、n 均为正整数,求a 的值?2019年春人教版数学八年级下第16章二次根式单元考试题答案一、选择题CDBDA CABDA AB 二、填空题13、1; 14、2; 15、6; 16、6; 17、x ≥-1; 18、±3三、解答题 19、计算:(1)5; (2)0;20、(1)12a 3b 2;(2)2221a ab a b -+;四、解答题21、22、; 23、2017; 24、-a 五、解答题25、(1)第50个数是-1.(2)从第1个数开始的前2018个数的和是0. (3)一共是261个数的平方相加.26、26、(1)223,2m n mn + (2)16,8,2,2(答案不唯一)(3)7或13.人教版八年级数学下册 第十六章 二次根式 单元测试题(含答案)一、选择题。
人教版八年级数学下册 第16章 二次根式 单元测试试题解析版
单元测试题章二次根式人教版八年级数学下册第16小题)一.选择题(共10) 1.矩形的面积为18,一边长为,则另一边长为(24.. CAD. B.) 2、.在根式、中,可以与、进行合并的有(、个.43个 D个 B.2个 C.A.1).计算﹣的结果是(35DC..A.25 B. 2).二次根式的值等于( 44D.C.2BA.﹣2 .±2x)的取值范围是(5 .若二次根式在实数范围内有意义,则xxxx2D..≥ A.C≥≤ B.≤2a)的值为(.若<0 ,则6aa32﹣﹣2 D.A.3 B.﹣3 C.3) 7,.下列各式中,,,,,中,最简二次根式有(个.5 3个C.4个 D.A2个B.baab﹣,则、8.若),=两数的关系是(=1.互为负倒数.互为倒数 C.相等 D.互为相反数A Bn,则最后输出的结果是(值为)9.按如图所示的程序计算,若开始输入的.8+5 D16 C..14+.A14 Bxxx)=( 10.已知(﹣1()= +1),则D .5+. 5B5A.﹣.﹣2C5+2 小题)8二.填空题(共x.有意义,则.如果二次根式11.ba,则这个矩形的面积是12.已知矩形的长,宽==.=.计算:13×.﹣4×14.分母有理化:=.=15.化简:.xy=.是同类二次根式,则 +16.已知最简二次根式和n的最小值为.17.若是正整数,则整数22mnmnnm=.已知18,则代数式1+ + .+3 的值为,﹣=1三.解答题(共7小题)19.计算:(1)2)(yyxy的值.+3,都是实数,且+1=,求20.若acbabC在数轴上的位置如图所示,化简:、|﹣、21﹣|.实数+﹣|+﹣1|.aab.+为整数,求是同类二次根式,与根式22.求最简根式.阅读材料:23Scpba==,记如果一个三角形的三边长分别为,,那么这个三角形的面积,.这个公式叫“海伦公式”,它是利用三角形三条边的边长直接求三角形面积的公式.中国的秦九韶也得出了类似的公式,称三斜求积术,故这个公式又被称为“海伦秦﹣﹣﹣九韶公式”完成下列问题:ABCabc=6.5=,如图,在△中,7=,ABC的面积; 1()求△ABhAChhh +,2()设边上的高为边上的高为,求的值.2121.年后,一种植物苔藓就开始在1224.全球气候变暖导致一些冰川融化并消失,在冰川消失岩石上生长,每一个苔藓都会长成近似圆形,苔藓的直径和冰川消失的年限,近似地满ddt代表苔藓的直径,单位为厘米,它代表=),其中7(12≥足如下的关系式:冰川消失的时间,单位为年. 16年后苔藓的直径;(1)计算冰川消失 14厘米,问冰川约在多少年前消失的?(2)如果测得一些苔藓的直径是.先阅读下列解答过程,然后再解答:25nbabamab,使得形如的化,,,使=简,只要我们找到两个正数+=m那么便有:,=,ba>()例如:化简nm,即:×3=12化为474+3127,这里=,=,由于=,解:首先把,=7,所以.问题:①填空:==,;(请写出计算过程)②化简:参考答案与试题解析一.选择题(共10小题)根据矩形的面积得出另一边为,再根据二次根式的运算法则进行化简即可. 1.【分析】,一边长为【解答】解:∵矩形的面积为 18,3,∴另一边长为=C.故选:【点评】本题考查了矩形的面积和二次根式的除法,能根据二次根式的运算法则进行化简是解此题的关键..【分析】对各个二次根式化简,找出与是同类二次根式的项即可. 2,,【解答】解:,个.2共、进行合并的有中,可以与、、、、∴在根式B.故选:【点评】此题主要考查了同类二次根式的定义,即:二次根式化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式..【分析】首先化简二次根式,然后再合并同类二次根式即可.3,=2﹣【解答】解:3=﹣C.故选:【点评】此题主要考查了二次根式的加减,关键是正确把二次根式进行化简. 4.【分析】直接利用二次根式的性质化简求出答案..=﹣【解答】解:原式=|2|2C故选:.正确掌握二次根式的性质是解题关键.【点评】此题主要考查了二次根式的性质与化简,.【分析】直接利用二次根式有意义的条件分析得出答案.5【解答】解:∵二次根式在实数范围内有意义,x,04﹣2∴≥x解得:≤.A故选:.正确把握二次根式的定义是解题关键.此题主要考查了二次根式有意义的条件,【点评】.aa|,然后去绝对)﹣【分析】利用二次根式的性质和绝对值的意义得到原式=﹣(|﹣3.6值后合并即可.a<0,【解答】解:∵aa| )﹣∴原式=﹣(|﹣3aa +3+=﹣=3.A.故选:【点评】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质进行二次根式的化简与计算.7.【分析】最简二次根式是指被开方数不含分母、不含还能再开方的数的二次根式,据此逐个式子分析即可.a的次数大于2中【解答】解:,不是最简二次根式;没法化简了,属于最简二次根式;是最简二次根式;根号下含义分母,不是最简二次根式;2×3,还能化简,不是最简二次根式;其中的12=2中含有分母,不是最简二次根式.综上,是最简二次根式的有2个.A.故选:【点评】本题考查了最简二次根式的识别,明确最简二次根式的定义,是解题的关键.本题属于基础知识的考查,比较简单.a分母有理化化简后,判断即可..【分析】把 8ba,﹣1=,【解答】解:化简得:1﹣===ba则互为相反数,与A.故选:【点评】此题考查了分母有理化,熟练掌握运算法则是解本题的关键. 9.【分析】根据给出的运算程序计算即可.nnn,15<2+)=+1(时,=【解答】解:当.nnn8+5>15,+1当)==时,2+ (C故选:.【点评】本题考查的是二次根式的混合运算,掌握二次根式的混合运算法则是解题的关键.10.【分析】根据一元一次方程的解法即可求出答案.xx+1),1 )=【解答】解:∵((﹣xx+,∴=﹣xx=+,∴﹣x5+2==∴,C.故选:【点评】本题考查一元一次方程,解题的关键是熟练运用一元一次方程的解法,本题属于基础题型.二.填空题(共8小题)11.【分析】根据二次根式被开方数是非负数列出不等式,解不等式得到答案.【解答】解:∵二次根式有意义,x,﹣2≥∴0x,≥2解得, 2故答案为:≥.【点评】本题考查的是二次根式应用的条件,掌握二次根式被开方数是非负数是解题的关键. 12.【分析】根据矩形的面积公式列出算式,根据二次根式的乘法法则计算,得到答案.ab【解答】解:矩形的面积==×3×××=44,=故答案为:4.【点评】本题考查的是二次根式的应用,掌握二次根式的乘法法则是解题的关键.然后把二次根式化为最简二次根式后合并即.13先利用二次根式的乘法法则运算,【分析】可.×4 【解答】解:原式=﹣=﹣2=.故答案为.【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.14.【分析】根据分母有理化法则计算.=﹣1,【解答】解:=.﹣1故答案为:【点评】本题考查的是分母有理化,正确选择两个二次根式,使它们的积符合平方差公式是解答问题的关键.15.【分析】根据二次根式的性质即可求出答案.3a≥0,【解答】解:∵﹣a≤0,∴aa, |=﹣∴原式=|a故答案为:﹣【点评】本题考查二次根式,解题的关键是熟练运用二次根式的性质,本题属于基础题型.16.【分析】根据同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.进行解答即可.和是同类二次根式,【解答】解:∵最简二次根式∴,xy=4,,解得:4=xy=4+4=+8,∴故答案为:8.【点评】本题考查了同类二次根式,解答本题的关键在于熟练掌握同类二次根式的定义:一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.n的值. 17.【分析】先化简二次根式,然后依据化简结果为整数可确定出n是整数,【解答】解:∵是正整数,n的最小值是3.∴故答案是:3.【点评】本题主要考查的是二次根式的定义,熟练掌握二次根式的定义是解题的关键. 18.【分析】直接将原式变形进而把已知代入求出答案.nm【解答】解:∵==1+1,﹣,22mnnm +∴+32mnnm)=(++2))(1﹣)﹣+(1+=(1++1=4+1﹣3=2.故答案为:2.【点评】此题主要考查了二次根式的化简求值,正确将原式变形是解题关键.三.解答题(共7小题)19.【分析】(1)先把二次根式化为最简二次根式,然后合并即可;(2)利用完全平方公式和平方差公式计算.)原式= 1【解答】解:(=;)原式=2(18+6+1+3﹣2 =.20+6=【点评】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.x=4,然20,解不等式组可得.【分析】首先根据二次根式有意义的条件可得:yyy的值.+3的值,进而可得可得+1=后再代入.【解答】解:由题意得:,x 4解得:,=y 1则,=y 5.=2+3=+3【点评】此题主要考查了二次根式有意义的条件,关键是掌握二次根式中的被开方数是非负数.cabcba|||,再根据二次根式的性质和绝对值0<<|,|>21.【分析】根据数轴得出|<>的意义进行计算,最后合并同类项即可.cabcba|, |>,|||【解答】解:从数轴可知:><|<0<bac﹣﹣1|所以﹣||++﹣|baaccbb+1)()﹣(+)﹣(=﹣﹣+baaccbb﹣+++1 =﹣﹣﹣b﹣1=.【点评】本题考查了数轴,二次根式的性质和绝对值,能正确根据二次根式的性质和绝对值进行计算是解此题的关键.abbab﹣232|知|,由3,﹣==22=.【分析】化简二次根式aaa为整数知8是最简二次根式,且根据≤求得,结合≤aaaa=7,进一步检验可得答案.5或3或4=或 1=或==b|,=| 【解答】解:化简得:ba,=2∵3﹣ab﹣2∴=3,,即∵,a 8≤解得≤,a∵为整数,是最简二次根式,且aaaaa=7, 4或=5或∴=1或=3或=abab=2+;当时,=1,此时=1ba,不是同类二次根式,舍个根式为2,第个根式为1,此时第7=时,3=当.去;ba个根式为,第2个根式化简后是12,舍去;=4时,=10,此时第当ba个根式是个根式为,舍去;2,此时第1当=5时,,第=13ba,第当=7时,2=19,此时第1个根式化简后是个根式为1,舍去;ba.综上的值为+2 【点评】此题考查了同类二次根式,熟练掌握同类二次根式的定义是解本题的关键.cbppa,,的值代入题中所列面积公式计算即可;123.【分析】()根据题意先求,,再将hh和)按照三角形的面积等于×底×高分别计算出的值,再求和即可.(221p9)根据题意知==【解答】解.(1S==6=所以ABC∴△;的面积为6bhchS6==)∵(2=21hh6==×5∴×6 21hh 2,∴==21hh=+∴.21【点评】本题考查了二次根式在三角形面积计算中的应用,读懂题中所列的海伦公式并正确运用,是解题的关键.td的值,直接把对应数值代入关系时,=1624.【分析】(1)根据题意可知分别是求当式即可求解;dt的值,直接把对应数值代入关系式即可求解. 14(2)根据题意可知是求当时,=cmdt; 2=1416时,==77××【解答】解:(1)当=ttd=1416时,年.412=,解得=2,即﹣)当(2=cm,冰川约是在1614年前消失的. 16答:冰川消失年后苔藓的直径为【点评】本题主要考查了平方根、算术平方根概念的运用.会根据题意把数值准确的代入对应的关系式中是解题的关键.25.【分析】①②仿照例题、根据完全平方公式、二次根式的性质解答即可.,+1===【解答】解:①.=+2=,=+2故答案为: +1;;=﹣2②=.=【点评】本题考查的是二次根式的化简,掌握完全平方公式、二次根式的性质是解题的关键.。
人教版八年级数学下册第十六章二次根式单元测试卷(含答案)
⼈教版⼋年级数学下册第⼗六章⼆次根式单元测试卷(含答案)第⼗六章⼆次根式单元测试卷题号⼀⼆三总分得分⼀、选择题(每题3分,共30分)1.要使⼆次根式错误!未找到引⽤源。
有意义,x必须满⾜()A.x≤2B.x≥2C.x>2D.x<22.下列⼆次根式中,不能与错误!未找到引⽤源。
合并的是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
3.下列⼆次根式中,最简⼆次根式是()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
4.下列各式计算正确的是()A.错误!未找到引⽤源。
+错误!未找到引⽤源。
=错误!未找到引⽤源。
B.4错误!未找到引⽤源。
-3错误!未找到引⽤源。
=1C.2错误!未找到引⽤源。
×3错误!未找到引⽤源。
=6错误!未找到引⽤源。
D.错误!未找到引⽤源。
÷错误!未找到引⽤源。
=35.下列各式中,⼀定成⽴的是()A.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2B.错误!未找到引⽤源。
=(错误!未找到引⽤源。
)2C.错误!未找到引⽤源。
=x-1D.错误!未找到引⽤源。
=错误!未找到引⽤源。
·错误!未找到引⽤源。
6.已知a=错误!未找到引⽤源。
+1,b=错误!未找到引⽤源。
,则a与b的关系为()A.a=bB.ab=1C.a=-bD.ab=-17.计算错误!未找到引⽤源。
÷错误!未找到引⽤源。
×错误!未找到引⽤源。
的结果为()A.错误!未找到引⽤源。
B.错误!未找到引⽤源。
C.错误!未找到引⽤源。
D.错误!未找到引⽤源。
8.已知a,b,c为△ABC的三边长,且错误!未找到引⽤源。
+|b-c|=0,则△ABC的形状是()A.等腰三⾓形B.等边三⾓形C.直⾓三⾓形D.等腰直⾓三⾓形9.已知a-b=2错误!未找到引⽤源。
-1,ab=错误!未找到引⽤源。
八年级数学下册第一单元《二次根式》测试(含答案解析)
