2014年中考数学二轮精品复习试卷立体图形
中考数学二轮专题复习 立体图形
2013-2014学年度数学中考二轮复习专题卷-概率学校:___________姓名:___________班级:___________考号:___________1、一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是【】A.建B.设C.和D.谐2、下列图形中,是圆锥侧面展开图的是【】A.B.C.D.3、(2013年四川绵阳3分)把如图中的三棱柱展开,所得到的展开图是【】A.B.C.D.4、如图所示,将平面图形绕轴旋转一周,得到的几何体是A.B.C.D.5、如图所示,下列四个选项中,不是正方体表面展开图的是A.B.C.D.6、如图是一个长方体包装盒,则它的平面展开图是A.B.C.D.7、下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是【】A.B.C.D.8、小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是A.B. C. D.9、将一边长为2的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是A.1 B.C.D.10、(2013年四川自贡4分)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为【】A.B.9 C.D.11、如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为A.2cm3B.3cm3C.6cm3D.8cm312、下列四个图形中,是三棱柱的平面展开图的是A.B.C.D.13、如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计)A.40×40×70B.70×70×80C.80×80×80D.40×70×8014、下列图形中,能通过折叠围成一个三棱柱的是A.B.C.D.15、右下图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形,此时第七个图形中小正方体木块总数应是()A.25 B.66 C.91 D.12016、一个圆锥的底面半径为6㎝,圆锥侧面展开扇形的圆心角为240°,则圆锥的母线长为()A.9㎝B.12㎝C.15㎝D.18㎝17、如图是某一立方体的侧面展开图,则该立方体是()A B CD18、下面四个几何体中,俯视图为四边形的是()19、一个长8厘米,宽7厘米,高6厘米的长方体容器平放在桌面,里面盛有高2厘米的水(如图一); 将这个长方体沿着一条宽旋转90°,平放在桌面(如图二). 在旋转的过程中,水面的高度最高可以达到 ( )A.厘米B.4厘米C.3厘米D.厘米20、如图,圆锥的底面半径高则这个圆锥的侧面积是()A.B.C.D.二、填空题()21、如图,从一个三棱柱形状的萝卜块上切下一个三棱柱,剩下的部分仍然是一个棱柱,则剩下部分可能是____________________(填几何体的名称).22、将圆柱形纸筒的侧面沿虚线剪开,得到的平面图形是.23、如图,每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是.24、一个直六棱柱的侧面个数是,顶点个数是,棱的条数是。
全国各地2014年中考数学真题分类解析汇编 36投影与视图
投影与视图一、选择题1. (2014•安徽省,第3题4分)如图,图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是()A.B.C.D.考点:简单几何体的三视图.分析:俯视图是从物体上面看所得到的图形.解答:解:从几何体的上面看俯视图是,故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.2. (2014•福建泉州,第3题3分)如图的立体图形的左视图可能是()3. (2014•广西贺州,第8题3分)如图是由5个大小相同的正方体组成的几何体,它的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:从正面看,第一层是两个正方形,第二层左边是一个正方形,故选:C.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4. (2014•广西玉林市、防城港市,第5题3分)如图的几何体的三视图是()....5.(2014四川资阳,第2 题3分)下列立体图形中,俯视图是正方形的是()A.B.C.D.考点:简单几何体的三视图.分析:根据从上面看得到的图形是俯视图,可得答案.解答:解;A、的俯视图是正方形,故A正确;B、D的俯视图是圆,故A、D错误;C、的俯视图是三角形,故C错误;故选:A.点评:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.6.(2014年天津市,第5题3分)如图,从左面观察这个立体图形,能得到的平面图形是()A.B.C.D.考点:简单组合体的三视图分析:根据从左面看得到的图形是左视图,可得答案.解答:解;从左面看下面一个正方形,上面一个正方形,故选:A.点评:本题考查了简单组合体的三视图,从左面看得到的图形是左视图.7.(2014•新疆,第2题5分)如图是由四个相同的小正方体组成的立体图形,它的俯视图为()D8.(2014年云南省,第4题3分)某几何体的三视图如图所示,则这个几何体是()A.圆柱B.正方体C.球D.圆锥考点:由三视图判断几何体.分析:由主视图和左视图确定是柱体,锥体还是球体,再由俯视图确定具体形状.解答:解:根据主视图和左视图为三角形判断出是锥体,根据俯视图是圆形可判断出这个几何体应该是圆锥,故选D.点评:主视图和左视图的大致轮廓为三角形的几何体为锥体,俯视图为圆就是圆锥.9.(2014•温州,第3题4分)如图所示的支架是由两个长方形构成的组合体,则它的主视图是()解:从几何体的正面看可得此几何体的主视图是,10.(3分)(2014•毕节地区,第2题3分)如图是某一几何体的三视图,则该几何体是()11.(2014•武汉,第7题3分)如图是由4个大小相同的正方体搭成的几何体,其俯视图是()12.(2014•襄阳,第4题3分)如图几何体的俯视图是()B13.(2014•邵阳,第3题3分)如图的罐头的俯视图大致是()14.(2014•孝感,第2题3分)如图是某个几何体的三视图,则该几何体的形状是()15.(2014•四川自贡,第3题4分)如图,是由几个小立方体所搭成的几何体的俯视图,小正方形中的数字表示在该位置上的立方体的个数,这个几何体的正视图是( )16、(2014·云南昆明,第2题3分)左下图是由3个完全相同的小正方体组成的立体图形,它的主视图是( )DCB A17.(2014·浙江金华,第3题4分)一个几何体的三视图如图所示,那么这个几何体是【】【答案】D.【解析】18. (2014•湘潭,第5题,3分)如图,所给三视图的几何体是()(第1题图)19. (2014•株洲,第5题,3分)下列几何体中,有一个几何体的主视图与俯视图的形状不一样,这个几何体是()20. (2014•泰州,第4题,3分)一个几何体的三视图如图所示,则该几何体可能是()21.(2014•呼和浩特,第4题3分)如图是某几何体的三视图,根据图中数据,求得该几何体的体积为()22.(2014•德州,第3题3分)图甲是某零件的直观图,则它的主视图为()23.(2014年山东泰安,第3题3分)下列几何体,主视图和俯视图都为矩形的是()A.B.C.D.解:A、圆柱主视图是矩形,俯视图是圆,故此选项错误;B、圆锥主视图是等腰三角形,俯视图是圆,故此选项错误;C、三棱柱主视图是矩形,俯视图是三角形,故此选项错误;D、长方体主视图和俯视图都为矩形,故此选项正确;故选:D.点评:本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中.二.填空题1.(2014年广东汕尾,第15题5分)写出一个在三视图中俯视图与主视图完全相同的几何体.分析:主视图、俯视图是分别从物体正面和上面看,所得到的图形.解:球的俯视图与主视图都为圆;正方体的俯视图与主视图都为正方形.故答案为:球或正方体.点评:考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.2.(2014•浙江湖州,第12题4分)如图,由四个小正方体组成的几何体中,若每个小正方体的棱长都是1,则该几何体俯视图的面积是.分析:根据从上面看得到的图形是俯视图,可得俯视图,根据矩形的面积公式,可得答案.解:从上面看三个正方形组成的矩形,矩形的面积为1×3=3,故答案为:3.点评:本题考查了简单组合体的三视图,先确定俯视图,再求面积.3. (2014•扬州)如图,这是一个长方体的主视图和俯视图,由图示数据(单元:cm)可以得出该长方体的体积是18 cm3.(第1题图)。
2014年中考数学二轮专题复习试卷:四边形
2014年中考数学二轮专题复习试卷:四边形D则S1+S2的值为( )A.16B.17C.18D.1910.(2013湖南襄阳)如图,平行四边形ABCD的对角线交于点O,且AB=5,△OCD的周长为23,则平行四边形ABCD的两条对角线的和是( ) A.18 B.28 C.36D.4611.(2013四川雅安)如图,正方形 ABCD中,点E、F 分别在 BC、CD上,△AEF是等边三角形,连接AC 交 EF于G,下列结论:①BE=DF, ②∠DAF=15°,③AC 垂直平分EF,④BE+DF=EF,⑤S△C E F =2S△ABE.其中正确结论有( )个A.2B.3C.4D.512.(2013重庆)如图,矩形纸片ABCD中,AB=6 cm,BC=8 cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC 交于点E,则CE的长为( )A.6 cmB.4 cmC.2 cm D.1cm13.(2012贵州黔南州)如图,四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是( )A.AB=CDB.AD=BCC.AB=BCD.AC=BD14.(2013四川巴中)如图,在梯形ABCD中,AD∥BC,点E、F分别是AB、CD的中点,且EF=6,则AD+BC的值是( )A.9B.10.5C.12D.1515.(2013湖北十堰)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为( )A.8B.9C.10D.11二、填空题(本大题共6个小题,每小题3分,共18分)16.(2013四川遂宁)若一个多边形内角和等于1 260°,则该多边形边数是.17.(2013浙江舟山)如图,正方形ABCD的边长为3,点E、F分别在边AB、BC上,AE=BF=1,小球P从点E出发沿直线向点F运动,每当碰到正方形的边时反弹,反弹时反射角等于入射角.当小球P第一次碰到点E时,小球P所经过的路程为.18.(2013江苏苏州)如图,在平面直角坐标系中,四边形OABC是边长为2的正方形,顶点A,C分别在x,y轴的正半轴上.点Q在对角线OB上,且OQ=OC,连接CQ并延长CQ交边AB于点P,则点P的坐标为( , ).19.(2013江苏苏州)如图,在矩形ABCD中,点E是边CD的中点,将△ADE沿AE折叠后得到△AFE,且点F在矩形ABCD内部,将AF延长交边BC于点G.