高三数学导数的概念及运算

合集下载

高三导数公式总结知识点

高三导数公式总结知识点

高三导数公式总结知识点一、导数定义与符号表示导数是函数在某一点处的切线斜率,表示为f'(x),也可表示为dy/dx或df(x)/dx。

二、导数的基本性质1. 可导性:若函数f(x)在点x=a处可导,则f(x)在点x=a处连续。

2. 导数的唯一性:函数f(x)在点x=a处的导数唯一。

3. 常数导数:若f(x)为常数,则f'(x)=0。

4. 乘法常数:若k为常数,则(kf(x))'=kf'(x)。

5. 和差函数:若f(x)和g(x)在点x=a处可导,则(f(x)±g(x))'=f'(x)±g'(x)。

6. 乘法函数:若f(x)和g(x)在点x=a处可导,则(f(x)g(x))'=f'(x)g(x)+f(x)g'(x)。

7. 商函数:若f(x)和g(x)在点x=a处可导且g'(a)≠0,则(f(x)/g(x))'=[f'(x)g(x)-f(x)g'(x)]/g^2(x)。

三、常用导数公式1. 常数函数:(k)'=0,其中k为常数。

2. 幂函数:(x^n)'=nx^(n-1),其中n为整数。

3. 指数函数:(a^x)'=a^x*ln(a),其中a为正实数且a≠1。

4. 对数函数:(log_a(x))'=1/(xln(a)),其中a为正实数且a≠1。

5. 三角函数:- (sin(x))'=cos(x)- (cos(x))'=-sin(x)- (tan(x))'=sec^2(x)- (cot(x))'=-csc^2(x)- (sec(x))'=sec(x)tan(x)- (csc(x))'=-csc(x)cot(x)6. 反三角函数:- (arcsin(x))'=1/√(1-x^2),其中-1≤x≤1。

导数的概念及运算课件——2025届高三数学一轮复习

导数的概念及运算课件——2025届高三数学一轮复习
A.2f ′(3)<f (5)-f (3)<2f ′(5)
B.2f ′(3)<2f ′(5)<f (5)-f (3)
C.f (5)-f (3)<2f ′(3)<2f ′(5)
D.2f ′(5)<2f ′(3)<f (5)-f (3)
A
[由题图知:f
5 − 3
′(3)<
5−3
<f ′(5),
即2f ′(3)<f (5)-f (3)<2f ′(5).故选A.]
y-f (x0)=f ′(x0)(x-x0)
斜率
线的____,相应的切线方程为_____________________.
提醒:求曲线的切线时,要分清在点P处的切线与过点P的切线的区别,前者只
有一条,而后者包括了前者.
第1课时 导数的概念及运算
链接教材
夯基固本
典例精研
核心考点
3.基本初等函数的导数公式
)
第1课时 导数的概念及运算
链接教材
夯基固本
4.(人教A版选择性必修第二册P81习题5.2T7改编)函数f
典例精研
核心考点
课时分层作业
1
x
(x)=e + 的图象在x=1

y=(e-1)x+2
处的切线方程为_______________.
y=(e-1)x+2
1

[∵f ′(x)=ex- 2 ,∴f ′(1)=e-1,又f (1)=e+1,∴切点为(1,

cf ′(x)
(4)[cf (x)]′=_______.
5.复合函数的定义及其导数
一般地,对于两个函数y=f (u)和u=g(x),如果通过中间变量u,y可以表示成x

高三数学导数的概念与运算

高三数学导数的概念与运算
n
n 1
(sin x)' cos x ; (cosx)' sin x ;
1 (ln x )' x
1 (log a x)' log a e ; ; x
; (a )' a ln a 。
x x
(e )' e
x
x
5.导数的四则运算法则:
[u( x) v( x)] u ( x) v ( x)
的切线的斜率,即斜率为 f ( x0 ) 。过点P的切 线方程为:y- y0= f / ( x0 ) (x- x0). 导数的物理意义:如果物体的运动规律是 s=s(t),那么物体在时刻t0的瞬时速度v就是位 移s的导数在t0的值, v= s (t0 )
/ /
4.几种常见函数的导数:
C ' 0(C为常数);( x )' nx ( n Q );
(2)Sn=
C n 2C n 3C n ...... nC n ( n
1 2 3 n
N*).
【课堂小结】
1 . 了解导数的概念,初步会用定义式解决 一些问题; 2. 会用定义式求导数; 3. 了解导数的几何意义; 4. 掌握常见函数的导数公式,并会正确运 用; 掌握导数的四则运算法则及复合函数的求导 法则。
14.1导数的概念与运算
高三备课组
知识提要: 1.导数的概念: (1)已知函数y=f(x),如果自变量x在x0处有增 量⊿x,那么函数y相应地有增量
y ⊿y=f(x0+⊿x)-f(x0),比值 x 就叫做函数 y=f(x)
在x0到x0+⊿x之间的平均变化率;
y x
(2)当⊿x→0时, 有极限,就说函数y=f(x) 在x0处可导,并把这个极限叫做f(x)在x0处的导 数(或变化率),记作

高三数学导数(2019年)

高三数学导数(2019年)

有匡合之功 骑士曰 沛公不喜儒 今监御史公穿军垣以求贾利 顾行而忘利 卫司马在部 遣中郎将段会宗持金币与都护图方略 杀略数百人 上於是乃复申明之 立耳为赵王 阳九 虽然 入绝域 下书曰 夫三皇象春 夹氏未有书 驾六马 厉蒸庶 东入海 齐地人相食 谓曰 吾知羌虏不能为兵矣 莽
曰通路亭 异姓五 时 以《齐诗》 《尚书》教授 胜等疾阳 传相捕斩 则用火 谓天下何
郦商见审食其曰 闻帝已崩四日 久驻未出 鲁人俗俭啬 毋拘它所 明日 国家委任臣凤 有以 唯其人之赡知哉 是为勤王 穆叔曰 是人也 皆为陛下所成就 甚於主上 至今不绝 泉街水南至沮入汉 刘向以为 以尽其能 上乃下其事问公卿 己韩 〔故国 不敢复出 吏民独不争其头首 过沛 上以緤
为信武侯 太仆王恽等二十五人前议定陶傅太后尊号 腹心之臣 手熊罴 张生为博士 二十四世为楚所灭 宜何从 胜曰 将军以胜议不可者 袭破齐历下军 为令约束 即位五年 封高陵侯 沛公既先定秦 深惧危亡之征兆 因事以立奸威 久系逾冬 城上人更招汉军曰 斗来 百馀骑驰赴营 使执法发
车骑数百围太傅府 非贤也 於是尝有德 德至渥也 得其地不足为广 初 即位 上立封赵婕妤父临为成阳侯 皇太后诏大司马莽 丞相大司空曰 皇帝暴崩 莽曰富成 阴厚贫穷少年 北地义渠人也 又种五梁禾於殿中 上曰 钩町侯亡波率其邑君长人民击反者 因病毕见 将期门佽飞 羽林孤儿 胡越骑为支兵 《左氏传》平子曰 唯正月朔 以澎户二千二百封左丞相为澎侯 其秋 三家逐鲁昭 宜除赎罪之法 故父之所尊子不敢不承 坚如金石 内则致疾损寿 敞 义依霍 乃弗用 司马相如赋二十九篇 风雨不时 然於天下未有称
也 命南正重司天 望气为数者多言有士功象 比年晋使荀吴 齐使庆封来聘 复修辽东故塞 号将军驺力等为 吞汉将军 今西魏王豹 益居其物 武帝时 复申下金 银 龟 贝之货 王莽秉政 中宫之部 不得左右 以擅发戊己校尉之兵乏兴 相二千石从王治 朕既不德 能历西山 《汉兴以来将相名臣

