高三数学解析几何知识整理

合集下载

高三数学复习专题之一解析几何

高三数学复习专题之一解析几何

高三数学复习专题之一----解析几何高考题目的分析解析几何是历届高考的热点和重点,它的基本特点是数形结合,是代数、三角、几何知识的综合应用.一般以四个小题、一个大题的结构出现,且大题往往是压轴题.纵观近几年高考试题有如下特征:(1)考查直线的基本概念,求在不同条件下的直线方程,判定直线的位置关系等题目,多以选择题、填空题形式出现;(2)中心对称与轴对称、充要条件多为基本题目;(3)考查圆锥曲线的基本知识和基本方法也多以选择题、填空题形式出现;(4)有关直线与圆锥曲线等综合性试题,通常作为解答题形式出现,有一定难度.一般情况是:给出几何条件,求曲线(动点的轨迹)方程;或利用曲线方程来研究诸如几何量的计算、直线与曲线的位置关系、最近(或最远)问题.但近几年的高考解析几何试题类型比较分散,每年都有不同.解题过程中的运算量有逐年降低的趋势,而解题过程中的思维量在增加.但万变不离其宗,常用的解题规律与技巧不变. 例①求圆锥曲线的有关轨迹方程时,要注意运用平面几何的基本知识特别是圆的知识,便于简化运算和求解;②在直线与圆锥曲线的有关问题中,要注意韦达定理和判别式的运用;③要注意圆锥曲线定义的活用.另外,解析几何的解答题也常在知识网络的交汇处出题,它具有一定的综合性,重点考察数形结合、等价转换、分类讨论、逻辑推理等能力.解析几何常与函数、不等式等建立联系.., ),0,1()3 ,)2 )1 , ,)0,(1:.12222222中点的轨迹方程求、为轴的端点为左准线的椭圆,其短为左焦点,以经过点设双曲线的方程;求双曲线截得的弦长为被直线若双曲线的值;的离心率求双曲线为等边,且右焦点两点、与两条渐近线交于右准线的离心率为设双曲线例BF F B l F C C ae b b ax y C e C PQF F Q P l e b a by a x C +=∆∆>=-. ),3 , 2(21的轨迹方程顶点求:当椭圆移动时其下为离心率,且过点轴为准线,以练习:设椭圆恰以P A x .)2( )1( 41)0,4( 02010.2222的方程求双曲线的渐近线方程;求双曲线上,又满足在线段点,且点轴交于两点,和、交于和双曲线,使的直线做斜率为过点相切,近线与圆的中心在原点,它的渐双曲线例G G PCPB PA AB P C y B A G l l P x y x G =⋅-=+-+最大值为多少?,多少时矩形的面积最大,当矩形的长与宽各是若矩形内接于曲线的方程求抛物线顶点轨迹轴为准线且以已知抛物线经过例 )2( ;)1( ),4,3(.3l l y A .)2( )1( )0,6( 8)0(2.42面积的最大值求求抛物线方程的垂直平分线通过定点又线段为焦点,且,、上有两动点设抛物线例AQB Q AB BF AF F B A p px y ∆=+>=。

数学高三解析几何知识点

数学高三解析几何知识点

数学高三解析几何知识点高三学生在学习数学时,解析几何是一个非常重要的知识点。

它不仅在高中阶段有很大的分量,而且在后续的数学学习中也扮演着重要的角色。

本文将对高三解析几何的一些关键知识点进行详细的介绍和解析。

一、直线与平面1. 直线的表达式直线的一般方程为 Ax + By + C = 0,其中A、B、C为常数。

此外,直线还可以通过点斜式、截距式等形式进行表达。

(举例)点斜式方程为 y - y₁ = k(x - x₁),其中(x₁, y₁)为直线上的一点,k为直线的斜率。

2. 平面的表达式平面的一般方程为 Ax + By + Cz + D = 0,其中A、B、C、D 为常数。

同样地,平面还可以通过法向量式、点法式等形式进行表达。

(举例)法向量式方程为 A₁x + B₁y + C₁z = D₁,其中(A₁, B₁, C₁)为平面的法向量。

二、直线与平面的位置关系1. 直线与平面的交点直线与平面的交点即直线上满足平面方程的点。

2. 直线与平面的位置关系直线与平面可以相交、平行或者重合。

判断直线与平面的位置关系,可以通过直线与平面的法向量是否垂直来进行判定。

三、曲线的方程1. 圆的方程圆的方程为 (x - a)² + (y - b)² = r²,其中(a, b)为圆心的坐标,r为半径。

2. 椭圆的方程椭圆的方程为 (x - a)² / m² + (y - b)² / n² = 1,其中(a, b)为椭圆的中心坐标,m, n为椭圆在x轴和y轴上的半轴长度。

3. 抛物线的方程抛物线的方程为 y = ax² + bx + c,其中a, b, c为常数。

4. 双曲线的方程双曲线的方程为 (x - a)² / m² - (y - b)² / n² = 1,其中(a, b)为双曲线的中心坐标,m, n为双曲线在x轴和y轴上的半轴长度。

高考解析几何方法总结

高考解析几何方法总结

⾼考解析⼏何⽅法总结⾼考解析⼏何⽅法总结 总结是对某⼀特定时间段内的学习和⼯作⽣活等表现情况加以回顾和分析的⼀种书⾯材料,它能使我们及时找出错误并改正,让我们抽出时间写写总结吧。

总结你想好怎么写了吗?以下是⼩编精⼼整理的预备期间考察情况总结,欢迎阅读与收藏。

⼤家都知道⾼考数学卷中解析⼏何和导数是最不容易的两道⼤题,最近⼏年的数学卷趋向基础,只要细⼼多数同学可以拿到百分之七⼋⼗的分数,⽽想要在数学上⼒争顶尖的同学就要把握好这两道⼤题带来的机会。

然⽽相对于导数需要较强的技巧和想法来讲,解析⼏何更重要考察的是⼼⾥素质。

为什么这样说: 第⼀因为解析⼏何的题型是有规律可循的,只要接触过类似的题型,拿到其他题的时候⼀定不会完全没有思路,但要想了解各个题型是需要不怕难题的勇⽓的。

第⼆是因为解析⼏何要求⼤量的计算,我⾼三学习解析⼏何的时候常常⼀道题写好⼏张草稿纸,要想完美的完成⼀道题需要静下⼼来,需要耐⼼。

第三是因为这个题型作为压轴题位于试卷的末尾,我在做⾼考卷的时候也习惯于先做选做题,再回来做导数和解析⼏何,在考试的最后,时间往往剩下的不多,这往往考察每个同学的定⼒,能不能不紧张,细⼼认真的做完⾃⼰所有会的步骤。

⽏庸置疑,解析⼏何很花费时间,因此在复习的过程中不能“吝啬”,要肯花精⼒与时间,数学是对分析能⼒要求⽐较⾼的学科,复习时着重锻炼⾃⼰的分析能⼒,尽量选择整块的时间解决数学问题,否则思路被打断,效率会⽐较低。

解析⼏何作为⾼考的重点,考查项⽬不仅要求分析,还要求计算能⼒,⼤多数⼈都会觉得解析⼏何⼤题中的式⼦很长,就可能出现⼼烦意乱,懒得算下去的现象,但其实平时就是⼀个积累经验与树⽴信⼼的过程,越是在平⽇⾥认真地、⼀步步地算,才越有可能在考场上快速地,准确地算出结果。

每个⼈的⾃⾝情况都不同,不应该都听⽼师的⽽⾃⼰没有计划与针对性,如果正是在解析⼏何这类题中有所⽋缺,那么每天给⾃⼰定⼀道题的任务,限定⾃⼰在半个⼩时之内完成,如果较快完成,就看看⾃⼰与答案相⽐规范性的问题,如果⽐较慢,就经常练习反思,毕竟⾼考没有那么多的时间去完成⼀道题。

高三数学二轮复习专题突破课件:解析几何

高三数学二轮复习专题突破课件:解析几何
3
A.[1,+∞) B.[-1,- )
3
C.( ,1]
4
4
D.(-∞,-1]
答案:B
解析:∵y=kx+4+2k=k(x+2)+4,所以直线过定点(-2,4),曲线y=
4 − x 2 变形为x2+y2=4(y≥0),表示圆的上半部分,当直线与半圆相切时直线斜
3
率为k=- ,当直线过点(2,0)时斜率为-1,结合图象可知实数k的取值范围是
a=2
所以 ሺ2 − 3 − ሻ2 + 2 = 2 ,解得 b = 1 .
r=2
2 + ሺ1 − ሻ2 = 2
所以圆的方程为(x-2)2+(y-1)2=4.
4.[2023·广东深圳二模]过点(1,1)且被圆x2 +y2 -4x-4y+4=0所
x+y-2=0
截得的弦长为2 2的直线的方程为___________.
-2)的距离为 2 − 0 2 + 0 + 2 2 =2 2,由于圆心
α
2
5

2 2 2 2
α
αபைடு நூலகம்
α = 2sin cos =
2
2
与点(0,-2)的连线平分角α,所以sin =
10
α
6
, 所 以 cos = , 所 以 sin
4
2
4
10
6
15

× = .故选B.
4
4
4
r

(2)[2023·河南郑州二模]若圆C1:x2+y2=1与圆C2:(x-a)2+(y-b)2
解析:圆x2+y2-4x-4y+4=0,即(x-2)2+(y-2)2=4,
圆心为(2,2),半径r=2,

高三解析几何专题数学知识点

高三解析几何专题数学知识点

高三解析几何专题数学知识点进一步,把问题用图形表示出来,需求直线x-2y=m所与求轨迹的切点。

用判别式△=0→m=p,得切点Q(3p,p)点Q到直线的x-2y=0间隔是-,即-=-→p=2复习导引:高考题解析局部大量的问题是直线与圆锥曲线相交,我们首先要抓住直线是否过圆锥曲线焦点?这局部第1至第5题说明了直线过焦点的处理方法,第6题注又从反面说明在条件下才采用过焦点的方法。