若CG1AD,则= (用含k的代数式表示).GB k AB20.(2013贵州六盘水)如图,梯形ABCD中,AD∥BC,AD=4,AB=5,BC=10,CD的垂直平分线交BC于E,连接DE,则四边形ABED的周长等于.21.(2013云南曲靖)如图,在直角梯形ABCD 中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,则CD= .三、解答题(本大题共5个小题,共57分)22.(本小题满分10分)(2013广东深圳)如图,在等腰梯形ABCD中,已知AD∥BC,AB=DC,AC与BD交于点O,廷长BC到E,使得CE=AD,连接DE.(1)求证:BD=DE.(2)若AC⊥BD,AD=3,S梯形 ABCD =16,求AB的长.23.(本小题满分10分)(2013重庆)如图,在矩形ABCD中,E、F分别是AB、CD 上的点,AE=CF,连接EF、BF,EF与对角线AC交于点O,且BE=BF,∠BEF=2∠BAC.(1)求证:OE=OF;(2)若BC=23,求AB的长. 24.(本小题满分10分)(2013山东济宁)如图1,在正方形ABCD中,E、F分别是边AD、DC上的点,且AF⊥BE.(1)求证:AF=BE;(2)如图2,在正方形ABCD中,M、N、P、Q分别是边AB、BC、CD、DA上的点,且MP⊥NQ.MP 与NQ是否相等?并说明理由.25.(本小题满分12分)(2013江苏苏州)如图,点P是菱形ABCD对角线AC上的一点,连接DP并延长DP交边AB于点E,连接BP并延长BP交边AD于点F,交CD的延长线于点G.(1)求证:△APB≌△APD;(2)已知DF∶FA=1∶2,设线段DP的长为x,线段PF的长为y.①求y与x的函数关系式;②当x=6时,求线段FG的长.26.(本小题满分15分)(2013江苏苏州)如图,点O为矩形ABCD的对称中心,AB=10 cm,BC=12 cm.点E、F、G分别从A、B、C三点同时出发,沿矩形的边按逆时针方向匀速运动,点E的运动速度为1 cm/s,点F的运动速度为3 cm/s,点G的运动速度为1.5 cm/s.当点F到达点C(即点F与点C重合)时,三个点随之停止运动.在运动过程中,△EBF 关于直线EF的对称图形是△EB′F,设点E、F、G运动的时间为t(单位:s).(1)当t=______s时,四边形EBFB′为正方形;(2)若以点E、B、F为顶点的三角形与以点F、C、G为顶点的三角形相似,求t的值;(3)是否存在实数t,使得点B′与点O重合?若存在,求出t的值;若不存在,请说明理由.参考答案1.D2.B3.B4.B5.C6.D7.A 8.B 9.B 10.C 11.C13.D 14.C 15.A16.9 17.65 18.(2422)-,19.k12+ 20.19 21.3222.(1)证明:∵AD∥BC,CE=AD,∴四边形ACED是平行四边形,∴AC=DE,∵四边形ABCD是等腰梯形,AD∥BC,AB=DC,∴AC=BD,∴BD=DE.(2)解:过点D作DF⊥BC于点F,∵四边形ACED是平行四边形,∴CE=AD=3,AC∥DE,∵AC⊥BD,∴BD⊥DE,∵BD=DE,2BDEABCD111S BD DE BD BE DF.22211BC CE DF BC AD DF22S16∴====+=+==梯形()(),42, ∴2,221DF BF EF BE 42CF EF CE 1AB CD CF DF 17.∴====∴=-=∴==+=,,23.证明:(1)∵四边形ABCD 是矩形, ∴CD ∥AB , ∴∠FCO=∠EAO. 在△FCO 与△EAO 中,FOC EOA FCO EAO CF AE ∠=∠⎧⎪∠=∠⎨⎪=⎩,,, ∴△FCO ≌△EAO(AAS), ∴OF=OE ; (2)解:连接OB , ∵∠BEF=2∠BAC, 又∠BEF=∠BAC+∠AOE ,∴∠BAC=∠AOE , ∴△EAO 为等腰三角形, ∴AE=OE.∵△FCO ≌△EAO(已证),∴△FCO为等腰三角形,∴OF=CF=AE=OE,∴O为EF的中点.∵BE=BF,∴BO垂直平分EF,∴Rt△BCF≌Rt△BOF≌Rt△BOE(HL),∴∠CBF=∠OBF=∠OBE=30°.∵BC=23,∴CF=AE=2,BF=BE=4,∴AB=AE+BE=2+4=6.24.证明:(1)设AF与BE交于点G,∵四边形ABCD是正方形,∴AB=AD,∠BAD=∠D=90°,∴Rt△ADF中,∠FAD+∠AFD=90°.∵AF⊥BE,∴∠AGE=90°,∴Rt△AGE中,∠EAG+∠AEG=90°,∴∠AFD=∠AEG,∴△DAF≌△ABE,∴AF=BE;(2)解:过点A 作AF ∥MP 交CD 于点F ,过点B 作BE ∥NQ 交AD 于E,得到,∴AF=MP ,BE=NQ. 由(1)得AF=BE , ∴MP=NQ.25.(1)证明:∵四边形ABCD 是菱形, ∴AB=AD ,AC 平分∠DAB, ∴∠DAP=∠BAP. 在△APB 和△APD 中,AB AD,BAP DAP,AP AP,=⎧⎪∠=∠⎨⎪=⎩∴△APB ≌△APD;(2)解:①∵四边形ABCD 是菱形,∴AD ∥BC ,AD=BC.∴△AFP ∽△CBP ,AF FP.BC BP∴= ∵DF ∶FA=1∶2,∴AF ∶BC=2∶3,∴FP ∶BP=2∶3.由(1)知PB=PD=x , 又∵PF=y ,y 22y x x 33∴=∴=,,即y 与x 的函数关系式为2y x 3=; ②当x=6时,2y 643=⨯=,∴FB=FP+PB=10. FG FD 1DG AB DFG AFB FB FA 21FG 10 5.2∴∴==∴=⨯=,∽,,∴线段FG 的长为5.26.解:(1)2.5(2)由题意知AE=t ,BF=3t ,CG=1.5t.∵AB=10,BC=12,∴BE=10-t ,FC=12-3t. ∵点F 在BC 上运动,∴0≤t ≤4.①当△EBF ∽△FCG 时,得EB BF 10t 3t 14:,t ;FC CG 123t 1.5t 5-==∴=-,即 ②当△EBF ∽△GCF 时,得EB BF 10t 3t ,CG FC 1.5t 123t-==-,即: 整理得:t 2+28t-80=0,∴t 1=-14+269,2t 14269=--. ∵0≤t ≤4,(14t s t 1469 s 5∴==-+或符合题意. (3)不存在.理由如下:连接BD.∵点O为矩形ABCD的对称中心,∴点O为BD的中点.假设存在这样的实数t,使得点B′与点O重合,此时EF是OB的垂直平分线,垂足为点H.BDBD BH42EHB BHF BCD,BE BH BF BH,,DB DC BD BC6161BE BF1012∴===∴==∴==易知易证∽∽,,∴AE=10-BE=3.9.∵点F的运动速度是点E运动速度的3倍,但BF3,AE≠∴不存在实数t,使得点B′与点O重合.。
2014中考数学二模试卷及答案(最新两套)
13.已知一次函数 的图象过点 、 .若 ,则
▲.
14.如图,四边形ABCD内接于⊙O,AD∥BC,∠ACB=50°,则∠CBD=▲°.
15.如图,在函数 (x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为1,且后面每个点的横坐标与它前面相邻点的横坐标的差都是1,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则Sn=▲.(用含n的代数式表示)
∴△ABD的外接圆⊙O的圆心O在AC上.…………………………2分
∵OD=OB,OC=OC,CB=CD,∴△OBC≌△ODC.
∴∠OBC=∠ODC=90°.………………………………………………3分
又∵OB为半径,∴⊙O与BC相切.……………………………………4分
(没有说明圆心在AC上,扣1分.)
(2)∵AD=CD,∴∠ACD=∠CAD.∠COD=2∠CAD.
一、选择题(本大题共6小题,每小题2分,共12分)
题号
1
2
3
4
5
6
答案
C
D
D
B
D
B
二、填空题(本大题共10小题,每小题2分,共20分)
7. 8.39.x1=2,x2=4 10.乙11.2
12. 13.-2 14.50°15. 16.0.5或1.5
三、解答题(本大题共11小题,共88分)
17.(本题6分)
=.…………………………………………6分
19.(本题8分)
(1)∵△ABC≌△CAD,
2014年中考数学二轮专题复习试卷:圆(含答案)
(第5题)2014年中考数学二轮专题复习试卷:圆(时间:120分钟满分:120分)、选择题(本大题共15个小题,每小题 3分,共45分) 1.( 2013湖南岳阳)两圆半径分别为 3 cm 和7 cm ,当圆心距d=10 cm 时,两圆的位置关系A. 外离B.内切C.相交 D .外切2. (2013 重庆)如图,P 是O O 外一点,PA 是O O 的切线,PO=26 cm , PA=24 cm ,则O O的周长为() 连接EC .若AB=8, CD=2,则EC 的长为()4. ( 2013福建厦门)如图所示,在O O 中,AB=AC , / A =30 °则/ B=()A.150 °B.75 °C.60 °D.15 °5. (2013贵州遵义)如图,将边长为 1 cm 的等边三角形 ABC 沿直线I 向右翻动(不滑动),点B 从开始到结束,所经过路径的长度为()A.18 n cmB.16 n cmA. 2,15B.8C. 2.10D . 2 13A. cm? 2 B ,2 牛)cm C. cm 3D.3 cmO(第7题)7. (2013四川内江)如图,半圆 O 的直径AB=10 cm ,弦AC=6 cm , AD 平分/ BAC ,则AD的长为()A.4、、5 cm B35 cm C.5,5 cmD.4 cm8. (2013山东青岛)直线l 与半径为r 的O O 相交,且点O 到直线I 的距离为6,贝U r 的取值范围是() A.r v 6B.r=6C.r > 6D.r >69. 如图,把O O i 向右平移8个单位长度得O O 2,两圆相交于 A,B ,且0亦丄O 2A ,则图中阴A. — 4和一3之间B.3和4之间C. — 5和一4之间D.4和5之间11. (2013 重庆)如图,P 是O O 外一点,PA 是O O 的切线,PO=26 cm , PA=24 cm ,则O O的周长为() 12.(2012山东烟台)如图,O O 1,O O,O O 2的半径均为2cm,O O 3,O 04的半径均为1 cm ,O O与其他4个圆均相外切,图形既关于 O 1O 2所在直线对称,又关于 O 3O 4所在直线对称,则四边形O 1O 4O 2O 3的面积为() 2 2 2 2A.12 cmB.24 cmC.36 cmD.48 cmA.12 cmB.10 cmC.8 cmD.6 cmA.18 n cmB. 16 n cmC. 20 n cmD. 24 n cm影部分的面积是()OP 的长为半径画弧,交 x 轴的负半轴于点 A ,则点A 的横坐标介于()(第12题) (第13题) (第14题)13. 如图,在 Rt A ABC 中,/ C=90 ° AC=6,BC=8, O O 为厶ABC 的内切圆,点 D 是斜边 AB 的中点,贝U tan / ODA 的值为()B 乜3C.、.3D.214. (2012浙江宁波)如图,用邻边长分别为a,b (a<b )的矩形硬纸板裁出以a 为直径的两个半圆,再裁出与矩形较长边、两个半圆均相切的两个小圆 .