第二章 矩阵的运算及与矩阵的秩
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章
矩阵的运算与矩阵的秩
本章要点流程:
首先介绍矩阵的基本运算 进一步了解分块矩阵 重点学习可逆矩阵 认识矩阵的秩 最后对齐次线性方程组解的作了讨论
§2.1 矩阵的基本运算
§2.1
矩阵的基本运算
一、矩阵的线性运算
定义2.1设矩阵A=(aij ) m× n ,B=(bij ) m×n ,l为给定的数. (1)加法:C=(aij+bij)为矩阵A与B相加的和,记作A+B (2)数乘:C=l(aij)为数 l与矩阵A相乘的积,记作lA
§2.1 矩阵的基本运算
例2.7
1 2 T T 设A 1 3 0 , B 0 3 ; 求B A . 1 2
即:
E(i,j)A: 相当于交换A的第i行与第j行;
E(i(k))A: 相当于用非零数k百度文库矩阵A的第i行;
E(i,j(k))A:相当于A的第j行乘k加到第i行上;
§2.1 矩阵的基本运算
同理: (2)对A施行某种初等列变换,相当于 对A右乘一个相应的n阶初等矩阵.
即:
AE(i,j):相当于交换A的第i列与第j列;
运算规律(设为A ,B,C同型矩阵,k,s,l为给定的数) 1) A+B=B+A (交换律)
2) (A+B)+C=A+(B+C),
(ks)A=k(sA)=s(kA) (结合律)
3) k(A+B)=kA+kB ,(k+s)A=kA+sA (分配律)
4) A+O=A
5) A+(-A)=O
6) 1· A=A;0· A=O; l· O 0
注:⑶若AB=AC,且A≠0,则一般不能得到B=C.
§2.1 矩阵的基本运算
矩阵乘法满足的运算律: 1) (AB)C=A(BC) (结律合)
k(AB)=(kA)B=A(kB)
2) A(B+C)=AB+AC (分配律)
(B+C)A=BA+CA 3) 设Am×n, 则ImA=AIn=A
§2.1 矩阵的基本运算
矩阵C与A、B之间 有什么关系?
矩阵C的第i行第j列的元素等于矩阵A的第i行的元 素与矩阵B的第j列的对应元素乘积之和。
§2.1 矩阵的基本运算
定义2.2 设 A=(aij) m×s ,B=(bij)s×n ,那么称 C=AB=(cij) m×n 为矩阵A与B的乘积.其中
cij aik bkj (i 1,2 m; j 1,2 n)
§2.1 矩阵的基本运算
例2.1
1 2 3 设 A 0 1 5
且A-2X=B,求X
1 1 3 B 2 4 2
§2.1 矩阵的基本运算
二、矩阵的乘法 1.矩阵乘法的定义
引例 某文化用品商店售圆珠笔、钢笔和铅笔三 种,每种商品的进货单价和数量如下表。
AE(i(k)):相当于用非零数k 乘矩阵A的第i列;
AE(i,j(k)):相当于A的第i列乘k加到第j列上.
§2.1 矩阵的基本运算
推论:若m×n矩阵A与B等价,则存在若干个
m×m初等矩阵Pi(i=1,2-----,s)和若干个n×n初 等矩阵Qj(j=1,2-----,t)使得
PP 1 2
1 2 3 A 0 1 2 1 2 1
求AB
1 2 B 0 3 1 2
§2.1 矩阵的基本运算
例2.2
1 2 设 A 3 4
求AB,BA
B 5 1 2 1
注:⑴矩阵乘法一般不满足交换律,即AB≠BA. 若对A、B有AB=BA,则称A与B是可交换的.