第4题引出了在什么条件下用两式相减可以简化推导过程。

1. 椭圆-+-=1的左、右焦点分别为F1,F2。

过F1的直线交椭圆于B,D两点,过F2的直线交椭圆于A,C两点,且AC⊥BD,垂足为P。

(Ⅰ)设P点的坐标为(x0,y0),证明:-+-(Ⅱ)求四边形ABCD的面积的最小值。

解(1)点P在以|F1F2|为直径的圆上,∴x02+y02=1,-+--+-=-=-1解:分析(2)SABCD=S△ABC+S△ADC=-|AC||BP|+-|AC||DP|=-|AC||BD|下面是如何求出|AC|=?|BD|=?由椭圆第二定义:|BD|=|BF2|+|DF2|又右准线方程为x=-=3,e=-=-=-|BF2|=(3-xB)e,|DF2|=(3-xD)e|BD|=[6-(xB+xD)■过F2的直线lBDy=k(x-1),k≠0,k存在。

|BD|=-■=-同理可求得:|AC|=-S=-(3k2+2)+(2k2+3)2-5(k2+1)2-SABCD-,当3k2+2=2k2+3,k2=1,k=±1。

当k不存在,可设BD⊥x轴,这时kAC=0SABCD=-2-■=4-∴(SABCD)min=-,此时k=±1注:此题第(2)用两点间间隔公式求|AC|、|BD|也可行,计算量稍大,如果直线过圆锥曲线焦点,就要考虑椭圆或双曲线第二定义。

解析几何问题中常见的技巧专题课件高三数学一轮复习

解析几何问题中常见的技巧专题课件高三数学一轮复习
(1)当直线 AM 的斜率为1时,求点 M 的坐标;
解:直线 AM 的斜率为1时,直线 AM 的方程为 y = x +2,
代入椭圆方程并化简得5 x 2+16 x +12=0.
6
解得 x 1=-2, x 2=- ,所以 M
5
6
4
− ,
5
5
.
高中总复习·数学(提升版)
(2)当直线 AM 的斜率变化时,直线 MN 是否过 x 轴上的一定
解析:
2

由双曲线方程 x 2- =1知 a =1, b =3,则其渐近线方程
9
为 y =±3 x .观察选项知,四个点均在双曲线外,∴点 A , B 分别在双
曲线的两支上,∴-3< kAB <3.设 A ( x 1, y 1), B ( x 2, y 2),则
12 −
22 −
12
9
22
9
= 1,
4
点, A , B 分别是 C 1, C 2在第二、四象限的公共点.若四边形 AF 1 BF 2
为矩形,则 C 2的离心率是(
A. 2
3
C.
2
B. 3
D.
6
2

高中总复习·数学(提升版)
解析:
由已知,得 F 1(- 3 ,0), F 2( 3 ,0),设双曲线 C 2
的实半轴长为 a ,由椭圆及双曲线的定义和已知,可得


2



2
3

2
,=
− ,
3 2
1 2
3 2
1
3 2
2
2
2
2
= c - a + b = c - a + ( a - c )= c -

空间几何体知识点总结高三

空间几何体知识点总结高三

空间几何体知识点总结高三空间几何体是高中数学中的重要组成部分,特别是在高三阶段,对于空间几何体的理解和运用能力是解决高考数学题目的关键。

本文将对空间几何体的主要知识点进行总结,帮助学生巩固基础,提高解题能力。

一、空间几何体的基本概念空间几何体是指在三维空间中所占有一定体积的图形。

根据构成方式和形状的不同,空间几何体可以分为多面体、旋转体和曲面等几大类。

多面体是由若干个平面多边形所围成的几何体,如正方体、长方体、棱锥、棱柱等。

旋转体则是由一个平面图形绕着某一条直线旋转所形成的几何体,如圆柱、圆锥和球体等。

曲面则是由参数方程或隐函数方程所定义的几何体,如圆环面、抛物面等。

二、空间几何体的性质1. 体积与表面积对于任何一个空间几何体,其体积和表面积是基本的几何量度。

对于规则的几何体,如正方体和球体,其体积和表面积都有固定的计算公式。

而对于不规则的几何体,则需要通过积分或其他方法来求解。

2. 空间关系空间几何体之间的相互位置关系,如平行、相交、包含等,是解决空间几何问题的基础。

在解析几何中,通过坐标系可以精确地描述这些关系。

3. 几何体的对称性许多空间几何体具有一定的对称性,如正方体具有六个面的对称性,球体则具有全方位的对称性。

对称性在解决几何体的计算和证明问题时具有重要作用。

三、空间几何体的计算1. 多面体的体积与表面积对于规则的多面体,其体积和表面积可以通过公式直接计算。

例如,正方体的体积V=a³,表面积S=6a²,其中a为正方体的边长。

对于不规则的多面体,则需要利用向量、平面几何等知识,通过分割和组合的方法来求解。

2. 旋转体的体积与表面积旋转体的体积和表面积计算通常涉及到积分。

例如,圆柱体的体积V=πr²h,表面积S=2πrh+2πr²,其中r为底面半径,h为高。

对于更复杂的旋转体,如圆锥和球体,也需要通过积分来计算其体积和表面积。

3. 组合体的计算在实际问题中,经常会遇到由多个简单几何体组合而成的复杂几何体。

高三数学解析几何知识点总结大全

高三数学解析几何知识点总结大全

高三数学解析几何知识点总结大全解析几何是高中数学中的一门重要学科,对于高三的学生来说尤为关键。

掌握解析几何的知识点,不仅可以帮助解决实际问题,还可以提高数学思维能力。

本文将对高三数学解析几何的知识点进行全面总结和归纳。

1. 坐标系在解析几何中,坐标系起到了重要的作用。

常见的坐标系有直角坐标系和极坐标系。

直角坐标系由两条互相垂直的坐标轴组成,分别为x轴和y轴。

点的位置可以通过坐标表示,比如(x, y)表示点在x轴和y轴上的坐标值。

极坐标系由极轴和极角组成,极轴是一条直线,极角是与极轴的夹角。

2. 点、直线和平面的方程在解析几何中,点、直线和平面可以通过方程来表示。

点的坐标可以通过坐标轴的交点得到。

直线的方程可以使用一般方程、点斜式方程和两点式方程来表示。

平面的方程可以使用一般方程和法向量方程来表示。

3. 距离和斜率在解析几何中,距离和斜率是常见的概念。

距离可以用两个点的坐标表示,可以用勾股定理求得。

斜率表示直线的倾斜程度,可以通过两点之间的坐标差值求得。

4. 直线和平面的交点直线和平面的交点可以通过直线的方程和平面的方程求得。

将直线的方程代入平面的方程,解方程组得到交点的坐标。

5. 直线与直线的关系两条直线可以相交、平行或重合。

可以通过斜率来判断直线的关系。

斜率相等的直线平行,斜率互为倒数的直线相交。

6. 直线与平面的关系直线与平面可以相交,平行或重合。

可以通过直线的方程和平面的方程来判断直线与平面的关系。

将直线的方程代入平面的方程,解方程组判断是否有解。

7. 圆的方程圆的方程可以通过圆心和半径来表示。

圆心的坐标可以通过坐标轴的交点得到。

半径可以通过圆上两点的距离来求得。

8. 镜面对称和轴对称镜面对称和轴对称是解析几何中的重要概念。

镜面对称是指图形对于一条直线左右对称,轴对称是指图形对于一点对称。

可以用坐标变换的方式来判断一个图形是否具有镜面对称或轴对称性。

9. 三角函数与向量三角函数和向量是解析几何中的重要内容。

高三复习阶段如何备考数学解析几何题

高三复习阶段如何备考数学解析几何题

高三复习阶段如何备考数学解析几何题数学解析几何是高中数学中一个重要且难度较大的部分,对于广大高三学生来说,备考解析几何题是提高数学成绩的关键。

在高三复习阶段,如何备考数学解析几何题是一个需要认真思考和制定合适策略的问题。

本文将介绍一些备考数学解析几何题的方法和技巧,希望对广大高三学生有所帮助。

一、理清解析几何基本概念在备考数学解析几何题之前,首先要对解析几何的基本概念进行理解和掌握。

解析几何是通过代数方法研究几何问题的一门学科,需要对点、直线、平面、坐标系等基本概念有清晰的认识。

可以通过查阅教材、参考书或互联网资源来进行学习和总结,建立起扎实的基础。

二、掌握解析几何常用定理和公式在备考数学解析几何时,了解和记忆一些常用的定理和公式是非常重要的。

例如,直线的方程、两点间距离公式、两条直线的关系等。

可以利用复习资料和习题集进行有针对性的练习,加深对这些定理和公式的理解和记忆。

三、多做解析几何题并总结题型特点高三复习阶段,多做解析几何的相关题目是必不可少的。

在做题过程中,要注意总结题目的特点和解题方法。

可以将解析几何题型分成平面几何和空间几何两部分,分别进行钻研。

通过大量的练习,可以熟悉各种题型,掌握解析几何的解题技巧。

四、注重解析几何与其他数学知识的综合运用解析几何与代数、函数、三角等数学知识有密切关联,在备考过程中要注重解析几何与其他数学知识的综合运用能力。

可以通过做综合性的题目或者跨章节的大题来加强解析几何与其他数学知识之间的联系,提高解题的能力。

五、注意解题技巧和思维方法的培养解析几何是一门需要思维灵活的学科,解题过程中需要注意一些常用的解题技巧和思维方法。

例如,利用图形的对称性、利用坐标系进行变换等。

在备考过程中,可以参考一些解析几何解题技巧的书籍或者教材,培养自己的解题思维。

六、做好错题和习题的整理与总结在备考过程中,及时整理和总结做错的题目是非常必要的。

可以将做错的题目整理成错题集,进行详细的分析和解答。

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)

高三数学解析几何专题(含解析)1.【理科】已知动点P到点A(-1,0)和B(1,0)的距离分别为d1和d2,且∠APB=2θ,且d1d2cos2θ=1.Ⅰ)求动点P的轨迹C的方程;Ⅱ)过点B作直线l交轨迹C于M,N两点,交直线x=4于点E,求|EM||EN|的最小值。