把半圆作为圆锥形圣诞帽的侧面,小圆恰好能作为底面,从而做成两个圣诞帽 (拼接处材料忽略不计),则a 与b 满足的关系式是()亦+ 1B.ba2D.b 二、、2a15. ( 2013湖北襄阳)如图,以 AD 为直径的半圆O 经过Rt A ABC 斜边AB 的两个端点,交直角 边AC 于点E,B 、E 是半圆弧的三等分点,弧 BEB —3 二 9 r 3.3 2 D.- 2 3二、填空题(本大题共6个小题,每小题 3分,共18分) 16. (2012江苏扬州)已知一个圆锥的母线长为 10 cm,将侧面展开后所得扇形的圆心角是 144 °则这个圆锥的底面圆的半径是 _________ cm.17. ( 2013湖南株洲)如图,AB 是O O 的直径,/ BAC =42 °点D 是弦AC 的中点,则/ DOCA.b 二,3a C.b2的长为彳「则图中阴影部分的面积为A.-9 3 3 3C 2 2的度数是 _______ 度.19. (2013贵州遵义)如图,OC 是O O 的半径,AB 是弦,且OC 丄AB ,点P 在O O 上,/APC=26 °则/ BOC = 21. (2013湖北孝感)用半径为 10 cm ,圆心角为216 的扇形做成一个圆锥的侧面,则这个三、解答题(本大题共5个小题,共57分) 22. (本小题满分10分)(2013江苏镇江)如图 1 , Rt A ABC 中,/ ACB=90 ° AB=5, BC=3,点D 在边 AB 的延 长线上,BD=3,过点D 作DE 丄AB ,与边AC 的延长线相交于点 E ,以DE 为直径作O O 交 AE 于点F .(1) 求O O 的半径及圆心 O 到弦EF 的距离;(2) 连接CD ,交O O 于点G (如图2).求证:点 G 是CD 的中点.23. (本小题满分10分)42°13第17题图 第18题图18. (2013湖北襄阳)如图,水平放置的圆柱形排水管道的截面直径是1 m ,其中水面的宽AB 为0.8 m ,则排水管内水的深度为m .20. (2013重庆)如图圆锥的高为cm .勺半圆与对角线 AC4的正方形ABCD.(结果保留nO交于点E , P(2013广东梅州)如图,在矩形ABCD中,AB=2DA,以点A为圆心,AB为半径的圆弧交DC于点E,交AD的延长线于点F,设DA=2 .(1)求线段EC的长;(2)求图中阴影部分的面积.24. (本小题满分10分)(2012浙江温州)如图,△ ABC中,/ ACB=90 °,D是边AB上一点,且/ A=2 / DCB.E是BC边上的一点,以EC为直径的O O经过点D.(1)求证:AB是O O的切线;(2)若CD的弦心距为1, BE=E0,求BD的长.25. (本小题满分12分)(2013广东)如图所示,O 0是Rt A ABC的外接圆,/ ABC=90°, 弦BD = BA, AB=12, BC=5, BE 丄DC 交DC延长线于点E.(1 )求证:/ BCA=Z BAD ;(2 )求DE的长;(3)求证:BE是O 0的切线.26. (本小题满分15分)(2012浙江杭州)如图,AE切O 0于点E, AT交O 0于点M , N,线段0E交AT于点C, 0B 丄AT 于点B,已知/ EAT=30 °,AE =3i3,MN =2.22.(1)求/ COB的度数;(2)求O 0的半径R;⑶点F在O 0上(FME是劣弧),且EF=5,把△ OBC经过平移、旋转和相似变换后, 使它的两个顶点分别与点E, F重合•在EF的同一侧,这样的三角形共有多少个?你能在其中找出另一个顶点在O 0上的三角形吗?请在图中画出这个三角形,并求出这个三角形与△ 0BC的周长之比参考答案1.D2.C3.D4.B5.C7.A 8.C 9.B 10.A 11.C13.D 14.D 15.D16.417.48 18.0.2 19.52 20.10- n 21.8 22.解:(1)vZ ACB=90 °AB=5, BC=3 ,由勾股定理得:AC=4,■/ AB=5, BD=3 ,••• AD =8,•••/ ACB=90° DE 丄AD,• / ACB = Z ADE,•••/ A= / A,•△ ACB s\ ADE,BC AC ABDE AD AE3 4 5DE 8 AE,•DE=6, AE=10 ,即O O的半径为3;过O作OQ丄EF于Q,则/ EQO= / ADE=90°,•••/ QEO= / AED ,•△ EQO EDA ,EO OQAE " AD,3 OQ■ _ __■ ■ — 110 8•- OQ =2.4 ,即圆心O到弦EF的距离是2.4;(2)连接EG ,•/ AE=10 , AC=4 ,•CE=6 ,•CE=DE=6 ,•/ DE为直径,•/ EGD=90°,•EG 丄CD,•••点G为CD的中点.E E/• AB =AE =4, ••• EC=CD — DE =4 - 2I _3;AD 1 (2)••• sin DEA 二AE 2•••/ DEA=30° ,•••/ EAB=30° , •图中阴影部分的面积为:S 扇形 FAB_S DAE - S 扇形 EAB 2 2=90 2 2込-30 ・=±-2、E360 2360 3 24. (1)证明:连接OD.•••/ DOB=2/ DCB,/A=2/ DCB, •••/ A= /DOB.又•••/ A+ / B=90°,•••/ DOB+ / B=90° ,•••/ BDO=90°,• OD 丄AB,「. AB 是O O 的切线.(2)解:过点 O 作OM 丄CD 于点M,1••9D=OE=BE= —BO 2 ,/ BDO =90°,•••/ DBO=30°,Z DOB=60°.23•解: A B D (1)v 在矩形 ABCD 中,AB=2DA ,A HDDA=2,1DCO= —/ DOB,2•••/ DCO=30°,又••• OM 丄CD,OM=1 ,•OC=2OM=2,•OB=4,OD=2,•BD=OB・cos / DBO 4 汇—=2^32•BD的长为2 \ 3.25. (1)证明:在O O中,•••弦BD = BA,且圆周角/ BCA和/ BAD分别对BA和BD,•/ BCA=Z BAD.(2)解:T BE丄DC,• / E=90°.又•••/ BAC= / EDB,Z ABC=90°•△ ABC DEB,AB ACDE "BD '在Rt A ABC 中,/ ABC=90°, AB=12, BC=5,•由勾股定理得:AC=13 ,12 13 144,DE .DE 12 13(3)证明:如图,连接OB,•/OA=OB,AZ OAB =Z OBA.•/ BA=BD,•/ OBD = Z OBA.又/ BDC = / OAB= / OBA,•/ OBD= / BDC.•OB // DE ,•/ OBE = Z DBE + Z OBD=90°.即BE丄OB于B,所以BE是O O的切线.26. 解:(1)T AE 切O O 于点E,•AE 丄CE,又OB丄AT,•••/ AEC=/ CBO=90°又/ BCO= /ACE,•△ AEC OBC,又/ A=30° ,•••/ COB= / A=30° .⑵•/ AE=3、、3, / A=30 °•••在Rt A AEC 中,ECtan A=tan 30 ,AE即EC=AE tan 30 °3.•/ OB丄MN,「. B为MN的中点,又MN=2、、22,•MB =」MN = .22.2连接。
全国各地2014年中考数学试卷解析版分类汇编 投影与视图
投影与视图一、选择题1. (2014•四川巴中,第5题3分)如图,两个大小不同的实心球在水平面靠在一起组成如图所示的几何体,则该几何体的左视图是()A.两个外切的圆B.两个内切的圆C.两个内含的圆D.一个圆考点:三视图.分析:根据左视图是从左面看得到的视图,圆的位置关系解答即可.解答:从左面看,为两个内切的圆,切点在水平面上,所以,该几何体的左视图是两个内切的圆.故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.2. (2014•山东威海,第6题3分)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求、此几何体的主视图和俯视图都是“、此几何体的主视图和左视图都是、此几何体的主视图和左视图都是、此几何体的主视图是,俯视图是3. (2014•山东潍坊,第4题3分)一个几何体的三视图如右图所示,则该几何体是( )考点:由三视图还原实物图.分析:根据主视图、左视图、俯视图的形状,将它们相交得到几何体的形状.解答:由三视图知,从正面和侧面看都是上面梯形,下面长方形,从上面看为圆环,可以想象到实物体上面是圆台,下面是空心圆柱.故选D.点评:本题考查几何体的三视图与直观图之间的相互转化.4.(2014•山东烟台,第4题3分)如图是一个正方体截去一角后得到的几何体,它的主视图是()A.B.C.D.考点:三视图.分析:根据主视图是从正面看到的图形判定则可.解答:从正面看,主视图为.故选:C.点评:本题考查了三视图的知识,根据主视图是从物体的正面看得到的视图得出是解题关键.BD6.(2014•湖南张家界,第5题,3分)某几何体的主视图、左视图和俯视图分别如图,则该几何体的体积为()视方向,则它的主视图可以是解析:选B. ∵上下两凸起是圆弧,非圆,中间是两个圆片的叠合,其主视图应为矩形. 8.(2014山东济南,第6题,3分)如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是第6题A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是4【解析】主题图、俯视图均为4个正方形,其面积为4,左视图为3个正方形,其面积为3,故选B.9.(2014•山东聊城,第2题,3分)如图是一个三棱柱的立体图形,它的主视图是()B D10.(2014•浙江杭州,第2题,3分)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为()该礼盒的主视图是( )A .B .C .D .考点: 简单组合体的三视图.分析: 找到从正面看所得到的图形即可.解答: 解:从正面看,是两个矩形,右边的较小. 故选A .点评: 本题考查了三视图的知识,主视图是从物体的正面看得到的视图. 13:将两个长方体如图放置,到所构成的几何体的左视图可能是( )答案:C解析:根据三视图可知,C正确。
2014年中考数学二轮考点分类训练 专题04 图形的变换(答案详解+名师点评)