一、选择题1.从“+,﹣,×,÷”中选择一种运算符号,填入算式“+1)□x”的“□”中,使其运算结果为有理数,则实数x 不可能是( )A B . 1 C 2 D .12. )A .1B .2C .3D .43. )A B C D 4.下列式子中是二次根式的是( )A B C D 5.下列运算正确的是 ( )A B C .1)2=3-1 D 6.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .7.下列计算正确的是( )A 7=±B 7=-C 112=D 2=8.合并的是( )A B C D 9.下列计算正确的是( )A =B =C .216=D 1=10.若0<x<1,则 )A .2xB .- 2xC .-2xD .2x11.=x 可取的整数值有( ). A .1个 B .2个C .3个D .4个12. )A .1个B .2个C .3个D .4个二、填空题13.x 的取值范围是______________. 14._____. 15.2=__________.16.已知+3,则x-y=_____________.17.已知a 、b 为有理数,m 、n分别表示521amn bn +=,则3a b +=_________.18.19.===…(a 、b 均为实数)则=a __________,=b __________.20.)0a >=______.三、解答题21.(1(2)解不等式组:2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩ 22.先化简再求值:2211,211a a a a a ----+-其中a = 23.(1)计算2011(20181978)|22-⎛⎛⎫-⨯----- ⎪ ⎝⎭⎝⎭(2)先化简,再求值:2256111x x x x -+⎛⎫-÷ ⎪--⎝⎭,x 从0,1,2,3四个数中适当选取. 24.先化简,再求值:21133x x x x xx ,其中1x =25.计算:(12(5)-; (2)(x ﹣2y+3)(x+2y+3).26.计算(1)22018112-⎛⎫-+ ⎪⎝⎭;(20|1-;(3)2(1)16x -=;(4)321x +=【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据题意,添上一种运算符号后逐一判断即可.【详解】解:A+1+1)=0,故本选项不合题意;B、1)无论是相加,相减,相乘,相除,结果都是无理数,故本选项符合题意; C﹣2)=3,故本选项不合题意;D)(12,故本选项不合题意.故选:B .【点睛】本题主要考查了二次根式的混合运算,熟记二次根式的混合运算法则以及平方差公式是解答本题的关键.(a+b )(a-b )=a 2-b 2.2.C解析:C【分析】为同类根式,即可得到此方程的正整数解的组数有三组.【详解】解:∵,x ,y 为正整数,∴====∴11327x y =⎧⎨=⎩,224812x y =⎧⎨=⎩,331473x y =⎧⎨=⎩,共有三组正整数解. 故选:C .【点睛】本题考查同类二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式称为同类二次根式.3.B解析:B【分析】根据分数的性质,在分子分母同乘以2,再根据二次根式的性质化简即可.【详解】4===, 故选:B .【点睛】此题考查化简二次根式,掌握分数的性质确定分子分母同乘以最小的数值,使分母化为一个数的平方,由此化简二次根式是解题的关键.4.C解析:C【分析】利用二次根式的定义进行解答即可.【详解】A 中,当0a <时,不是二次根式,故此选项不符合题意;B 1x <-时,不是二次根式,故此选项不符合题意;C =()2 10x +≥恒成立,因此该式是二次根式,故此选项符合题意;D 20-<,不是二次根式,故此选项不符合题意;故选:C .【点睛】(0a ≥)的式子叫做二次根式. 5.B解析:B【分析】根据各个选项中的式子,可以计算出正确的结果,从而可以解答本题.【详解】A A 错误;B ,故选项B 正确;C 、21)313=-=-,故选项C 错误;D 53=≠+,故选项D 错误;故选:B .【点睛】本题考查了二次根式的混合运算,解答本题的关键是明确二次根式混合运算的法则. 6.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>, ∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 7.D解析:D【分析】根据二次根根式的运算法则即可求出答案.【详解】A 77=-=,故该选项错误;B 77=-=,故该选项错误;C ==D == 故选:D .【点睛】本题主要考查了利用二次根式的性质化简,正确掌握相关运算法则是解题关键. 8.D解析:D【分析】先化简选项中各二次根式,然后找出被开方数为2的二次根式即可.【详解】的同类二次根式.A63无法合并,故A错误;B43无法合并,故B错误;C25无法合并,故C错误;D32可以合并,故D正确.故选D.【点睛】本题主要考查的是同类二次根式的定义,掌握同类二次根式的定义是解题的关键.9.B解析:B【分析】根据二次根式加减法、乘除法的法则分别计算即可得到答案.【详解】A A错误;B==B正确;C、28=,故选项C错误;D==D错误;故选:B.【点睛】本题主要考查了二次根式的加减乘除运算,熟练掌握运算方法是解题的关键.10.D解析:D【分析】利用完全平方公式以及二次根式的性质,结合0<x<1,进行化简,即可得到答案.【详解】∵0<x<1,∴1+xx >0,1-xx<0,∴=11|+||-|x x x x- =1+x x +1-x x=2x ,故选D【点睛】||a =,是解题的关键. 11.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.12.B解析:B【分析】先把各二次根式化简为最简二次根式,再根据同类二次根式的概念解答即可.【详解】被开方数不同,故不是同类二次根式;被开方数不同,故不是同类二次根式;被开方数相同,故是同类二次根式;2被开方数相同,故是同类二次根式.2个,故选:B .【点睛】此题主要考查了同类二次根式的定义即化成最简二次根式后,被开方数相同的二次根式叫做同类二次根式.二、填空题13.且【分析】根据分式有意义可得根据二次根式有意义的条件可得再解即可【详解】由题意得:且解得:且故答案为:且【点睛】本题主要考查了分式有意义和二次根式有意义的条件关键是掌握分式有意义的条件是分母不等于零 解析:0x ≥且1x ≠【分析】根据分式有意义可得10x -≠,根据二次根式有意义的条件可得0x ≥,再解即可.【详解】由题意得:10x -≠,且0x ≥,解得:0x ≥且1x ≠,故答案为:0x ≥且1x ≠.【点睛】本题主要考查了分式有意义和二次根式有意义的条件,关键是掌握分式有意义的条件是分母不等于零,二次根式中的被开方数是非负数.14.【分析】先分母有理化然后化简后合并即可【详解】解:=2﹣=故答案为:【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式然后合并同类二次根式即可在二次根式的混合运算中如能结合题目特点灵.【分析】先分母有理化,然后化简后合并即可.【详解】=【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后合并同类二次根式即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.15.1【分析】由题可得即可得出再根据二次根式的性质化简即可【详解】由题可得∴∴∴故答案为:【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简掌握二次根式的性质是解决问题的关键解析:1【分析】由题可得,30x -≥,即可得出20x -≤,再根据二次根式的性质化简即可.【详解】由题可得,30x -≥,∴3x ≥,∴20x -≤,∴2()()23x x =----23x x =-+-+1=.故答案为:1.【点睛】本题主要考查了二次根式有意义的条件以及二次根式的性质与化简,掌握二次根式的性质是解决问题的关键.16.﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组进而可求出xy 然后把xy 的值代入所求式子计算即可【详解】解:由题意得:所以x=2当x=2时y=3所以x -y=2-3=﹣1故答案为:﹣1【点睛】解析:﹣1【分析】根据二次根式有意义的条件可得关于x 的不等式组,进而可求出x 、y ,然后把x 、y 的值代入所求式子计算即可.【详解】解:由题意得:2020x x -≥⎧⎨-≥⎩,所以x=2, 当x=2时,y=3,所以x -y=2-3=﹣1.故答案为:﹣1.【点睛】本题考查了二次根式有意义的条件、代数式求值和一元一次不等式组,属于基础题目,熟练掌握基本知识是解题的关键.17.4【分析】只需先对估算出大小从而求出其整数部分a 其小数部分用表示再分别代入进行计算;【详解】∵2<<3∴2<<3∴m=2n==把m=2n=代入∴化简得:∴且解得:∴故答案为:4【点睛】本题考查了无理解析:4【分析】只需先对5-a ,其小数部分用5a -表示,再分别代入21amn bn +=进行计算;【详解】∵2<3,∴2<5-3,∴ m=2,n=52=3,把m=2,n=3代入21amn bn +=∴ ((22331a b -+-=,化简得:())616261a b a b ++= ,∴ 6161a b +=且260a b +=,解得: 1.5a =,0.5b =-∴331.50.54a b +=⨯-=,故答案为:4.【点睛】本题考查了无理数大小的估算和二次根式的混合运算,能够正确估算出一个较复杂的无理数的大小是解决此类问题的关键;18.<【分析】直接利用二次根式的性质分别变形进而比较得出答案【详解】解:==∵>∴∴<故答案为:<【点睛】此题主要考查了二次根式的分母有理化正确化简二次根式是解题关键解析:<【分析】直接利用二次根式的性质分别变形,进而比较得出答案.【详解】===== ∵+∴< ∴故答案为:<.【点睛】此题主要考查了二次根式的分母有理化,正确化简二次根式是解题关键.19.748【分析】利用已知条件找出规律写出结果即可【详解】解:∵⋯⋯∴⋯⋯∴故答案为:748【点睛】本题考查归纳推理考查对于所给的式子的理解主要看清楚式子中的项与项的数目与式子的个数之间的关系本题是一个解析:7, 48【分析】利用已知条件,找出规律,写出结果即可.【详解】解:∵=== ⋯⋯,∴====== ⋯⋯,==∴7a =,27148b =-=,故答案为:7,48【点睛】本题考查归纳推理,考查对于所给的式子的理解,主要看清楚式子中的项与项的数目与式子的个数之间的关系,本题是一个易错题.20.-b 【分析】先确定b 的取值范围再利用二次根式的性质化简【详解】解:∵a ﹥0﹥0∴b ﹤0∴-b 故答案为:-b 【点睛】本题考查了二次函数的性质与化简解题的关键是确定b 的取值范围及理解被开平方数具有非负性解析:【分析】先确定b 的取值范围,再利用二次根式的性质化简.【详解】解:∵a ﹥0,3-ab ﹥0,∴b ﹤0,∴)0a >=故答案为:【点睛】本题考查了二次函数的性质与化简,解题的关键是确定b 的取值范围及理解被开平方数具有非负性.三、解答题21.(1)2)﹣2<x≤2【分析】(1)先算乘除,再算加减;(2)分别求出两个一元一次不等式的解即可;【详解】(1)原式=,=;(2)2(3)8(1)22x x x x x --<⎧⎪⎨--≤-⎪⎩, 解不等式2(3)8--<x x 得:x >﹣2; 解不等式(1)22--≤-x x x 得:x≤2; 所以,不等式组的解集为:﹣2<x≤2.【点睛】本题主要考查了二次根式的混合运算和一元一次不等式组的求解,准确计算是解题的关键.22.()()211a a -+,1. 【分析】分母先分解因式化简,两个异分母分式通分后相减,再把a 值代入求解即可.【详解】2211211a a a a a ----+- =211(1)(1)(1)a a a a a ----+- =1111a a --+ =()()(1)(1)11a a a a +---+=()()211a a -+,当a =原式231=-=1【点睛】本题考查了分式的化简求值:先把分式化简后,再把分式中未知数对应的值代入求出分式的值.在化简的过程中要注意运算顺序和分式的化简.化简的最后结果分子、分母要进行约分,注意运算的结果要化成最简分式或整式.23.(1)12)12x -,12- 【分析】(1)由二次根式的性质、负整数指数幂、零指数幂、绝对值的意义进行化简,然后进行计算,即可得到答案;(2)先去括号,把分式进行化简,然后结合分式有意义的条件,取到合适的值,再代入计算,即可得到答案. 【详解】解:(1)原式(141241212⎛=-⨯--=--+= ⎝⎭; (2)原式12(2)(3)3111111(2)(3)2x x x x x x x x x x x x -----⎛⎫=-÷=⋅= ⎪-------⎝⎭; ∵10x -≠,20x -≠,30x -≠,∴1,2,3x ≠,x 只能取0,当0x =时,原式11122==--. 【点睛】 本题考查了分式的混合运算,分式的化简求值,二次根式的性质、负整数指数幂、零指数幂、绝对值的意义,解题的关键是熟练掌握运算法则,正确的进行化简.24.2x x -;2+.【分析】先把括号内通分化简,然后利用除法运算化为乘法运算,将算式化简,再将1x =代入计算原式的值即可.【详解】 解:21133x x x x x x 2311=333x x x x x x x x2131=33x x x x x x x 213=31x x x x x1x x2x x =-当1x =时,原式2212122.【点睛】本题考查了分式的化简求值,熟悉相关运算法则是解题的关键.25.(1)345;(2)x 2+6x+9﹣4y 2 【分析】(1)首先计算开方,然后从左向右依次计算;求出算式的值是多少即可.(2)将各多项式分组,利用平方差公式和完全平方公式计算即可.【详解】解:(1)原式=2+(﹣1)+45+5 =6+45 =345; (2)原式=(x+3﹣2y )(x+3+2y )=(x+3)2﹣4y 2=x 2+6x+9﹣4y 2. 【点睛】本题主要考查实数的运算,平方差公式和完全平方公式,解决此类问题,要熟练掌握运算顺序和运算方法.26.(1)-5;(2;(3)5x =或3x =-;(4)-1【分析】(1)分别利用乘方、负整数指数幂、算术平方根和立方根计算,再将结果相加减;(2)分别利用二次根式的性质、绝对值的性质和零指数幂化简(或计算),再将结果相加减;(3)两边直接开平方后,解一元一次方程即可;(4)移项合并后开立方即可.【详解】解:(1)原式=145(3)-+-+-=94-+=5-;(2)原式=211-;(3)2(1)16x -=两边同时开平方得:14x -=±,即14x =±,即5x =或3x =-;(4)321x +=移项后合并得:31x =-两边同时开立方得:1x =-.【点睛】本题考查实数的混合运算,利用平方根和立方根解方程.涉及的知识点有二次根式的性质、零指数幂和负整数指数幂、化简绝对值、平方根和立方根等.(1)(2)中能利用相关定义分别计算是解题关键;(3)(4)中主要用到的思想是降次.。
人教版数学八年级下册:第16章《二次根式》单元测试(附答案)