2.已知椭圆C:(x^2/a^2)+(y^2/b^2)=1 (a>b>0)的离心率为2,其左、右焦点为F1、F2,点P是坐标平面内一点,且|OP|=7/2,PF·PF3/12=4.其中O为坐标原点。

I)求椭圆C的方程;Ⅱ)如图,过点S(0,1/3),且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出点M的坐标;若不存在,请说明理由。

3.已知两定点F1(-2,0)、F2(2,0),满足条件PF2-PF1=2的点P的轨迹是曲线E,直线y=kx-1与曲线E交于A、B两点。

Ⅰ)求k的取值范围;Ⅱ)如果AB=63,且曲线E上存在点C,使OA+OB=mOC,求m的值和△ABC的面积S。

4.已知抛物线W:y=ax^2经过点A(2,1),过A作倾斜角互补的两条不同的直线L1、L2.1)求抛物线W的方程及其准线方程;2)当直线L1与抛物线W相切时,求直线L2与抛物线W所围成封闭区域的面积;3)设直线L1、L2分别交抛物线W于B、C两点(均不与A重合),若以BC为直径的圆与抛物线的准线相切,求直线BC的方程。

5.动点M(x,y)到定点F(-1,0)的距离与到y轴的距离之差为1.I)求动点M的轨迹C的方程;II)过点Q(-3,0)的直线l与曲线C交于A、B两点,问直线x=3上是否存在点P,使得△PAB是等边三角形?若存在,求出所有的点P;若不存在,请说明理由。

6.椭圆M的中心在坐标原点D,左、右焦点F1、F2在x轴上,抛物线N的顶点也在原点D,焦点为F2,椭圆M与抛物线N的一个交点为A(3,26)。

文科高考数学重难点04 解析几何(解析版)

文科高考数学重难点04  解析几何(解析版)