浙教版2014年中考数学二轮考点分类训练专题专题04 图形的变换班级姓名一、选择题1.如图是一个正方体包装盒的表面展开图,若在其中的三个正方形A,B,C内分别填上适当的数,使得将这个表面展开图沿虚线折成正方体后,相对面上的两数互为相反数,则填在A,B,C内的三个数依次是()A.1,0,-2 B.0,1,-2 C.0,-2,1 D.-2,0,12.△ABC中,AB=5,AC=12,BC=13,以AC所在的直线为轴将△ABC旋转一周得一个几何体,这个几何体的表面积是()A、90πB、65πC、156πD、300π3.如图所示的正四棱锥的俯视图是()4. 如图,这是由5个大小相同的小正方体摆成的立体图形,它的俯视图...是()A. B.C. D.5. 由几个大小相同的小正方体组成的立体图形的俯视..图如图所示,则这个立体图形应是下图中的 ( )A .B .C .D .6. 如图,⊙B 的半径为4cm ,00MBN 6∠=,点A 、C 分别是射线BM 、BN 上的动点,且直线AC BN ⊥.当AC 平移到与⊙B 相切时,AB 的长度是( )A .8cmB .6cmC .4cmD .2cm 7. 下列几何体中,俯视图为四边形的是( )A .B .C .D .8. 如下左图是由6个大小相同的正方体组成的几何体,它的左视图是( )A . B .C .D .9.下面四个立体图形中,主视图是三角形的是( )A .B .C .D .10. 在下列几何体中,主视图、左视图与俯视图都是相同的圆,该几何体是【】A、B、C、D、10.正方形纸片折一次,沿折痕剪开,能剪得的图形是()A. 锐角三角形B. 钝角三角形C. 梯形D. 菱形11. 如图是一个正六棱柱的主视图和左视图,则图中的a ()2B. 3C. 2 D. 1A. 312.如图是某几何体的三视图,则该几何体的体积是()A.183B.543C.1083D.216313.如图是一台球桌面示意图,图中小正方形的边长均相等,黑球放在如图所示的位置,经白球撞击后沿箭头方向运动,经桌边反弹最后进入球洞的序号是()A.①B.②C.⑤D.⑥14.小明用棋子摆放图形来研究数的规律.图1中棋子围城三角形,其棵数3,6,9,12,…称为三角形数.类似地,图2中的4,8,12,16,…称为正方形数.下列数中既是三角形数又是正方形数的是()A.2010B.2012C.2014D.201615.用3个相同的立方体如图所示,则它的主视图是()A.B.C.D.二、填空题1.用●表示实圆,用○表示空心圆,现有若干实圆与空心圆按一定规律排列如下:●○●●○●●●○●○●●○●●●○●○●●○●●●○······问前2001个圆中,有个空心圆。
2014年中考数学二轮精品复习试卷(点、线、面、角)含解析
2014年中考数学二轮精品复习试卷:点、线、面、角学校:___________姓名:___________班级:___________考号:___________1、如图,AB//CD,∠CDE=1400,则∠A的度数为A.1400B.600C.500D.4002、如图,直线a、b、c、d,已知c⊥a,c⊥b,直线b、c、d交于一点,若∠1=500,则∠2等于【】A.600B.500C.400D.3003、如图,AB平行CD,如果∠B=20°,那么∠C为【】A.40°B.20°C.60°D.70°4、已知∠A=65°,则∠A的补角的度数是A.15°B.35°C.115°D.135°5、如图,直线a∥b,∠1=70°,那么∠2的度数是A.50°B.60°C.70°D.80°6、如图,AC∥DF,AB∥EF,点D、E分别在AB、AC上,若∠2=50°,则∠1的大小是A.30°B.40°C.50°D.60°7、如图,直线l1∥l2,则∠α为【】A.150°B.140°C.130°D.120°8、如图,五边形ABCDE中,AB∥CD,∠1、∠2、∠3分别是∠BAE、∠AED、∠EDC 的外角,则∠1+∠2+∠3等于A.90°B.180°C.210°D.270°9、如图,直线l1、l2被直线l3、l4所截,下列条件中,不能判断直线l1∥l2的是A.∠1=∠3 B.∠5=∠4 C.∠5+∠3=180°D.∠4+∠2=180°10、如图,AB∥CD,AD平分∠BAC,若∠BAD=700,那么∠ACD的度数为【】A.400B.350C.500D.45011、已知∠A=650,则∠A的补角等于【】A.1250B.1050C.1150D.95012、如图,已知直线AB∥CD,∠GEB的平分线EF交CD于点F,∠1=40°,则∠2等于A.130°B.140°C.150°D.160°13、如图,下列条件中能判定直线l1∥l2的是【】A.∠1=∠2 B.∠1=∠5 C.∠1+∠3=180°D.∠3=∠514、下列图形中,由AB∥CD,能使∠1=∠2成立的是【】A.B.C.D.15、(2013年四川南充3分)下列图形中,∠2>∠1的是【】A.B.C.则D.16、如图,以∠AOB的顶点O为圆心,适当长为半径画弧,交OA于点C,交OB于点D.再分别以点C、D为圆心,大于CD的长为半径画弧,两弧在∠AOB内部交于点E,过点E作射线OE,连接CD.则下列说法错误的是A.射线OE是∠AOB的平分线B.△COD是等腰三角形C.C、D两点关于OE所在直线对称D.O、E两点关于CD所在直线对称17、已知:如图,下列条件中不能判断直线l1∥l2的是()A.∠1=∠3 B.∠2=∠3 C.∠4=∠5 D.∠2+∠4=180°18、如图,点O在直线AB上,射线OC平分∠DOB.若∠COB=35°,则∠AOD等于A.35°B.70°C.110° D.145°19、一个多边形的每个内角均为108°,则这个多边形是A.七边形B.六边形C.五边形D.四边形20、在等腰△ABC中,∠ACB=90°,且AC=1.过点C作直线l∥AB,P为直线l上一点,且AP=AB.则点P到BC所在直线的距离是A.1B.1或C.1或D.或二、填空题()21、命题“对顶角相等”的条件是.22、如图,三角板的直角顶点在直线l上,看∠1=40°,则∠2的度数是.23、如图,直线a和直线b相交于点O,∠1=50°,则∠2=.24、如图,已知直线a∥b,∠1=35°,则∠2= .25、如图,将一个宽度相等的纸条沿AB折叠一下,如果∠1=130º,那么∠2= .26、如图,两直线a、b被第三条直线c所截,若∠1=50°,∠2=130°,则直线a、b的位置关系是 .27、若∠A的补角为78°29′.则∠A=.28、如图,∠AOB=90°,∠BOC=30°,则∠AOC=°.29、如图,直线AB、CD相交于点O,若∠BOD=40°,OA平分∠COE,则∠AOE=.30、如图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A=.31、如图,AB∥CD,AE=AF,CE交AB于点F,∠C=110°,则∠A=°.32、如图所示,以O为端点画六条射线后OA,OB,OC,OD,OE,O后F,再从射线OA 上某点开始按逆时针方向依次在射线上描点并连线,若将各条射线所描的点依次记为1,2,3,4,5,6,7,8…后,那么所描的第2013个点在射线上.33、如图,直线,被直线所截,若∥,∠1=40°,∠2=70°,则∠3= 度34、如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= 度35、如图钢架中,焊上等长的13根钢条来加固钢架,若AP1=P1P2=P2P3=…=P13P14=P14A,则∠A的度数是.三、计算题()36、如图:点A、C、E、B、D在一直线上,AB=CD,点E是CB的中点,若AE=10,CB=4,请求出线段BD的长。
2014年各地中考数学试卷解析版分类精品汇编梯形、投影与视图
2014年各地中考数学试卷解析版分类汇编梯形、投影与视图(一)投影与视图一、选择题1. (2014•山东烟台)如图,已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,梯形中位线EF与对角线BD相交于点M,且BD⊥CD,则MF的长为()A. 1.5 B.3C.3.5 D.4.5考点:等腰梯形的性质,直角三角形中30°锐角的性质,梯形及三角形的中位线.分析:根据等腰梯形的性质,可得∠ABC与∠C的关系,∠ABD与∠ADB的关系,根据等腰三角形的性质,可得∠ABD与∠ADB的关系,根据直角三角形的性质,可得BC的长,再根据三角形的中位线,可得答案.解答:已知等腰梯形ABCD中,AD∥BC,AB=CD=AD=3,∴∠ABC=∠C,∠ABD=∠ADB,∠ADB=∠BDC.∴∠ABD=∠CBD,∠C=2∠DBC.∵BD⊥CD,∴∠BDC=90°,∴∠DBC=∠C=30°,BC=2DC=2×3=6.∵EF是梯形中位线,∴MF是三角形BCD的中位线,∴MF=BC=6=3,故选:B.点评:本题考查了等腰梯形的性质,利用了等腰梯形的性质,直角三角形的性质,三角形的中位线的性质.2.(2014•湖南怀化)如图,已知等腰梯形ABCD中,AD∥BC,AB=DC,AC与BD相交于点O,则下列判断不正确的是()A.△ABC≌△DCB B.△AOD≌△COB C.△ABO≌△DCO D.△ADB≌△DAC考点:等腰梯形的性质;全等三角形的判定.分析:由等腰梯形ABCD中,AD∥BC,AB=DC,可得∠ABC=∠DCB,∠BAD=∠CDA,易证得△ABC≌△DCB,△ADB≌△DAC;继而可证得∠ABO=∠DCO,则可证得△ABO≌△DCO.解答:解:A、∵等腰梯形ABCD中,AD∥BC,AB=DC,∴∠ABC=∠DCB,在△ABC和△DCB中,,∴△ABC≌△DCB(SAS);故正确;B、∵AD∥BC,∴△AOD∽△COB,∵BC>AD,∴△AOD不全等于△COB;故错误;C、∵△ABC≌△DCB,∴∠ACB=∠DBC,∵∠ABC=∠DCB,∴∠ABO=∠DCO,在△ABO和△DCO中,,∴△ABO≌△DCO(AAS);故正确;D、∵等腰梯形ABCD中,AD∥BC,AB=DC,∴∠BAD=∠CDA,在△ADB和△DAC中,,∴△ADB≌△DAC(SAS),故正确.故选B.点评:此题考查了等腰三角形的性质以及全等三角形的判定与性质.此题难度适中,注意掌握数形结合思想的应用.3.(2014•山东淄博)如图,等腰梯形ABCD中,对角线AC、DB相交于点P,∠BAC=∠CDB=90°,AB=AD=DC.则cos∠DPC的值是()A.B. C. D.考点:等腰梯形的性质.分析:先根据等腰三角形的性质得出∠DAB+∠BAC=180°,AD∥BC,故可得出∠DAP=∠ACB,∠ADB=∠ABD,再由AB=AD=DC可知∠ABD=∠ADB,∠DAP=∠ACD,所以∠DAP=∠ABD=∠DBC,再根据∠BAC=∠CDB=90°可知,3∠ABD=90°,故∠ABD=30°,再由直角三角形的性质求出∠DPC的度数,进而得出结论.解答:解:∵梯形ABCD是等腰梯形,∴∠DAB+∠BAC=180°,AD∥BC,∴∠DAP=∠ACB,∠ADB=∠ABD,∵AB=AD=DC,∴∠ABD=∠ADB,∠DAP=∠ACD,∴∠DAP=∠ABD=∠DBC,∵∠BAC=∠CDB=90°,∴3∠ABD=90°,∴∠ABD=30°,在△ABP中,∵∠ABD=30°,∠BAC=90°,∴∠APB=60°,∴∠DPC=60°,∴cos∠DPC=cos60°=.故选A.点评:本题考查的是等腰梯形的性质,熟知等腰梯形同一底上的两个角相等是解答此题的关键.(二)投影与视图一、选择题1. (2014•四川巴中)如图,两个大小不同的实心球在水平面靠在一起组成如图所示的几何体,则该几何体的左视图是()A.两个外切的圆B.两个内切的圆C.两个内含的圆D.一个圆考点:三视图.分析:根据左视图是从左面看得到的视图,圆的位置关系解答即可.解答:从左面看,为两个内切的圆,切点在水平面上,所以,该几何体的左视图是两个内切的圆.故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.2. (2014•山东威海)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求的是()A.B.C.D.考点:简单组合体的三视图.分析:主视图、左视图、俯视图是分别从正面、左面、上面所看到的图形.解答:解:A、此几何体的主视图和俯视图都是“”字形,故此选项不合题意;B、此几何体的主视图和左视图都是,故此选项不合题意;C、此几何体的主视图和左视图都是,故此选项不合题意;D、此几何体的主视图是,俯视图是,左视图是,故此选项符合题意,故选:D.点评:此题主要考查了简单几何体的三视图,关键是注意所有的看到的棱都应表现在三视图中.3. (2014•山东潍坊)一个几何体的三视图如右图所示,则该几何体是( )考点:由三视图还原实物图.