第十六章 二次根式16.1 二次根式第1课时 二次根式的概念01 基础题知识点1 二次根式的定义1.下列式子不是二次根式的是( B )A . 5B .3-π C.0.5 D.132.下列各式中,一定是二次根式的是( C ) A .-7 B .3m C .1+x 2 D .2x3.已知a 是二次根式,则a 的值可以是( C )A .-2B .-1C .2D .-54.若-3x 是二次根式,则x 的值可以为答案不唯一,如:-1(写出一个即可).知识点2 二次根式有意义的条件5.x 取下列各数中的哪个数时,二次根式x -3有意义(D )A .-2B .0C .2D .46.(2017·广安)要使二次根式2x -4在实数范围内有意义,则x 的取值范围是(B)A .x >2B .x ≥2C .x <2D .x =27.当x 是怎样的实数时,下列各式在实数范围内有意义? (1)-x ;解:由-x ≥0,得x ≤0.(2)2x +6;解:由2x +6≥0,得x ≥-3.(3)x 2;解:由x 2≥0,得x 为全体实数.(4)14-3x; 解:由4-3x>0,得x<43.(5) x -4x -3. 解:由⎩⎪⎨⎪⎧x -4≥0,x -3≠0 得x ≥4.知识点3 二次根式的实际应用8.已知一个表面积为12 dm 2的正方体,则这个正方体的棱长为(B)A .1 dm B. 2 dmC. 6 dm D .3 dm9.若一个长方形的面积为10 cm 2,它的长与宽的比为5∶1,则它的长为,02 中档题10.下列各式中:①12;②2x ;③x 3;④-5.其中,二次根式的个数有(A ) A .1个B .2个C .3个D .4个11.(2017·济宁)若2x -1+1-2x +1在实数范围内有意义,则x 满足的条件是(C)A .x ≥12B .x ≤12C .x =12D .x ≠12 12.使式子1x +3+4-3x 在实数范围内有意义的整数x 有(C ) A .5个B .3个C .4个D .2个13.如果式子a +1ab有意义,那么在平面直角坐标系中点A(a ,b)的位置在(A) A .第一象限B .第二象限C .第三象限D .第四象限 14.使式子-(x -5)2有意义的未知数x 的值有1个.15.若整数x 满足|x|≤3,则使7-x 为整数的x 的值是3或-2.16.要使二次根式2-3x 有意义,则x 的最大值是23. 17.当x 是怎样的实数时,下列各式在实数范围内有意义?(1)32x -1; 解:x>12.(2)21-x;解:x≥0且x≠1.(3)1-|x|;解:-1≤x≤1.(4)x-3+4-x.解:3≤x≤4.03综合题18.已知a,b分别为等腰三角形的两条边长,且a,b满足b=4+3a-6+32-a,求此三角形的周长.解:∵3a-6≥0,2-a≥0,∴a=2,b=4.当边长为4,2,2时,不符合实际情况,舍去;当边长为4,4,2时,符合实际情况,4×2+2=10.∴此三角形的周长为10.第2课时 二次根式的性质01 基础题知识点1 a ≥0(a ≥0)1.(2017·荆门)已知实数m ,n 满足|n -2|+m +1=0,则m +2n 的值为3.2.当x =2__017时,式子2 018-x -2 017有最大值,且最大值为2__018.知识点2 (a )2=a (a ≥0)3.把下列非负数写成一个非负数的平方的形式:(1)5 (2)3.4(3)16= (4)x ≥0). 4.计算:( 2 018)2=2__018.5.计算: (1)(0.8)2;解:原式=0.8.(2)(-34)2; 解:原式=34.(3)(52)2;解:原式=25×2=50.(4)(-26)2.解:原式=4×6=24.知识点3 a 2=a (a ≥0)6.计算(-5)2的结果是(B )A .-5B .5C .-25D .257.已知二次根式x 2的值为3,那么x 的值是(D)A .3B .9C .-3D .3或-38.当a ≥0时,化简:9a 2=3a .9.计算:(1)49;解:原式=7.(2)(-5)2;解:原式=5.(3)(-13)2; 解:原式=13.(4)6-2.解:原式=16.知识点4 代数式10.下列式子不是代数式的是(C )A .3xB .3xC .x>3D .x -311.下列式子中属于代数式的有(A )①0;②x ;③x +2;④2x ;⑤x =2;⑥x>2;⑦x 2+1;⑧x ≠2.A .5个B .6个C .7个D .8个02 中档题12.下列运算正确的是(A ) A .-(-6)2=-6B .(-3)2=9C .(-16)2=±16D .-(-5)2=-2513.若a <1,化简(a -1)2-1的结果是(D )A .a -2B .2-aC .aD .-a14.(2017·枣庄)实数a ,b 在数轴上对应点的位置如图所示,化简|a|+(a -b )2的结果是(A )A .-2a +bB .2a -bC .-bD .b15.已知实数x ,y ,m 满足x +2+|3x +y +m|=0,且y 为负数,则m 的取值范围是(A)A .m >6B .m <6C .m >-6D .m <-616.化简:(2-5)217.在实数范围内分解因式:x 2-518.若等式(x -2)2=(x -2)2成立,则x 的取值范围是x ≥2.19.若a 2=3,b =2,且ab <0,则a -b =-7.20.计算:(1)-2(-18)2; 解:原式=-2×18=-14.(2)4×10-4;解:原式=2×10-2.(3)(23)2-(42)2; 解:原式=12-32=-20.(4)(213)2+(-213)2.解:原式=213+213=423.21.比较211与35的大小.解:∵(211)2=22×(11)2=44, (35)2=32×(5)2=45,又∵44<45,且211>0,35>0,∴211<3 5.22.先化简a +1+2a +a 2,然后分别求出当a =-2和a =3时,原代数式的值.解:a +1+2a +a 2=a +(a +1)2=a +|a +1|,当a =-2时,原式=-2+|-2+1|=-2+1=-1;当a =3时,原式=3+|3+1|=3+4=7.03 综合题23.有如下一串二次根式: ①52-42;②172-82;③372-122;④652-162…(1)求①,②,③,④的值;(2)仿照①,②,③,④,写出第⑤个二次根式; (3)仿照①,②,③,④,⑤,写出第个二次根式,并化简.解:(1)①原式=9=3.②原式=225=15.③原式= 1 225=35.(3)第个二次根式为(4n2+1)2-(4n)2.化简:(4n2+1)2-(4n)2=(4n2-4n+1)(4n2+4n+1)=(2n-1)2(2n+1)2=(2n-1)(2n+1).16.2 二次根式的乘除第1课时 二次根式的乘法01 基础题知识点1 a·b =ab (a ≥0,b ≥0)1.计算2×3的结果是(B )A . 5B . 6C .2 3D .3 22.下列各等式成立的是(D ) A .45×25=8 5 B .53×42=20 5C .43×32=7 5D .53×42=20 63.下列二次根式中,与2的积为无理数的是(B )A .12B .12C .18D .32 4.计算:8×12=2. 5.计算:26×(-36)=-36.6.一个直角三角形的两条直角边分别为a =2 3 cm ,b =3 6 cm ,那么这个直角三角形的面积为2.7.计算下列各题:(1)3×5; (2)125×15; 解:原式=15. 解:原式=25=5.(3)(-32)×27; (4)3xy·1y. 解:原式=-62×7 解:原式=3x. =-614.知识点2 ab =a·b (a ≥0,b ≥0)8.下列各式正确的是( D )A .(-4)×(-9)=-4×-9B .16+94=16×94C .449=4×49D .4×9=4×9 9.(2017·益阳)下列各式化简后的结果是32的结果是( C ) A . 6 B .12 C .18 D .3610.化简(-2)2×8×3的结果是(D )A .224B .-224C .-4 6D .4 611.化简:(1)100×36=60;(2)2y312.化简:(1)4×225;解:原式=4×225=2×15=30.(2)300;解:原式=10 3.(3)16y;解:原式=4y.(4)9x2y5z.解:原式=3xy2yz.13.计算:(1)36×212;解:原式=662×2=36 2.(2)15ab2·10ab.解:原式=2a2b=a2b.02中档题14.50·a的值是一个整数,则正整数a的最小值是(B)A.1 B.2 C.3 D.515.已知m=(-33)×(-221),则有(A)A.5<m<6 B.4<m<5C.-5<m<-4 D.-6<m<-5 16.若点P(a,b)在第三象限内,化简a2b2的结果是ab.17.计算:(1) 75×20×12;解:原式=25×3×4×5×3×4=60 5.(2)(-14)×(-112);=2×72×42=28 2.(3) -32×45×2;解:原式=-3×16×2 2=-96 2.(4)200a 5b 4c 3(a >0,c >0). 解:原式=2×102·(a 2)2·a ·(b 2)2·c 2·c=10a 2b 2c 2ac.18.交通警察通常根据刹车后车轮滑过的距离估计车辆行驶的速度,所用的经验公式是v =16df ,其中v 表示车速(单位:km /h ),d 表示刹车后车轮滑过的距离(单位:m ),f 表示摩擦因数,在某次交通事故调查中,测得d =20 m ,f =1.2,肇事汽车的车速大约是多少?(结果精确到0.01 km /h ) 解:当d =20 m ,f =1.2时,v =16df =16×20×1.2=1624=326≈78.38.答:肇事汽车的车速大约是78.38 km /h .19.一个底面为30 cm ×30 cm 的长方体玻璃容器中装满水,现将一部分水倒入一个底面为正方形、高为10 cm 的长方体铁桶中,当铁桶装满水时,容器中的水面下降了20 cm ,铁桶的底面边长是多少厘米?解:设铁桶的底面边长为x cm ,则x 2×10=30×30×20,x 2=30×30×2,x =30×30×2=30 2.答:铁桶的底面边长是30 2 cm.03 综合题 20. (教材P 16“阅读与思考”变式)阅读:古希腊的几何家海伦,在数学史上以解决几何测量问题而闻名,在他的著作《度量》一书中,给出了一个公式:如果一个三角形的三边长分别为a 、b 、c.记:p =a +b +c 2,则三角形的面积S =p (p -a )(p -b )(p -c ),此公式称为“海伦公式”.思考运用:已知李大爷有一块三角形的菜地,如图,测得AB =7 m ,AC =5 m ,BC =8 m ,你能求出李大爷这块菜地的面积吗?试试看.解:∵AB =7 m ,AC =5 m ,BC =8 m ,∴p =a +b +c 2=7+5+82=10. ∴S =p (p -a )(p -b )(p -c )=10×(10-7)×(10-5)×(10-8)=10×3×5×2=10 3.∴李大爷这块菜地的面积为10 3 m 2.第2课时 二次根式的除法01 基础题知识点1 a b =a b (a ≥0,b >0)1.计算:10÷2=(A ) A . 5B .5C .52D .102 2.计算23÷32的结果是(B ) A .1B .23C .32D .以上答案都不对 3.下列运算正确的是(D )A .50÷5=10B .10÷25=2 2C .32+42=3+4=7D .27÷3=3 4.计算:123=2. 5.计算:(1)40÷5; (2)322; 解:原式=8=2 2. 解:原式=4.(3)45÷215; (4)2a 3b ab(a>0). 解:原式= 6. 解:原式=2a.知识点2a b =a b(a ≥0,b >0) 6.下列各式成立的是(A ) A .-3-5=35=35 B .-7-6=-7-6C .2-9=2-9D .9+14=9+14=3127.实数0.5的算术平方根等于(C ) A .2B . 2C .22D .12 8.如果(x -1x -2)2=x -1x -2,那么x 的取值范围是(D )A .1≤x ≤2B .1<x ≤2C .x ≥2D .x >2或x ≤19.化简: (1)7100; 解:原式=7100=710.(2)11549; 解:原式=6449=6449=87.(3)25a 49b 2(b>0). 解:原式=25a 49b 2=5a 23b.知识点3 最简二次根式10.(2017·荆州)下列根式是最简二次根式的是(C )A .13B .0.3C . 3D .2011.把下列二次根式化为最简二次根式:(1) 2.5;解:原式=52=102.(2)85; 解:原式=2510.(3)122; 解:原式=232= 3.(4)2340. 解:原式=232×20=13×20=13×25 =530.02 中档题12.下列各式计算正确的是(C ) A .483=16B .311÷323=1C .3663=22D .54a 2b 6a =9ab 13.计算113÷213÷125的结果是(A ) A .27 5B .27C . 2D .27 14.在①14;②a 2+b 2;③27;④m 2+1中,最简二次根式有3个.15.如果一个三角形的面积为15,一边长为3,那么这边上的高为16.不等式22x -6>0的解集是x >2 17.化简或计算:(1)0.9×121100×0.36; 解:原式=9×12136×10=32×11262×10=336110 =336×1010=111020.(2) 12÷27×(-18);解:原式=-12×1827 =-4×3×2×93×9=-2 2.(3)27×123; 解:原式=3×9×123 =3×2 3=6 3.(4)12x÷25y. 解:原式=(1÷25)12x÷y =5212xy y 2 =53xy y.18.如图,在Rt △ABC 中,∠C =90°,S △ABC =18 cm 2,BC = 3 cm ,AB =3 3 cm ,CD ⊥AB 于点D.求AC ,CD 的长.解:∵S △ABC =12AC·BC =12AB·CD ,∴AC =2S △ABC BC =2183=26(cm ),CD =2S △ABCAB =21833=236(cm ).03 综合题19.阅读下面的解题过程,根据要求回答下列问题. 化简:a b -a b 3-2ab 2+a 2ba (b<a<0).解:原式=ab -a b (b -a )2a ①=a (b -a )b -a ba ②=a·1a ab ③=ab.④(1)上述解答过程从哪一步开始出现错误?请写出代号②;(2)错误的原因是什么?(3)请你写出正确的解法.解:(2)∵b<a ,∴b -a<0.∴(b -a)2的算术平方根为a -b.(3)原式=a b -ab (b -a )2a =a b -a ·(a -b)b a=-a·(-1aab) =ab.16.3 二次根式的加减第1课时 二次根式的加减01 基础题知识点1 可以合并的二次根式1.