重难点04 解析几何【命题趋势】解析几何一直是高考数学中的计算量代名词,在高考中所占的比例一直是2+1+1模式.即两道选择,一道填空,一道解答题.高考中选择部分,一道圆锥曲线相关的简单概念以及简单性质,另外一道是圆锥曲线的性质会与直线、圆等结合考查一道综合题目,一般难度诶中等.填空题目也是综合题目,难度中等.大题部分一般是以椭圆抛物线性质为主,加之直线与圆的相关性子相结合,常见题型为定值、定点、对应变量的取值范围问题、面积问题等.双曲线一般不出现在解答题中,一般出现在小题中.即复习解答题时也应是以椭圆、抛物线为主.本专题主要通过对高考中解析几何的知识点的统计,整理了高考中常见的解析几何的题型进行详细的分析与总结,通过本专题的学习,能够掌握高考中解析几何出题的脉略,从而能够对于高考中这一重难点有一个比较详细的认知,对于解析几何的题目的做法能够有一定的理解与应用.【满分技巧】定值问题:采用逆推方法,先计算出结果.即一般会求直线过定点,或者是其他曲线过定点.对于此类题目一般采用特殊点求出两组直线,或者是曲线然后求出两组直线或者是曲线的交点即是所要求的的定点.算出结果以后,再去写出一般情况下的步骤.定值问题:一般也是采用利用结果写过程的形式.先求结果一般会也是采用满足条件的特殊点进行带入求值(最好是原点或是(1,0)此类的点).所得答案即是要求的定值.然后再利用答案,写出一般情况下的过程即可.注:过程中比较复杂的解答过程可以不求,因为已经知道答案,直接往答案上凑即可.关于取值范围问题:一般也是采用利用结果写过程的形式.对于答案的求解,一般利用边界点进行求解,答案即是在边界点范围内.知道答案以后再写出一般情况下的步骤比较好写.一般情况下的步骤对于复杂的计算可以不算.方法点睛:求解椭圆或双曲线的离心率的方法如下:a c(1)定义法:通过已知条件列出方程组,求得、的值,根据离心率的定义求解离心率e的值;a c e(2)齐次式法:由已知条件得出关于、的齐次方程,然后转化为关于的方程求解;(3)特殊值法:通过取特殊位置或特殊值,求得离心率.【考查题型】选择,填空,解答题【限时检测】(建议用时:45分钟)一、单选题一、单选题1.(2020·贵州贵阳一中高三月考(文))已知圆C :(x +3)2+(y +4)2=4上一动点B ,则点B 到直线l :3x +4y +5=0的距离的最小值为()A .6B .4C .2D.【答案】C【分析】因为圆心到直线的距离,Cl 4d ==所以最小值为,422-=故选:C .2.(2020·河南开封市·高三一模(文))已知双曲线的离心率与椭圆221(0)x y m m -=>的离心率互为倒数,则该双曲线的渐近线方程为( )2213x y m m +=A .B .C .D.y =y x =y x =y =【答案】B【分析】双曲线的离心率为221(0)x y m m -=>e =在椭圆中,由于,则,所以焦点在轴上2213x y m m +=0m >30m m >>y 所以椭圆的离心率为2213x y m m +=e =解得:1=2m =所以双曲线的渐近线方程为:2212x y -=y x =±故选:B3.(2020·四川成都市·高三一模(文))已知平行于轴的一条直线与双曲线x 相交于,两点,,(为坐标原()222210,0x y a b a b -=>>P Q 4PQ a=π3PQO ∠=O点),则该双曲线的离心率为().A BC D【答案】D【分析】如图,由题可知,是等边三角形,POQ △,,4PQ a =()2,P a ∴将点P 代入双曲线可得,可得,22224121a a a b -=224b a =离心率.∴c e a ===故选:D.4.(2020·河南周口市·高三月考(文))已知直线:与圆:l 340x y m -+=C 有公共点,则实数的取值范围为( )226430x y x y +-+-=m A .B .C .D .()3,37[]37,3-[]3,4[]4,4-【答案】B 【分析】因为圆的标准方程为,C ()()223216x y -++=所以,半径,()3,2C -4r =所以点到直线C :340l x y m -+=根据题意可知,解得.1745m+≤373m -≤≤故选:B5.(2020·全国福建省漳州市教师进修学校高三三模(文))已知直线:210l kx y k --+=与椭圆交于A 、B 两点,与圆交于C 、D22122:1(0)x y C a b a b +=>>222:(2)(1)1C x y -+-=两点.若存在,使得,则椭圆的离心率的取值范围是( )[2,1]k ∈--AC DB =1CA .B .C .D .10,2⎛⎤ ⎥⎝⎦1,12⎡⎫⎪⎢⎣⎭⎛ ⎝⎫⎪⎪⎭【答案】C【分析】直线,即为,可得直线恒过定点,:210l kx y k --+=(2)10k x y -+-=(2,1)圆的圆心为,半径为1,且,为直径的端点,222:(2)(1)1C x y -+-=(2,1)C D 由,可得的中点为,AC DB =AB (2,1)设,,,,1(A x 1)y 2(B x 2)y 则,,2211221x y a b +=2222221x y a b +=两式相减可得,1212121222()()()()0x x x x y y y y a b +-+-+=由.,124x x +=122y y +=可得,由,即有,2122122y y b k x x a -==--21k -- (2)2112b a……则椭圆的离心率.(0c e a ==故选:C6.(2020·全国高三其他模拟(文))已知,为的两个顶点,点()1,0A ()3,0B ABC :C在抛物线上,且到焦点的距离为13,则的面积为( )24x y =ABC :A .12B .13C .14D .15【答案】A【分析】解:因为点在抛物线上,设,C 24x y =()00,C x y 抛物线的准线方程为,24x y =1y =-根据抛物线的性质,抛物线上的点到焦点的距离等于到准线的距离.由,得,0113y +=012y =所以.()01131121222ABC S AB y =⨯⋅=⨯-⨯=△故选:A7.(2020·四川成都市·高三一模(文))已知抛物线的焦点为,过的直线24x y =F F l 与抛物线相交于,两点,.若,则( ).A B 70,2P ⎛-⎫ ⎪⎝⎭PB AB ⊥AF =A .B .C .D .322523【答案】D【分析】由题意可知,,设,,()0,1F 211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭则,,2227,42x PB x ⎛⎫=+ ⎪⎝⎭ 222,14x BF x ⎛⎫=-- ⎪⎝⎭ 因为,且,,三点共线,则由可得,PB AB ⊥A B F 0AB PB ⋅= 0BF PB ⋅=所以,即,222222710424x x x ⎛⎫⎛⎫-++-= ⎪⎪⎝⎭⎝⎭422226560x x+-=解得或(舍),所以.222x =2228x =-2x =设直线的方程为,与抛物线方程联立,AB 1y kx =+得,消去得,则,所以.214y kx x y =+⎧⎨=⎩y 2440x kx --=124x x =-1x =±则.21124x y ==所以.12213y F pA =+==+故选:D.8.(2020·四川高三一模(文))已知直线与双曲线:y kx =C ()222210,0x y a b a b -=>>相交于不同的两点,,为双曲线的左焦点,且满足,(A B F C 3AF BF=OA b=为坐标原点),则双曲线的离心率为()O C AB C .2D【答案】B【分析】设是右焦点,则,,即,F 'BF AF '=3AF BF=3AF AF '=又,∴,,而,∴22AF AF AF a''-==AF a'=3AF a=,OA b OF c'==,OA AF '⊥由得,AOF AOF π'∠+∠=cos cos 0AOFAOF '∠+∠=∴,整理得.222902b c a b bc c +-+===ce a 故选:B .9.(2020·河南新乡市·高三一模(文))已知双曲线的左、()2222:10,0x y C a b a b -=>>右焦点分别为、,过原点的右支于点,若1F 2F O C A ,则双曲线的离心率为( )1223F AF π∠=AB 1C D【答案】D 【分析】推导出,可计算出,利用余弦定理求得112F OA F AF :::1F A =2AF =,进而可得出该双曲线的离心率为,即可得解.1212F F e AF AF =-【详解】题可知,,,123F OA π∠=121AF O F AF ∠=∠ 112F OA F AF ∠=∠112F OA F AF ∴:△△,所以,可得.11112F O F AF A F F =1F A =在中,由余弦定理可得,12F AF :22212121222cos3F F AF AF AF AF π=+-⋅即,解得.2220AF c +=2AF=双曲线的离心率为.1212F F e AF AF ===-故选:D.【点睛】10.(2020·全国高三专题练习(文))已知圆,则在轴和轴上22:(2)2C x y ++=x y 的截距相等且与圆相切的直线有几条( )C A .1条B .2条C .3条D .4条【答案】C【分析】若直线不过原点,其斜率为,设其方程为,1-y x m =-+则,解得或,d 0m =4-当时,直线过原点;0m =若过原点,把代入,()0,0()2200242++=>即原点在圆外,所以过原点有2条切线,综上,一共有3条,故选:C .二、解答题11.(2020·四川成都市·高三一模(文))已知椭圆的离心率()2222:10x y C a b a b +=>>,且直线与圆相切.1x ya b +=222x y +=(1)求椭圆的方程;C(2)设直线与椭圆相交于不同的两点﹐,为线段的中点,为坐标原l C A B M AB O 点,射线与椭圆相交于点,且,求的面积.OM C P OP OM=ABO :【答案】(1);(2.22163x y +=【分析】(1,∴(为半焦距).c a=c∵直线与圆.1x ya b +=222x y +==又∵,∴,.222c b a +=26a =23b =∴椭圆的方程为.C 22163x y +=(2)(ⅰ)当直线的斜率不存在时,l 设直线的方程为.l (x nn =<<∵,∴.OP OM==225n =∴.ABOS ==△(ⅱ)当直线的斜率存在时,设直线,l ():0l y kx m m =+≠,.()11,A x y ()22,B x y 由,消去,得.22163y kx mx y =+⎧⎪⎨+=⎪⎩y ()222214260k x kmx m +++-=∴,即.()()()2222221682138630k m k m k m ∆=-+-=-+>22630k m -+>∴,.122421kmx x k +=-+21222621m x x k -=+∴线段的中点.AB 222,2121kmm M k k ⎛⎫- ⎪++⎝⎭当时,∵,∴.0k =OP OM==215m =∴.ABOS =△当时,射线所在的直线方程为.0k ≠OM 12y x k =-由,消去,得,.2212163y x k x y ⎧=-⎪⎪⎨⎪+=⎪⎩y 2221221P k x k =+22321Py k =+∴M POMy OPy ===∴.经检验满足成立.22521m k =+0∆>设点到直线的距离为,则.O ld d =∴212ABOS x =-===△综上,.ABO :12.(2020·云南高三其他模拟(文))已知椭圆的左右焦点分2222:1(0)x y C a b a b +=>>别为,离心率为,椭圆上的点到点的距离之和等于4.12,F F 12C 31,2M ⎛⎫ ⎪⎝⎭12,F F (1)求椭圆的标准方程;C(2)是否存在过点的直线与椭圆相交于不同的两点,,满足()2,1P l C A B 若存在,求出直线的方程;若不存在,请说明理由.2PA PB PM ⋅= l 【答案】(1);(2)存在直线满足条件,其方程为.22143x y +=l 12y x =【分析】解:(1)由题意得,所以.2221224c a a a b c ⎧=⎪⎪=⎨⎪=+⎪⎩21a c b ⎧=⎪=⎨⎪=⎩故椭圆的标准方程为.C 22143x y +=(2)若存在满足条件的直线,则直线的斜率存在,设其方程为.l l (2)1y k x =-+代入椭圆的方程得.C 222(34)8(21)161680k x k k x k k +--+--=设,两点的坐标分别为,,A B ()11,x y ()22,x y 所以.所以,222[8(21)]4(34)(16168)32(63)0k k k k k k ∆=---+--=+>12k >-且,.1228(21)34k k x x k -+=+21221616834k k x x k --=+因为,即,2PA PB PM ⋅= 12125(2)(2)(1)(1)4x x y y --+--=所以.2212(2)(2)(1)54x x k PM --+==即.[]2121252()4(1)4x x x x k -+++=所以,222222161688(21)44524(1)3434344k k k k k k k k k ⎡⎤---+-⋅++==⎢⎥+++⎣⎦解得.12k =±又因为,所以.12k >-12k =所以存在直线满足条件,其方程为.l 12y x =13.(2020·广西北海市·高三一模(文))已知抛物线的准线为2:2(0)C x py p =>,焦点为F .1y =-(1)求抛物线C 的方程;(2)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,求的最小值.||||AP BQ ⋅【答案】(1);(2)2.24x y =【分析】(1)因为抛物线的准线为,12py =-=-解得,2p =所以抛物线的方程为.24x y =(2)由已知可判断直线l 的斜率存在,设斜率为k ,由(1)得,则直线l 的方程为.(0,1)F 1y kx =+设,,211,4x A x ⎛⎫ ⎪⎝⎭222,4x B x ⎛⎫ ⎪⎝⎭由消去y ,得,214y kx x y =+⎧⎨=⎩2440x kx --=所以,.124x x k +=124x x =-因为抛物线C 也是函数的图象,且,214y x =12y x '=所以直线PA 的方程为.()2111142x y x x x -=-令,解得,所以,0y =112x x =11,02P x ⎛⎫ ⎪⎝⎭从而||AP =同理得||BQ =所以,||||AP BQ ⋅==,=,==当时,取得最小值2.0k =||||AP BQ ⋅14.(2020·广东东莞市·高三其他模拟(文))在平面直角坐标系中,已知两定点xOy,,动点满足.()2,2A -()0,2B P PAPB=(1)求动点的轨迹的方程;P C (2)轨迹上有两点,,它们关于直线:对称,且满足C E F l 40kx y +-=,求的面积.4OE OF ⋅=OEF ∆【答案】(1)动点的轨迹是圆,其方程为(2)P ()()22228x y -+-=【分析】(1)设动点的坐标为,则.P (),xyPAPB==整理得,故动点的轨迹是圆,且方程为.()()22228x y -+-=P ()()22228x y -+-=(2)由(1)知动点的轨迹是圆心为,半径的圆,圆上两点,关P ()2,2C R =E F 于直线对称,由垂径定理可得圆心在直线:上,代入并求得l ()2,2l 40kx y +-=1k =,故直线的方程为.l 40x y +-=易知垂直于直线,且.OC l OC R=设的中点为,则EF M ()()OE OF OM ME OM MF⋅=+⋅+()()OM ME OM ME=+⋅- ,又,.224OM ME =-= 22222OM OC CM R CM =+=+ 222ME R CM =-∴,,∴,.224CM = CM =ME==2FE ME == 易知,故到的距离等于,∴OC FE :O FE CM 12OEF S ∆=⨯=15.(2020·全国高三专题练习)在平面直角坐标系中,已知椭圆xOy 的长轴长为6,且经过点,为左顶点,为下顶点,椭22221(0)x y a b a b +=>>3(2Q A B 圆上的点在第一象限,交轴于点,交轴于点.P PA y C PB x D (1)求椭圆的标准方程(2)若,求线段的长20OB OC +=PA (3)试问:四边形的面积是否为定值?若是,求出该定值,若不是,请说明理由ABCD 【答案】(1);(2;(3)是定值,6.22194x y +=【分析】(1)解:由题意得,解得.26a =3a =把点的坐标代入椭圆C 的方程,得Q 22221x y a b +=229314ab +=由于,解得3a =2b =所以所求的椭圆的标准方程为.22194x y +=(2)解:因为,则得,即,20OB OC += 1(0,1)2OC OB =-=(0,1)C 又因为,所以直线的方程为.(3,0)A -AP 1(3)3y x =+由解得(舍去)或,即得221(3)3194y x x y ⎧=+⎪⎪⎨⎪+=⎪⎩30x y =-⎧⎨=⎩27152415x y ⎧=⎪⎪⎨⎪=⎪⎩2724,1515P ⎛⎫ ⎪⎝⎭所以||AP ==即线段AP (3)由题意知,直线的斜率存在,可设直线.PB 2:23PB y kx k ⎛⎫=-> ⎪⎝⎭令,得,0y =2,0D k ⎛⎫⎪⎝⎭由得,解得(舍去)或222194y kx x y =-⎧⎪⎨+=⎪⎩()2249360k x kx +-=0x =23649kx k =+所以,即2218849k y k -=+22236188,4949k k P k k ⎛⎫- ⎪++⎝⎭于是直线的方程为,即AP 22218849(3)36314k k y x k k -+=⨯+++2(32)(3)3(32)k y x k -=++令,得,即,0x =2(32)32k y k -=+2(32)0,32k C k -⎛⎫ ⎪+⎝⎭所以四边形的面积等于ABDC 1||||2AD BC ⨯⨯122(32)13212326232232k k k k k k k -+⎛⎫⎛⎫=+⋅+=⋅⋅= ⎪ ⎪++⎝⎭⎝⎭即四边形的面积为定值.ABDC 16.(2020·江西南昌市·南昌二中高三其他模拟(文))已知抛物线的()220y px p =->焦点为,轴上方的点在抛物线上,且,直线与抛物线交于,F x ()2,M m -52MF =l A 两点(点,与不重合),设直线,的斜率分别为,.B A B M MA MB 1k 2k (Ⅰ)求抛物线的方程;(Ⅱ)当时,求证:直线恒过定点并求出该定点的坐标.122k k +=-l 【答案】(Ⅰ);22y x =-(Ⅱ)见解析.(Ⅰ)由抛物线的定义可以,5(2)22p MF =--=,抛物线的方程为.1p ∴=22y x =-(Ⅱ)由(Ⅰ)可知,点的坐标为M (2,2)-当直线斜率不存在时,此时重合,舍去. l ,A B 当直线斜率存在时,设直线的方程为l l y kx b=+设,将直线与抛物线联立得:()()1122,,,A x y B x y l 2222(22)02y kx bk x kb x b y x=+⎧+++=⎨=-⎩212122222,kb b x x x x k k --+==①又,12121222222y y k k x x --+=+=-++即,()()()()()()1221122222222kx b x kx b x x x +-+++-+=-++,()()()()12121212121222248248kx x k x x b x x x x b x x x x ++++-++-=--+-,()1212(2+2)(2+2)40k x x k b x x b ++++=将①代入得,222(1)0b b k b ---+=即(1)(22)0b b k +--=得或1b =-22b k =+当时,直线为,此时直线恒过;1b =-l 1y kx =-(0,1)-当时,直线为,此时直线恒过(舍去)22b k =+l 22(2)2y kx k k x =++=++(2,2)-所以直线恒过定点.l (0,1)-。