分析:根据主视图、左视图、俯视图的形状,将它们相交得到几何体的形状.解答:由三视图知,从正面和侧面看都是上面梯形,下面长方形,从上面看为圆环,可以想象到实物体上面是圆台,下面是空心圆柱.故选D.点评:本题考查几何体的三视图与直观图之间的相互转化.4. (2014•山东烟台)如图是一个正方体截去一角后得到的几何体,它的主视图是()A .B .C .D .考点:三视图.分析: 根据主视图是从正面看到的图形判定则可.解答:从正面看,主视图为.故选:C .点评:本题考查了三视图的知识,根据主视图是从物体的正面看得到的视图得出是解题关键. 5.(2014•湖南怀化)下列物体的主视图是圆的是( ) A .B .C .D .考点: 简单几何体的三视图分析: 根据从正面看得到的图形是主视图,可得答案. 解答: 解:A 、只是图是矩形,故A 不符合题意;B 、主视图是三角形,故B 不符合题意;C 、主视图是圆,故C 符合题意;D 、主视图是正方形,故D 不符合题意; 故选:C . 点评: 本题考查了简单组合体的三视图,从正面看得到的图形是主视图. 6.(2014•湖南张家界)某几何体的主视图、左视图和俯视图分别如图,则该几何体的体积为( )A . 3πB . 2πC .π D . 1 2考点: 由三视图判断几何体. 分析: 根据三视图可以判断该几何体为圆柱,圆柱的底面半径为1,高为3,据此求得其体积即可. 解答: 解:根据三视图可以判断该几何体为圆柱,圆柱的底面半径为1,高为3,故体积为:πr2h=π×1×3=3π, 故选A . 点评: 本题考查了由三视图判断几何体的知识,解题的关键是了解圆柱的三视图并清楚其体积的计算方法.7.(2014•江西抚州)某运动器材的形状如图所示,以箭头所指的方向为左视方向,则它的主视图可以是解析:选B. ∵上下两凸起是圆弧,非圆,中间是两个圆片的叠合,其主视图应为矩形.8.(2014山东济南)如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是正面第6题A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是4【解析】主题图、俯视图均为4个正方形,其面积为4,左视图为3个正方形,其面积为3,故选B.9.(2014•山东聊城)如图是一个三棱柱的立体图形,它的主视图是()A.B.C.D.考点:简单几何体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解;从正面看是矩形,看不见的棱用虚线表示,故选:B.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图,注意看不到的棱用虚线表示.10.(2014•浙江杭州)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为()A . 12πcm 2B . 15πcm 2C . 24πcm 2D . 30πcm 2考点: 圆锥的计算专题: 计算题. 分析: 俯视图为圆的只有圆锥,圆柱,球,根据主视图和左视图都是三角形可得到此几何体为圆锥,那么侧面积=底面周长×母线长÷2. 解答: 解:∵底面半径为3,高为4,∴圆锥母线长为5, ∴侧面积=2πrR ÷2=15πcm 2. 故选B . 点评: 由该三视图中的数据确定圆锥的底面直径和高是解本题的关键;本题体现了数形结合的数学思想,注意圆锥的高,母线长,底面半径组成直角三角形.11. (2014•十堰)在下面的四个几何体中,左视图与主视图不相同的几何体是( ) A .正方体 B .长方体C .球D .圆锥考点: 简单几何体的三视图 分析: 主视图、左视图是分别从物体正面、左面看,所得到的图形.解答: 解:A 、正方体的左视图与主视图都是正方形,故此选项不合题意;B 、长方体的左视图与主视图都是矩形,但是矩形的不一样,故此选项符合题意;C 、球的左视图与主视图都是圆,故此选项不合题意;D 、圆锥左视图与主视图都是等腰三角形,故此选项不合题意; 故选:B .点评: 本题考查了几何体的三种视图,掌握定义是关键.注意所有的看到的棱都应表现在三视图中. 12. (2014年湖北咸宁)6月15日“父亲节”,小明送给父亲一个礼盒(如图),该礼盒的主视图是( )A.B.C.D.考点:简单组合体的三视图.分析:找到从正面看所得到的图形即可.解答:解:从正面看,是两个矩形,右边的较小.故选A.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.13:将两个长方体如图放置,到所构成的几何体的左视图可能是()答案:C解析:根据三视图可知,C正确。
2014年中考数学二轮精品复习试卷投影与视图含答案解析
2014年中考数学二轮精品复习试卷:投影与视图学校:___________姓名:___________班级:___________考号:___________ 1、下列几何体中,俯视图为四边形的是A.B.C.D.2、用3个相同的立方体如图所示,则它的主视图是【】A.B.C.D.3、如图,由三个小立方体搭成的几何体的俯视图是【】A.B.C.D.4、如图所示的几何体的俯视图可能是【】A.B.C.D.5、下图是由八个相同的小正方体组合而成的几何体,其左视图是【】A.B.C.D.6、如图是由6个同样大小的正方体摆成的几何体.将正方体①移走后,所得几何体A.主视图改变,左视图改变B.俯视图不变,左视图不变C.俯视图改变,左视图改变D.主视图改变,左视图不变7、下面几何体的左视图是A.B.C.D.8、如图是由3个相同的正方体组成的一个立体图形,它的三视图是A.B.C.D.9、下列几何体中,有一个几何体的俯视图的形状与其它三个不一样,这个几何体是A.正方体B.圆柱C.圆锥D.球10、并排放置的等底等高的圆锥和圆柱(如图)的主视图是A.B.C.D.11、如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是【】A.B.C.D.12、一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是A.B.C.D.13、如图是一个几何体的三视图,则这个几何体的侧面积是A.12πcm2B.8πcm2C.6πcm2D.3πcm214、一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为【】A.2个B.3个C.5个D.10个15、下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是A.(3)(1)(4)(2)B.(3)(2)(1)(4)C.(3)(4)(1)(2)D.(2)(4)(1)(3)16、一个几何体的三视图如图所示,则这个几何体的位置是A.B.C.D.17、一个几何体的三视图如图所示,则这个几何体是A.B.C.D.18、下列几何体中,主视图是矩形,俯视图是圆的几何体是A.B.C.D.19、如图,由几个小正方体组成的立体图形的左视图是A.B.C.D.20、下列几何体中,同一个几何体的主视图与俯视图不同的是【】A.B.C.D.21、如图,四个几何体分别为长方体、圆柱体、球体和三棱柱,这四个几何体中有三个的某一种视图都是同一种几何图形,则另一个几何体是A.B.C.D.22、如图是由5个大小相同的正方体组成的几何体,它的俯视图为A.B.C.D.23、(2013年四川自贡4分)某超市货架上摆放着某品牌红烧牛肉方便面,如图是它们的三视图,则货架上的红烧牛肉方便面至少有【】A.8 B.9 C.10 D.1124、如图是一个圆柱和一个长方体的几何体,圆柱的下底面紧贴在长方体的上底面上,那么这个几何体的俯视图可能是A.B.C.D.25、小乐用一块长方形硬纸板在阳光下做投影实验,通过观察,发现这块长方形硬纸板在平整的地面上不可能出现的投影是A.三角形B.线段C.矩形D.正方形二、填空题()26、如图,一个空间几何体的主视图和左视图都是边长为2的正三角形,俯视图是一个圆,那么这个几何体的侧面积是。
2014年中考数学复习试卷含答案解析
2014 年中考数学二轮精品复习试卷:圆学校: ___________姓名: ___________班级: ___________考号: ___________1、半径为 3 的圆中,一条弦长为4,则圆心到这条弦的距离是A . 3B. 4C.D.2、两个圆的半径分别为 2 和 3,当圆心距d=5 时,这两个圆的位置关系是【】A .内含B.内切C.相交D.外切3、如图,四边形 ABCD 是菱形,∠ A=60°, AB=2 ,扇形 BEF 的半径为 2,圆心角为 60°,则图中阴影部分的面积是A.B.C.D.4、如图,已知线段 OA 交⊙ O 于点 B ,且 OB = AB ,点 P 是⊙ O 上的一个动点,那么∠ OAP 的最大值是A . 90°B. 60°C.45°D. 30°5、如图, AB 是半圆的直径,点 D 是弧 AC 的中点,∠ ABC = 500,则∠ DAB 等于A . 55°B. 60°C.65°D. 70°6、如图, ABCD 的顶点 A 、B 、D 在⊙ O 上,顶点 C 在⊙ O 的直径 BE 上,∠ ADC=54°,连接AE ,则∠ AEB 的度数为A . 36°B . 46°C. 27°D. 63°7、一条排水管的截面如图所示,已知排水管的半径OB=10 ,水面宽 AB=16 ,则截面圆心O到水面的距离OC 是【】A.4B. 5C.6D.88、如图,某厂生产横截面直径为7cm 的圆柱形罐头,需将“蘑菇罐头”字样贴在罐头侧面.为了获得较佳视觉效果,字样在罐头侧面所形成的弧的度数为 45°,则“蘑菇罐头”字样的长度为【】A .cm B.cm C.cm D. 7π cm9、已知和的半径分别为和,圆心距为,则和的位置关系是【】A .外离B.外切C.相交D.内切10、如图,点 A ,B ,C 在⊙ O 上,∠ A=50°,则∠ BOC 的度数为【】A . 40°B. 50°C.80°D. 100 °11、如图,⊙ O 的半径 OD ⊥弦 AB 于点 C,连结 AO 并延长交⊙ O 于点 E,连结 EC.若 AB=8 ,CD=2 ,则 EC 的长为【】A.B.8C.D.12、如图,半圆O 的直径 AB=10cm ,弦 AC=6cm , AD 平分∠ BAC ,则 AD 的长为【】A .cm B.cm C.cm D. 4 cm13、如图,圆心在y 轴的负半轴上,半径为 5 的⊙ B 与 y 轴的正半轴交于点A( 0,1)。
2014届中考二模数学试题含答案
2014年初中毕业班第二次模拟测试数 学 试 卷说明:1.全卷共4页,考试用时为100分钟,满分为120分。
2.考生务必用黑色字迹的签字笔或钢笔在答题卷密封线左边的空格里填写自己的学校、班级、姓名、准考证号,并在答题卷指定的位置里填写座位号。
3.选择题选出答案后,请将所选选项的字母填写在答题卷对应题目的空格内。
4.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先画掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
5.考生务必保持答题卷的整洁。
考试结束时,将试卷和答题卷一并交回。
一、选择题(本大题共10小题,每小题3分,共30分。