九月
十月
圆珠笔 200 220
钢笔 100 150
铅笔 300 260
§2.1 矩阵的基本运算
每种商品进货单价和销售单价(元)如下表:
进货单价 圆珠笔 钢笔 铅笔 6 9 3
销售单价 8 12 4
§2.1 矩阵的基本运算
求每个月的总进货额和总销售额。
金额 月份 九月
总进货额
总销售额
200×6+100×9+300×3 200×8+100×12+300×4
系数矩阵:
A
a11 a12 a a 21 22 am1 am 2
a1n a2 n amn
§2.1 矩阵的基本运算
a11 a12 a a 21 22 am1 am 2
a1n x1 b1 a2 n x2 b2 amn xn bm
ka12 ka22 ka32
a13 a23 a33
a14 a24 a34
a11 AE(2,3(k )) a21 a31
a12 a22 a32
a13 a23 a33
1 a14 0 a24 0 a34 0
0 1 0 0
0 k 1 0
§2.1 矩阵的基本运算
a11 AE(2(k )) a21 a31
a12 a22 a32
a13 a23 a33
1 a14 0 a24 0 a34 0
0 k 0 0
0 0 1 0
0 a11 0 a21 0 a31 1
Ps AQ1Q2
Qt B
§2.1 矩阵的基本运算
三、矩阵的转置
定义2.3:把m×n矩阵A的行和列依次互换得到的一个 n×m 矩阵,称为A的转置,记作AT或A’.
a11 a12 a21 a22 A a m1 am 2 a1n a2 n amn
a11 a12 T A a 1n
a21 am1 a22 am 2 . a2 n amn
§2.1 矩阵的基本运算
相关性质: 1. (AT)T=A
2. (A+B)T=AT+BT
3. (kA)T=kAT (k为常数) 4. (AB)T=BTAT
.
AX B
§2.1 矩阵的基本运算
2. 矩阵与初等矩阵的乘积
例如:计算下列矩阵与初等阵的乘积
1 0 0 a11 a12 a13 a14 a11 a12 a13 a14 a a a a E (2,3) A 0 0 1 a a a a 21 22 23 24 31 32 33 34 0 1 0 a31 a32 a33 a34 a21 a22 a23 a24
a12 ka22 a32
a13 ka23 a33
a14 ka24 a34
1 0 0 a11 a E (2,3(k )) A 0 1 k 21 0 0 1 a31
a12 a22 a32
a13 a23 a33
a14 a11 a ka a24 31 21 a34 a31
k 1
s
由这个定义可知: 1)矩阵A、B相乘的条件:矩阵A的列数=矩 阵B的行数.
§2.1 矩阵的基本运算
2)矩阵C的行数等于矩阵A的行数,矩阵 C的列数等于矩阵B的列数。 3)矩阵乘法法则:乘积C的第i行第j列的元素
Cij等于矩阵A的第i行的元素与矩阵B的第j列
的对应元素乘积之和。
例2.1 设
§2.1 矩阵的基本运算
1 0 0 a11 a E (2(k )) A 0 k 0 21 0 0 1 a31
a12 a22 a32
a13 a23 a33
a14 a11 ka a24 21 a34 a31
上述过程也可以等同于:
a11 a 21 a31 a12 a22 a32 a13 a23 a33 a14 a11 a r2 r3 a24 31 a34 a21 a12 a32 a22 a13 a33 a23 a14 a34 a24
方阵的幂 设A是n阶方阵,k是正整数,k个A连乘称为
A的k次幂,记作 Ak ,即
约定A0=I
Ak AA
k个
A
相关结论:
A A A
k l
k l
,(A ) A
k l
kl
其中k,l为正整数.
一般地
( AB) k Ak B k
§2.1 矩阵的基本运算
矩阵的多项式 :
f ( A) am Am am1 Am1
a12 a22 ka32 a32
a13 a23 ka33 a33
a24 ka34 a34 a14
§2.1 矩阵的基本运算
a11 AE(2,3) a21 a31
a12 a22 a32
a13 a23 a33
1 a14 0 a24 0 a34 0
l 0 0 l lI 0 0 0 0 l
称为数量矩阵
§2.1 矩阵的基本运算
称矩阵(-1)A=(-aij)为矩阵A的负矩阵,记为-A. 矩阵的减法:A-B=A+(-B)=(aij-bij)
矩阵的加法 矩阵的线性运算 数与矩阵的乘法
§2.1 矩阵的基本运算
十月
220×6+150×9+260× 3
220×8+150×12+260×4
§2.1 矩阵的基本运算
200 100 300 A 220 150 260
定义矩阵
6 8 B 9 12 3 4
200 6 100 9 300 3 200 8 100 12 300 4 C 220 6 150 9 260 3 220 8 150 12 260 4
§2.1 矩阵的基本运算
1 1 例2.3 设 A 1 1
求AB
1 1 B 1 1
注:⑵由AB=0一般不能得到A=0或B=0.