专题四+4.1导数的概念及运算课件——2023届高三数学一轮复习

专题四+4.1导数的概念及运算课件——2023届高三数学一轮复习

1 3
,
0
,C
0,
1 4
,则S△BOC=
1 2
×
1 3
×
1 4
=
1 24
.
综上,△BOC的面积为 4 或 1 .
3 24
考向二 两曲线的公切线问题
1.(2023届贵州遵义新高考协作体入学质量监测,11)若直线y=kx+b是曲线 y=ex+1的切线,也是y=ex+2的切线,则k= ( ) A.ln 2 B.-ln 2 C.2 D.-2 答案 C
4.(2019课标Ⅲ,文7,理5,5分)已知曲线y=aex+xln x在点(1,ae)处的切线方程 为y=2x+b,则 ( )
A.a=e,b=-1 B.a=e,b=1
C.a=e-1,b=1 答案 D
D.a=e-1,b=-1
5.(2021新高考Ⅰ,7,5分)若过点(a,b)可以作曲线y=ex的两条切线,则 ( )
解析 由题意可知y'=2cos x-sin x,则y'|x=π=-2.所以曲线y=2sin x+cos x在点 (π,-1)处的切线方程为y+1=-2(x-π),即2x+y+1-2π=0,故选C.
答案 C
例2 (2016课标Ⅱ,16,5分)若直线y=kx+b是曲线y=ln x+2的切线,也是曲线
y=ln(x+1)的切线,则b=
,即f
'(x0)=
lim
x0
y x
=
. lim
x0
f
( x0
x)
f
(x0 )
x
注意:f '(x)与f '(x0)的区别与联系:f '(x)是一个函数,f '(x0)是函数f '(x)在x0处

3.1导数的概念及运算课件高三数学一轮复习

3.1导数的概念及运算课件高三数学一轮复习
×
解析 (1)f′(x0)表示y=f(x)在x=x0处的瞬时变化率,(1)错. (2)f(x)=sin(-x)=-sin x,则f′(x)=-cos x,(2)错. (3)求f′(x0)时,应先求f′(x),再代入求值,(3)错. (4)“在某点”的切线是指以该点为切点的切线,因此此点横坐标处的导数值 为切线的斜率;而对于“过某点”的切线,则该点不一定是切点,要利用解方 程组的思想求切线的方程,在曲线上某点处的切线只有一条,但过某点的切 线可以不止一条,(4)错.
f′(x)=___e_x__
1
f′(x)=__x_l_n_a__
1
f′(x)=__x___
4.导数的运算法则
若 f′(x),g′(x)存在,则有: [f(x)±g(x)]′=______f′_(_x_)±_g_′_(_x_) _______; [f(x)g(x)]′=____f′_(_x_)g_(_x_)_+__f(_x_)_g_′(_x_)____; gf((xx))′=__f_′(__x_)__g_(__x[_g)_(_-_x_)f_(_]_2x_)__g_′_(__x_)__ (g(x)≠0); [cf(x)]′=_____c_f_′(_x_)_____.
训练1 (1)已知函数y=f(x)的图象是下列四个图象之一,且其导函数y=f′(x)的图
象如图所示,则该函数的图象是( B )
解析 由y=f′(x)的图象是先上升后下降可知,函数y=f(x)图象的切线的斜率 先增大后减小,故选B.
(2)曲线f(x)=2ln x在x=t处的切线l过原点,则l的方程是( )
A.f(x)=x2
B.f(x)=e-x
C.f(x)=ln x
D.f(x)=tan x
解析 若f(x)=x2,则f′(x)=2x,令x2=2x,得x=0或x=2,方程显然有解, 故A符合要求; 若f(x)=e-x,则f′(x)=-e-x,令e-x=-e-x,此方程无解,故B不符合要求;

导数的概念及其意义、导数的运算课件-2023届高三数学(文)一轮复习

导数的概念及其意义、导数的运算课件-2023届高三数学(文)一轮复习
n2+1=a+1-aln m,
所以4am22=a-aln m, 由于 a>0,所以4ma 2=1-ln m, 即a4=m2(1-ln m)有解即可. 令h(x)=x2(1-ln x)(x>0), h′(x)=x(1-2ln x),
所以 h(x)在(0, e)上单调递增,在( e,+∞)上单调递减,最大值为 h( e)=2e,
解得 a=1 或 a=-34(舍去), 又由g(1)=-1,即公共点的坐标为(1,-1), 将点(1,-1)代入f(x)=-2x2+m, 可得m=1.
64 (2)不与x轴重合的直线l与曲线f(x)=x3和y=x2均相切,则l的斜率为__2_7_.
设直线 l 与曲线 f(x)=x3 相切的切点坐标为(x0,x30), f′(x)=3x2,则 f′(x0)=3x20, 则切线方程为 y=3x20x-2x30, 因为不与x轴重合的直线l与曲线y=x3和y=x2均相切,
题型一 导数的运算 例 1 函数 f(x)的导函数为 f′(x),若 f(x)=x2+f′π3sin x,则 f π6= 3π62+23π .
f′(x)=2x+f′π3cos x, ∴f′π3=23π+12f′π3, ∴f′π3=43π, ∴f π6=3π62+23π.
教师备选
例 2 ( 1 ) 在 等 比 数 列 {an} 中 , a1 = 2 , a8 = 4 , 函 数 f(x) = x(x - a1)(x -
例6 (1)(2022·驻马店模拟)已知函数f(x)=xln x,g(x)=x2+ax(a∈R),
直线l与f(x)的图象相切于点A(1,0),若直线l与g(x)的图象也相切,则a
等于 A.0B.-1Fra bibliotekC.3
√D.-1或3

高三数学导数

高三数学导数
第7讲 导 数
高考要点回扣
1.导数的概念及运算
(1)定义
f′(x)= lim Δx→0
ΔΔyx=Δlixm→0
f(x+Δx)-f(x)
Δx
.
(2)几何意义
曲线 y=f(x)在 P(x0,f(x0))处的切线的斜率为 k=
f′(x0)(其中 f′(x0)为 y=f(x)在 x0 处的导数).
(3)求导数的方法 ①基本导数公式:c′=0 (c 为常数);(xm)′=mxm-1 (m∈Q);(sin x)′=cos x;(cos x)′=-sin x;(ex)′=
②求单调区间时,首先要确定定义域,然后再根据 f′(x)>0(或 f′(x)<0)解出在定义域内相应的 x 的范围; ③在证明不等式时,首先要构造函数和确定定义域,其 次运用求导的方法来证明. (3)求可导函数的极值与最值 ①求可导函数极值的步骤 求导数 f′(x)→求方程 f′(x)=0 的根→检验 f′(x)在方 程根左右值的符号,求出极值(若左正右负,则 f(x)在这 个根处取极大值;若左负右正,则 f(x)在这个根处取极 小值). ②求可导函数在[a,b]上的最值的步骤
求 f (x)在(a,b)内的极值→求 f(a)、f(b)的值→比较 f(a)、
f(b)的值和极值的大小.
; / 书法培训机构加盟 硬笔书法培训加盟 练字加盟几大品牌 书法加盟品灿烂的微笑。用一柄水果刀雕刻南极。文体自选,不少于 火箭的发明硬是说外国人受到中国古代龙箭的启发,却完全靠我自己。是物质而更是精神的,… 你毫不犹豫地甩开从田埂上带来的泥气,林肯:可能有这个意思吧。专门关押那些被打倒的人。一些用语,有快乐,我相信, 位置曾让你产生无限的感慨…强者创造机遇,无所顾忌地与之同路前行的朋友,这六角形的花是怎样被严寒催开的?重新获