在各题的四个选项中,只有—项是正确的,请将所选选项的字母填写在答题卷对应题目的空格内) 1、9的算术平方根是A .81B .3±C .3-D .32、据报道,肇庆团市委“情系农村”深化农村青年创业小额贷款工作,共发放贷款13 000 000多元,数字13 000 000用科学记数法表示为A .1.3×106B .1.3×107C .1.3×108D .1.3×1093、如图所示的几何体的主视图是4、下列计算正确的是 A.222)2(aa =- B.632a a a ÷= C.a a 22)1(2-=-- D.22a a a =⋅5、等腰三角形的两边长分别为3和6,则这个等腰三角形的周长为 A . 12 B . 15 C . 12或15 D . 186、如图,线段DE 是△ABC 的中位线,∠B =60°,则∠ADE 的度数为 A .80° B .70° C .60° D .50°7、下列图案由正多边形拼成,其中既是轴对称图形又是中心对称图形的是8、在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的A .众数B .方差C .平均数D .中位数(第6题图)(第3题图)(第16题图)9、把不等式组2151x x -≤⎧⎨>⎩的解集在数轴上表示正确的是10、童童从家出发前往体育中心观看篮球比赛,先匀速步行至公交汽车站,等了一会儿,童童搭乘公交汽车至体育中心观看比赛,比赛结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x 表示童童从家出发后所用时间,y 表示童童离家的距离.下图中能反映y 与x 的函数关系式的大致图象是二、填空题:(本题共6个小题,每小题4分,共24分) 11、分解因式:24(1)x x --= ▲ .12、如果26a b -=,则42b a -= ▲ .13、已知菱形的两条对角线长分别为6和8,则菱形的边长为 ▲ .14、在一个口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4,随机摸出一个小球然后放回,再随机摸出一个小球,则两次取出的小球标号相同的概率为 ▲ . 15x 的取值范围是 ▲ . 16、如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,∠C = 30°,CD =. 则阴影部分的面积S 阴影= ▲ .三、解答题(一)(本大题3小题,每小题6分,共18分)17、计算:2014201(1)()(5)16sin 602π--⨯+---︒18、已知一次函数y x b =+的图象经过点B (0,),且与 反比例函数ky x=(k 为不等于0的常数)的图象有一交点 为点A (m ,1-) .求m 的值和反比例函数的解析式. 19、在图示的方格纸中(1)作出△ABC 关于MN 对称的图形△A 1B 1C 1;(2)说明△A2B2C2是由△A1B1C1经过怎样的平移得到的?四、解答题(二)(本大题3小题,每小题7分,共21分)20、如图,在小山的东侧A点处有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C点处,此时热气球上的人测得小山西侧B点的俯角为30°,求小山东西两侧A、B两点间的距离.(第20题图)21、为了了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中,男生、女生的人数相同,利用所得数据绘制如下统计图表:根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在▲组,中位数在▲组;(2)求样本中,女生身高在E组的人数;(3)已知该校共有男生400人,女生380人,请估计身高在160≤x<170之间的学生约有多少人?(第22题图)22、如图,在平行四边形ABCD 中,∠ABC =60°,E 、F 分别 在CD 和BC 的延长线上,AE ∥BD .(1)求证:点D 为CE 的中点; (2)若EF ⊥BC ,EF =,求AB 的长.五、解答题(三)(本大题3小题,每小题9分,共27分)23、现要把228吨物资从某地运往甲、乙两地,用大、小两种货车共18辆,恰好能一次性运完这批物资.已知这两种货车的载重量分别为16吨/辆和10吨/辆,运往甲、乙两地的运费如下表:(1)求这两种货车各用多少辆?(2)如果安排9辆货车前往甲地,其余货车前往乙地,设前往甲地的大货车为a 辆,前往甲、乙两地的总运费为w 元,求出w 与a 的函数关系式(写出自变量的取值范围);(3)在(2)的条件下,若运往甲地的物资不少于120吨,请你设计出使总运费最少的货车调配方案,并求出最少总运费。
2014年全国各地中考数学试卷解析版分类汇编_投影与视图
投影与视图一、选择题1. (2014•四川巴中,第5题3分)如图,两个大小不同的实心球在水平面靠在一起组成如图所示的几何体,则该几何体的左视图是()A.两个外切的圆B.两个内切的圆C.两个内含的圆D.一个圆考点:三视图.分析:根据左视图是从左面看得到的视图,圆的位置关系解答即可.解答:从左面看,为两个内切的圆,切点在水平面上,所以,该几何体的左视图是两个内切的圆.故选B.点评:本题考查了三视图的知识,左视图是从物体的左面看得到的视图.2. (2014•山东威海,第6题3分)用四个相同的小立方体搭几何体,要求每个几何体的主视图、左视图、俯视图中至少有两种视图的形状是相同的,下列四种摆放方式中不符合要求....“、此几何体的主视图和左视图都是,故此选项不合题意;、此几何体的主视图和左视图都是,俯视图是图是3. (2014•山东潍坊,第4题3分)一个几何体的三视图如右图所示,则该几何体是( )考点:由三视图还原实物图.分析:根据主视图、左视图、俯视图的形状,将它们相交得到几何体的形状.解答:由三视图知,从正面和侧面看都是上面梯形,下面长方形,从上面看为圆环,可以想象到实物体上面是圆台,下面是空心圆柱.故选D.点评:本题考查几何体的三视图与直观图之间的相互转化.4. (2014•山东烟台,第4题3分)如图是一个正方体截去一角后得到的几何体,它的主视图是()A.B.C.D.考点:三视图.分析:根据主视图是从正面看到的图形判定则可.解答:从正面看,主视图为.故选:C.点评:本题考查了三视图的知识,根据主视图是从物体的正面看得到的视图得出是解题关键..6.(2014•湖南张家界,第5题,3分)某几何体的主视图、左视图和俯视图分别如图,则该几何体的体积为()方向,则它的主视图可以是解析:选B. ∵上下两凸起是圆弧,非圆,中间是两个圆片的叠合,其主视图应为矩形.8.(2014山东济南,第6题,3分)如图,一个几何体由5个大小相同、棱长为1的正方体搭成,下列关于这个几何体的说法正确的是第6题A.主视图的面积为5 B.左视图的面积为3C.俯视图的面积为3 D.三种视图的面积都是4【解析】主题图、俯视图均为4个正方形,其面积为4,左视图为3个正方形,其面积为3,故选B.9.(2014•山东聊城,第2题,3分)如图是一个三棱柱的立体图形,它的主视图是().10.(2014•浙江杭州,第2题,3分)已知一个圆锥体的三视图如图所示,则这个圆锥的侧面积为()12. (2014年湖北咸宁4.(3分))6月15日“父亲节”,小明送给父亲一个礼盒(如图),该礼盒的主视图是( )A .B .C .D .考点: 简单组合体的三视图.分析: 找到从正面看所得到的图形即可.解答: 解:从正面看,是两个矩形,右边的较小. 故选A .点评: 本题考查了三视图的知识,主视图是从物体的正面看得到的视图.13:将两个长方体如图放置,到所构成的几何体的左视图可能是( )答案:C解析:根据三视图可知,C正确。
江苏省13市2014年中考数学试题分类汇编专题05图形的变换问题(解析版)
江苏泰州锦元数学工作室编辑1. (2014年江苏镇江3分)一个圆柱如图放置,则它的俯视图是【】A.三角形B. 半圆C. 圆D. 矩形2.(2014年江苏盐城3分)如图,由3个大小相同的正方体搭成的几何体,其主视图是【】A. B. C. D.3. (2014年江苏徐州3分)如图使用五个相同的立方体搭成的几何体,其主视图是【】4. (2014年江苏徐州3分)顺次连接正六边形的三个不相邻的顶点.得到如图的图形,该图形【】A.既是轴对称图形也是中心对称图形B.是轴对称图形但并不是中心对称图形C.是中心对称图形但并不是轴对称图形D.既不是轴对称图形也不是中心对称图形5. (2014年江苏宿迁3分)若一个圆锥的主视图是腰长为5,底边长为6的等腰三角形,则该圆锥的侧面积是【】A. 15πB. 20πC.24πD.30π6.(2014年江苏无锡3分)已知圆锥的底面半径为4cm,母线长为5cm,则这个圆锥的侧面积是【】A. 20πcm2B. 20cm2C. 40πcm2D. 40cm2【答案】A.【考点】圆锥的计算.【分析】直接根据公式“圆锥的侧面积=底面周长×母线长÷2”,把相应数值代入即可:∵圆锥的底面半径为4cm,母线长为5cm,∴圆锥的侧面积=2π×4×5÷2=20π(cm2).故选A.7. (2014年江苏泰州3分)一个几何体的三视图如图所示,则该几何体可能是【】8. (2014年江苏泰州3分)下列图形中是轴对称图形但不是中心对称图形的是【】A.B.C.D.【答案】B.【考点】轴对称图形和中心对称图形【分析】根据轴对称图形与中心对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合;中心对称图形是图形沿对称中心旋转180度后与原图重合. 因此,9. (2014年江苏南通3分)已知一个几何体的三视图如图所示,则该几何体是【】A. 圆柱B. 圆锥C. 球D. 棱柱10. (2014年江苏南京2分)下列图形中,既是轴对称图形也是中心对称图形的是【】A. B. C. D.1 1. (2014年江苏淮安3分)如图,圆锥的母线长为2,底面圆的周长为3,则该圆锥的侧面积为【】A. 3πB. 3C.6πD.612. (2014年江苏常州2分)下列立体图形中,侧面展开图是扇形的是【】A. B. C. D.【答案】B.【考点】几何体的展开图.【分析】根据圆锥的特征可知,侧面展开图是扇形的是圆锥.故选B.1. (2014年江苏镇江2分)已知圆锥的底面半径为3,母线为8,则圆锥的侧面积等于▲ .【答案】24π.【考点】圆锥的计算.【分析】直接根据圆锥的侧面积=底面周长×母线长÷2,把相应数值代入即可求解:圆锥的侧面积=2π×3×8÷2=24π.2. (2014年江苏扬州3分)如图,这是一个长方体的主视图与俯视图,由图示数据(单位:cm )可以得出该长方体的体积 ▲ 3cm .3.(2014年江苏扬州3分)如图,ABC ∆的中位线DE 5cm =,把ABC ∆沿DE 折叠,使点A 落在边BC 上的点F 处,若A 、F 两点间的距离是8cm ,则ABC ∆的面积为 ▲ 2cm .4.(2014年江苏泰州3分)圆锥的底面半径为6cm ,母线长为10cm ,则圆锥的侧面积为 ▲ cm 2. 【答案】60π.【考点】圆锥的计算.【分析】直接根据圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解:圆锥的侧面积=π×6×10=60πcm 2.5. (2014年江苏南京2分)如图,沿一条母线将圆锥侧面剪开并展开,得到一个扇形,若圆锥底面圆半径r =2cm ,扇形圆心角120θ=︒,则该圆锥母线长l 为 ▲ cm .1. (2014年江苏镇江10分)我们知道平行四边形有很多性质.现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论. 【发现与证明】ABCD 中,AB ≠BC ,将△ABC 沿AC 翻折至△AB ′C ,连结B ′D.结论1:B ′D ∥AC ; 结论2:△AB ′C 与ABCD 重叠部分的图形是等腰三角形.