1 2 例2.4 设 A 2 4
求AB,AC
7 1 1 3 B C 1 2 2 1
0 0 1 0
0 1 0 0
0 a11 0 a21 0 a31 1
a13 a23 a33
a12 a22 a32
a14 a24 a34
上述过程也可以等同于:
a11 a 21 a31 a12 a22 a32 a13 a23 a33 a14 a11 a C 2 C3 a24 21 a34 a31 a13 a23 a33 a12 a22 a32 a14 a24 a34
n ( n 1) 2
l n2
n 1
l
nl
0
ln
(n为任意自然数).
§2.1 矩阵的基本运算
线性方程组的矩阵表示
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 am1 x1 am 2 x2 amn xn bm
0 a11 0 a21 0 a31 1
a12 a22 a32
a13 ka12 a23 ka22 a33 ka32
a14 a24 a34
§2.1 矩阵的基本运算
定理2.1 设Am×n= (a )m×n,则:
ij
(1)对A施行某种行初等变换,相当于对A 左乘一个相应的m阶初等矩阵.
为n阶方阵A的m次多项式
a1 A a0 I
0 2 2-2x+3 例2.5 设 A 且 f(x)=x 1 1
求f(A)
§2.1 矩阵的基本运算
例2.6
用数学归纳法证
l 1 0 0 l 1 0 0 l
n
ln 0 0
nl
n 1 n
矩阵的运算与矩阵的秩
本章要点流程:
首先介绍矩阵的基本运算 进一步了解分块矩阵 重点学习可逆矩阵 认识矩阵的秩 最后对齐次线性方程组解的作了讨论
§2.1 矩阵的基本运算
§2.1
矩阵的基本运算
一、矩阵的线性运算
定义2.1设矩阵A=(aij ) m× n ,B=(bij ) m×n ,l为给定的数. (1)加法:C=(aij+bij)为矩阵A与B相加的和,记作A+B (2)数乘:C=l(aij)为数 l与矩阵A相乘的积,记作lA
§2.1 矩阵的基本运算
例2.7
1 2 T T 设A 1 3 0 , B 0 3 ; 求B A . 1 2
即:
E(i,j)A: 相当于交换A的第i行与第j行;
E(i(k))A: 相当于用非零数k百度文库矩阵A的第i行;
E(i,j(k))A:相当于A的第j行乘k加到第i行上;
§2.1 矩阵的基本运算
同理: (2)对A施行某种初等列变换,相当于 对A右乘一个相应的n阶初等矩阵.
即:
AE(i,j):相当于交换A的第i列与第j列;
运算规律(设为A ,B,C同型矩阵,k,s,l为给定的数) 1) A+B=B+A (交换律)
2) (A+B)+C=A+(B+C),
(ks)A=k(sA)=s(kA) (结合律)
3) k(A+B)=kA+kB ,(k+s)A=kA+sA (分配律)
4) A+O=A
5) A+(-A)=O
6) 1· A=A;0· A=O; l· O 0
注:⑶若AB=AC,且A≠0,则一般不能得到B=C.
§2.1 矩阵的基本运算
矩阵乘法满足的运算律: 1) (AB)C=A(BC) (结律合)
k(AB)=(kA)B=A(kB)
2) A(B+C)=AB+AC (分配律)
(B+C)A=BA+CA 3) 设Am×n, 则ImA=AIn=A
§2.1 矩阵的基本运算
矩阵C与A、B之间 有什么关系?