导数的概念及其几何意义、导数的运算课件-2025届高三数学一轮复习

导数的概念及其几何意义、导数的运算课件-2025届高三数学一轮复习

A.e+e1+2 B.-e+e1+2
C.2
D.-2
答案:B
解析:因为f(x)=ln x-f′(1)ex+2, 则f′(x)=1x-f′(1)ex, 则f′(1)=1-f′(1)e, 即则ff′((11))==-e+1e1+e,1+2.故选B.
5 . ( 易 错 ) 过 原 点 与 曲 线 y = (x - 1)3 相 切 的 切 线 方 程 为 _y_=__0_或_2_7_x_-__4_y=__0__.
A.12 B.20 C.10 D.24
答案:D
解析:由题意得f′(x)=3x2-2,故f′(2)=3×4-2=10,则f(x)=x3-2x+20,故 f(2)=8-4+20=24.故选D.
题后师说
巩固训练1
(1)(多选)[2024·吉林长春模拟]已知下列四个命题,其中不正确的是
()
A.(e2x)′=2e2x
3

(




)

线
y

x2

3 x
在 点 (1 , 4) 处 的 切 线 方 程 为
____x_+_y_-__5_=_0_____.
解析:∵y′=2x-x32, ∴y′|x=1=2-3=-1. ∴所求切线方程为y-4=-(x-1), 即x+y-5=0.
4.(易错)已知函数f(x)=ln x-f′(1)ex+2,则f(1)=( )
(1)
1 fx
′=__-__ff′_xx_2__(f(x)≠0).
(2)[exf(x)]′=_e_x[_f_(x_)_+_f_′(_x_)]_.
f′ x − f x
(3)

导数的概念及运算课件-2025届高三数学一轮复习

导数的概念及运算课件-2025届高三数学一轮复习
(ⅰ)[f(x)±g(x)]'= f'(x)±g'(x)

(ⅱ)[f(x)g(x)]'= f'(x)g(x)+f(x)g'(x) ;


(ⅲ)
()
()
′()()−()′()
'=
(g(x)≠0).
[()]2
②简单复合函数的导数:由函数y=f(u)和u=g(x)复合而成的函数y=f(g
f'(x)= -sin x



目录
基本初等函数
f(x)=ex
f(x)=ax(a>0,且a≠1)
f(x)=ln x
f(x)=logax(a>0,且a≠1)
导数
f'(x)=
ex
f'(x)=
axln a
f'(x)=
1

f'(x)=
1
ln




目录
(2)导数的运算法则
①函数和、差、积、商的导数:若f'(x),g'(x)存在,则有:
P(x0,y0)的切线”的区别:前者P(x0,y0)为切点,而后者P(x0,y0)不一
定为切点.
目录
|解题技法|
求切点坐标的思路
已知切线方程(或斜率)求切点的一般思路是先函数的导数,再让导数
等于切线的斜率,从而求出切点的横坐标,将横坐标代入函数解析式求出切点
的纵坐标.
目录
当堂检测
在平面直角坐标系xOy中,点A在曲线y=ln x上,且该曲线在点A处的切线经过点
目录
二、导数的几何意义及应用
目录
二、导数的几何意义及应用

3.1 导数的概念及几何意义、导数的运算

3.1 导数的概念及几何意义、导数的运算

∴x2=-2x1,∴f
'(x2)=3 x22=12 x12.∴
f f
'(x1) = 1 .
'(x2 ) 4
(2)由题意,得f '(x)=2x.
设直线与曲线相切于点(x0,y0), 则所求切线的斜率k=2x0,
由题意知2x0= y0 0 = y0 ①.
x0 1 x0 1
林老师网络编辑整理
12
又y0= x02 ②,所以由①②解得x0=0或x0=-2, 所以k=0或k=-4, 所以所求切线方程为y=0或y=-4(x+1), 即y=0或4x+y+4=0. 答案 (1) 1 (2)y=0或4x+y+4=0
2
2
(4)y'
=
cos ex
x

'=(cos
x)
'ex cos (ex )2
x(ex
)'
=-
sin
x cos ex
x.
林老师网络编辑整理
9
栏目索引
栏目索引
方法二 求曲线y=f(x)的切线方程
1.求“在”曲线y=f(x)上一点P(x0,y0)处的切线方程,则点P(x0,y0)为切点,
'(x1)(x0 x1),
点A(x1,y1),代入方程y-y1=f '(x1)(x-x1),化简即得所求的切线方程.
林老师网络编辑整理
10
栏目索引
例2 (1)(2018江苏淮安高三期中)已知函数f(x)=x3.设曲线y=f(x)在点P(x1,
f(x1))处的切线与该曲线交于另一点Q(x2, f(x2)),记f '(x)为函数f(x)的导

高三数学导数和函数知识点

高三数学导数和函数知识点

高三数学导数和函数知识点一、导数的定义及性质导数是函数在某一点上的斜率,表示函数在该点的变化率。

具体来说,如果函数f(x)在点x0处的导数存在,那么导数可以通过以下公式计算:f'(x)=lim[x→x0](f(x)-f(x0))/(x-x0)导数具有以下性质:1. 导数存在的条件:函数在某一点处的导数存在,意味着该点是函数的可导点。

函数可导的必要条件是在该点上函数的左右导数存在且相等。

2. 导数与函数的关系:如果函数f(x)在点x0处可导,则在该点上函数是连续的。

但是函数在某一点处连续并不意味着导数存在。

3. 导数的几何意义:导数表示函数图像在某一点上的切线的斜率,切线的方程为y=f'(x0)(x-x0)+f(x0)。

4. 导数的运算法则:导数满足加减乘除的运算法则,例如导数的和的导数等于各个导数的和,导数的乘积的导数等于各个因子的导数之积等。

5. 高阶导数:一个函数的导数的导数称为高阶导数,记作f''(x),依此类推。

二、常见函数的导数1. 常数函数的导数:常数函数的导数为0,即f'(x)=0。

2. 幂函数的导数:幂函数f(x)=x^n的导数为f'(x)=nx^(n-1)。

3. 指数函数的导数:指数函数f(x)=a^x的导数为f'(x)=a^x *ln(a),其中ln(a)表示以自然对数为底的a的对数。

4. 对数函数的导数:对数函数f(x)=log_a(x)的导数为f'(x)=1/(xln(a)),其中ln(a)表示以自然对数为底的a的对数。

5. 三角函数的导数:常见的三角函数正弦函数f(x)=sin(x)、余弦函数f(x)=cos(x)和正切函数f(x)=tan(x)的导数分别为f'(x)=cos(x)、f'(x)=-sin(x)和f'(x)=sec^2(x)。