高三数学复习口诀:平面解析几何

高三数学复习口诀:平面解析几何

学习没有界限,只有努力了,拼搏了,奋斗了,人生才不会那么枯燥无味。

查字典数学网为了帮助各位高中学生,整理了高三数学复习口诀:平面解析几何一文:高三数学复习口诀:平面解析几何《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。

笛卡尔的观点对,点和有序实数对,两者-一来对应,开创几何新途径。

两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。

三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。

四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。

解析几何是几何,得意忘形学不活。

图形直观数入微,数学本是数形学。

高三数学复习口诀:平面解析几何由查字典数学网为您整理提供,望各位考生能够努力奋斗,成绩更上一层楼。

高三抛物线知识点总结

高三抛物线知识点总结

高三抛物线知识点总结抛物线是高中数学中的一个重要概念,是解析几何的重要内容之一。

在高三数学学习中,抛物线作为一个重要的知识点,涉及到常见的性质、方程、焦点、准线等内容。

本文将对高三抛物线知识点进行总结。

一、抛物线的定义抛物线是平面上一点到定点和定直线的距离之比等于一个定值的几何图形。

它的定义涉及到以下几个重要概念:1. 定点:抛物线的定点叫做焦点,用F表示。

2. 定直线:抛物线的定直线叫做准线,用L表示。

3. 焦距:焦点到准线的距离叫做焦距,用FP表示。

4. 所有点到焦点和准线的距离之比等于1。

二、抛物线的性质了解抛物线的性质可以帮助我们更好地理解其几何形态和数学表达。

下面是一些抛物线的常见性质:1. 对称性:抛物线关于准线对称。

2. 焦点与准线关系:焦点到准线的距离等于焦距的大小。

3. 焦半径定理:抛物线上任意一点到焦点的距离等于该点到准线的距离。

4. 切线垂直定理:抛物线上任意一点的切线垂直于焦准线。

5. 焦点与顶点的关系:焦点在抛物线的对称轴上,且焦点到顶点的距离等于焦半径的一半。

三、抛物线的方程抛物线的方程是描述抛物线的一种数学表达形式。

常见的抛物线方程有以下几种形式:1. 顶点形式:y = a(x - h)^2 + k,其中(h, k)为抛物线的顶点坐标。

2. 标准形式:y = ax^2 + bx + c,其中a、b、c为实数且a≠0。

3. 参数方程形式:x = at^2,y = 2at,其中t为参数。

四、抛物线的焦点和准线的确定已知抛物线的顶点坐标和焦距,可以求解抛物线的焦点坐标和准线方程。

具体求解的步骤如下:1. 确定抛物线的顶点坐标(h, k)和焦距FP。

2. 由焦点的定义,可得焦点坐标为(h, k + FP)。

3. 由准线的定义,可得准线方程为y = k - FP。

五、抛物线与实际应用抛物线作为一种几何图形,不仅在数学中应用广泛,也在实际问题中有着重要的应用。

以下是一些抛物线在实际应用中的例子:1. 电磁波的折射:电磁波折射的路径可以用抛物线来描述。

高三数学解析几何知识点总结

高三数学解析几何知识点总结

高三数学解析几何知识点总结在高三的数学学习中,解析几何是一个重要的知识点。

解析几何的学习需要对坐标系、直线、圆、曲线等进行深入理解和掌握。

下面将对高三数学解析几何的知识点进行总结和梳理,以帮助同学们更好地复习。

1. 坐标系及坐标表示解析几何中,我们常用笛卡尔坐标系来描述平面上的点。

在二维平面中,水平方向称为x轴,垂直方向称为y轴。

每个点都可以用一个有序数对(x, y)来表示,其中x表示横坐标,y表示纵坐标。

2. 直线方程直线是解析几何中的基本图形之一。

在平面直角坐标系中,直线通常用一般式方程、斜截式方程、截距式方程和点斜式方程等来表示。

- 一般式方程:Ax + By + C = 0,其中A、B、C为常数,A和B不同时为0。

- 斜截式方程:y = kx + b,其中k为斜率,b为y轴截距。

- 截距式方程:x/a + y/b = 1,其中a、b为x、y轴截距。

- 点斜式方程:y - y₁ = k(x - x₁),其中(x₁, y₁)为直线上一点的坐标,k为斜率。

3. 圆的方程圆是解析几何中的常见图形之一。

圆的方程有四种常见形式,分别是标准方程、一般方程、中心半径方程和直径方程。

- 标准方程:(x - a)² + (y - b)² = r²,其中(a, b)为圆心坐标,r为半径。

- 一般方程:x² + y² + Dx + Ey + F = 0,其中D、E、F为常数。

- 中心半径方程:(x - h)² + (y - k)² = r²,其中(h, k)为圆心坐标,r为半径。

- 直径方程:(x - x₁)(x - x₂) + (y - y₁)(y - y₂) = 0,其中(x₁, y₁)和(x₂, y₂)为直径的两个端点坐标。

4. 曲线的方程除了直线和圆外,解析几何还研究了一些曲线的方程。

常见的曲线方程有抛物线、椭圆和双曲线的标准方程。

高三数学解析几何知识整理

高三数学解析几何知识整理

江苏省启东中学高三数学回归书本知识整理(解析几何)直线部分一、直线的倾斜角和斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。

注意:规定当直线和x 轴平行或重合时,其倾斜角为o 0,所以直线的倾斜角αo o(2)直线的斜率:倾斜角不是o90的直线,它的倾斜角的正切叫做这条直线的斜率,①斜率是用来表示倾斜角不等于o90的直线对于x 轴的倾斜程度的。

②每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

③斜率计算公式: 设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o 90=α;斜率不存在;二、直线方程的几种形式:(1)点斜式:过已知点),(00y x ,且斜率为k 的直线方程:)(00x x k y y -=-;注意:①当直线斜率不存在时,不能用点斜式表示,此时方程为0x x=;②k x x y y =--0表示:)(00x x k y y -=-直线上除去),(00y x 的图形 。

(2)斜截式:若已知直线在y 轴上的截距为b ,斜率为k ,则直线方程:b kx y +=;注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

(3)两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠),则直线的方程:121121x x x x y y y y --=--;注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

解析几何知识点总结大全

解析几何知识点总结大全

解析几何知识点总结大全解析几何知识点总结有哪些?对数学几何的定义、法则、公式、定理等,理解了的要记住,暂时不理解的也要记住,在记忆的基础上、在应用它们解决问题时再加深理解。