(2016·巴中)下列二次根式中,与3可以合并的是(B )A .18B .13C .24D .0.32.下列各个运算中,能合并成一个根式的是(B ) A .12- 2B .18-8C .8a 2+2aD .x 2y +xy 23.若最简二次根式2x +1和4x -3能合并,则x 的值为(C )A .-12B .34C .2D .54.若m 与18可以合并,则m 的最小正整数值是(D )A .18B .8C .4D .2知识点2 二次根式的加减5.(2016·桂林)计算35-25的结果是(A )A . 5B .2 5C .3 5D .6 6.下列计算正确的是(A )A .12-3= 3B .2+3= 5C .43-33=1D .3+22=5 27.计算27-1318-48的结果是(C ) A .1 B .-1 C .-3- 2 D .2- 38.计算2+(2-1)的结果是(A)A .22-1B .2- 2C .1- 2D .2+ 29.长方形的一边长为8,另一边长为50,则长方形的周长为10.三角形的三边长分别为20 cm ,40 cm ,45 cm ,. 11.计算:(1)23-32; 解:原式=(2-12) 3 =332.(2)16x +64x ;=(4+8)x=12x.(3) 125-25+45;解:原式=55-25+3 5 =6 5.(4)(2017·黄冈)27-6-1 3.解:原式=33-6-3 3=833- 6.02中档题12.若x与2可以合并,则x可以是(A) A.0.5 B.0.4C.0.2 D.0.1 13.计算|2-5|+|4-5|的值是(B) A.-2 B.2C.25-6 D.6-2 514.计算412+313-8的结果是(B)A.3+ 2B. 3C.33 D.3- 2习题解析15.若a ,b 均为有理数,且8+18+18=a +b 2,则a =0,b =214.16.已知等腰三角形的两边长分别为27和55,则此等腰三角形的周长为 17.在如图所示的方格中,横向、纵向及对角线方向上的实数相乘都得出同样的结果,则两个空格中的实数之和为18.计算: (1)18+12-8-27;解:原式=32+23-22-3 3=(32-22)+(23-33) =2- 3.(2) b 12b 3+b 248b ;解:原式=2b 23b +4b 23b=6b 23b.(3)(45+27)-(43+125); 解:原式=35+33-233-5 5 =733-2 5.(4) 34(2-27)-12(3-2). 解:原式=342-943-123+122 =(34+12)2-(94+12) 3 =542-114 3.19.已知3≈1.732,求(1327-413)-2(34-12)的近似值(结果保留小数点后两位). 解:原式=3-433-3+4 3 =833≈83×1.732≈4.62.03综合题20.若a,b都是正整数,且a<b,a与b是可以合并的二次根式,是否存在a,b,使a+b=75?若存在,请求出a,b的值;若不存在,请说明理由.解:∵a与b是可以合并的二次根式,a+b=75,∴a+b=75=5 3.∵a<b,∴当a=3,则b=48;当a=12,则b=27.第2课时 二次根式的混合运算01 基础题知识点1 二次根式的混合运算1.化简2(2+2)的结果是(A )A .2+2 2B .2+ 2C .4D .3 22.计算(12-3)÷3的结果是(D )A .-1B .- 3C . 3D .13.(2017·南京)计算:12+8×6 4.(2017·青岛)计算:(24+16)×6=13.5.计算:40+55 6.计算:(1)3(5-2);解:原式=15- 6.(2)(24+18)÷2;解:原式=23+3.(3)(2+3)(2+2);解:原式=8+5 2.(4)(m +2n)(m -3n).解:原式=m -mn -6n.知识点2 二次根式与乘法公式7.(2017·天津)计算:(4+7)(4-7)的结果等于9. 8.(2016·包头)计算:613-(3+1)2=-4. 9.计算:解:原式=12.(2)(2+3)(2-3);解:原式=-1.(3)(5+32)2.解:原式=23+610.10.(2016·盐城)计算:(3-7)(3+7)+2(2-2).解:原式=9-7+22-2=2 2.02 中档题11.已知a =5+2,b =2-5,则a 2 018b 2 017的值为(B )A .5+2B .-5-2C .1D .-112.按如图所示的程序计算,若开始输入的n 值为2,则最后输出的结果是(C )A .14B .16C .8+5 2D .14+ 2 13.计算:(1)(1-22)(22+1);(2)12÷(34+233); 解:原式=12÷(3312+8312) =12÷11312=23×12113 =2411. (3)(46-412+38)÷22; 解:原式=(46-22+62)÷2 2=(46+42)÷2 2=23+2.(4)24×13-4×18×(1-2)0. 解:原式=26×33-4×24×1 =22- 2= 2.14.计算: (1)(1-5)(5+1)+(5-1)2;解:原式=1-5+5+1-2 5=2-2 5.(2)(3+2-1)(3-2+1).解:原式=(3)2-(2-1)2=3-(2+1-22)=3-2-1+2 2=2 2.15. 已知a =7+2,b =7-2,求下列代数式的值:(1)ab 2+ba 2;(2)a 2-2ab +b 2;(3)a 2-b 2. 解:由题意得a +b =(7+2)+(7-2)=27,a -b =(7+2)-(7-2)=4,ab =(7+2)(7-2)=(7)2-22=7-4=3.(1)原式=ab(b +a)=3×27=67.(2)原式=(a —b)2=42=16.(3)原式=(a +b)(a —b)=27×4=87.03综合题16.观察下列运算:①由(2+1)(2-1)=1,得12+1=2-1;②由(3+2)(3-2)=1,得13+2=3-2;③由(4+3)(4-3)=1,得14+3=4-3;…(1)通过观察你得出什么规律?用含n的式子表示出来;(2)利用(1)中你发现的规律计算:(12+1+13+2+14+3+…+12 017+ 2 016+12 018+ 2 017)×( 2 018+1).解:(1)1n+1+n=n+1-n(n≥0).(2)原式=(2-1+3-2+4-3+…+ 2 017- 2 016+ 2 018- 2 017)×( 2 018+1) =(-1+ 2 018)( 2 018+1)=2 017.小专题(一) 二次根式的运算类型1 与二次根式有关的计算1.计算: (1)62×136; 解:原式=(6×13)2×6 =212=4 3.(2)(-45)÷5145; 解:原式=-45÷(5×355) =-45÷3 5=-43.(3)72-322+218; 解:原式=62-322+6 2 =122-32 2 =212 2. (4)(25+3)×(25-3).解:原式=(25)2-(3)2=20-3=17.2.计算:(1)334÷(-12123); 解:原式=[3÷(-12)]34÷53 =-6920 =-69×520×5=-95 5.=32+15 2=18 2.(3)354×(-89)÷7115; 解:原式=3×(-1)×54×89÷7115 =-348÷765=-3748×56 =-6710.(4)(12-418)-(313-40.5); 解:原式=23-2-3+2 2 =3+ 2.(5)(32-6)2-(-32-6)2.解:原式=(32-6)2-(32+6)2=18+6-123-(18+6+123)=-24 3.3.计算:(1)(2 018-3)0+|3-12|-63; 解:原式=1+23-3-2 3=-2.(2)(2017·呼和浩特)|2-5|-2×(18-102)+32. 解:原式=5-2-12+5+32 =25-1.类型2 与二次根式有关的化简求值4.已知a =3+22,b =3-22,求a 2b -ab 2的值.解:原式=a 2b -ab 2=ab(a -b).当a =3+22,b =3-22时,原式=(3+22)(3-22)(3+22-3+22) =4 2.5.已知实数a ,b ,定义“★”运算规则如下:a ★b =⎩⎨⎧b (a ≤b ),a 2-b 2(a>b ),求7★(2★3)的值. 解:由题意,得2★3= 3. ∴7★(2★3)=7★3=7-3=2.6.已知x =2+3,求代数式(7-43)x 2+(2-3)x +3的值.解:当x =2+3时, 原式=(7-43)×(2+3)2+(2-3)×(2+3)+ 3=(7-43)×(7+43)+4-3+ 3=49-48+1+ 3=2+ 3.7.(2017·襄阳)先化简,再求值:(1x +y +1x -y )÷1xy +y 2,其中x =5+2,y =5-2. 解:原式=2x (x +y )(x -y )·y(x +y) =2xy x -y . 当x =5+2,y =5-2时, 原式=2(5+2)(5-2)5+2-5+2=12.8.小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+22=(1+2)2,善于思考(1)当a ,b ,m ,n 均为正整数时,若a +b 3=(m +n 3)2,用含m ,n 的式子分别表示a ,b ,得a =m 2+3n 2,b =2mn ;(2)利用所探索的结论,找一组正整数a ,b ,m ,n 填空:4+(1+2;(答案不唯一)(3)若a +43=(m +n 3)2,且a ,m ,n 均为正整数,求a 的值.解:根据题意,得⎩⎪⎨⎪⎧a =m 2+3n 2,4=2mn. ∵2mn =4,且m ,n 为正整数,∴m =2,n =1或m =1,n =2.∴a =7或13.章末复习(一) 二次根式01 基础题知识点1 二次根式的概念及性质1.(2016·黄冈)在函数y =x +4x中,自变量x 的取值范围是(C) A .x >0 B .x ≥-4C .x ≥-4且x ≠0D .x >0且x ≠-42.(2016·自贡)下列根式中,不是最简二次根式的是(B) A.10 B.8C. 6D. 23.若xy <0,则x 2y 化简后的结果是(D )A .x yB .x -yC .-x -yD .-x y知识点2 二次根式的运算4.与-5可以合并的二次根式的是(C )A .10B .15C .20D .255.(2017·十堰)下列运算正确的是(C )A .2+3= 5B .22×32=6 2C .8÷2=2D .32-2=3 6.计算5÷5×15所得的结果是1. 7.计算:(1)(2017·湖州)2×(1-2)+8; 解:原式=2-22+2 2=2.(2)(43+36)÷23;解:原式=43÷23+36÷2 3=2+322.(3)1232-275+0.5-3127; 解:原式=22-103+22-33=(2+12)×2+(-10-13)× 3 =52-31 3.=9×2-4×3=6.知识点3 二次根式的实际应用8.两个圆的圆心相同,它们的面积分别是25.12和50.24.求圆环的宽度d.(π取3.14,结果保留小数点后两位)解:d =50.243.14-25.123.14=16-8=4-2 2≈1.17.答:圆环的宽度d 约为1.17.02 中档题9.把-a -1a中根号外面的因式移到根号内的结果是(A ) A .-a B .- a C .--aD . a 10.已知x +1x =7,则x -1x的值为(C) A. 3B .±2C .± 3 D.711.在数轴上表示实数a 的点如图所示,化简(a -5)2+|a -2|的结果为3.12.(2016·青岛)计算:32-82=2. 13.计算:(3+2)3×(3-2)3=-1. 14.已知x =5-12,则x 2+x +1=2. 15.已知16-n 是整数,则自然数n 所有可能的值为0,7,12,15,16.16.计算:(1)(3+1)(3-1)-16+(12)-1; 解:原式=3-1-4+2=0.(2)(3+2-6)2-(2-3+6)2.解:原式=(3+2-6+2-3+6)×(3+2-6-2+3-6)=22×(23-26)=46-8 3.17.已知x =3+7,y =3-7,试求代数式3x 2-5xy +3y 2的值.解:当x =3+7,y =3-7时,3x 2-5xy +3y 2=3(x 2-2xy +y 2)+xy=3(x -y)2+xy=3(3+7-3+7)2+(3+7)×(3-7)=3×28-4=80.18.教师节要到了,为了表示对老师的敬意,小明做了两张大小不同的正方形壁画准备送给老师,其中一张面积为800 cm 2,另一张面积为450 cm 2,他想如果再用金彩带把壁画的边镶上会更漂亮,他现在有1.2 m 长的金彩带,请你帮助算一算,他的金彩带够用吗?如果不够,还需买多长的金彩带?(2≈1.414,结果保留整数)解:正方形壁画的边长分别为800 cm ,450 cm . 镶壁画所用的金彩带长为4×(800+450)=4×(202+152)=1402≈197.96(cm).因为1.2 m=120 cm<197.96 cm,所以小明的金彩带不够用,197.96-120=77.96≈78(cm).故还需买约78 cm长的金彩带.03综合题19.已知a,b,c满足|a-8|+b-5+(c-18)2=0.(1)求a,b,c的值;(2)试问以a,b,c为边能否构成三角形?若能构成三角形,请求出三角形的周长;若不能,请说明理由.解:(1)由题意,得a-8=0,b-5=0,c-18=0,即a=22,b=5,c=3 2.(2)∵22+32=52>5,∴以a,b,c为边能构成三角形.三角形的周长为22+32+5=52+5.。
人教版八年级下册 第16章《二次根式》单元培优测试卷(解析版)
第16章《二次根式》单元培优测试卷、选择题工.下列各式成立的是正=a D J(-3)〜=3A.7H F=-2【1题答案】【答案】D【解析】【分析】根据二次根式的性质化简即可.【详解】A.J(_2)2 =2,故本选项错误;B.(") =4,故本选项错误;C.J后=同,故本选项错误;D.J(-3『=3,故本选项正确.故选D.【点睛】本题考查了二次根式的基本性质:①〃K); V^>()(双重非负性).②(&)2%(生0)(任何一个非负数都可以写成一个数的平方的形式).③日=a(。