矩阵C的第i行第j列的元素等于矩阵A的第i行的元 素与矩阵B的第j列的对应元素乘积之和。
§2.1 矩阵的基本运算
定义2.2 设 A=(aij) m×s ,B=(bij)s×n ,那么称 C=AB=(cij) m×n 为矩阵A与B的乘积.其中
cij aik bkj (i 1,2 m; j 1,2 n)
§2.1 矩阵的基本运算
例2.1
1 2 3 设 A 0 1 5
且A-2X=B,求X
1 1 3 B 2 4 2
§2.1 矩阵的基本运算
二、矩阵的乘法 1.矩阵乘法的定义
引例 某文化用品商店售圆珠笔、钢笔和铅笔三 种,每种商品的进货单价和数量如下表。
AE(i(k)):相当于用非零数k 乘矩阵A的第i列;
AE(i,j(k)):相当于A的第i列乘k加到第j列上.
§2.1 矩阵的基本运算
推论:若m×n矩阵A与B等价,则存在若干个
m×m初等矩阵Pi(i=1,2-----,s)和若干个n×n初 等矩阵Qj(j=1,2-----,t)使得
PP 1 2
1 2 3 A 0 1 2 1 2 1
求AB
1 2 B 0 3 1 2
§2.1 矩阵的基本运算
例2.2
1 2 设 A 3 4
求AB,BA
B 5 1 2 1
注:⑴矩阵乘法一般不满足交换律,即AB≠BA. 若对A、B有AB=BA,则称A与B是可交换的.
九月
十月
圆珠笔 200 220
钢笔 100 150
铅笔 300 260
§2.1 矩阵的基本运算
每种商品进货单价和销售单价(元)如下表:
进货单价 圆珠笔 钢笔 铅笔 6 9 3
销售单价 8 12 4
§2.1 矩阵的基本运算
求每个月的总进货额和总销售额。
金额 月份 九月
总进货额
总销售额
200×6+100×9+300×3 200×8+100×12+300×4
系数矩阵:
A
a11 a12 a a 21 22 am1 am 2
a1n a2 n amn
§2.1 矩阵的基本运算
a11 a12 a a 21 22 am1 am 2
a1n x1 b1 a2 n x2 b2 amn xn bm
ka12 ka22 ka32
a13 a23 a33
a14 a24 a34
a11 AE(2,3(k )) a21 a31
a12 a22 a32
a13 a23 a33
1 a14 0 a24 0 a34 0
0 1 0 0
0 k 1 0
§2.1 矩阵的基本运算
a11 AE(2(k )) a21 a31
a12 a22 a32
a13 a23 a33
1 a14 0 a24 0 a34 0
0 k 0 0
0 0 1 0
0 a11 0 a21 0 a31 1
Ps AQ1Q2
Qt B
§2.1 矩阵的基本运算
三、矩阵的转置
定义2.3:把m×n矩阵A的行和列依次互换得到的一个 n×m 矩阵,称为A的转置,记作AT或A’.
a11 a12 a21 a22 A a m1 am 2 a1n a2 n amn
a11 a12 T A a 1n
a21 am1 a22 am 2 . a2 n amn
§2.1 矩阵的基本运算
相关性质: 1. (AT)T=A
2. (A+B)T=AT+BT
3. (kA)T=kAT (k为常数) 4. (AB)T=BTAT
.
AX B
§2.1 矩阵的基本运算
2. 矩阵与初等矩阵的乘积
例如:计算下列矩阵与初等阵的乘积
1 0 0 a11 a12 a13 a14 a11 a12 a13 a14 a a a a E (2,3) A 0 0 1 a a a a 21 22 23 24 31 32 33 34 0 1 0 a31 a32 a33 a34 a21 a22 a23 a24
a12 ka22 a32
a13 ka23 a33
a14 ka24 a34
1 0 0 a11 a E (2,3(k )) A 0 1 k 21 0 0 1 a31
a12 a22 a32
a13 a23 a33
a14 a11 a ka a24 31 21 a34 a31
k 1
s
由这个定义可知: 1)矩阵A、B相乘的条件:矩阵A的列数=矩 阵B的行数.