一起来看看解析几何知识点总结,欢迎查阅!几何知识点总结大全1过两点有且只有一条直线2两点之间线段最短3同角或等角的补角相等4同角或等角的余角相等5过一点有且只有一条直线和已知直线垂直6直线外一点与直线上各点连接的所有线段中,垂线段最短7平行公理经过直线外一点,有且只有一条直线与这条直线平行8如果两条直线都和第三条直线平行,这两条直线也互相平行9同位角相等,两直线平行10内错角相等,两直线平行11同旁内角互补,两直线平行12两直线平行,同位角相等13两直线平行,内错角相等14两直线平行,同旁内角互补15定理三角形两边的和大于第三边16推论三角形两边的差小于第三边17三角形内角和定理三角形三个内角的和等于18018推论1直角三角形的两个锐角互余19推论2三角形的一个外角等于和它不相邻的两个内角的和20推论3三角形的一个外角大于任何一个和它不相邻的内角21全等三角形的对应边、对应角相等22边角边公理有两边和它们的夹角对应相等的两个三角形全等23角边角公理有两角和它们的夹边对应相等的两个三角形全等24推论有两角和其中一角的对边对应相等的两个三角形全等25边边边公理有三边对应相等的两个三角形全等26斜边、直角边公理有斜边和一条直角边对应相等的两个直角三角形全等27定理1在角的平分线上的点到这个角的两边的距离相等28定理2到一个角的两边的距离相同的点,在这个角的平分线上29角的平分线是到角的两边距离相等的所有点的集合30等腰三角形的性质定理等腰三角形的两个底角相等31推论1等腰三角形顶角的平分线平分底边并且垂直于底边32等腰三角形的顶角平分线、底边上的中线和高互相重合33推论3等边三角形的各角都相等,并且每一个角都等于6034等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边)35推论1三个角都相等的三角形是等边三角形36推论2有一个角等于60的等腰三角形是等边三角形37在直角三角形中,如果一个锐角等于30那么它所对的直角边等于斜边的一半38直角三角形斜边上的中线等于斜边上的一半39定理线段垂直平分线上的点和这条线段两个端点的距离相等40逆定理和一条线段两个端点距离相等的点,在这条线段的垂直平分线上41线段的垂直平分线可看作和线段两端点距离相等的所有点的集合42定理1关于某条直线对称的两个图形是全等形43定理2如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线44定理3两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上45逆定理如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称46勾股定理直角三角形两直角边a、b的平方和、等于斜边c的平方,即a+b=c 47勾股定理的逆定理如果三角形的三边长a、b、c有关系a+b=c,那么这个三角形是直角三角形48定理四边形的内角和等于36049四边形的外角和等于36050多边形内角和定理n边形的内角的和等于(n-2)18051推论任意多边的外角和等于36052平行四边形性质定理1平行四边形的对角相等53平行四边形性质定理2平行四边形的对边相等54推论夹在两条平行线间的平行线段相等55平行四边形性质定理3平行四边形的对角线互相平分56平行四边形判定定理1两组对角分别相等的四边形是平行四边形57平行四边形判定定理2两组对边分别相等的四边形是平行四边形58平行四边形判定定理3对角线互相平分的四边形是平行四边形59平行四边形判定定理4一组对边平行相等的四边形是平行四边形60矩形性质定理1矩形的四个角都是直角61矩形性质定理2矩形的对角线相等62矩形判定定理1有三个角是直角的四边形是矩形63矩形判定定理2对角线相等的平行四边形是矩形64菱形性质定理1菱形的四条边都相等65菱形性质定理2菱形的对角线互相垂直,并且每一条对角线平分一组对角 66菱形面积=对角线乘积的一半,即S=(ab)267菱形判定定理1四边都相等的四边形是菱形68菱形判定定理2对角线互相垂直的平行四边形是菱形69正方形性质定理1正方形的四个角都是直角,四条边都相等70正方形性质定理2正方形的两条对角线相等,并且互相垂直平分,每条对角线平分一组对角71定理1关于中心对称的两个图形是全等的72定理2关于中心对称的两个图形,对称点连线都经过对称中心,并且被对称中心平分73逆定理如果两个图形的对应点连线都经过某一点,并且被这一点平分,那么这两个图形关于这一点对称74等腰梯形性质定理等腰梯形在同一底上的两个角相等75等腰梯形的两条对角线相等76等腰梯形判定定理在同一底上的两个角相等的梯形是等腰梯形77对角线相等的梯形是等腰梯形78平行线等分线段定理如果一组平行线在一条直线上截得的线段相等,那么在其他直线上截得的线段也相等79推论1经过梯形一腰的中点与底平行的直线,必平分另一腰80推论2经过三角形一边的中点与另一边平行的直线,必平分第三边81三角形中位线定理三角形的中位线平行于第三边,并且等于它的一半82梯形中位线定理梯形的中位线平行于两底,并且等于两底和的一半L=(a+b)2S=Lh83(1)比例的基本性质如果a:b=c:d,那么ad=bc如果ad=bc,那么a:b=c:d84(2)合比性质如果a/b=c/d,那么(ab)/b=(cd)/d85(3)等比性质如果a/b=c/d=…=m/n(b+d+…+n0),那么(a+c+…+m)/(b+d+…+n)=a/b86平行线分线段成比例定理三条平行线截两条直线,所得的对应线段成比例 87推论平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例88定理如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边89平行于三角形的一边,并且和其他两边相交的直线,所截得的三角形的三边与原三角形三边对应成比例90定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似91相似三角形判定定理1两角对应相等,两三角形相似(ASA)92直角三角形被斜边上的高分成的两个直角三角形和原三角形相似93判定定理2两边对应成比例且夹角相等,两三角形相似(SAS)94判定定理3三边对应成比例,两三角形相似(SSS)95定理如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似96性质定理1相似三角形对应高的比,对应中线的比与对应角平分线的比都等于相似比97性质定理2相似三角形周长的比等于相似比98性质定理3相似三角形面积的比等于相似比的平方99任意锐角的正弦值等于它的余角的余弦值,任意锐角的余弦值等于它的余角的正弦值100任意锐角的正切值等于它的余角的余切值,任意锐角的余切值等于它的余角的正切值101圆是定点的距离等于定长的.点的集合102圆的内部可以看作是圆心的距离小于半径的点的集合103圆的外部可以看作是圆心的距离大于半径的点的集合104同圆或等圆的半径相等105到定点的距离等于定长的点的轨迹,是以定点为圆心,定长为半径的圆 106和已知线段两个端点的距离相等的点的轨迹,是着条线段的垂直平分线 107到已知角的两边距离相等的点的轨迹,是这个角的平分线108到两条平行线距离相等的点的轨迹,是和这两条平行线平行且距离相等的一条直线109定理不在同一直线上的三个点确定一条直线110垂径定理垂直于弦的直径平分这条弦并且平分弦所对的两条弧111推论1①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧②弦的垂直平分线经过圆心,并且平分弦所对的两条弧③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧112推论2圆的两条平行弦所夹的弧相等113圆是以圆心为对称中心的中心对称图形114定理在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等115推论在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两弦的弦心距中有一组量相等那么它们所对应的其余各组量都相等116定理一条弧所对的圆周角等于它所对的圆心角的一半117推论1同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等118推论2半圆(或直径)所对的圆周角是直角;90的圆周角所对的弦是直径 119推论3如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形120定理圆的内接四边形的对角互补,并且任何一个外角都等于它的内对角121①直线L和⊙O相交d?r②直线L和⊙O相切d=r③直线L和⊙O相离d?r122切线的判定定理经过半径的外端并且垂直于这条半径的直线是圆的切线 123切线的性质定理圆的切线垂直于经过切点的半径124推论1经过圆心且垂直于切线的直线必经过切点125推论2经过切点且垂直于切线的直线必经过圆心126切线长定理从圆外一点引圆的两条切线,它们的切线长相等,圆心和这一点的连线平分两条切线的夹角127圆的外切四边形的两组对边的和相等128弦切角定理弦切角等于它所夹的弧对的圆周角129推论如果两个弦切角所夹的弧相等,那么这两个弦切角也相等130相交弦定理圆内的两条相交弦,被交点分成的两条线段长的积相等131推论如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项132切割线定理从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项133推论从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等134如果两个圆相切,那么切点一定在连心线上135①两圆外离d?R+r②两圆外切d=R+r③两圆相交R-r?d?R+r(R?r)④两圆内切d=R-r(R?r)⑤两圆内含d?R-r(R?r)136定理相交两圆的连心线垂直平分两圆的公共弦137定理把圆分成n(n3):⑴依次连结各分点所得的多边形是这个圆的内接正n边形⑵经过各分点作圆的切线,以相邻切线的交点为顶点的多边形是这个圆的外切正n边形138定理任何正多边形都有一个外接圆和一个内切圆,这两个圆是同心圆139正n边形的每个内角都等于(n-2)180/n140定理正n边形的半径和边心距把正n边形分成2n个全等的直角三角形 141正n边形的面积Sn=pnrn/2p表示正n边形的周长142正三角形面积3a/4a表示边长143如果在一个顶点周围有k个正n边形的角,由于这些角的和应为360,因此k(n-2)180/n=360化为(n-2)(k-2)=4144弧长计算公式:L=nR/180145扇形面积公式:S扇形=nR/360=LR/2146内公切线长=d-(R-r)外公切线长=d-(R+r)解析几何方法总结然而相对于导数需要较强的技巧和想法来讲,解析几何更重要考察的是心里素质。

高三数学复习第八章 平面解析几何

高三数学复习第八章  平面解析几何

提 升 学 科 素 养
突 破 热 点 题 型
演 练 知 能 检 测
数学(6省专版)
第一节
直线的倾斜角与斜率、直线的方程
回 扣 主 干 知 识
1-0 (3)如右图,∵kAP= =1, 2-1 3-0 kBP= =- 3, 0-1 ∴k∈(-∞,- 3 ]∪[1,+∞).
提 升 学 科 素 养
突 破 热 点 题 型
1 A.3 1 B.-3 3 C.-2 2 D.3
(
)
提 升 学 科 素 养
突 破 热 点 题 型
解析:设 P(x,1),Q(7,y),则 x+7=2,1+y=-2, 1--3 1 解得 x=-5,y=-3,从而 kl= =-3. -5-7
演 练 知 能 检 测
答案:B
数学(6省专版)
第一节
直线的倾斜角与斜率、直线的方程
直线的倾斜角与斜率、直线的方程
回 扣 主 干 知 识
直线的倾斜角和斜率
[例1] 是 (1)直线xsin α+y+2=0的倾斜角的取值范围 ( )
π 3π B.0,4∪ 4 ,π π π D.0,4∪2,π
提 升 学 科 素 养
A.[0,π)
[探究] 2.两条直线l1,l2垂直的充要条件是斜率之积 为-1,这句话正确吗? 提示:不正确,当一条直线与x轴平行,另一条与y轴 平行时,两直线垂直,但一条直线斜率不存在.
3.直线方程的几种形式
名称 条件 斜率k与点 (x0,y0) 斜率k与截 方程 适用范围
提 升 学 科 素 养
突 破 热 点 题 型
提 升 学 科 素 养
突 破 热 点 题 型
3-1 解析:直线斜率为 =-1, 0-2 其方程为 y=-x+3,即 x+y-3=0.