加)(算术平方根的意义).2.下列二次根式中,是最简二次根式的是()2B.耳【2题答案】【答案】A【解析】【分析】直接利用最简二次根式的定义分析得出答案.【详解】A.且是最简二次根式,故此选项正确;2D ・ 阮二xH ,故此选项错误•故选A.【点睛】本题考查了最简二次根式,正确把握最简二次根式的定义是解题的关键.3 .若二次根式:7有意义,则x 的取值范围是()A. x> —B. —C. —D. xW5 5 5 5【3题答案】【答案】B【解析】【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【详解】解:由题意得,5x- 1>0,解得,[,故选人【点睛】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数是非负数是解题的关键. 4.如图,从一个大正方形中裁去面积为30cm2和48 cm2的两个小正方形,则余下部分的面积为()A. 78 cm 2B. + \/30) cm 2C. 12M cm 2 【4题答案】【答案】P【解析】 【分析】根据两小正方形的面积求出大正方形的边长及面积,然后减去两个小正方形的面积,即可求出阴影 c.D. 24M cm 2故此选项错误;部分的面积进而得出答案.【详解】解:从一个大正方形中裁去面积为300层和48cm2的两个小正方形,大正方形的边长是同+ A =同+ ,留下部分(即阴影部分)的面积是:2(46 +而)-30-48 = 24V10(c/722)故选:D.【点睛】此题主要考查了二次根式的应用,正确求出大正方形的面积是关键.5.已知百砺是正整数,则满足条件的最大负整数m为()A. -10B. -40C. -90D. -160 【5题答案】【答案】A【解析】【详解】依题意可得,T0m>0且是完全平方数,因此可求得mVO,所以满足条件的m的值为TO.故选A.6.已知X=g + 1, —则/+个+)2的值为( )A 4 B. 6 C. 8 D. 1() 【6题答案】【答案】P【解析】【分析】根据f +盯+),2=(工2+2个,+,2)_孙=。
新人教版初中数学八年级数学下册第一单元《二次根式》测试题(包含答案解析)(1)
一、选择题1.下列式子中正确的是( )A =B .a b =-C .(a b =-D .22==2.若2a 3<<( )A .52a -B .12a -C .2a 1-D .2a 5- 3.下列计算正确的是( )A .236a a a +=B .22(3)6a a -=C .-=D .()222x y x y -=-4.下列二次根式的运算:===,2=-;其中运算正确的有( ).A .1个B .2个C .3个D .4个 5.下列计算正确的是( )A . 3 BC .3=D 36. ) A .1个B .2个C .3个D .4个 7.设a b 0>>,2240a b ab +-=,则a b b a +-的值是( )A .2B .-3C .D .8.估计-⨯) A .0到1之间B .1到2之间C .2到3之间D .3到4之间9.=x 可取的整数值有( ).A .1个B .2个C .3个D .4个 10.下列计算正确的是( )A .3236362⨯==B 4=±C .()()15242⎛⎫-÷-⨯-=± ⎪⎝⎭D .(223410-⨯++= 11.下列根式是最简二次根式的是( )A B C D 12.函数y =x 的取值范围是( ). A .2x > B .2x ≠ C .2x < D .0x ≠二、填空题13.在y =中,x 的取值范围是:______________.14.已知m =m a =_____________.15.若a 的倒数是的相反数是0,c 是-1的立方根,则c a b a b b c c a++---=____________.16.若a 的小数部分,则()6a a +=_____.17.2=_____=______.18.若1<x <4=___________19.2|11|(12)0b c -++=,则a b c ++的平方根是______.20.使式子2x +有意义的x 的取值范围是______. 三、解答题21.化简(1)+(222.已知a ,b ,c 满足2|(0a c =.试问以a ,b ,c 为边能否构成三角形?若能,求出其周长;若不能,请说明理由.23.计算:(1(2)2;(3)21)2)+;(4(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭;(2)22)++.25.先化简,再求值:211(1)a a a -++,其中1a =.26.已知1x =,x 的整数部分为a ,小数部分为b ,求a b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据二次根式的运算法则分别计算,再作判断.【详解】解:A 、不是同类二次根式,不能合并,故错误,不符合题意;B 、计算错误,不符合题意;C 、符合合并同类二次根式的法则,正确,符合题意.D 、计算错误,不符合题意;故选:C .【点睛】同类二次根式是指几个二次根式化简成最简二次根式后,被开方数相同的二次根式.二次根式的加减运算,先化为最简二次根式,再将被开方数相同的二次根式进行合并. 2.D解析:D【分析】先根据23<<a 给二次根式开方,得到()a 23a ---,再计算结果就容易了.【详解】解:∵23<<a ,∴=|2||3|a a ---()a 23a =---a 23a =--+故选:D【点睛】本题考查了化简二次根式的步骤:①把被开方数分解因式;②利用积的算术平方根的性质,把被开方数中能开得尽方的因数(或因式)都开出来;③化简后的二次根式中的被开方数中每一个因数(或因式)的指数都小于根指数2.3.C解析:C【分析】根据合并同类项、幂的乘方与积的乘方、二次根式的加减及完全平方公式逐个进行判断即可.【详解】解:A.2a+3a=5a,因此选项A不符合题意;B.(-3a)2=9a2,因此选项B不符合题意;=-=C符合题意;C.(3D.(x-y)2=x2-2xy+y2,因此选项D不符合题意;故选:C.【点睛】本题考查合并同类项、幂的乘方与积的乘方、二次根式的加减及完全平方公式,依据法则或运算性质逐个进行计算才能得出正确答案.4.C解析:C【分析】由二次根式的性质、二次根式的混合运算进行计算,再进行判断,即可得到答案.【详解】=,故①正确;==②正确;=,故③正确;2,故④错误;∴正确的3个;故选:C.【点睛】本题考查了二次根式的性质、二次根式的混合运算,解题的关键是熟练掌握运算法则进行计算.5.C解析:C根据二次根式的加减法对A 、B 进行判断;根据平方差公式对C 进行判断;根据二次根式的除法法则对D 进行判断.【详解】解:A 、原式=A 选项的计算错误;B B 选项的计算错误;C 、原式=5﹣2=3,所以C 选项的计算正确;D D 选项的计算错误.故选:C .【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,是解题的关键.6.B解析:B【分析】根据最简二次根式的定义(被开方数不含有能开的尽方的因式或因数,被开方数不含有分母),判断即可.【详解】解:∵2==|x =,∴、,共2个,故选:B .【点睛】本题考查了对最简二次根式的理解,能熟练地运用定义进行判断是解此题的关键. 7.D解析:D【分析】由2240a b ab +-=可得2()6a b ab +=,2()2a b ab -=,然后根据0a b >>求得a b +和a b -的值,代入即可求解.【详解】∵2240a b ab +-=,即224a b ab +=,∴2()6a b ab +=,2()2a b ab -=,∵0a b >>,∴a b +=a b -=,∴a b a b b a a b ++=---== 故选:D .【点睛】本题考查了求分式的值以及二次根式的除法运算,正确运用完全平方公式是解题的关键. 8.B解析:B【分析】直接利用二次根式的性质结合估算无理数的大小方法得出答案.【详解】解:2, ∵34<<, ∴.122<<,故选:B .【点睛】此题主要考查了估算无理数的大小,正确估算无理数是解题关键. 9.B解析:B【分析】根据二次根式有意义的条件列出不等式,求出x 的范围,得到答案.【详解】解:由题意得,40x -≥,50x -≥,解得,45x ≤≤,则x 可取的整数是4、5,共2个,故选:B .【点睛】本题考查了二次根式有意义的条件,掌握二次根式有意义的条件是被开方数是非负数是解题的关键.10.D解析:D【分析】根据乘方运算,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算进行判断.【详解】A 、32322754⨯=⨯=,故A 错误;B4=,故B 错误;C 、()()()11155252224⎛⎫⎛⎫⎛⎫-÷-⨯-=-⨯-⨯-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故C 错误; D、(22346410-⨯+=-+=,故D 正确.故选:D .【点睛】本题考查了有理数的乘方,算术平方根的定义,有理数的乘除运算以及二次根式的加减的混合运算,熟记运算法则是解题的关键. 11.D解析:D【分析】根据最简二次根式的定义即可求出答案.【详解】A,故A 不是最简二次根式;B=,故B 不是最简二次根式;CC 不是最简二次根式, 故选:D .【点睛】本题考查最简二次根式,解题的关键是正确理解最简二次根式的定义,本题属于基础题型.12.C解析:C【分析】0≠;根据二次根式的性质,得20x -≥,从而得到自变量x 的取值范围.【详解】结合题意,得:200x -≥⎧⎪≠ ∴22x x ≤⎧⎨≠⎩∴2x <故选:C .【点睛】本题考查了分式、二次根式的知识;解题的关键是熟练掌握分式、二次根式的性质,从而完成求解.二、填空题13.x≥1且x≠2【分析】根据二次根式有意义的条件可得x-1≥0再根据分式有意义的条件可得x-2≠0再解出x的值【详解】解:由题意得:x-1≥0且x-2≠0解得:x≥1且x≠2故答案为:x≥1且x≠2【解析:x≥1且x≠2【分析】根据二次根式有意义的条件可得x-1≥0,再根据分式有意义的条件可得x-2≠0,再解出x的值.【详解】解:由题意得:x-1≥0,且x-2≠0,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点睛】此题主要考查了二次根式有意义的条件,以及分式有意义的条件,关键是掌握分式有意义,分母不为0;二次根式的被开方数是非负数.14.1【分析】根据二次根式有意义的条件列出不等式求出am根据指数为0得到答案【详解】解:根据题意得2020﹣a≥0a﹣2020≥0解得a=2020则m=0∴am=20200=1故答案为:1【点睛】本题考解析:1【分析】根据二次根式有意义的条件列出不等式,求出a、m,根据指数为0,得到答案.【详解】解:根据题意得, 2020﹣a≥0,a﹣2020≥0,解得,a=2020,则m=0,∴a m=20200=1,故答案为: 1.【点睛】本题考查的是二次根式有意义的条件和0指数幂,掌握二次根式的被开方数是非负数是解题的关键.15.【分析】由倒数相反数及立方根的定义求出ab及c的值代入所求式子中计算即可求出值【详解】由题意得:∴故答案为:【点睛】本题考查了分式的求值根据倒数相反数立方根的定义求出abc的值是解题的关键解析:2-【分析】 由倒数,相反数及立方根的定义求出a ,b 及c 的值代入所求式子中计算即可求出值.【详解】由题意得:11a ==0b =,1c ==-, ∴c a b a b b c c a++---===故答案为: 【点睛】 本题考查了分式的求值,根据倒数,相反数,立方根的定义求出a ,b ,c 的值是解题的关键.16.2【分析】根据<<可得的整数部分是3则小数部分a =﹣3代入计算即可【详解】解:∵9<11<16∴3<<4∴的整数部分是3∴小数部分是a =﹣3∴a (a+6)=(﹣3)(+3)=11﹣9=2【点睛】本题解析:2【分析】的整数部分是3,则小数部分a﹣3,代入计算即可.【详解】解:∵9<11<16,∴3<4,∴3,∴小数部分是a﹣3,∴a (a +6﹣3)=11﹣9=2.【点睛】本题考查了无理数的估算,注意在相乘的时候,运用平方差公式简便计算.17.-5【分析】(1)直接利用二次根式的性质化简求出即可;(2)首先化简二次根式进而合并求出即可;【详解】故答案为:【点睛】此题主要考查了二次根式的运算正确掌握二次根式的性质是解题关键解析:-5【分析】(1)直接利用二次根式的性质化简求出即可;(2)首先化简二次根式,进而合并求出即可;【详解】210155=-=-故答案为:-【点睛】此题主要考查了二次根式的运算,正确掌握二次根式的性质是解题关键.18.【分析】原式利用二次根式的性质得到然后利用的范围去绝对值后合并即可【详解】∵原式故答案为:【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键解析:52x -【分析】 原式利用二次根式的性质得到41x x ---,然后利用x 的范围去绝对值后合并即可.【详解】∵14x <<, 原式41x x =---()()41x x =----4152x x x =-+-+=-.故答案为:52x -.【点睛】本题考查了二次根式的性质与化简:熟练掌握二次根式的性质是解决此类问题的关键. 19.【分析】根据绝对值二次根式和偶次方的非负性得到abc 的值利用平方根的定义即可求解【详解】解:∵∴即∴∴的平方根是故答案为:【点睛】本题考查绝对值二次根式和偶次方的非负性以及平方根的定义掌握平方根的定 解析:3±【分析】根据绝对值、二次根式和偶次方的非负性得到a 、b 、c 的值,利用平方根的定义即可求解.【详解】解:∵2|11|(12)0b c -++=,∴100a -=,110b -=,120c +=,即10a =,11b =,12c =-,∴()1011129a b c ++=++-=,∴a b c ++的平方根是3±,故答案为:3±.【点睛】本题考查绝对值、二次根式和偶次方的非负性,以及平方根的定义,掌握平方根的定义是解题的关键.20.且【分析】根据分式的分母不能为0二次根式的被开方数大于或等于0列出式子求解即可得【详解】由题意得:解得且故答案为:且【点睛】本题考查了分式和二次根式有意义的条件熟练掌握分式和二次根式的定义是解题关键 解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键.三、解答题21.(1)1-+;(2)54【分析】(1)先利用平方差公式计算,然后将每个二次根式化为最简二次根式,最后合并计算即可;(2)先将每个二次根式化简为最简二次根式,然后合并即可.【详解】(1)解:原式22231=-+=-+=-+(2)解:原式=== 【点睛】 本题考查了二次根式的运算,熟练掌握运算法则是解题的关键.22.能构成三角形,其周长为【分析】利用已知条件以及绝对值的性质确定a,b,c的值即可,根据三角形的三边关系判断能构成三角形,然后再求周长即可.【详解】解:能构成三角形,理由:∵2|(0a c=,∴=0,(b-5)2=0,,∴a,b=5,c;∵5,∴能构成三角形,周长为:+5.【点睛】本题主要考查了绝对值;二次根式;非负数的性质,关键是掌握绝对值、算术平方根和偶次幂具有非负性.23.(12)-1;(3)12﹣4)14【分析】(1)先化简二次根式,再利用二次根式的加减法法则计算即可;(2)先化简二次根式,再利用二次根式的运算法则计算即可;(3)利用完全平方公式和平方差公式计算即可;(4)利用二次根式的混合运算法则计算即可.【详解】解:(1﹣=﹣5×10=﹣2;(2)2=2 =2﹣3=﹣1;(3)21)2)+=12﹣﹣4=12﹣(4+4 =10+4=14.【点睛】本题考查二次根式的混合运算,熟练掌握二次根式运算法则是解题的关键.24.(14;(2)10-【分析】(1)先化简二次根式,化去绝对值,零次幂,负指数运算,再合并同类项与同类二次根式即可(2)利用平方差公式与完全平方公式展开,再计算平方,合并同类项即可.【详解】(1101|3|(2)2π-⎛⎫--+ ⎪⎝⎭,=312+,4.(2)22)++,=2222-+,=523-+-,=10-【点睛】本题考查二次根式的混合计算,掌握二次根式化简方法,绝对值,零次幂,负指数,乘法公式等知识,并会用它们解决问题是关键.25.21(1)a +;12【分析】先进行分式的减法,化简后,代入求值即可.【详解】解: 211(1)a a a -++, 221(1)(1)a a a a +=-++, 21(1)a =+,当1a =时,原式12==. 【点睛】本题考查了分式的化简求值,熟练按照分式减法进行化简,代入后准确计算是解题关键. 26【分析】由2<31的整数部分与小数部分,即,a b 的值,再代入a b进行分母有理化,从而可得答案.【详解】解:2<3, 3∴<4,x 的整数部分为a ,小数部分为b ,3a ∴=,132b =-=,)3232 2.74a b ∴====-【点睛】 本题考查的是无理数的估算,整数部分与小数部分的含义,二次根式的除法运算,平方差公式的应用,掌握分母有理化是解题的关键.。