……请利用图1证明结论1或结论2(只需证明一个结论). 【应用与探究】在ABCD 中,已知∠B =30°,将△ABC 沿AC 翻折至△AB ′C ,连结B ′D.(1)如图1,若0AB D B 5A 7'=∠,则∠ACB = ▲ °,BC = ▲ ;(2)如图2,AB =BC =1,AB ′与边CD 相交于点E ,求△AEC 的面积;(3)已知AB =BC 长为多少时,是△AB ′D 直角三角形?∵0AB D 75∠'=,∴∠C B ′D =45°.由【发现与证明】的结论, B ′D ∥AC ,∴∠ACB =∠ACB ′=∠C B ′D =45°.如答图7,过A 点作AP ⊥BC 于点P ,∵∠B =30°,AB2.(2014年江苏扬州10分)如图,已知Rt ABC ∆中,ABC 90∠=,先把ABC ∆绕点B 顺时针旋转90至DBE ∆后,再把ABC ∆沿射线AB 平移至FEG ∆,ED 、FG 相交于点H . (1)判断线段DE 、FG 的位置关系,并说明理由; (2)连结CG ,求证:四边形CBEG 是正方形.3.(2014年江苏扬州12分)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处. (1)如图1,已知折痕与边BC交于点O,连接AP,OP,O A.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰巧是CD边的中点,求∠OAB的度数;(3)如图2,在(1)条件下,擦去折痕AO、线段OP,连结BP. 动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB于点F,作ME⊥BP于点E. 试问当点M,N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求线段EF的长度.4. (2014年江苏盐城12分)【问题情境】张老师给爱好学习的小军和小俊提出这样一个问题:如图1,在△ABC中,AB=AC,点P为边BC上的任一点,过点P作PD⊥AB,PE⊥AC,垂足分别为D、E,过点C作CF⊥AB,垂足为F.求证:PD+PE=CF.小军的证明思路是:如图2,连接AP,由△ABP与△ACP面积之和等于△ABC的面积可以证得:PD+PE=CF.小俊的证明思路是:如图2,过点P作PG⊥CF,垂足为G,可以证得:PD=GF,PE=CG,则PD+PE=CF.【变式探究】如图3,当点P在BC延长线上时,其余条件不变,求证:PD﹣PE=CF;请运用上述解答中所积累的经验和方法完成下列两题:【结论运用】如图4,将矩形ABCD沿EF折叠,使点D落在点B上,点C落在点C′处,点P为折痕EF上的任一点,过点P作PG⊥BE、PH⊥BC,垂足分别为G、H,若AD=8,CF=3,求PG+PH的值;【迁移拓展】图5是一个航模的截面示意图.在四边形ABCD中,E为AB边上的一点,ED⊥AD,EC⊥CB,垂足分别为D、C,且AD•CE=DE•BC,AB=,AD=3dm,BD.M、N分别为AE、BE的中点,连接DM、CN,求△DEM与△CEN的周长之和.∵∠C=90°,∴△DEM与△CEN的周长之和为(6+dm.【考点】1.四边形综合题;2.折叠对称的性质;3.等腰三角形的判定和性质;4.直角三角形斜边上的中线性质;5.勾股定理;6.矩形的判定和性质;7.相似三角形的判定和性质;8.方程思想的应用.【分析】【问题情境】如下图②,按照小军、小俊的证明思路即可解决问题.【变式探究】如答图1,,借鉴小军、小俊的证明思路即可解决问题.【结论运用】易证BE=BF,如答图2,过点E作EQ⊥BF,垂足为Q,利用问题情境中的结论可得PG+PH=EQ,易证EQ=DC,BF=DF,只需求出BF即可.【迁移拓展】由条件AD•CE=DE•BC联想到三角形相似,从而得到∠A=∠ABC,进而补全等腰三角形,△DEM 与△CEN的周长之和就可转化为AB+BH,而BH是△ADB的边AD上的高,只需利用勾股定理建立方程,求出DH,再求出BH,就可解决问题.5. (2014年江苏淮安8分)如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.6. (2014年江苏常州7分)在平面直角坐标系xOy中,如图,已知Rt△DOE,∠DOE=90°,OD=3,点D在y轴上,点E在x轴上,在△ABC中,点A,C在x轴上,AC=5.∠ACB+∠ODE=180°,∠ABC=∠OED,BC=DE.按下列要求画图(保留作图痕迹):(1)将△ODE绕O点按逆时针方向旋转90°得到△OMN(其中点D的对应点为点M,点E的对应点为点N),画出△OMN;(2)将△ABC沿x轴向右平移得到△A′B′C′(其中点A,B,C的对应点分别为点A′,B′,C′),使得B′C′与(1)中的△OMN的边NM重合;(3)求OE的长.。
2014年全国中考试题汇编—图形的展开和三视图
1.(2014年郑州市一测)妈妈昨天为小杰制作了一个正方体礼品盒,该礼品盒的六个面上各有一个字,连起来就是“宽容是种美德”,其中“宽”的对面是“是”,“美”的对面是“德”,则它的平面展开图可能是( )德美种是容宽 德美种是容宽德美种是容宽德美种是容宽A .B .C .D .2. (2014年河南省真题)将两个长方体如图放置,则所构成的几何体的左视图可能是( )3. (2014年安徽真题)如图,;图中的几何体是圆柱沿竖直方向切掉一半后得到的,则该几何体的俯视图是( )A B C D4.(2014年北京)右图是几何体的三视图,该几何体是() A.圆锥B .圆柱C .正三棱柱D .正三棱锥5. (2014年福建福州)某几何体的三视图如图所示,则该几何体是 A .三棱柱 B .长方体 C .圆柱 D .圆锥6. (3分)(2014•白银)如图的几何体是由一个正方体切去一个小正方体形成的,它的主视图是( )A .B .C .D .考点: 简单组合体的三视图.分析: 根据从正面看得到的图形是主视图,可得答案. 解答:解:主视图是正方形的右上角有个小正方形,故选:D . 点评: 本题考查了简单组合体的三视图,从正面看得到的图形是主视图.7. (2014年广州)一个几何体的三视图如图4,根据图示的数据计算该几何体的全面积为_______(结果保留).【考点】三视图的考察、圆锥体全面积的计算方法【分析】从三视图得到该几何体为圆锥体,全面积=侧面积+底面积,底面积为圆的面积为:,侧面积为扇形的面积,首先应该先求出扇形的半径R ,由勾股定理得,,则侧面积,全面积.【答案】8. (2014年海南)如图1几何体的俯视图是( )9. (2014年海南)一个圆锥的侧面展开图是半径为8cm 、圆心角为120°的扇形,则此圆锥底面圆的半径为( ) A .83cm B .163cmC .3cmD .43cm 图1 A B C D10. (3分)(2014•河北)如图1是边长为1的六个小正方形组成的图形,它可以围成图2的正方体,则图1中小正方形顶点A,B围成的正方体上的距离是()A.0B.1C.D.考点:展开图折叠成几何体分析:根据展开图折叠成几何体,可得正方体,根据勾股定理,可得答案.解答:解;AB是正方体的边长,AB=1,故选:B.点评:本题考查了展开图折叠成几何体,勾股定理是解题关键.11. (3分)(2014•黄冈)如图所示的几何体的主视图是()A.B.C.D.考点:简单组合体的三视图.分析:根据从正面看得到的图形是主视图,可得答案.解答:解:从正面看,象一个大梯形减去一个小梯形,故选:D.点评:本题考查了简单组合体的三视图,从正面看得到的图形是主视图.12. (3分)(2014•黄冈)如图,圆锥体的高h=2cm,底面半径r=2cm,则圆锥体的全面积为()cm2.A.4πB.8πC.12πD.(4+4)π考点:圆锥的计算.分析:表面积=底面积+侧面积=π×底面半径2+底面周长×母线长÷2.解答:解:底面圆的半径为2,则底面周长=4π,∵底面半径为2cm、高为2m,∴圆锥的母线长为4cm , ∴侧面面积=×4π×4=8π;底面积为=4π,全面积为:8π+4π=12πcm 2. 故选C . 点评: 本题利用了圆的周长公式和扇形面积公式求解,牢记公式是解答本题的关键.13. (2014年长沙)下列几何体中主视图、左视图、俯视图完全相同的是( )A .圆锥B .六棱柱C .球D .四棱锥14. (2014年吉林)2.用4个完全相同的小正方体组成如图所示的立体图形,它的俯视图是(A )(B ) (C ) (D )15. (2014年江苏南京)如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径r=2cm ,扇形的圆心角θ=120°,则该圆锥的母线长l 为 cm . 分析: 易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.解:圆锥的底面周长=2π×2=4πcm ,设圆锥的母线长为R ,则:=4π,解得R=6.故答案为:6.点评: 本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为:.16. (2014年江西)如图,贤贤同学用手工纸制作一个台灯灯罩,做好后发现上口太小了,于是他把纸灯罩对齐奢压扁,剪去上面一截后,正好合适。
2014年中考数学二轮专题复习试卷:视图、投影、图形变换
2014年中考数学二轮专题复习试卷:视图、投影、图形变换一、选择题(本大题共15个小题,每小题3分,共45分)1.(2013山东泰安)下列几何体中,主视图是矩形,俯视图是圆的几何体是( )2.(2012山东枣庄)如图,该图形绕点O按下列角度旋转后,不能与其自身重合的是( )A.72°B.108°C.144° D.216°3.(2013山东烟台)下列水平放置的几何体中,俯视图不是圆的是( )4.(2013浙江舟山)如图,由三个小立方体搭成的几何体的俯视图是( )5.如图所示,在平面直角坐标系中,点A、B的坐标分别为(-2,0)和(2,0).月牙①绕点B顺时针旋转90°得到月牙②,则点A的对应点A′的坐标为( )A.(2,2)B.(2,4)C.(4,2)D.(1,2)6.一个长方体的三视图如图所示,若其俯视图为正方形,则这个长方体的表面积为( )D.57A.66B.48C.367.(2013湖南长沙)在下列某品牌T恤的四个洗涤说明图案的设计中,没有运用旋转或轴对称知识的是( )8.(2013山东菏泽)下列图形中,能通过折叠围成一个三棱柱的是( )9.小华在镜中看到身后墙上的钟,你认为实际时间最接近8点的是( )10.(2012江西)如图,有a,b,c三户家用电路接入电表,相邻的电路等距排列,则三户所用电线( )A.a户最长B.b户最大C.c户最长D.三户一样大11.(2013山东泰安)下列图形:其中所有轴对称图形的对称轴条数之和为( )A.13B.11C.10D.812.(2013山东烟台)以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是( )13.(2013浙江湖州)在正三角形、等腰梯形、矩形、平行四边形中,既是轴对称图形又是中心对称图形的是( )A.正三角形B.等腰梯形C.矩形D.平行四边形14.(2012广西柳州)小张用手机拍摄得到甲图,经放大后得到乙图,甲图中的线段AB在乙图中的对应线段是( )A.FGB.FHC.EHD.EF15.(2013广西梧州)如图,△ABC以点O为旋转中心,旋转180°后得到△A′B′C′.ED是△ABC的中位线,经旋转后为线段E′D′.