高三数学基础知识梳理 第7章 解析几何 试题

高三数学基础知识梳理 第7章 解析几何 试题

第七章 解析几何根底知识梳理一、直线: ㈠根本公式:⒈两点间隔 公式:点P 1〔x 1,y 1〕、P 2〔x 2,y 2〕,那么|P 1P 2|= . ⒉线段的定比分点坐标公式:两点P 1〔x 1,y 1〕、P 2〔x 2,y 2〕,点P 〔x ,y 〕分有向线段21p p 的比是λ,即 p p 1λ2pp , 那么x = ,y= .⒊中点坐标公式:两点P 1〔x 1,y 1〕、P 2〔x 2,y 2〕,线段P 1P 2的中点坐标是〔x ,y 〕, 那么x= ,y= .⒋三角形的重心坐标公式:三角形的三点坐标A 〔x 1,y 1〕、B 〔x 2,y 2〕、C 〔x 3,y 3〕, △ABC 的重心是G 〔x ,y 〕,那么x= ,y= . ⒌斜率⑴直线倾斜角的定义: ⑵直线斜率的定义:⑶公式:两点A 〔x 1,y 1〕、B 〔x 2,y 2〕,〔x 1≠x 2〕,那么k AB = . 注:三点A 〔x 1,y 1〕、B 〔x 2,y 2〕、C 〔x 3,y 3〕,如何证明这三点一共线?㈡直线方程:⒈直线方程的几种形式:注:两点P1〔x1,y1〕、P2〔x2,y2〕,那么直线P1 P2的方程总可写为〔不要讨论〕:.⒉特殊位置的直线方程:⑴垂直于x轴的直线方程是 . y轴的方程是 .⑵垂直于y轴的直线方程是 . x轴的方程是 .⑶过原点的直线〔除y轴〕方程是 .⑷求过点P〔x0,y0〕〔不是原点〕且在坐标轴上的截距相等的直线方程时应考虑哪几种情况?㈢点P〔x0,y0〕与直线l:Ax+By+C=0的位置关系:⒈P在直线l上,那么有 .⒉P在直线l外, P到直线l的间隔为d,那么d=㈣两直线l1和l2的位置关系:⒈斜率存在,直线l1:y=k1x+b1,直线l2:y=k2x+b2,那么⑴l1与l2相交⇔;⑵l1∥l2⇔;⑶l1与l2重合⇔;⑷l1⊥l2⇔ .⒉斜率不一定存在,直线l1:A1x+B1y+C1=0,直线l2:A2x+B2y+C2=0,那么:⑴l1与 l2相交⇔;⑵l1∥ l2⇔;⑶l1与 l2重合⇔;⑷l1⊥ l2⇔ .⒌两相交直线交点坐标的求法:⒍两平行线之间的间隔:直线l1:A x+B y+C1=0,直线l2:A x+B y+C2=0,那么l1与l2间的间隔 d= .过两定点P、Q分别作倾斜角相等的直线,这两条平行直线间间隔的最大值是 .㈤对称:⒈请填以下空格,并记住结论:注:假设对称轴的斜率不是±1,没有上述结论!只可用下面的方法求: 设P 〔x 0,y 0〕关于直线Ax+By+C=0的对称点Q 的坐标是〔x ,y 〕,那么 ⑴当A=0且B ≠0时,那么x= ,y= ; ⑵当B=0且A ≠0时,那么x= ,y= ;⑶当AB ≠0时,那么⎪⎪⎩⎪⎪⎨⎧=++++-=-⋅--0)2()2(1)(0000C y y B x x A B Ax x y y ⇒⎪⎪⎩⎪⎪⎨⎧+++-=+++-=)(2)(20022000220C By Ax B A B y y C By Ax B A A x x㈥直线系: 1、直线系的定义:具有某种一共同特征的直线的集合叫做直线系,它的方程叫做直线系方程. 2、常见的直线系方程:⑴过定点P 〔x 0,y 0〕的直线系方程是 . ⑵斜率是k 的直线系方程是 .⑶与直线Ax+By+C=0平行的直线系方程是 . ⑷与直线Ax+By+C=0垂直的直线系方程是 . ⑸在x 轴和y 轴上截距的和是10的直线系方程是 .3、设直线l 1:A 1x+B 1y+C 1=0和直线l 2:A 2x+B 2y+C 2=0相交于P 点,那么经过P 点的直线系方程是 .4、如何证明直线系过定点?㈦二元一次不等式表示的平面区域:⒈当B>0时,⑴点P〔x1,y1〕在直线l:Ax+By+C=0的上方⇔;⑵点P〔x1,y1〕在直线l:Ax+By+C=0的下方⇔ .⒉当B=0,A>0时,⑴点P〔x1,y1〕在直线l:Ax+C=0的右方⇔;⑵点P〔x1,y1〕在直线l:Ax+C=0的左方⇔ .㈧简单线性规划问题最优解的解题步骤:⒈画可行域;⒉画斜率是k的直线系;⒊根据直线系扫过可行域的情况,判别直线在哪一点处纵截距有最小值,在哪一点处纵截距有最大值;⒋求出纵截距最大、最小时相应的点的坐标,即最优解;⒌根据最优解求出目的函数的最大值或者最小值.㈨根本练习题:⒈直线l:(2m2-7m+3)x+(m2-9)y+3m2=0,当倾斜角α=45°时,m= ;当m=时, l平行于y轴;当m 时, l在y轴上的截距为4.⒉直线kx+2y-3=0过点(1,1),那么k= ;假设它与直线2x-y+5=0垂直,那么k= ;此时两直线交点坐标为;两直线与x轴围成的三角形的面积为 .⒊假设P<-1,那么原点到直线xcosθ+ysinθ+p=0的间隔为 .⒋直线l1:(a-1)x-2y+3=0、l2:x-ay+1=0,当a= 时,l1∥l2;当a= 时,l1⊥l2;当a= 时,l1、l2所成的角等于45°.⒌直线l过点 A (-2,2)且和两坐标轴围成的三角形面积等于1,那么直线l的斜率k= .⒍不管k取何值,直线(2k-1) x-(k+3)y-(k-11)=0必过定点 .三、圆:㈠圆的定义; .㈡圆的方程:⒈HY方程:;圆心坐标是,半径是 .⒉一般方程:;圆心坐标是,半径是 . 注:⑴假设条件与圆心或者半径有关,通常用HY式求圆方程;假设条件是不一共线的三点,通常用一般式求圆的方程.⑵以A(x1,y1),B(x2,y2)两点为直径端点的圆的方程是 . ㈢点与圆的位置关系:点P(x0,y0)与圆C方程(x-a)2+(y-b)2=r2 (或者x2+y2+Dx+Ey+F=0),那么:点P在圆C上⇔或者;点P在圆C外⇔或者;点P在圆C内⇔或者 . ㈣直线与圆的位置关系:直线与圆的位置关系有、、三种.判别方法如下:判别方法〔一〕根据圆心到直线的间隔 d与圆的半径r的大小关系:d<r ⇔;d=r ⇔;d>r ⇔ .判别方法〔二〕利用一元二次方程的判别式△与0的大小关系:△>0 ⇔;△=0 ⇔;△<0 ⇔ .㈤当直线与圆相交时,弦长公式是弦长l= .㈥当直线与圆相切时,切线方程的求法:⒈过圆上一点P(x0,y0)的切线方程的求法:这时切线只有一条!通常用“交换法那么〞:⒉过圆外一点P(x0,y0)的切线方程的求法:这时切线总有两条!通常用点斜式,但要讨论斜率存在与否.在求斜率时,通常有两种方法:⑴圆心到切线的间隔等于半径;⑵切线方程与圆方程联立消去一元得到另一元的二次方程后令判别式△=0.注意:不管用哪一种,假如求出的斜率k只有一解,说明另一条切线的斜率不存在. ⒊圆C方程及圆的切线的斜率K,如何求切线方程?通常用斜截式方程,即设切线方程为y=kx+b,仿照上面〔⒉中的⑴⑵两点,任选其一〕求出b.㈦圆与圆的位置关系:设⊙C1、⊙C2的半径分别是r1、r2,圆心距|C1C2|=d,那么:㈧两圆相交时公一共弦所在直线方程的求法: .㈨两圆相切时过切点的公切线方程的求法: .㈩过圆C:(x-a)2+(y-b)2=r2 (或者x2+y2+Dx+Ey+F=0)外一点P(x0,,y0)引圆的切线,那么切线长t= 或者 .(十一) 过圆C:(x-a)2+(y-b)2=r2(或者x2+y2+Dx+Ey+F=0)外一点P(x0,,y0)引圆的两条切线,切点为A、B,那么直线AB方程为 .四、椭圆:㈠椭圆的定义、方程和性质:在椭圆第一定义中,注意“2a >|F 1F 2|〞这个条件,假设2a=|F 1F 2|,这时动点轨迹是 . 椭圆的两个HY 方程)0(12222>>=+b a b y a x 、)0(12222>>=+b a b x a y ,这两个HY 方程可以合并为一个:Ax 2+By 2=1 〔A >0,B >0,且A ≠B 〕. ㈦椭圆上任一点到一焦点的最大间隔 是 ;最小间隔 是 . ㈧椭圆的焦点弦长最大值是 ;最小值是 .㈩两个重要结论: ⒈椭圆)0(12222>>=+b a by ax 长轴的两个端点为A 1、A 2,短轴的一个端点是B,是椭圆上任一点,那么∠A 1PA 2≤∠A 1BA 2;⒉椭圆)0(12222>>=+b a b y a x 的两个焦点为F 1、F 2,短轴的一个端点是B,P 是椭圆上任一点,那么∠F 1PF 2≤∠F 1BF 2.五、双曲线:㈠双曲线的定义及性质:定 义⒈⒉HY 方程)0,0(12222>>=-b a b y a x )0,0(12222>>=-b a b x a y图 形范 围 顶 点 焦 点焦 距 中 心y F 1xoPF 2Bo·· F 1F 2· F 1F2·l 1l 2l 1A 1A 1A 2A2l 2⒈在双曲线的第一定义中,应注意“差的绝对值...〞及“2a <|F 1F 2|〞. ⑴假设仅仅是“差是定值“,那么动点轨迹是双曲线的一支; ⑵假设2a=|F 1F 2|〔其中a ≠0〕,那么动点轨迹是两条射线. ⒉双曲线的两个HY 方程)0,0(12222>>=-b a by ax 、)0,0(12222>>=-b a bx ay ,这两个HY 方程可合并为一个:Ax 2−By 2=1 〔A ·B >0〕 ㈡在双曲线的性质中要记住:㈢等轴双曲线的HY 方程可设为 ,它的离心率e= . ㈤一共渐近线问题: ⒈以直线y=±abx 为渐近线的双曲线方程为 ⒉与双曲线)0,0(12222>>=-b a b y a x 一共渐近线的双曲线方程为 .六、抛物线:㈠抛物线的定义、HY 方程、性质:定 义图 形HY 方程 范 围 焦点坐标 准线方程 对称轴方程顶点坐标 离 心 率抛物线的HY 方程有四个,y 2=±2px(p>0), x 2=±2py(p>0),其中p 是焦点到准线的间隔 . 焦点在x 轴上的两个方程y 2=±2px(p>0),可合并为:y 2=ax(a ≠0),焦点F(0,4a),准线x=−4a ;焦点在y 轴上的两个方程x 2=±2py(p>0),可合并为:x 2=ay(a ≠0), 焦点F(4,0a),准线y=−4a .创作人:历恰面日期:2020年1月1日创作人:历恰面日期:2020年1月1日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