八年级数学下《二次根式》单元测试含答案解析
八年级数学下《二次根式》单元测试含答案解析一、选择题1.化简的结果是( )A.2B.﹣2C.2或﹣2D.42.下列计算正确的是( )A.B.C.D.3.化简得( )A.1B.C.D.4.能使=成立的取值范围是( )A.a>3B.a≥0C.0≤a<3D.a<3或a>35.下列各式计算正确的是( )A.2•3=6B. =2C.( +)2=2+3=5D.﹣•=﹣6.化简﹣得( )A.2B.C.﹣2D.47.已知x,y为实数,且y=++,则的值为( )A.﹣B.C.D.28.如图,某水库堤坝的横断面为梯形,背水坡AD的坡比(坡比是斜坡的铅直距离与:,坝顶宽约为( )(≈a=3﹣,则代数式.10.化简(﹣2)2008×(2+)2009的结果是( )A.﹣l B.﹣2C. +2D.﹣﹣2二、填空题11.若是二次根式,则x的取值范围是 .12.= ;(﹣)2﹣= .13.= ; = .14.化简:﹣3的结果是 ..计算:=A到原点的距离是3 2;﹣ ﹣.x﹣)+=0,则=.已知的小数部分为)﹣+;)()﹣;(3)(2﹣3)2;(4)(7+)2﹣(7﹣)2.22.如图,实数a、b在数轴上的位置,化简﹣﹣.23.如图,某校自行车棚的人字架棚顶为等腰三角形ABC,点D是边AB的中点,中柱CD=2,AB=2,求△ABC的周长及面积.x=+y=﹣1=2, =3, =4参考答案与试题解析一、选择题1.化简的结果是( )A.2B.﹣2C.2或﹣2D.4【考点】二次根式的性质与化简.【专题】计算题.【分析】根据二次根式的性质进行化简即可.【解答】解: =2.故选A.【点评】本题考查了二次根式的性质与化简.解题的关键是要知道开方出来的数是一个≥0的数.2.下列计算正确的是( )A.B.C.D.【考点】二次根式的混合运算.【分析】根据二次根式加减,乘除运算法则与二次根式的化简的知识,即可求得答案.【解答】解:A、,故本选项错误;B、=2﹣,故本选项错误;C、,故本选项正确;D、,故本选项错误.故选C.【点评】此题考查了二次根式的混合运算.解题的关键是掌握二次根式加减,乘除运算法则与二次根式的化简.3.化简得( )A .1B .C .D .【考点】二次根式的性质与化简.【分析】根据二次根式的性质化简.【解答】解:原式=2=,故选B .【点评】本题考查了二次根式的化简,注意要化简成最简二次根式.4.能使=成立的取值范围是( )A .a >3B .a ≥0C .0≤a <3D .a <3或a >3【考点】二次根式的乘除法.【分析】根据平方根有意义,必须被开方数≥0,分母不能为0求解即可.【解答】解:∵ =成立,∴,解得a >3,故选:A .【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记运算法则. 5.下列各式计算正确的是( )A .2•3=6B . =2C .( +)2=2+3=5D .﹣ •=﹣【考点】二次根式的乘除法.【分析】运用二次根式的乘除法法则判定即可.【解答】解:A、2•3=6,故A选项错误;B、=3,故B选项错误;C、(+)2=2+3+2=5+2,故C选项错误;D、﹣•=﹣,故D选项正确.故选:D.【点评】本题主要考查了二次根式的乘除法,解题的关键是熟记运算法则.6.化简﹣得( )A.2B.C.﹣2D.4【考点】二次根式的混合运算.【分析】先去括号,再合并同类二次根式即可.【解答】解:原式=2﹣2﹣2=﹣2.故选C.【点评】本题考查的是二次根式的混合运算,在进行此类运算时一般先把二次根式化为最简二次根式的形式后再运算.7.已知x,y为实数,且y=++,则的值为( )A.﹣B.C.D.2【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式求出x,再求出y,然后代入代数式进行计算即可得解.【解答】解:由题意得,6x﹣1≥0且1﹣6x≥0,解得x≥且x≤,所以,x=,y=,所以, ==.故选C.【点评】本题考查的知识点为:二次根式的被开方数是非负数.8.如图,某水库堤坝的横断面为梯形,背水坡AD的坡比(坡比是斜坡的铅直距离与水平距离的比)为1:1.5,迎水坡BC的坡比为1:,坝顶宽CD为3m,坝高CF 为10m,则坝底宽AB约为( )(≈1.732,保留3个有效数字)A.32.2 m B.29.8 m C.20.3 m D.35.3 m【考点】解直角三角形的应用﹣坡度坡角问题.【专题】应用题.【分析】根据坡比的定义可分别求出BF、AE,继而根据AB=BF+FE+AE即可得出答案.【解答】解:在Rt△BCF中,∵CF:BF=1:1.5,CF=10m,∴BF=15m,在Rt△BCF中,∵DE:AE=1:,DE=10m,∴BF=10m,故可得AB=BF+FE+AE=15+3+10≈35.3m.故选D.【点评】本题考查了坡度、坡角的知识,关键是理解坡度的定义,分别求出BF、AE的长度.9.若a=3﹣,则代数式a2﹣6a﹣2的值是( )A.0B.1C.﹣1D.【考点】完全平方公式;实数的运算.【分析】先根据完全平方公式整理,然后把a的值代入计算即可.【解答】解:a2﹣6a﹣2,=a2﹣6a+9﹣9﹣2,=(a﹣3)2﹣11,当a=3﹣时,原式=(3﹣﹣3)2﹣11,=10﹣11,=﹣1.故选C.【点评】熟记完全平方公式:(a﹣b)2=a2﹣2ab+b2,利用完全平方公式先化简再代入求值更加简便.10.化简(﹣2)2008×(2+)2009的结果是( )A.﹣l B.﹣2C. +2D.﹣﹣2【考点】二次根式的混合运算.(﹣2)(+(+(﹣2)(+(+(+=+行二次根式的乘除运算,然后合并同类二次根式.二、填空题11.若是二次根式,则x的取值范围是 x≤ .【考点】二次根式有意义的条件.【分析】根据被开方数大于等于0列式计算即可得解.【解答】解:由题意得,3﹣4x≥0,解得x≤.≤..= ;(﹣)﹣=【分析】先把化为最简二次根式,然后约分即可;根据二次根式的性质计算()﹣.【解答】解:=×=;﹣)﹣=21﹣21=0故答案为,13.= ﹣1 ; = 35 .【考点】二次根式的性质与化简.【分析】根据二次根式的性质进行化简即可.【解答】解: =﹣1;==35.故答案为:﹣1;35.【点评】本题考查了二次根式的性质, =|a|=. .化简:﹣3的结果是 .=2﹣=.故答案为:..计算:=【分析】本题是平方差公式的应用,是相同的项,互为相反项是﹣与.【解答】解:( +)(﹣)A到原点的距离是2 .【考点】勾股定理;点的坐标.【专题】计算题.【分析】根据平面直角坐标系中点A,其中横坐标为﹣,纵坐标为﹣,利用勾股定理即可求出点A到原点的距离.【解答】解:∵在平面直角坐标系中,点A,∴点A到原点的距离为: =2.故答案为:2.【点评】此题主要考查学生对勾股定理和点的坐标的理解和掌握,此题难度不大,属于基础题.10 AC===10.10.3 > 2;﹣ > ﹣.3)2)∴3>2,∵=+, =+,又∵>,∴﹣>﹣,故答案为:>,>.【点评】本题考查了实数的大小比较的应用,解此题的关键是能选择适当的方法比较两个实数的大小.x﹣)+=0,则= .x﹣)+=0∴,解得,∴==.故答案为..已知的小数部分为【分析】先根据的范围求出【解答】解;∵1<<2,∴a=﹣1,∴a(a+2)=(﹣1)(﹣1+2)=(﹣1)(+1)=3﹣1=2,故答案为:2.)﹣+;)()﹣;(3)(2﹣3)2;(4)(7+)2﹣(7﹣)2.【考点】二次根式的混合运算.【专题】计算题.【分析】(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先利用二次根式的性质得到原式=﹣,然后约分后进行减法运算;(3)利用完全平方公式计算;(4)先利用平方差公式计算,然后进行乘法运算.【解答】解:(1)原式=2﹣+=;(2)原式=﹣=0;(3)原式=12﹣12+18=30﹣12;(4)原式=(7++7﹣)(7+﹣7+)=14×2=28.【点评】本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.22.如图,实数a、b在数轴上的位置,化简﹣﹣.【考点】二次根式的性质与化简;实数与数轴.【专题】计算题.【分析】根据数轴表示数的方法得到a<0<b,再根据二次根式的性质得原式=|a|﹣|b|﹣|a﹣b|,然后去绝对值后合并即可.【解答】解:∵a<0<b,∴原式=|a|﹣|b|﹣|a﹣b|=﹣a﹣b+a﹣b=﹣2b.【点评】本题考查了二次根式的性质与化简: =|a|.也考查了实数与数轴.23.如图,某校自行车棚的人字架棚顶为等腰三角形ABC,点D是边AB的中点,中柱CD=2,AB=2,求△ABC的周长及面积.【考点】二次根式的应用.【分析】根据点D为AB的中点,三角形ABC为等腰三角形,可得CD⊥AB,并且求出AD和BD的长度,在Rt△ACD中求出AC的长度,同理可求出BC的长度,继而以求得△ABC的周长及面积.【解答】解:在等腰三角形ABC中,∵点D是边AB的中点,∴CD⊥AB,AD=BD=,在Rt△ACD中,∵AD=,CD=2,∴AC==3,同理可得,BC=3,则△ABC的周长为3+3+2=8,面积为×2×2=6.【点评】本题考查了二次根式的应用以及勾股定理的应用,解答本题的关键是得出CD 为三角形ABC的高,并且运用勾股定理求出等腰三角形的腰长,难度一般.24.己知x=+1,y=﹣1,求x2+y2﹣xy的值.【考点】二次根式的化简求值.【分析】先把原式化为x2+y2﹣2xy+xy=(x﹣y)2+xy,再求出x﹣y和xy的值,整体代入即可.【解答】解:∵x=+1,y=﹣1,∴x﹣y=(+1)﹣(﹣1)=+1﹣+1=2,xy=(+1)(﹣1)=()2﹣12=2﹣1=1;∴原式x2+y2﹣2xy+xy=(x﹣y)2+xy=22+1=5.【点评】本题考查了二次根式的化简求值,以及分母有理化和数学的整体思想,是基础知识要熟练掌握.25.观察下列各式:=2, =3, =4)的等式表示出来 =(【分析】观察分析可得:);)则将此题)的等式表示出来是=)(【解答】解:由分析可知,发现的规律用含自然数n(n≥1)的等式表示出来为=(n+1)(n≥1).故答案为: =(n+1)(n≥1).【点评】本题考查学生通过观察、归纳、抽象出数列的规律的能力,要求学生首先分析题意,找到规律,并进行推导得出答案.本题的关键是根据数据的规律得到=(n+1)(n≥1).。
八年级初二数学 二次根式单元测试附解析
八年级初二数学 二次根式单元测试附解析一、选择题1.对于所有实数a ,b ,下列等式总能成立的是( )A .()2b a b a +=+B .22222(b a b )a +=+C .22b a b a +=+D .2(b)a b a +=+ 2.下列计算正确的是( )A .235+=B .422-=C .8=42D .236⨯=3.下列运算正确的是( )A .235+=B .1823=C .3223-=D .1222÷= 4.二次根式23的值是( )A .-3B .3或-3C .9D .35.估计()123323+⨯的值应在 ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 6.下列各式计算正确的是( ) A .532-= B .1236⨯=C .3232+=D .222()-=- 7.下列二次根式是最简二次根式的是( )A .21a +B .15C .4xD .27 8.若ab <0,则代数式可化简为( ) A .a B .a C .﹣a D .﹣a9.下列计算正确的是( )A .333=1B 23=5C .12=22D .322=52+10.下列二次根式中,最简二次根式是( )A 23aB 13C 2.5D 22a b -11.如果实数x ,y 23x y xy y =-(),x y 在( )A .第一象限B .第二象限C .第一象限或坐标轴上D .第二象限或坐标轴上12.下列运算错误的是( )A .23=6⨯B .2=22C .22+32=52D .()21-212=-二、填空题13.已知412x =-,则()21142221x x x x -⎛⎫+⋅= ⎪-+-⎝⎭_________ 14.设四边形ABCD 是边长为1的正方形,以对角线AC 为边作第二个正方形ACEF ,再以对角线AE 为边作第二个正方形AEGH ,如此下去……. ⑴记正方形ABCD 的边长为11a =,按上述方法所作的正方形的边长依次为234,,,,n a a a a ,请求出234,,a a a 的值;⑵根据以上规律写出n a 的表达式.15.已知函数1x f x x ,那么21f _____.16.已知|a ﹣20072008a -=a ,则a ﹣20072的值是_____.17.已知实数m 、n 、p 满足等式33352m n m n m n p m n p -+--+----,则p =__________.18.化简:321x19.2m 1-1343m --mn =________.20.12a 1-能合并成一项,则a =______.三、解答题21.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =. 2.【分析】根据分式的运算法则进行化简,再代入求解.【详解】原式=221(1)12(3)232(3)3(1)1x x x x x x x x x ---+⎛⎫⎛⎫÷=⋅= ⎪ ⎪+++--⎝⎭⎝⎭.将1x == 【点睛】此题主要考查分式的运算,解题的关键是熟知分式的运算法则.22.计算: 21)3)(3--【答案】.【解析】【分析】先运用完全平方公式、平方差公式进行化简,然后进行计算.【详解】解:原式22]-322]-4【点睛】本题主要考查了二次根式的化简;特别是灵活运用全平方公式、平方差公式是解答本题的关键.23.