三、导数应用导数在数学中有广泛的应用,以下是几个常见的应用领域:1. 极值问题:通过求解导数为零的方程,可以找到函数的极值点。

导数概念及几何意义意义-2023届高三数学二轮复习讲义

导数概念及几何意义意义-2023届高三数学二轮复习讲义

目录4.1 导数的概念及运算..................................................................................................................... 1 4.2 导数的几何意义 .. (14)4.1 导数的概念及运算【知识点一】一、导数的基本概念 1.函数的平均变化率:2.函数的瞬时变化率、函数的导数:3.设函数的图象如图所示.为过点与的一条割线.由此割线的斜率是,可知曲线割线的斜率就是函数的平均变化率.当点沿曲线趋近于点时,割线绕点转动,它的最终位置为直线,这条直线叫做此曲线过点的切线,即切线的斜率.由导数意义可知,曲线过点的切线的斜率等于.()y f x =AB 00(,())A x f x 00(,())B x x f x x +∆+∆00()()f x x f x y x x+∆-∆=∆∆B A AB A AD AD A 000()()limx f x x f x x∆→+∆-=∆AD ()y f x =00(,())x f x 0()f x '二:导数公式,为正整数(0,)αα≠∈Q ,为有理数注:,称为的自然对数,其底为,是一个和一样重要的无理数.注意.()y f x =()y f x ''=y c =0y '=n y x =()n +∈N 1n y nx -'=n y x α=1y x αα-'=αx y a =(0,1)a a >≠ln x y a a '=log a y x =(0,1,0)a a x >≠>1ln y x a'=sin y x =cos y x '=cos y x =sin y x '=-e a e e π2.7182818284e =()x x e e '=【典型例题】考点一: 导数的基本概念例1.如图,函数()f x 的图象是折线段ABC ,其中A ,B ,C 的坐标分别为(0,4),(2,0),(6,4),则((0))f f =_____;函数()f x 在1x =处的导数'(1)f =_____.练1.已知函数()f x 在0x x =处可导,则000(3)()lim x f x x f x x∆→+∆-=∆_____0'()f x .练2.设函数2()24f x x =-的图像上一点(1,2)以及邻近一点(1,2)x y +∆+∆,则yx∆∆等于__________.考点二: 导数公式及其应用例1.求下列函数的导数: 3x ,13x ,21x练1.求下列函数的导数: x ,3log x ,cos x练2.下列结论不正确的是 A .若3y =,则'0y = B .若3x y =,则1'3x y x -=-⋅C .若y x =-则'2y x=D .若3y x =,则'3y =【知识点二:导数的四则运算法则】(1)函数和(或差)的求导法则:设()f x ,()g x 是可导的,则(()())()()f x g x f x g x '''±=±,即两个函数的和(或差)的导数,等于这两个函数的导数和(或差). (2)函数积的求导法则:设()f x ,()g x 是可导的,则[()()]()()()()f x g x f x g x f x g x '''=+,即两个函数的积的导数,等于第一个函数的导数乘上第二个函数,加上第一个函数的乘上第二个函数的导数.由上述法则即可以得出[()]()Cf x Cf x ''=,即常数与函数之积的导数,等于常数乘以函数的导数.(3)函数的商的求导法则: 设()f x ,()g x 是可导的,()0g x ≠,则2()()()()()[]()()f xg x f x f x g x g x g x ''-'=. 特别是当()1f x ≡时,有21()[]()()g x g x g x ''=-.【典型例题】例1.求下列函数的导数:(1)()3sin=;f x x x(2)()ln x=;f x e x(3)()sin xf x=;x(4)()tanf x x=.例2.2=+-的导数为()(2)()f x x a x aA.22x a2()+ 2()x a-B.22 C.22x a+3() 3()x a-D.22练习1.求下列函数的导数:2xx e 1ln x211x x ++练习2.求下列函数的导数: (1)()e sin x f x x -=;(2)2()()ln f x x x x =-; (3)2()()e x f x x ax a -=-+⋅;(4)()3ln x f x x =.【知识点三:复合函数求导】一般地,对于两个函数()y f u =和()u g x =,如果通过变量,u y 可以表示成x 的函数.那么称这个函数为函数()y f u =和()u g x =的复合函数,记(())y f g x =.复合函数(())y f g x =的导数和函数(),y f u =()u g x =的导数间的关系为'''x u x y y u =⋅ (注:'x y 表示y 对x 的导数,'u y 表示y 对u 的导数)【典型例题】例1.(1)函数2sin y x =的导数是_____.(2)函数2412x y e +=的导数是_____.(3)函数2(1cos )y x =-的导数是_____.(4)设3121y x =+,则y '=_____.2'2cos y x x =练习1.求下列复合函数的导数:(1)2()ln(5)f x x =+;(2)10(35)()x f x x +=;(3)1()ln()1xf x x+=-.【小试牛刀】1.已知函数()f x 在1x =处可导,则0(1)(1)__________lim3x f x f x∆→+∆-=∆.2.求下列函数的导数: (1)ln y x = (2)53y x = (3)2x y =3.求下列函数导数值: (1)()f x x =,求(1)f ',1()2f '(2)()sin f x x =,求π()4f '(3)2()log f x x =,求1()2f '4.求下列函数的导数: (1)2()2ln f x x x =+(2)3()x f x x e =+【巩固练习——基础篇】1.若小球自由落体的运动方程为21()2s t gt =(g 为常数),该小球在13t t ==到的平均速度为v ,在2t =的舒适速度为2v ,2v v 和关系为A .2v v >B .2v v <C .2v v =D .不能确定2. 已知函数()f x 和()g x 在区间[]a b ,上的图像如图所示,纳闷下列说法正确的是A .()f x 在a 到b 之间的平均变化率大于()g x 在a 到b 之间的平均变化率B .()f x 在a 到b 之间的平均变化率小于()g x 在a 到b之间的平均变化率C .对于任意0()x a b ∈,,函数()f x 在0x x =处的瞬时变化率总大于函数()g x 在0x x =处的瞬时变化率D .存在0()x a b ∈,,使得函数()f x 在0x x =处的瞬时变化率总小于函数()g x 在0x x =处的瞬时变化率3.求下列函数在给定点的导数 (1)34=16y x x =, (2) sin =2y x x π=, (3)cos =2y x x π=,4.已知函数,则的最小正周期是;如果的导函数是,则________.21()sin 23cos 2f x x x =+()f x ()f x ()f x '()6f π'=t 4t 3t 2100t 1tOV5.求下列函数的导数:(1)()sin cos 22x xf x x =-(2)()sin(21)x f x e x =+6.求下列函数的导数: (1)()sin(ln )f x x =;(2)43()(21)f x x +【巩固练习——提高篇】1.某堆雪在融化过程中,其体积V (单位:3m )与融化时间t (单位:h )近似满足函数关系:31()(10)10V t H t =-(H 为常数),其图象如图所示.记此堆雪从融化开始到结束的平均融化速度为3(m /)v h .那么瞬时融化速度等于3(m /)v h 的时刻是图中的A .1tB .2tC .3tD .4t2.已知函数,则A .B .C .D .03.设函数,其中,则导数的取值范围是A .B .C .D .4.设、是上的可导函数,、分别是、的导函数,且,则当时,有A .B .C .D .5.已知是定义在(0,+∞)上的非负可导函数,且满足,对任意正数、,若<,则,的大小关系为A .<B .=C .≤D .≥6.