§2.1 矩阵的基本运算
2)矩阵C的行数等于矩阵A的行数,矩阵 C的列数等于矩阵B的列数。 3)矩阵乘法法则:乘积C的第i行第j列的元素
Cij等于矩阵A的第i行的元素与矩阵B的第j列
的对应元素乘积之和。
例2.1 设
§2.1 矩阵的基本运算
1 0 0 a11 a E (2(k )) A 0 k 0 21 0 0 1 a31
a12 a22 a32
a13 a23 a33
a14 a11 ka a24 21 a34 a31
上述过程也可以等同于:
a11 a 21 a31 a12 a22 a32 a13 a23 a33 a14 a11 a r2 r3 a24 31 a34 a21 a12 a32 a22 a13 a33 a23 a14 a34 a24
方阵的幂 设A是n阶方阵,k是正整数,k个A连乘称为
A的k次幂,记作 Ak ,即
约定A0=I
Ak AA
k个
A
相关结论:
A A A
k l
k l
,(A ) A
k l
kl
其中k,l为正整数.
一般地
( AB) k Ak B k
§2.1 矩阵的基本运算
矩阵的多项式 :
f ( A) am Am am1 Am1
a12 a22 ka32 a32
a13 a23 ka33 a33
a24 ka34 a34 a14
§2.1 矩阵的基本运算
a11 AE(2,3) a21 a31
a12 a22 a32
a13 a23 a33
1 a14 0 a24 0 a34 0
l 0 0 l lI 0 0 0 0 l
称为数量矩阵
§2.1 矩阵的基本运算
称矩阵(-1)A=(-aij)为矩阵A的负矩阵,记为-A. 矩阵的减法:A-B=A+(-B)=(aij-bij)
矩阵的加法 矩阵的线性运算 数与矩阵的乘法
§2.1 矩阵的基本运算
十月
220×6+150×9+260× 3
220×8+150×12+260×4
§2.1 矩阵的基本运算
200 100 300 A 220 150 260
定义矩阵
6 8 B 9 12 3 4
200 6 100 9 300 3 200 8 100 12 300 4 C 220 6 150 9 260 3 220 8 150 12 260 4
§2.1 矩阵的基本运算
1 1 例2.3 设 A 1 1
求AB
1 1 B 1 1
注:⑵由AB=0一般不能得到A=0或B=0.
1 2 例2.4 设 A 2 4
求AB,AC
7 1 1 3 B C 1 2 2 1
0 0 1 0
0 1 0 0
0 a11 0 a21 0 a31 1
a13 a23 a33
a12 a22 a32
a14 a24 a34
上述过程也可以等同于:
a11 a 21 a31 a12 a22 a32 a13 a23 a33 a14 a11 a C 2 C3 a24 21 a34 a31 a13 a23 a33 a12 a22 a32 a14 a24 a34
n ( n 1) 2
l n2
n 1
l
nl
0
ln
(n为任意自然数).
§2.1 矩阵的基本运算
线性方程组的矩阵表示
a11 x1 a12 x2 a1n xn b1 a x a x a x b 21 1 22 2 2n n 2 am1 x1 am 2 x2 amn xn bm
0 a11 0 a21 0 a31 1
a12 a22 a32
a13 ka12 a23 ka22 a33 ka32
a14 a24 a34
§2.1 矩阵的基本运算
定理2.1 设Am×n= (a )m×n,则:
ij
(1)对A施行某种行初等变换,相当于对A 左乘一个相应的m阶初等矩阵.
为n阶方阵A的m次多项式
a1 A a0 I
0 2 2-2x+3 例2.5 设 A 且 f(x)=x 1 1
求f(A)
§2.1 矩阵的基本运算
例2.6
用数学归纳法证
l 1 0 0 l 1 0 0 l
n
ln 0 0
nl
n 1 n