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题:(1); (2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+(3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.24.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得【分析】根据整式的运算公式进行化简即可求解.【详解】(()69x x x x +--+=22369x x x --++=6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.25.计算②)21-【答案】① 【分析】 ①根据二次根式的加减法则计算;②利用平方差、完全平方公式进行计算.【详解】解:①原式=②原式=(5-2-=【点睛】本题考查二次根式的运算,熟练掌握完全平方公式、平方差公式是关键.26.先化简再求值:(a ﹣22ab b a -)÷22a b a-,其中,b=1.【答案】原式=a b a b-=+【分析】括号内先通分进行分式的加减运算,然后再进行分式的乘除法运算,最后将数个代入进行计算即可.【详解】 原式=()()222a ab b a a a b a b -+⨯+- =()()()2·a b a aa b a b -+- =a b a b-+,当,b=1时,原式【点睛】本题考查了分式的化简求值,熟练掌握分式混合运算的运算顺序以及运算法则是解题的关键.27.2020(1)-【答案】1【分析】先计算乘方,再化简二次根式求解即可.【详解】2020(1)-=1=1.【点睛】本题考查了二次根式的混合运算,先把二次根式化为最简二次根式,再合并即可.28.先化简,再求值:221()a b a b a b b a -÷-+-,其中a =2b =- 【答案】1a b -+,12-. 【分析】先把分式进行化简,得到最简分式,然后把a 、b 的值代入计算,即可得到答案.【详解】 解:原式1()()a b a b a a b a b b a b b --=⨯-⨯+-+ ()()a b a b a b b a b -=--++ ()b b b a =-+ 1a b=-+,当a =2b = 原式12==-. 【点睛】本题考查了二次根式的混合运算,分式的化简求值,分式的混合运算,解题的关键是熟练掌握运算法则进行解题.29.计算:(1 (2)()()2221-【答案】2)1443【分析】(1)先化成最简二次根式,然后再进行加减运算即可;(2)套用平方差公式和完全平方式进行运算即可.【详解】解:(1)原式=23223323,(2)原式(34)(12431)1124311443,故答案为:1443.【点睛】 本题考查二次根式的四则运算,熟练掌握二次根式的四则运算是解决本题的关键.30.已知长方形的长a =b =. (1)求长方形的周长; (2)求与长方形等面积的正方形的周长,并比较其与长方形周长的大小关系.【答案】(1)2)长方形的周长大.【解析】试题分析:(1)代入周长计算公式解决问题;(2)求得长方形的面积,开方得出正方形的边长,进一步求得周长比较即可. 试题解析:(1)()11222223a b ⎛+=⨯=⨯⨯⨯=⨯= ⎝∴长方形的周长为 .(2)11 4.23=⨯⨯=正方形的面积也为4. 2.=周长为:428.⨯=8.>∴长方形的周长大于正方形的周长.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【详解】解:A 、错误,∵2=+a bB 、正确,因为a 2+b 2≥0a 2+b 2;CD=|a+b|,其结果a+b的符号不能确定.故选B.2.D解析:D【分析】直接利用二次根式的混合运算法则分别判断得出答案.【详解】解:AB2=,故此选项不合题意;C,故此选项不合题意;D=故选:D.【点睛】本题考查二次根式的混合运算,正确掌握相关运算法则是解题关键.3.D解析:D【分析】利用二次根式的加减法对A、C进行判断;利用二次根式的性质对B进行判断;利用二次根式的除法法则对D进行判断.【详解】解:A A选项错误;B=B选项错误;C、=C选项错误;=,所以D选项正确.D2故选:D.【点睛】本题考查了二次根式的混合运算:先把二次根式化为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.4.D解析:D【分析】根据二次根式的性质进行计算即可.【详解】|3|3=.故选:D.【点睛】(0)0(0)(0)a aa aa a><⎧⎪===⎨⎪-⎩.5.A解析:A【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】(=,∵4<6<9,∵<3,∴<5,故选:A.【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.6.B解析:B【分析】根据二次根式的加减法对A、C进行判断;根据二次根式的乘法法则对B进行判断;根据a=对D进行判断.【详解】解:A不能合并,所以A选项错误;B6=,正确,所以B选项正确;C、3不能合并,所以C选项错误;D22=--=(),所以D选项错误.故选:B.【点睛】本题考查了二次根式的混合运算,解题的关键是掌握二次根式的加减计算法则.7.A解析:A【分析】根据最简二次根式的定义即可得.【详解】A、21a+是最简二次根式,此项符合题意B、1555=,则15不是最简二次根式,此项不符题意C、当0x<时,4x不是二次根式,此项不符题意D、2733=,则27不是最简二次根式,此项不符题意故选:A.【点睛】本题考查了最简二次根式的定义,熟记定义是解题关键.8.C解析:C【解析】【分析】二次根式有意义,就隐含条件b<0,由ab<0,先判断出a、b的符号,再进行化简即可.【详解】解:若ab<0,且代数式有意义;故由b>0,a<0;则代数式故选:C.【点睛】本题主要考查二次根式的化简方法与运用:当a>0时,,当a<0时,,当a=0时,.9.C解析:C【解析】分析:根据二次根式的四则混合运算法则,二次根式的性质与化简逐项进行分析解答即可.详解:A.43333=,故本选项错误;B.不是同类二次根式,不能进行合并,故本选项错误;C.正确;D.不是同类二次根式,不能进行合并,故本选项错误.故选C.点睛:本题主要考查二次根式的化简,二次根式的四则运算法则,解题的关键是正确根据相关法则逐项进行分析解答.10.A解析:A【解析】试题分析:最简二次根式是指不能继续化简的二次根式,A、原式=;B、是最简二次根式,不能化简;C、原式=;D、原式=.考点:最简二次根式11.D解析:D【分析】先判断出点的横纵坐标的符号,进而判断点所在的象限或坐标轴.【详解】23x y xy y=-∴x、y异号,且y>0,∴x<0,或者x、y中有一个为0或均为0.∴那么点(),x y在第二象限或坐标轴上.故选:D.【点睛】根据二次根式的意义,确定被开方数的取值范围,进而确定a、b的取值范围,从而确定点的坐标位置.12.D解析:D【分析】根据二次根式的乘法法则对A进行判断;根据分母有理化对B进行判断;根据二次根式的加减法对C进行判断;根据二次根式的性质对D进行判断.【详解】A23=6B222计算正确,不符合题意;C、22+32=52计算正确,不符合题意;D()21-22112=≠符合题意;故选:D.【点睛】本题考查了二次根式的混合运算,正确掌握相关运算法则是解题关键.二、填空题13.【分析】利用完全平方公式化简,得到;化简分式,最后将代入化简后的分式,计算即可.【详解】将代入得:故答案为:【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在解析:1-【分析】利用完全平方公式化简x =1x =;化简分式,最后将1x =代入化简后的分式,计算即可.【详解】1x =====()211422(2)(2)2221(2)(2)2(1)x x x x x x x x x x x -++-+-⎛⎫+⋅= ⎪-+--+-⎝⎭ 1x x =-将1x =1=-故答案为:1-【点睛】本题考查二次根式的化简以及分式的化简求值,难度较大,难点在于化简x =熟练掌握相关知识点是解题关键. 14.(1)a2=,a3=2,a4=2;(2)an =(n 为正整数).【解析】(1)∵四边形ABCD 是正方形,∴AB =BC =1,∠B =90°. ∴在Rt △ABC 中,AC ===.同理:AE =2,EH =2,解析:(1)a 2,a 3=2,a 4=;(2)a n n 为正整数).【解析】(1)∵四边形ABCD是正方形,∴AB=BC=1,∠B=90°.∴在Rt△ABC中,ACAE=2,EH=,…,即a2a3=2,a4=(2)an n为正整数).15.【分析】根据题意可知,代入原函数即可解答.【详解】因为函数,所以当时,.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键.解析:2+【分析】根据题意可知1x=,代入原函数即可解答.【详解】因为函数1xf xx,所以当1x=时,211()2221f x.【点睛】本题主要考查了代数式求值问题,熟练掌握相关知识点以及二次根式的运算是解题关键. 16.2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007|+=a,∴a≥2008,解析:2008【解析】分析:本题首先能够根据二次根式的被开方数为非负数的条件,得到a的取值范围;再根据a的取值范围,化简去掉绝对值;最后进行整理变形.详解:∵|a﹣2007=a,∴a≥2008,∴a﹣2007=a,=2007,两边同平方,得:a﹣2008=20072,∴a﹣20072=2008.故答案为:2008.点睛:解决此题的关键是能够得到a 的取值范围,从而化简绝对值并变形.17.5【解析】试题解析:由题可知,∴,∴,∴,①②得,,解方程组得,∴.故答案为:5.解析:5【解析】试题解析:由题可知3030m n m n -+≥⎧⎨--≥⎩, ∴3m n +=,0=, ∴35200m n p m n p +--=⎧⎨--=⎩①②, ①-②得2620m n +-=,31m n +=,解方程组331m n m n +=⎧⎨+=⎩得41m n =⎧⎨=-⎩, ∴4(1)5p m n =-=--=.故答案为:5.18.【解析】根据二次根式的性质,化简为:-=-=-4;==.故答案为 ; .解析:【解析】根据二次根式的性质,化简为:故答案为;19.21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案. 【详解】∵最简二次根式与是同类二次根式,∴,解得,,∴故答案为21.解析:21【分析】根据二次根式及同类二次根式的定义列出方程组即可求出答案.【详解】∴1221343nm m-=⎧⎨-=-⎩,解得,73mn=⎧⎨=⎩,∴7321.mn=⨯=故答案为21.20.4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】解:=2,由最简二次根式与能合并成一项,得a-1=3.解解析:4【分析】根据二次根式能合并,可得同类二次根式,根据最简二次根式的被开方数相同,可得关于a的方程,根据解方程,可得答案.【详解】能合并成一项,得a-1=3.解得a=4.故答案为:4.【点睛】本题考查同类二次根式和最简二次根式的概念,同类二次根式是化为最简二次根式后,被开方数相同的二次根式.三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级初二数学二次根式单元测试附解析一、选择题1.若实数m 、n满足等式402n m -+=-,且m 、n 恰好是等腰ABC 的两条边的边长,则ABC 的周长( ) A .12B .10C .8D .6 2.已知526x =-,则2101x x -+的值为( ) A .306-B .106C .1862--D .03.下列各式一定成立的是( ) A .2()a b a b +=+ B .222(1)1a a +=+ C .22(1)1a a -=- D .2()ab ab =4.估计()123323+⨯的值应在 ( ) A .4和5之间B .5和6之间C .6和7之间D .7和8之间 5.下列各式中正确的是( ) A .36=±6B .2(2)2--=-C .8=4D .2(7)-=76.下列计算正确的是( ) A .531883+= B .()322326a ba b -=-C .222()a b a b -=-D .2422a ab a a b a -+⋅=-++7.如图,是按一定规律排成的三角形数阵,按图中数阵的排列规律,第9行从左至右第5个数是( )123256722310A .210B .41C .52D .518.已知a 为实数,则代数式227122a a -+的最小值为( ) A .0B .3C .33D .99.已知实数x ,y 满足(x -22008x -)(y -2-2008y )=2008,则3x 2-2y 2+3x -3y -2007的值为( ) A .-2008B .2008C .-1D .110.实数a ,b 在数轴上的位置如图所示,则化简﹣+b 的结果是( )A .1B .b+1C .2aD .1﹣2a11.如果2a a 2a 1+-+=1,那么a 的取值范围是( ) A .a 0=B .a 1=C .a 1≤D .a=0a=1或12.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦﹣秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积为()()()S p p a p b p c =---如图,在ABC ∆中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若5a =,6b =,7c =,则ABC ∆的面积为( )A .66B .3C .18D .192二、填空题13.已知112a b +=,求535a ab b a ab b++=-+_____. 14.设12211112S =++,22211123S =++,32211134S =++,设12...n S S S S =S=________________ (用含有n 的代数式表示,其中n 为正整数).15.若2x ﹣3x 2﹣x=_____. 16.计算: 200820092+323⋅-=_________.17.3x-x 的取值范围是______. 18.若a 、b 为实数,且b =22117a a a --++4,则a+b =_____. 19.若实数23a =-,则代数式244a a -+的值为___. 20.