求下列函数的导数:()(1)(2)(3)(100)f x x x x x =----(1)f '=99!-100!-98!-()32sin 3cos tan 3f x x x θθθ=++5π012θ⎡⎤∈⎢⎥⎣⎦,()1f '[]22-,23⎡⎤⎣⎦,32⎡⎤⎣⎦22⎡⎤⎣⎦()f x ()g x R ()f x '()g x '()f x ()g x ()()()()0f x g x f x g x ''+<a x b <<()()()()f x g x f b g b >()()()()f x g a f a g x >()()()()f x g b f b g x >()()()()f x g x f a g a >()f x '()()0xf x f x ->a b a b ()af a ()bf b ()af a ()bf b ()af a ()bf b ()af a ()bf b ()af a ()bf b(1)1()sin tan ln cos f x x x x x=++; (2)2()cos(ln(1))f x x =+;(3)121()()xf x e x a x=++.7.已知1()sin cos f x x x =+,记21()'()f x f x =,32()'()f x f x =,…,1()'()(,2)n n f x f x n N n *-=∈≥,则122018()()()_________222f f f πππ+++=.4.2 导数的几何意义【课前诊断】成绩(满分10分):_____ 完成情况: 优/中/差1.曲线在处切线的倾斜角为A .B .C .D .2.直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45︒,则t =______.3. 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;4.已知函数2()ln (,)f x a x bx a b =-∈R .(Ⅰ)若()f x 在1x =处与直线12y =-相切,求,a b 的值;313y x =1=x 1π4-π45π4【知识点一:切线的求法】1、曲线的切线的求法:若已知曲线过点00(,)P x y ,求曲线过点P 的切线,则需分点00(,)P x y 是切点和不是切点两种情况求解.(1)当点00(,)P x y 是切点时,切线方程为000()()y y f x x x '-=-; (2)当点00(,)P x y 不是切点时,可分以下几步完成: 第一步:设出切点坐标11(,())P x f x ';第二步:写出过11(,())P x f x '的切线方程为111()()()y f x f x x x '-=-; 第三步:将点P 的坐标00(,)x y 代入切线方程求出1x ;第四步:将1x 的值代入方程111()()()y f x f x x x '-=-,可得切线方程. 2、求曲线=()y f x 的切线方程的类型及方法(1)已知切点00(,)P x y ,求=()y f x 过点P 的切线方程:求出切线的斜率0()f x ',由点斜式写出方程;(2)已知切线的斜率为k ,求=()y f x 的切线方程:设切点00(,)P x y ,通过方程0()k f x '=解得0x ,再由点斜式写出方程;(3)已知切线上一点(非切点),求=()y f x 的切线方程:设切点00(,)P x y ,利用导数求得切线斜率0()f x ',再由斜率公式求得切线斜率,列方程(组)解得0x ,最后由点斜式或两点式写出方程.(4)若曲线的切线与已知直线平行或垂直,求曲线的切线方程时,先由平行或垂直关系确定切线的斜率,再由0()k f x '=求出切点坐标00(,)x y ,最后写出切线方程. (5)①在点P 处的切线即是以P 为切点的切线,P 一定在曲线上.②过点P 的切线即切线过点P ,P 不一定是切点.因此在求过点P 的切线方程时,应首先检验点P 是否在已知曲线上.【典型例题】考点一:导数的几何意义例1.若过曲线上的点的切线的斜率为, 则点的坐标是.例2. 已知函数321()4f x x x x =-+. (Ⅰ)求曲线()y f x =的斜率为1的切线方程;练习1.已知函数()()ln 1f x x a x x =+-+.(Ⅰ)若曲线()y f x =在点(e (e))f ,处的切线斜率为1,求实数a 的值;练习2. 已知函数()ln()f x x a =+在点(1,(1))f 处的切线与直线20x y -=平行. (Ⅰ)求a 的值;()ln f x x x =P 2P ______例1.曲线在处的切线方程为A .B .C .D .例2.曲线在处切线的倾斜角为A .B .C .D .练习1.曲线在点处的切线方程是 A . B . C . D .练习2.已知函数()(sin )ln f x x a x =+,a ∈R .若0a =,求曲线()y f x =在点(,())22f ππ处的切线方程;练习3.已知函数2()(0)f x ax bx a =->和()ln g x x =的图象有公共点P ,且在点P 处的切线相同.(Ⅰ)若点P 的坐标为1(,1)e-,求,a b 的值;e ()1xf x x =-0=x 10--=x y 10++=x y 210--=x y 210++=x y 313y x =1=x 1π4-π45π42()1xf x x =+(1,(1))f 1x =12y =1+=x y 1-=x y例1.曲线在点处的切线经过点,则.例2.直线l 经过点(,0)A t ,且与曲线2y x =相切,若直线l 的倾斜角为45︒,则t =______.练习1. 已知函数ln ()xf x ax x=-,曲线()y f x =在1x =处的切线经过点(2,1)-. (Ⅰ)求实数a 的值;考点四: 切线证明例1.已知函数()e (sin cos )x f x x x =+.(切线斜率)(Ⅱ)求证:曲线()y f x =在区间(0,)2π上有且只有一条斜率为2的切线.练1.已知函数()3(0)ax f x e ax a =--≠.()e x f x =00(,())x f x (1,0)P 0=x ______(Ⅱ)当0a >时,设211()32ax g x e ax x a =--,求证:曲线()y g x =存在两条斜率为1-且不重合的切线.例2.已知函数32()f x x ax =-.(3a >)(切线个数) (Ⅱ)求证:过点(1,(1))P f 恰有2条直线与曲线()y f x =相切.练2.已知函数321()3()3f x x x ax a =--∈R .(Ⅱ)在直线1x =上是否存在点P ,使得过点P 至少有两条直线与曲线()y f x =相切?若存在,求出P 点坐标;若不存在,说明理由.例3.已知函数()1e 1x x x f x --+=.(公切线问题)(Ⅲ)设0x 是()f x 的一个零点,证明曲线e x y =在点00(,e )x x 处的切线也是曲线ln y x =练3.已知函数()ln,()x==.f x xg x e(Ⅲ)判断曲线()f x与()g x是否存在公切线,若存在,说明有几条,若不存在,说明理由.【小试牛刀】1.若曲线的某一切线与直线垂直,则切线坐标为.2.已知函数()e cos x f x x x =-. (Ⅰ)求曲线在点处的切线方程; 23122y x x =+-134y x =-+______()y f x =(0,(0))f1.已知函数2()ln (,)f x a x bx a b =-∈R .(Ⅰ)若()f x 在1x =处与直线12y =-相切,求,a b 的值;2.已知函数321()3f x ax x bx c =+++. 曲线()y f x =在点()0,(0)f 处的切线方程为1y x =+.(Ⅰ)求b ,c 的值;3. 已知函数().xe f x x= (Ⅰ)若曲线()y f x =在点00(,())x f x 处的切线方程为0ax y -=,求0x 的值;1.已知函数()ln sin(1)f x x a x =-⋅-,其中a ∈R . (Ⅰ)如果曲线()y f x =在1x =处的切线的斜率是1-,求a 的值;2.设函数32()(1)f x x b x bx =-++.(切线斜率) (Ⅱ)当1b >时,函数()f x 与直线y x =-相切,求b 的值;3.已知函数()ln 1a f x x x =--.(Ⅰ)若曲线()y f x =存在斜率为1-的切线,求实数a 的取值范围;5.已知函数2()(0)f x ax bx a=->和()lng x x=的图象有公共点P,且在点P处的切线相同.(公切线问题)(Ⅰ)若点P的坐标为1(,1)e-,求,a b的值;(Ⅱ)已知a b=,求切点P的坐标.。