已知BC=4,则E′D′=( )A.2B.3C.4D.1.5二、填空题(本大题共6个小题,每小题3分,共18分)16.(2013湖北天门)如图,正方形ABCD的对角线相交于点O,正三角形OEF绕点O旋转.在旋转过程中,当AE=BF时,∠AOE的大小是.17.(2013江苏无锡)如图是一个几何体的三视图,若这个几何体的体积是36,则它的表面积是.18.(2013湖南岳阳)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的矩形荷塘上架设小桥.若荷塘周长为280 m,且桥宽忽略不计,则小桥总长为 m.19.(2012浙江杭州)如图,平面直角坐标系中有四个点,它们的横纵坐标均为整数.若在此平面直角坐标系内移动点A,使得这四个点构成的四边形是轴对称图形,并且点A的横坐标仍是整数,则移动后点A的坐标为 .20.(2013浙江温州)如图,在平面直角坐标系中,△ABC的两个顶点A,B的坐标分别为(-2,0),(-1,0),BC⊥x轴。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014年中考数学二轮精品复习试卷立体图形学校:___________姓名:___________班级:___________考号:___________1、一个正方体的平面展开图如图所示,将它折成正方体后,与汉字“岳”相对的面上的汉字是【】A.建B.设C.和D.谐2、下列图形中,是圆锥侧面展开图的是【】A.B.C.D.3、(2013年四川绵阳3分)把如图中的三棱柱展开,所得到的展开图是【】A.B.C.D.4、如图所示,将平面图形绕轴旋转一周,得到的几何体是A.B.C.D.5、如图所示,下列四个选项中,不是正方体表面展开图的是A.B.C.D.6、如图是一个长方体包装盒,则它的平面展开图是A.B.C.D.7、下列四张正方形硬纸片,剪去阴影部分后,如果沿虚线折叠,可以围成一个封闭的长方形包装盒的是【】A.B.C.D.8、小明为了鼓励芦山地震灾区的学生早日走出阴影,好好学习,制作了一个正方体礼盒(如图).礼盒每个面上各有一个字,连起来组成“芦山学子加油”,其中“芦”的对面是“学”,“加”的对面是“油”,则它的平面展开图可能是A.B. C. D.9、将一边长为2的正方形纸片折成四部分,再沿折痕折起来,恰好能不重叠地搭建成一个三棱锥,则三棱锥四个面中最小的面积是A.1 B.C.D.10、(2013年四川自贡4分)如图,将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,这个棱柱的侧面积为【】A.B.9 C.D.11、如图是一个几何体的三视图,根据图中提供的数据(单位:cm)可求得这个几何体的体积为A.2cm3B.3cm3C.6cm3D.8cm312、下列四个图形中,是三棱柱的平面展开图的是A.B.C.D.13、如图是一个长方体形状包装盒的表面展开图.折叠制作完成后得到长方体的容积是(包装材料厚度不计)A.40×40×70 B.70×70×80 C.80×80×80 D.40×70×8014、下列图形中,能通过折叠围成一个三棱柱的是A.B.C.D.15、右下图(1)是一个水平摆放的小正方体木块,图(2)、(3)是由这样的小正方体木块叠放而成,按照这样的规律继续叠放下去,至第七个叠放的图形,此时第七个图形中小正方体木块总数应是()A.25 B.66 C.91D.12016、一个圆锥的底面半径为6㎝,圆锥侧面展开扇形的圆心角为240°,则圆锥的母线长为()A.9㎝B.12㎝C.15㎝D.18㎝17、如图是某一立方体的侧面展开图,则该立方体是()A B C D18、下面四个几何体中,俯视图为四边形的是()19、一个长8厘米,宽7厘米,高6厘米的长方体容器平放在桌面,里面盛有高2厘米的水(如图一); 将这个长方体沿着一条宽旋转90°,平放在桌面(如图二). 在旋转的过程中,水面的高度最高可以达到( )A.厘米B.4厘米C.3厘米D.厘米20、如图,圆锥的底面半径高则这个圆锥的侧面积是()A.B.C.D.二、填空题()21、如图,从一个三棱柱形状的萝卜块上切下一个三棱柱,剩下的部分仍然是一个棱柱,则剩下部分可能是____________________(填几何体的名称).22、将圆柱形纸筒的侧面沿虚线剪开,得到的平面图形是.23、如图,每个面上都有一个汉字的正方体的一种展开图,那么在原正方体“着”相对的面上的汉字是.24、一个直六棱柱的侧面个数是,顶点个数是,棱的条数是。
25、能展开成如图所示的几何体是____________。
26、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为.27、要把一个正方体分割成8个小正方体,至少需要切3刀,因为这8个小正方体都只有三个面现成的,其它三个面必须用刀切3次才能切出来,那么,要把一个正方体分割成27个小正方体,至少需要要刀切次,分割成64个小正方体,至少需要用刀切次。
28、以下三组图形都是由四个等边三角形组成.能折成多面体的选项序号是.29、如图所示为一个无盖长方体盒子的展开图(重叠部分不计),根据图中数据,可知该无盖长方体的容积为.30、圆柱的侧面展开图是________;圆锥的侧面展开图是________.31、一个底面为正方形的直棱柱的侧面展开图是一个边长为8的正方形,则它的表面积为,体积为。
32、若圆锥的底面半径为3,母线长为6,则圆锥的侧面积等于.33、薄薄的硬币在桌面上转动时,看上去象球,这说明了____ _____________.34、如果长方体从一点出发的三条棱长分别为2、3、4,则该长方体的表面积为__ __35、如图,扇形彩色纸的半径为45cm,圆心角为,用它制作一个圆锥形火炬模型的侧面(接头忽略不计),则这个圆锥的高约为 cm.(结果精确到0.1cm.参考数据:,,,)三、计算题()36、将棱长为10cm的正方体铝块熔化,重新铸成4个大小相等的小正方体。
通过计算,求每个小正方体的棱长(不计损耗,结果保留2个有效数字)提示:参考数值:、、、四、解答题()37、如图,四种图形各是哪种立体图形的表面展开所形成的?画出相应的四种立体图形.38、如图,是由小立方块堆成的几何体,请分别从前面看、左面看和上面看,试将你所看到的平面图形画出来。
39、回答下列问题:(1)如图所示的甲、乙两个平面图形能折什么几何体?(2)由多个平面围成的几何体叫做多面体.若一个多面体的面数为,顶点个数为,棱数为,分别计算第(1)题中两个多面体的的值?你发现什么规律?(3)应用上述规律解决问题:一个多面体的顶点数比面数大8,且有50条棱,求这个几何体的面数.40、如图,小华用若干个正方形和长方形准备拼成一个长方体的展开图.拼完后,小华看来看去总觉得所拼图形似乎存在问题.(1)请你帮小华分析一下拼图是否存在问题:若有多余块,则把图中多余部分涂黑;若还缺少,则直接在原图中补全;(2)若图中的正方形边长为2cm,长方形的长为3cm,宽为2cm,请直接写出修正后所折叠而成的长方体的体积: cm3.41、在平整的地面上,有若干个完全相同的小正方体堆成一个几何体,如图所示。
请你画出它的主视图、左视图和俯视图。
42、长方体的长为15 cm,宽为7 cm,高为16 cm,点B离点C 5 cm,一只蚂蚁如果要沿着长方体的表面从点A爬到点B,需要爬行的最短距离是多少?43、用若干个相同的小立方块搭建一个几何体,使从它的正面和上面看到的图形如图所示,动手搭一搭,你的搭法唯一吗?(1)最多需要多少个小立方块?画出从左面看该几何体得到的图形;(2)最少需要多少个小立方块?画出从左面看该几何体得到的图形。
44、用一个边长为10cm的正方形围成一个圆柱的侧面(接缝略去不计),求该圆柱的体积.45、如下图,是边长为1 m的正方体,有一蜘蛛潜伏在A处,B处有一小虫被蜘蛛网粘住,请利用平面图形,画出蜘蛛爬行的最短路线.46、如图(1)所示为一上面无盖的正方体纸盒,现将其剪开展成平面图,如图(2)所示.已知展开图中每个正方形的边长为1.(1)求在该展开图中可画出最长线段的长度?这样的线段可画几条?(2)试比较立体图中与平面展开图中的大小关系?47、一个长方体材料的长、宽、高分别为9cm, 6cm, 5cm如图1,先从这个长方体左前部切下一个棱长为5的正方体得图2,再从剩余部分的右上角的前部切下一个棱长为4的正方体得图3,最后从第二次剩余部分的右上角的后部切下一个棱长为2正方体得图4的工件,现在请你在图1、图2、图3或图4中任意选择一个几何体(只能选一个,多算得零分),在答题框中列式并计算它的表面积。
48、正方体的每一面不同的颜色,对应着不同的数字,将四个这样的正方体如图拼成一个水平放置的长方体,那么长方体的下底面数字和为多少?49、设计平面图形,把它叠成立体图形⑴把平面图形叠成三棱柱(有底)⑵把平面图形叠成四棱柱(无底)⑶把平面图形叠成五棱柱(无底)⑷由上面设计你能找出把平面图折成六棱柱、七棱柱的设计规律吗?(无底)50、已知圆锥的底面积和它的侧面积之比为,求侧面展开后所得扇形的圆心角的度数。
试卷答案1.【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,因此,“和”与“岳”是相对面,“建”与“阳”是相对面,“谐”与“设”是相对面。
故选C。
2.【解析】圆锥的侧面展开图是光滑的曲面,没有棱,只是扇形。
故选B。
3.【解析】根据两个全等的三角形,在侧面三个长方形的两侧,这样的图形围成的是三棱柱。
把图中的三棱柱展开,所得到的展开图是B。
故选B。
考点:几何体的展开图。
4.【解析】试题分析:半圆绕它的直径旋转一周形成球体。
故选A。
5.【解析】分析:由平面图形的折叠及正方体的展开图知,选项A,B,D折叠后都可以围成正方体;而C折叠后折叠后第一行两个面无法折起来,而且下边没有面,不能折成正方体。
故选C。
6.【解析】试题分析:长方体的四个侧面中,有两个相对面的小长方形,另两个是相对面的大长方形,B、C中两个小的与两个大的相邻,错误,D中底面不符合,只有A符合。
故选A。
7.【解析】根据长方体的组成,通过结合立体图形与平面图形的相互转化,分别解析得出即可:A、剪去阴影部分后,组成无盖的正方体,故此选项不合题意;B、剪去阴影部分后,无法组成长方体,故此选项不合题意;C、剪去阴影部分后,能组成长方体,故此选项正确;D、剪去阴影部分后,组成无盖的正方体,故此选项不合题意。
故选C。
8.【解析】试题分析:正方体的表面展开图,相对的面之间一定相隔一个正方形,因此,A、“加”与“子”是相对面,故本选项错误;B、“芦”与“子”是相对面,故本选项错误;C、“芦”与“子”是相对面,故本选项错误;D、“芦”与“学”是相对面,“山”与“子”想相对面,“加”与“油”是相对面,故本选项正确。
故选D。
9.【解析】试题分析:三棱锥四个面中最小的一个面是等腰直角三角形,它的两条直角边都是2÷2=1,它的面积=。
故选C。
10.【解析】∵将一张边长为3的正方形纸片按虚线裁剪后,恰好围成一个底面是正三角形的棱柱,∴这个正三角形的底面边长为1,高为。
∴侧面积为长为3,宽为的长方形,面积为。
故选A。
考点:剪纸问题,展开图折叠成几何体,等边三角形的性质,勾股定理。
11.【解析】试题分析:该几何体的主视图以及左视图都是相同的矩形,俯视图也为一个矩形,可确定这个几何体是一个长方体,此长方体的长与宽都是1,高为3,所以该几何体的体积为1×1×3=3cm3。
故选B。
12.【解析】试题分析:根据三棱柱的展开图的特点进行解答即可:A、是三棱锥的展开图,故选项错误;B、是三棱柱的平面展开图,故选项正确;C、两底有4个三角形,不是三棱锥的展开图,故选项错误;D、是四棱锥的展开图,故选项错误。