古希腊几何学家海伦和我国宋代数学家秦九韶都曾提出利用三角形的三边求面积的公式,称为海伦—秦九韶公式:如果一个三角形的三边长分别是a ,b ,c ,记2a b cp ++=,那么三角形的面积()()()S p p a p b p c =---ABC 中,A ∠,B ,C ∠所对的边分别记为a ,b ,c ,若4a =,5b =,7c =,则ABC 面积是_______.三、解答题21.2-+1 【分析】先根据二次根式的乘除法法则计算乘除法,同时分别化简各加数中的二次根式,最后计算加减法. 【详解】22-+=1)2(3+⨯=121. 【点睛】此题考查二次根式的混合运算,二次根式的化简,正确掌握二次根式的化简法则是解题的关键.22.观察下列各式子,并回答下面问题.(1)试写出第n 个式子(用含n 的表达式表示),这个式子一定是二次根式吗?为什么? (2)你估计第16个式子的值在哪两个相邻整数之间?试说明理由.【答案】(1,该式子一定是二次根式,理由见解析;(215和16之间.理由见解析. 【分析】(1)依据规律可写出第n 个式子,然后判断被开方数的正负情况,从而可做出判断;(2)将16n =代入,得出第16,再判断即可. 【详解】解:(1该式子一定是二次根式,因为n 为正整数,2(1)0n n n n -=-≥,所以该式子一定是二次根式(215=16=,∴1516<<.15和16之间. 【点睛】本题考查的知识点是二次根式的定义以及估计无理数的大小,掌握用“逼近法”估算无理数的大小的方法是解此题的关键.23.我国南宋时期有个著名的数学家秦九韶提出了一个利用三角形的三边求三角形的面积的公式,若三角形三边为a b c 、、,则此三角形的面积为:1S = 同样古希腊有个几何学家海伦也提出了一个三角形面积公式:2S =2a b cp ++=(1)在ABC 中,若4AB =,5BC =,6AC =,用其中一个公式求ABC 的面积.(2)请证明:12S S【答案】(1)4;(2) 证明见解析 【分析】(1)将4AB =,5BC =,6AC =代入1S =(2)对1S 和2S 分别平方,再进行整理化简得出2212S S =,即可得出12S S .【详解】解:(1)将4AB =,5BC =,6AC =代入1S =得:4S == (2)222222211[()]24a b a S c b +-=-=222222)1(22(4)a b c a b c ab ab +-+--+=2222()2(21)4c a c a b b +⋅---⋅ =()(1()()16)c a b c a b a b c a b c +-++-++- 22()()()S p p a p b p c =---∵2a b cp ++=, ∴22()(2)(222)S a a b c a b c a b c a b c b c +++++++-+=-- =2222a b c b c a a c b a b c +++-+-+-⋅⋅⋅ =1()()()()16a b c b c a a c b a b c +++-+-+- ∴2212S S =∵10S >,20S >, ∴12S S .【点睛】本题考查了二次根式的运算,解题的关键是理解题中给出的公式,灵活运用二次根式的运算性质进行运算.24.先阅读材料,再回答问题:因为)111=1=;因为1=,所以=1== (1= ,= ; (2⋅⋅⋅+的值.【答案】(12)9 【分析】(1)仿照例子,由1+=的值;由1+=的值;(2)根据(1)中的规律可将每个二次根式分母有理化,可转化为实数的加减法运算,再寻求规律可得答案.【详解】解:(1)因为1-=;因为1=1(2⋅⋅⋅+1=+⋅⋅⋅1=1019=-=.【点睛】本题考查了分母有理化,分子分母都乘以分母这两个数的差进行分母有理化是解题关键.25.像2)=1=a (a ≥0)、﹣1)=b ﹣1(b ≥0)……两个含有二次根式的代数式相乘,积不含有二次根式,我们称这两个代数式互为有理化因+1﹣1,﹣因式.进行二次根式计算时,利用有理化因式,可以化去分母中的根号.请完成下列问题: (1);(2)+;(3)的大小,并说明理由.【答案】(1(2)(3)< 【解析】分析:(1=1,确定互为有理化因式,由此计算即可;(2)确定分母的有理化因式为2与2+然后分母有理化后计算即可;(3与,,然后比较即可.详解:(1) 原式;(2)原式=2+=2+(3)根据题意,-==,><,>点睛:此题是一个阅读题,认证读题,了解互为有理化因式的实际意义,以及特点,然后根据特点变形解题是关键.26.已知x=2,求代数式(7+x2+(2)x【答案】2【解析】试题分析:先求出x2,然后代入代数式,根据乘法公式和二次根式的性质,进行计算即可.试题解析:x2=(2)2=7﹣则原式=(7﹣+(2=49﹣+27.计算:(1)+-(2(33【答案】(1)2) -10【分析】(1)原式二次根式的乘除法法则进行计算即可得到答案;(1)原式第一项运用二次根式的性质进行化简,第二项运用平方差公式进行化简即可.【详解】+解:(1)===+-(2(33=5+9-24 =14-24 =-10. 【点睛】此题主要考查了二次根式的化简,熟练掌握二次根式的性质是解答此题的关键.28.【分析】先化为最简二次根式,再将被开方数相同的二次根式进行合并. 【详解】. 【点睛】本题考查了二次根式的加减运算,在进行此类运算时,先把二次根式化为最简二次根式的形式后再运算.29.先化简,再求值:(()69x x x x --+,其中1x =.【答案】化简得6x+6,代入得 【分析】根据整式的运算公式进行化简即可求解. 【详解】(()69x x x x +--+=22369x x x --++ =6x+6把1x =代入原式=61)【点睛】此题主要考查实数的运算,解题的关键熟知整式的运算法则.30.(1)已知a 2+b 2=6,ab =1,求a ﹣b 的值; (2)已知b =,求a 2+b 2的值.【答案】(1)±2;(2)2. 【分析】(1)先根据完全平方公式进行变形,再代入求出即可;(2)先分母有理化,再根据完全平方公式和平方差公式即可求解. 【详解】(1)由a 2+b 2=6,ab=1,得a 2+b 2-2ab=4, (a-b )2=4, a-b=±2.(2)a ===12b ===,2222()22312a b a b ab +=+-=-=-=⎝⎭【点睛】本题考查了分母有理化、完全平方公式的应用,能灵活运用公式进行变形是解此题的关键.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】先根据绝对值的非负性、二次根式的非负性求出m 、n 的值,再根据三角形的三边关系、等腰三角形的定义求出第三边长,然后根据三角形的周长公式即可得. 【详解】由题意得:20,40m n -=-=, 解得2,4m n ==,设等腰ABC 的第三边长为a ,,m n 恰好是等腰ABC 的两条边的边长, n m a n m ∴-<<+,即26a <<,又ABC 是等腰三角形, 4a n ∴==,则ABC 的周长为24410++=,故选:B.【点睛】本题考查了绝对值的非负性、二次根式的非负性、三角形的三边关系、等腰三角形的定义等知识点,根据三角形的三边关系和等腰三角形的定义求出第三边长是解题关键.2.D解析:D【分析】把x的值代入原式计算即可求出值.【详解】解:当时,原式=()2-10×()+1+1=0.故选:D.【点睛】本题考查了二次根式的化简求值,熟练掌握运算法则是解题的关键.3.B解析:B【分析】分别利用二次根式的性质化简求出即可.【详解】解;A2=|a+b|,故此选项错误;B2+1,正确;C,无法化简,故此选项错误;D,故此选项错误;故选:B.【点睛】本题考查了二次根式的性质与化简,正确掌握二次根式的性质是解题的关键.4.A解析:A【分析】根据二次根式的混合运算法则进行计算,再估算无理数的大小.【详解】(=,∵4<6<9,∵<3,∴<5,故选:A .【点睛】此题考查了二次根式的混合运算,无理数的估算,正确掌握二次根式的运算法则、会进行无理数的大小估算是解题的关键.5.D解析:D【分析】直接利用二次根式的性质分别化简得出答案.【详解】解:A ,故A 错误;B 12=,故B 错误;C =C 错误;D 、2(=7,故D 正确;故选:D .【点睛】此题主要考查了二次根式的乘除,正确化简二次根式是解题关键.6.D解析:D【分析】分别运用二次根式、整式的运算、分式的运算法则逐项排除即可.【详解】解:A. =A 选项错误;B. ()()()33322363228a b a b a b -=-=-,故B 选项错误;C. 222()2a b a ab b -=-+,故C 选项错误;D. ()()2224222a a a ab a b a a b a a b a +--++⋅=⋅=-++++,故D 选项正确. 故答案为D .【点睛】本题考查了二次根式、整式的运算、分式的运算,掌握相关运算法则是解答本题的关键.解析:B【解析】【分析】由图形可知,第n 行最后一个数为()11232n n n ++++=,据此可得答案.【详解】由图形可知,第n 行最后一个数为()11232n n n ++++=,∴第8行最后一个数为89362⨯==6, 则第9行从左至右第5个数是36541+=, 故选B .【点睛】本题主要考查数字的变化类,解题的关键是根据题意得出第n 行最后一个数为()12n n +.8.B解析:B【解析】根据题意,由227122a a -+=22(69)9a a -++=22(3)9a -+,可知当(a ﹣3)2=0,即a=3时,代数式227122a a -+的值最小,为9=3.故选B .9.D解析:D【解析】由(x -22008x -)(y -2-2008y )=2008,可知将方程中的x,y 对换位置,关系式不变,那么说明x=y 是方程的一个解由此可以解得x=y=2008,或者x=y=-2008,则3x 2-2y 2+3x -3y -2007=1,故选D. 10.A解析:A【解析】﹣+b=111a a b b a a b b ---+=-+-+= ,故选A.11.C【解析】试题解析:∵a1,a∴1-a≥0,a≤1,故选C.12.A解析:A【分析】利用阅读材料,先计算出p的值,然后根据海伦公式计算ABC∆的面积;【详解】7a=,5b=,6c=.∴56792p++==,∴ABC∆的面积S==故选A.【点睛】考查了二次根式的应用,解题的关键是代入后正确的运算,难度不大.二、填空题13.13【解析】【分析】由得a+b=2ab,然后再变形,最后代入求解即可.【详解】解:∵∴a+b=2ab∴故答案为13.【点睛】本题考查了已知等式求代数式的值,解答的关键是通过变形找解析:13【解析】【分析】由112a b +=得a+b=2ab ,然后再变形535a ab b a ab b++-+,最后代入求解即可. 【详解】 解:∵112a b+= ∴a+b=2ab ∴()5353510ab 3===132ab a b ab a ab b ab a ab b a b ab ab+++++-++-- 故答案为13.【点睛】 本题考查了已知等式求代数式的值,解答的关键是通过变形找到等式和代数式的联系. 14.【分析】先根据题目中提供的三个式子,分别计算的值,用含n 的式子表示其规律,再计算S 的值即可.【详解】解:∵,∴;∵,∴;∵,∴;……∵,∴;∴.故答案为:【点睛】本题 解析:221n n n ++ 【分析】n 的式子表示其规律,再计算S 的值即可.【详解】解:∵1221191=124S =++311122===+-;∵222114912336S =++=7111116623===+=+-; ∵32211169134144S =++=1311111121234===+=+-; …… ∵()()()222222111111n n n S n n n n ++=++=++,()()2111111111n n n n n n n n ++===+=+-+++;∴...S =1111111112231n n =+-++-++-+…+ 111n n =+-+. 221n n n +=+ 故答案为:221n n n ++ 【点睛】本题为规律探究问题,难度较大,根据提供的式子发现规律,并表示规律是解题的关键,同时要注意对于式子()11111n n n n =-++的理解. 15.【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x﹣1= ,∴(2x ﹣1)2=3∴4x2﹣4x+1=3∴4(x2﹣x )=2∴x2﹣x=故答案为【点解析:12【解析】【分析】根据完全平方公式以及整体的思想即可求出答案.【详解】解:∵2x ﹣,∴(2x ﹣1)2=3∴4x 2﹣4x+1=3∴4(x 2﹣x )=2∴x 2﹣x=12故答案为12【点睛】 本题考查二次根式的运算,解题的关键是熟练运用完全平方公式,本题属于基础题型.16.【解析】原式==17.且【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:,解得且,故答案为:且.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分解析:3x ≤且2x ≠-【分析】根据分式的分母不能为0、二次根式的被开方数大于或等于0列出式子求解即可得.【详解】由题意得:2030x x +≠⎧⎨-≥⎩, 解得3x ≤且2x ≠-,故答案为:3x ≤且2x ≠-.【点睛】本题考查了分式和二次根式有意义的条件,熟练掌握分式和二次根式的定义是解题关键. 18.5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得,解得a =1,或a =﹣解析:5或3【分析】根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出a 的值,b 的值,根据有理数的加法,可得答案.【详解】由被开方数是非负数,得221010a a ⎧-≥⎨-≥⎩, 解得a =1,或a =﹣1,b =4,当a =1时,a +b =1+4=5,当a =﹣1时,a +b =﹣1+4=3,故答案为5或3.【点睛】本题考查了函数表达式有意义的条件,当函数表达式是整式时,自变量可取全体实数;当函数表达式是分式时,考虑分式的分母不能为0;当函数表达式是二次根式时,被开方数非负.19.3【解析】∵ =,∴=(a-2)2==3,故答案为3.解析:3【解析】∵a =∴244a a -+=(a-2)2=()222+=3, 故答案为3.20.【分析】根据a ,b ,c 的值求得p =,然后将其代入三角形的面积S =求值即可.【详解】解:由a =4,b =5,c =7,得p ===8.所以三角形的面积S ===4.故答案为:4.【点睛】本题主解析:【分析】根据a ,b ,c 的值求得p =2a b c ++,然后将其代入三角形的面积S =【详解】解:由a =4,b =5,c =7,得p =2a b c ++=4572++=8.所以三角形的面积S .故答案为:.【点睛】本题主要考查了二次根式的应用和数学常识,解题的关键是读懂题意,利用材料中提供的公式解答,难度不大. 三、解答题21.无22.无23.无24.无25.无26.无27.无28.无29.无30.无。