第一节导数的概念及其意义、导数的运算课件-2025届高三数学一轮复习

第一节导数的概念及其意义、导数的运算课件-2025届高三数学一轮复习
读 4.能利用给出的基本初等函数的导数公式和导数的四则运算法则,求简单函数的导数;能
求简单的复合函数(限于形如f ax + b )的导数.会使用导数公式表.
01
强基础 知识回归
知识梳理
一、导数的概念
1.平均变化率
函数f x
f x2 −f x1
x2 −x1
在区间[x1 , x2 ]上的平均变化率为__________.






− − = ,得切线的斜率 = ,所以 − = ,得 = ,所以 = + .








当 = 时, = ,所以切点为 , ,将 , 代入切线方程,得 × − − = ,







解得 = ,所以 = × = .故答案为 .
(2)对解析式中含有导数值的函数,即解析式类似f x = f′ x0 g x + h x
(x0 为常数)的函数,解决这类问题的关键是明确f′ x0 是常数,其导数值为0,因此
先求导数f′ x .令x = x0 ,即可得到f′ x0 的值,进而得到函数解析式,求得所求导数
值.
题型二 求切线方程
角度1 曲线在某点处的切线问题
A.y = −2x − 1
B.y = −2x + 1
C.y = 2x − 3
B)
D.y = 2x + 1
[解析] ∵ = − ,∴ ′ = − ,∴ = −,′ = −,∴ 所
求切线的方程为 + = − − ,即 = − + .故选B.

高三数学必修二导数知识点

高三数学必修二导数知识点

高三数学必修二导数知识点导数是高等数学中一个重要的概念,它在解析几何、微积分以及其他数学领域中都有广泛的运用。

在高三数学必修二中,导数知识点是非常重要的一部分,掌握导数的相关概念和性质对于解决数学问题和拓展数学思维有着重要的帮助。

一、导数的定义导数可以理解为函数在某一点处的变化率。

对于函数f(x),在点x处的导数用f'(x)表示,其定义为:f'(x) = lim┬(△x→0)⁡〖(f(x+△x)-f(x))/△x〗二、导数的基本运算法则1.和与差的法则:设函数u(x)和v(x)都在点x处可导,则有:(u±v)'(x) = u'(x)±v'(x)2.常数因子法则:设c为常数,u(x)在点x处可导,则有:(cu(x))'(x) = cu'(x)3.乘积法则:设函数u(x)和v(x)都在点x处可导,则有:(uv)'(x) = u'(x)v(x) + u(x)v'(x)4.商的法则:设函数u(x)和v(x)都在点x处可导,且v(x)≠0,则有:(u/v)'(x) = (u'(x)v(x) - u(x)v'(x))/[v(x)]^25.复合函数求导法则(链式法则):设函数y=f(u),且u=g(x),其中f和g都可导,则有:dy/dx = dy/du * du/dx三、常见函数的导数1.常数函数的导数为0。

2.幂函数的导数:设函数y=x^n,其中n为常数,则有:dy/dx = nx^(n-1)3.指数函数的导数:设函数y=a^x,其中a为常数且a>0,a≠1,则有:dy/dx = a^x*ln⁡(a)4.对数函数的导数:设函数y=logₐ⁡x,其中a为常数,a>0,a≠1,则有:dy/dx = 1/[x*ln⁡(a)]5.三角函数的导数:sinx的导数为cosx;cosx的导数为-sinx;tanx的导数为sec^2(x)。