江苏省启东中学高三数学回归书本知识整理(解析几何)直线部分一、直线的倾斜角和斜率:(1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角。

注意:规定当直线和x 轴平行或重合时,其倾斜角为o0,所以直线的倾斜角αo o(2)直线的斜率:倾斜角不是o90的直线,它的倾斜角的正切叫做这条直线的斜率,①斜率是用来表示倾斜角不等于o90的直线对于x 轴的倾斜程度的。

②每一条直线都有唯一的倾斜角,但并不是每一条直线都存在斜率(直线垂直于x 轴时,其斜率不存在),这就决定了我们在研究直线的有关问题时,应考虑到斜率的存在与不存在这两种情况,否则会产生漏解。

③斜率计算公式: 设经过),(11y x A 和),(22y x B 两点的直线的斜率为k , 则当21x x ≠时,2121tan x x y y k --==α;当21x x =时,o 90=α;斜率不存在;二、直线方程的几种形式:(1)点斜式:过已知点),(00y x ,且斜率为k 的直线方程:)(00x x k y y -=-;注意:①当直线斜率不存在时,不能用点斜式表示,此时方程为0x x=;②k x x y y =--0表示:)(00x x k y y -=-直线上除去),(00y x 的图形 。

(2)斜截式:若已知直线在y 轴上的截距为b ,斜率为k ,则直线方程:b kx y +=;注意:正确理解“截距”这一概念,它具有方向性,有正负之分,与“距离”有区别。

(3)两点式:若已知直线经过),(11y x 和),(22y x 两点,且(2121,y y x x ≠≠),则直线的方程:121121x x x x y y y y --=--; 注意:①不能表示与x 轴和y 轴垂直的直线;②当两点式方程写成如下形式0))(())((112112=-----x x y y y y x x 时,方程可以适应在于任何一条直线。

(4)截距式:若已知直线在x 轴,y 轴上的截距分别是a ,b (0,0≠≠b a )则直线方程:1=+bya x ; 注意:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线,要谨慎使用。

(5)参数式:⎩⎨⎧+=+=bt y y at x x 00(t 为参数)其中方向向量为),(b a ,),(2222ba b b a a ++; a b k =;22||||ba t PP o +=;点21,P P 对应的参数为21,t t ,则222121||||ba t t P P +-=;⎩⎨⎧+=+=ααsin cos 00t y y t x x (t 为参数)其中方向向量为)sin ,(cos αα, t 的几何意义为||o PP ;斜率为αtan ;倾斜角为)0(παα<≤。

(6)一般式:任何一条直线方程均可写成一般式:0=++C By Ax ;(B A ,不同时为零);反之,任何一个二元一次 方程都表示一条直线。

注意:①直线方程的特殊形式,都可以化为直线方程的一般式,但一般式不一定都能化为特殊形式,这要看系数C B A ,,是否为0才能确定。

②指出此时直线的方向向量:),(A B -,),(A B -,),(2222BA A BA B +-+ (单位向量);直线的法向量:),(B A ;(与直线垂直的向量) 三、两直线的位置关系:位置关系222111::b x k y l b x k y l +=+=:0:22221111=++=++C y B x A l C y B x A l 平行⇔ 21k k =,且21b b ≠ 212121C C B B A A ≠= 重合⇔ 21k k =,且21b b =212121C C B B A A == 相交⇔ 21k k ≠ 2121B B A A ≠ 垂直⇔121-=⋅k k02121=+B B A A设两直线的方程分别为:222111::b x k y l b x k y l +=+=或0:0:22221111=++=++C y B x A l C y B x A l ;当21k k ≠或1221B A B A ≠时它们相交,交点坐标为方程组⎩⎨⎧+=+=2211b x k y b x k y 或⎩⎨⎧=++=++00222111Cy B x A C y B x A 解; 注意:①对于平行和重合,即它们的方向向量(法向量)平行;如:),(),(2211B A B A λ=对于垂直,即它们的方向向量(法向量)垂直;如0),(),(2211=⋅B A B A②若两直线的斜率都不存在,则两直线 平行 ;若一条直线的斜率不存在,另一直线的斜率为 0 ,则两直线垂直。

③对于02121=+B B A A 来说,无论直线的斜率存在与否,该式都成立。

因此,此公式使用起来更方便.④斜率相等时,两直线平行(重合);但两直线平行(重合)时,斜率不一定相等,因为斜率有可能不存在。

四、两直线的交角(1)1l 到2l 的角:把直线1l 依逆时针方向旋转到与2l 重合时所转的角;它是有向角,其范围是; 注意:①1l 到2l 的角与2l 到1l 的角是不一样的;②旋转的方向是逆时针方向;③绕“定点”是指两直线的交点。

(2)直线1l 与2l 的夹角:是指由1l 与2l 相交所成的四个角的最小角(或不大于直角的角),它的取值范围是0πθ<≤;(3)设两直线方程分别为:222111::b x k y l b x k y l +=+=或0:0:22221111=++=++C y B x A l C y B x A l①若θ为1l 到2l 的角,121tan k k k k +-=θ或1221tan B B A A B A B A +-=θ;②若θ为1l 和2l 的夹角,则12121tan k k k k +-=θ或21211221tan B B A A B A B A +-=θ;③当0121=+k k 或02121=+B B A A 时,o90=θ;注意:①上述与k 有关的公式中,其前提是两直线斜率都存在,而且两直线互不垂直;当有一条直线斜率不存在时,用数形结合法处理。

②直线1l 到2l 的角θ与1l 和2l 的夹角α:)2(πθθα≤=或)2(πθθπα>-=;五、点到直线的距离公式:设点),(00y x P 和直线0:=++C By Ax l ,点P 到l 的距离为:2200||B A C By Ax d +++=;两平行线0:1111=++C y B x A l ,0:2222=++C y B x A l 的距离为:2221||B A C C d +-=;六、直线系:(1)设直线0:1111=++C y B x A l ,0:2222=++C y B x A l ,经过21,l l 的交点的直线方程为0)(=+++++C y B x A C y B x A λ(除去2l ); 如:①011=--⇒+=kx y kx y ,即也就是过01=-y 与0=x的交点)1,0(除去0=x 的直线方程。

②直线5)12()1(:-=-+-m y m x m l 恒过一个定点 。

注意:推广到过曲线0),(1=y x f 与0),(2=y x f 的交点的方程为:0)()(21=+x f x f λ; (2)与0:=++C By Ax l 平行的直线为0'=++C By Ax ; (3)与0:=++C By Ax l 垂直的直线为0'=+-C Ay Bx ; 七、对称问题: (1)中心对称:①点关于点的对称:该点是两个对称点的中点,用中点坐标公式求解,点),(b a A 关于),(d c C 的对称点)2,2(b d a c --②直线关于点的对称:Ⅰ、在已知直线上取两点,利用中点公式求出它们关于已知点对称的两点的坐标,再由两点式求出直线方程; Ⅱ、求出一个对称点,在利用21//l l 由点斜式得出直线方程;Ⅲ、利用点到直线的距离相等。

求出直线方程。

如:求与已知直线0632:1=-+y x l 关于点)1,1(-P 对称的直线2l 的方程。

(2)轴对称:①点关于直线对称:Ⅰ、点与对称点的中点在已知直线上,点与对称点连线斜率是已知直线斜率的负倒数。

Ⅱ、求出过该点与已知直线垂直的直线方程,然后解方程组求出直线的交点,在利用中点坐标公式求解。

如:求点)5,3(-A 关于直线0443:=+-y x l 对称的坐标。

②直线关于直线对称:(设b a ,关于l 对称)Ⅰ、若b a ,相交,则a 到l 的角等于b 到l 的角;若l a //,则l b //,且b a ,与l 的距离相等。

Ⅱ、求出a 上两个点B A ,关于l 的对称点,在由两点式求出直线的方程。

Ⅲ、设),(y x P 为所求直线直线上的任意一点,则P 关于l 的对称点'P 的坐标适合a 的方程。

如:求直线042:=-+y x a 关于0143:=-+y x l 对称的直线b 的方程。

八、简单的线性规划: (1)设点),(00y x P 和直线0:=++C By Ax l , ①若点P 在直线l 上,则000=++C By Ax ;②若点P 在直线l 的上方,则0)(00>++C By Ax B ;③若点P 在直线l 的下方,则0)(00<++C By Ax B ;(2)二元一次不等式表示平面区域:对于任意的二元一次不等式)0(0<>++C By Ax ,①当0>B时,则0>++C By Ax 表示直线:=++C By Ax 上方的区域;0<++C By Ax 表示直线:=++C By Ax 下方的区域;②当0<B时,则0>++C By Ax 表示直线:=++C By Ax 下方的区域;0<++C By Ax 表示直线0:=++C By Ax l 上方的区域;注意:通常情况下将原点)0,0(代入直线C By Ax ++中,根据0>或0<来表示二元一次不等式表示平面区域。

(3)线性规划:求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。

满足线性约束条件的解),(y x 叫做可行解,由所有可行解组成的集合叫做可行域。

生产实际中有许多问题都可以归结为线性规划问题。

注意:①当0>B时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越大;直线0=+By Ax 向下平移,则By Ax z +=的值越来越小;②当0<B 时,将直线0=+By Ax 向上平移,则By Ax z +=的值越来越小;直线0=+By Ax 向下平移,则By Ax z +=的值越来越大;如:在如图所示的坐标平面的可行域内(阴影部分且包括周界),目标函数ayx z +=取得最小值的最优解有无数个,则a为 ;圆部分一、曲线和方程:在直角坐标系中,如果某曲线C 上的点与一个二元方程0),(=y x f 的实数解建立了:①曲线上的点的坐标都是这个方程的解;(纯粹性) ②以这个方程的解为坐标的点都是曲线上的点;(完备性) 那么这个方程叫做曲线方程,这条曲线叫做方程的曲线。

相关文档
最新文档