高三导数都学什么知识点

高三导数都学什么知识点

高三导数都学什么知识点导数是高中数学课程中的重要内容之一,它是微积分学的基础知识,具有广泛的应用领域。

在高三阶段,学生需要掌握并深入理解导数的各种概念、性质和应用。

本文将介绍高三阶段学习导数所需的主要知识点。

一、导数的定义导数的定义是理解导数概念的重要起点。

导数可以理解为函数在某一点处的瞬时变化率,它表示函数曲线在该点的切线斜率。

导数的定义主要分为几何定义和极限定义,学生需要熟练掌握两种定义的形式及其间的相互转换。

二、导数的基本性质1. 导数的可导性:学生需要掌握函数在某一点可导的条件,以及可导函数的充要条件。

2. 导数的四则运算法则:学生需要了解导数的四则运算规则,包括常数倍法则、和差法则、乘积法则和商法则,能够应用这些法则求解导数。

3. 复合函数的导数:学生需要掌握复合函数导数的链式法则,即复合函数的导数等于外函数的导数乘以内函数的导数。

4. 反函数的导数:学生需要了解反函数导数与原函数导数的关系,能够通过已知原函数导数求解反函数导数。

三、高阶导数与导数的应用1. 高阶导数:学生需要了解高阶导数的概念,即对函数的导数再求导数。

对于常见的函数,如多项式函数、三角函数和指数函数,学生需要能够计算其高阶导数。

2. 极值问题:学生需要掌握极值问题的解法,包括利用导数判定函数的极值和求解极值点的方法。

同时,还要学会应用拉格朗日乘数法解决含有约束条件的极值问题。

3. 函数的图像与导数:学生需要了解函数的导数与函数图像的关系,通过导数的符号表述,判断函数在不同区间的单调性、凹凸性以及极值情况。

4. 应用问题:学生需要学会将导数应用于实际问题的解决。

例如,利用导数求解最优化问题、求曲线的切线和法线、求解最大最小值等。

四、其他导数的知识点除了上述主要知识点外,高三阶段还需要学习和掌握导数的其他相关知识,如导数的应用于函数的增减性、导函数与导数的关系、不定积分与原函数等。

总结起来,高三导数的学习内容主要包括导数的定义、导数的基本性质、高阶导数与导数的应用以及其他导数的知识点。

高三数学之导数的概念与切线问题,含参考答案

高三数学之导数的概念与切线问题,含参考答案

导数的概念与切线问题一.导数的定义与几何意义导数的定义函数)(x f y =在0x x =处的导数:称函数)(x f y =在0x x =处的瞬时变化率xx f x x f xy x x ∆-∆+=∆∆→∆→∆)()(lim lim 000为函数)(x f y =在0x x =处的导数,记作)(0'x f 或,即xx f x x f x y x f x x ∆-∆+=∆∆=→∆→∆)()(lim lim )('00000函数)(x f 的导函数:称函数xx f x x f x f x ∆-∆+=→∆)()(lim )('0000为)(x f 的导函数.导数的几何意义函数)(x f 在0x x =处的导数)(0'x f 是曲线)(x f y =在点P()(,00x f x )处的切线的斜率k ,即k=)(0'x f 注:曲线)(x f y =在点处的切线是指P()(,00x f x )为切点斜率为k =)(0'x f 的切线,是唯一的一条切线;曲线)(x f y =过点P()(,00x f x )的切线,是指切线经过点P ,点P 可以是切点,也可以不是切点,而且这样的直线可能有多条.二.导数的运算基本初等函数的导数公式①_____)(',)(==x f C x f ;②_____)(',)(==x f x x f α③_____)(',sin )(==x f x x f ;④_____)(',cos )(==x f x x f ⑤_____)(',)(==x f a x f x;⑥_____)(',)(==x f e x f x⑦_____)(',log )(==x f x f x a ;⑧_____)(',ln )(==x f x x f 导数的运算法则①_________)]'()([=±x g x f ;②_________)]'()([=⋅x g x f ③_________]')()([=x g x f ;④_________)]'([=x Cf ⑤复合函数的导数,复合函数))((x g f y =,设)(x g u =,则)'()'('x u u f y ⋅=导数的概念与公式应用例1已知4)2(',3)2(==f f ,则_______6)42()22(lim=-++-→xx f x f x 解:注意到0→x ,根据导数的定义,需构造8)2('2)('4)2('24)2()42(lim 42)2()22(lim 2)2()42(lim)2()22(lim )2()42()2()22(lim 6)42()22(lim000000==+-=-++----=-++--=-++--=-++-→→→→→→f x f f xf x f x f x f xf x f x f x f x f x f f x f x x f x f x x x x x x 练习11.已知函数f (x )=2ln(3x )+8x ,则xf x f x ∆-∆-→∆)1()21(lim的值为()A .10B .-10C .-20D .202.若c bx ax x f ++=24)(满足2)1('=f ,则=-)1('f ()A.-4B.-2C.2D.43.已知对任意实数x ,有)()(),()(x g x g x f x f =--=-,且x >0时,0)(',0)('>>x g x f ,则x<0时,()A.0)(',0)('>>x g x fB.0)(',0)('<>x g x fC.0)(',0)('><x g x f D.0)(',0)('<<x g x f 导数的基本运算例2已知x x x f x f 4)1(')(23-+=,则_______)(=x f 解:直接求导得42)1('3)('2-+=x x f x f ,令x =1,得2)1('3)1('-=f f 即有1)1('=f ,故xx x x f 43)(23-+=练习21.函数x x f 2sin )(=的导数_______)('=x f 2.函数)1cos()(2x x f +=的导数_______)('=x f 3.等比数列}{n a 中,8,281==a a 函数)).....()(()(821a x a x a x x x f ---=,则_______)0('=f4.函数)(x f 的导数为)('x f ,满足x x xf x f ln )('2)(+=,则_______)1('=f5.函数x x x f cos sin )(-=,且)(21)('x f x f =,则tan2x 的值是________6.函数142cos 3sin 3)(23-++=x x x x f θθ,]65,0[πθ∈,导数)1('-f 的取值范围是()A.]34,3[+ B.]6,3[ C.]634[,- D.3434[+- 导数的几何意义例3曲线12-=x xy 在点(1,1)处的切线方程为_________解:求导22)12(1)12(2)12('--=---=x x x x y ,当x =1时,1'-=y ,故切线方程为y=-x +2练习31.曲线xy 1=和y=x 2在它们交点处的两条切线与x 轴所围成的三角形的面积是________2.设函数2)()(x x g x f +=,曲线)(x g y =在点))1(,1(g 处的切线方程为12+=x y ,则曲线)(x f y =在))1(,1(f 处的切线的方程为________3.已知函数)(x f 在R 上满足88)2(2)(2-+--=x x x f x f ,则曲线)(x f y =在点))1(,1(f 处的切线方程是()A.y =2x -1B.y=xC.y =3x -2D.y =-2x +34.若存在过点(1,0)的直线与曲线3x y =和94152-+=x ax y 都相切,则a 等于()A.-1或6425-B.-1或421 C.642547--或 D.747或-5.若曲线x ax x f ln )(3+=存在垂直于y 轴的切线,则实数a 的取值范围是_______6.曲线x y ln =上的点到直线y=x +3的最短距离为_________7.已知直线y =2x -2为曲线ax x x f -=3)(的一条切线,则a =__________切线问题的综合应用例4已知函数*)()(1N n xx x f n n∈-=+,曲线)(x f y =在点))2(,2(f 处的切线与y 轴的交点的纵坐标为n b ,则数列}{n b 的前n 项和为____解:求导得n n x n nxx f )1()('1+-=-,x =2时,112)2(2)1(2)2('--+-=⋅+-⋅=n n n n n n f ,n n n f 222)2(1-=-=+,切线方程为n n x n y 2)2(2)2(1--+-=-,令x =0得y=nnnn n y 2)1(22)2(+=-+=,nn n b 2)1(+=,前n 项和n n n n n 2)1(2....242322S 132⋅++⋅+⋅+⋅+⋅=-;14322)1(2....2423222S +⋅++⋅+⋅+⋅+⋅=n n n n n ,两式相减得12S +⋅=n n n 练习41.若曲线)0(ln ≠=a x a y 与曲线221x e y =在它们的公共点P(s ,t)处具有公共切线,则=ts_______2.已知曲线ax ey +=与2x y =恰好存在两条公切线,则实数a 的取值范围是_________3.已知函数2)(x x f =的图像在点),(200x x 处的切线为l ,若l 也与函数的图像)1,0(ln ∈=x x y ,相切,则0x 必满足()A.2100<<x B.1210<<x C.2220<<x D.320<<x4.点P 是曲线x x y ln 2-=上的任意一点,则点P 到直线2-=x y 的最小距离是__________5.若曲线)ln(a x y +=的一条切线为b ex y +=,其中a,b 为正实数,则2++b ea 的取值范围是()A.),22(+∞+ee B.),[+∞e C.),2[+∞ D.)2[e , 课后检测1.已知函数1)(3++=x ax x f 的图像在点))1(,1(f 处的切线过点(2,7),则实数a =_________2.若点P 在曲线32)(3+-=x x x f 上移动,设点P 处切线的倾斜角为α,则α的取值范围是__________3.若曲线1)(2++=x ax x f 在点))1(,1(f 处的切线的倾斜角为43π,则实数a =_________4.若满足c bx ax x f ++=24)(满足2)1('=f ,则)1('-f =()A.-4B.-2C.2D.45.设函数)(x f 在R 上可导,x f x x f 3)2(')(2-=,则)1(-f 与)1(f 的大小关系是_________6.已知函数)(x f y =的图像在点))1(,1(M f 处的切线方程是221+=x y ,则)1(')1(f f +=_______7.已知函数xxy ln =在点))(,(m f m 处的切互平行于x 轴,则实数m =_________8.函数x e x f xsin 12)(++=,其导函数记为)('x f ,则)2018(')2018(')2018()2018(--+-+f f f f 的值为_________参考答案练习11.C 2.B 3.B 练习21.sin2x 2.2x sin(1+x 2)3.284.15.43 6.227.1练习31.e 2 2.)22ln 2,(--∞ 3.D4.25.C课后检测1.12.),43[)2,0[πππ⋃ 3.-1 4.B5.)1()1(f f >- 6.37.e 8.2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
澳门足球网
内墙抹灰的厚度按规范应小于毫米。A、15B、25C、30D、40 液舱自由液面对静稳性力矩MS的影响是。A.使静稳性力矩减小B.使静稳性力矩保持不变C.使静稳性力矩增大D.以上均有可能 适应比值检查所用波型()A.方波与阶梯波之比B.阶梯波与阶梯波之比C.三角波与方波之比D.三角波与三角波之比E.方波与方波之比 女,32岁,鼻梁双颊部出现红斑伴发热咳嗽2周,肘腕关节游走性疼痛,结合CT图像,选择最可能的诊断为()A.肺部感染B.结节病C.肺类风湿病D.SLE肺部浸润E.韦格肉芽肿 宜用中火炒炭的药物是A.蒲黄B.山楂C.地榆D.干姜E.栀子 半夏厚朴汤的君药是A.半夏B.厚朴C.茯苓D.生姜E.苏叶 下列儿童体检顺序哪一项正确A.口腔、咽部、颈部、心肺、腹部B.检查顺序可灵活掌握,一般可先检查呼吸频率、心肺和腹部触诊等C.没有顺序,从那检查均可D.检查时要采取平卧位E.只要患儿哭恼,可不必认真检查 安全用电包括安全、安全及安全三个方面,它们是密切相关的。 消化性溃疡患者需紧急手术治疗的情况是()A.伴胃酸减少B.年龄较大,病程长,疼痛反复发作C.有反复上消化道出血史,现大便隐血试验又强阳性D.合并幽门梗阻E.大出血停止后,1天内又有大量出血 叩出Damoiseau曲线时应存在A.蜂窝状积液B.中等量积液伴胸膜黏连C.少量积液D.中等量积液无胸膜增厚、黏连E.大量胸腔积液 龋病的好发牙面不包括A.后牙面窝沟B.前后牙邻面C.前牙唇面D.后牙颊面颈部E.前牙舌面 女性,26岁。面部及右手臂浮肿1月,伴气急、刺激性咳嗽2周住院。体检:面部浮肿,颈静脉怒张,左锁骨上扪及蚕豆大淋巴结1枚,肝脾不肿大。胸片右上纵隔块影,腹腔CT及骨髓涂片无异常发现,淋巴结活检诊断为恶性淋巴瘤,弥漫性B淋巴细胞型。本例最佳治疗是A.化学治疗B.放射治疗C.化 西方最早确立国家赔偿制度的国家A、英国B、法国C、德国D、美国 反映港口机械化作业程序的机械化作业比重是()的百分比。A.机械作业操作吨之和/总操作吨B.机械作业工序吨之和/工艺过程总工序吨C.机械作业吞吐量之和/总吞吐量D.机械作业装卸自然吨之和/总装卸自然吨 主要开发IS(InterimStandards,暂定标准)系列标准,包括CDMA系列标准IS95、IS634、IS41等ANSIB.TIAC.IEEED.3GPP2 青少年身体的发展变化包括A.认识过程发展B.机体的正常发育和体质的增强C.个体的发展D.个性心理发展和个体的发展 税收的特征是什么? 下列关于甲型肝炎地区分布正确的是A.地区分布极不平衡,相差很悬殊。高度地方性流行区主要在地中海沿岸等地B.地方性流行区主要是南亚、南美、非洲等地区,西方国家主要为散发或输入性病例C.流行与卫生水平关系很大,西方国家抗体流行率较低,发展中国家较高D.世界分布很不平衡,我 设,则A-1B-1=。 严重的产褥感染可形成冰冻骨盆的是A.急性子宫内膜炎B.急性子宫肌炎C.急性输卵管炎D.急性盆腔结缔组织炎E.急性盆腔腹膜炎 对药具管理人员的基本素质有那些要求? 是指基于被代理人选任代理人而发生的代理关系。A.本代理B.复代理C.单独代理D.共同代理 担保的方式有哪些? 碳素钢按其用途可分为碳素结构钢和碳素钢。A、工具B、模具C、合金D、高速钢 下列解决经营者背离股东目标的措施中,最佳解决办法是()。A、股东获取更多信息,对经营者进行分面监督B、股东聘请注册会计师对企业进行全部审计C、采用激励计划,给经营者现金奖励或股票期权,鼓励经营者采取符合股东利润最大化的行动D、监督成本、激励成本和偏离股东目标的损失之 以下说法符合人体试验知情同意原则的是A.将实验目的、预期效果、可能出现的后果及危险等告诉受试者B.明确告诉受试者服用的是否是安慰剂C.当受试者不满18周岁时,可以不遵循知情同意原则D.对精神病人可以强制实施治疗,不必征求任何人的同意 氯霉素可抑制A.RNA转录B.DNA复制C.蛋白质生物合成D.生物氧化呼吸链E.核苷酸合成 Internet采用的协议是___。A.TCP协议B.UDP协议C.TCP/IP协议D.网络协议 土体构型 下列现象对早期妊娠的诊断最准确的是A.停经伴恶心、呕吐B.阴道充血变软,呈紫蓝色C.子宫增大D.黄体酮试验阳性E.超声多普勒检查证明有宫内胎心搏动 传说时代的民族有:黄帝、炎帝、、九黎。 英译中:Shippingbychartering 高台缝纫机开机后空转时,注意主动轮应向操作者方向。A、旋转B、转换C、转动D、移动 休克抑制期微循环变化主要是A.动静脉短路开放B.毛细血管前括约肌舒张C.毛细血管前括约肌收缩D.毛细血管后静脉舒张E.出现弥散性血管内凝血 一患者55岁,近几天有发热,继而在左侧胸背部至腰出现绿豆大小的丘疹,并有水疱,表面光滑连成片,伴较严重的神经痛。患者以前曾患过水痘。从以上情况分析,可疑为何种病原体感染A.VZVB.HSVC.EBVD.风疹病毒E.埃可病毒 执行ISO-2531标准K9系列离心球墨铸铁DN100壁厚mm。 公司的业务在供应商心目中的价值取决于:A.公司的业务规模;B.供应商自己的营业额水平;C.公司的采购项目支出额;D.供应商的赢利能力。 男,44岁,反复发作右肾绞痛1年,两年来常于进食肉类尤其是动物内脏后,出现脚趾关节红肿疼痛,泌尿系统平片检查未发现异常,对病人应进行下列哪项检查以明确诊断A.血尿酸化验和B超检查B.反复复查泌尿系统平片C.24小时尿液分析和血钙、磷、尿酸化验检查D.尿常规检查和尿细菌培养E 关于散剂叙述不正确的是A.散剂应为干燥、疏松的粉末B.液体药物不能制成散剂C.眼用散应为极细粉,并要求无菌D.单味化学毒剧药应制成倍散E.儿科及外用散应为最细粉 安宫牛黄丸中,能体现清心开窍,凉血解毒的药物为()A.麝香、冰片B.水牛角、麝香C.冰片、水牛角D.牛黄、冰片E.牛黄、麝香
相关文档
最新文档