15第四节 蛋白质的消化吸收及代谢

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四节蛋白质的消化吸收及代谢

一、蛋白质的消化

蛋白质未经消化不易吸收,有时某些抗原、毒素蛋白可少量通过粘膜细胞进入体内,会产生过敏、毒性反应。一般情况下,食物蛋白质水解成氨基酸及小肽后方能被吸收。由于唾液中不含水解蛋白质的酶,所以食物蛋白质的消化从胃开始,但主要在小肠。

(一)胃内消化

胃内消化蛋白质的酶是胃蛋白酶(pepsin)。胃蛋白酶是由胃粘膜主细胞合成并分泌的胃蛋白酶原(pepsinogen)经胃酸激活而生成的;胃蛋白酶也能再激活胃蛋白酶原生成新的胃蛋白酶。胃蛋白酶的最适宜作用的pH值为 1.5~2.5,对蛋白质肽键作用的特异性较差,主要水解芳香族氨基酸、蛋氨酸或亮氨酸等残基组成的肽键。胃蛋白酶对乳中的酪蛋白(casein) 有凝乳作用,这对婴儿较为重要,因为乳液凝成乳块后在胃中停留时间延长,有利于充分消化。

(二)小肠内消化

食物在胃内停留时间较短,蛋白质在胃内消化很不完全,消化产物及未被消化的蛋白质在小肠内经胰液及小肠粘膜细胞分泌的多种蛋白酶及肽酶的共同作用,进一步水解为氨基酸。所以,小肠是蛋白质消化的主要部位。蛋白质在小肠内消化主要依赖于胰腺分泌的各种蛋白酶,可分为两类:①内肽酶(endopeptidase)可以水解蛋白质分子内部的肽键,包括胰

蛋白酶、糜蛋白酶和弹性蛋白酶;②外肽酶(exopeptidase)可将肽链末端的氨基酸逐个水解,包括氨基肽酶(aminopeptidase)和羧基肽酶(carboxypeptidase)。

肠粘膜细胞的刷状缘及细胞液中还存在一些寡肽酶(oligopeptidase),例如,氨基肽酶

及二肽酶(dipeptidase)等。氨基肽酶从肽链的末端逐个水解释放出氨基酸,最后生成二肽。二肽再经二肽酶水解,最终生成氨基酸。

二、蛋白质的吸收

(一)氨基酸和寡肽的吸收

经过小肠腔内和膜的消化,蛋白质被水解为可被吸收的氨基酸和2~3 个氨基酸的

小肽。过去认为只有游离氨基酸才能被吸收,现在发现2—3 个氨基酸的小肽也可以被吸收。

(二)整蛋白的吸收

在低等动物,吞噬是摄人大分子的基本方式。而在高等动物,只有在胚胎动物仍保持这种低级的原始机制。例如,母乳中的抗体可通过肠粘膜细胞的吞噬作用传递给婴儿。关于成年人对整蛋白吸收问题已有许多研究。有人将胰岛素和胰蛋白酶抑制剂同时注入大鼠的隔离肠袢,发现可引起血糖降低,说明有一部分胰岛素被吸收;人的血液中存在食物蛋白质的抗体,这说明食物蛋白质可进入血液而起抗原的作用。但一般认为,大分子蛋白质的吸收是微量的,无任何营养学意义,只是应当注意肠内细菌的毒素、食物抗原等可能会进入血液成为致病因子。

三、蛋白质的代谢

(一)蛋白质的分解与合成

1.蛋白质的分解进食正常膳食的正常人每日从尿中排出的氮约12g。若摄人的膳食蛋白质增多,随尿排出的氮也增多;若减少,则随尿排出的氮也减少。完全不摄入蛋白质或禁食一切食物时,每日仍随尿排出氮2~4g。这些事实证明,蛋白质不断在体内分解成为含氮废物,随尿排出体外。

2.蛋白质的合成蛋白质在分解的同时也不断在体内合成,以补偿分解。蛋白质合成经两个步骤完成。第一步为转录(transcription),即生物体合成RNA 的过程,亦即将DNA 的碱基序列抄录成RNA 碱基序列的过程;第二步为翻译(translation),是生物体合成mRNA 后,mRNA 中的遗传信息(DNA碱基顺序)转变成蛋白质中氨基酸排列顺序的过程,是蛋白质获

得遗传信息进行生物合成的过程。翻译在细胞内进行。成熟的mRNA 穿过核膜进入胞质,在核糖体及tRNA 等参与下,以各种氨基酸为原料完成蛋白质的生物合成。

(二)氨基酸的分解代谢

氨基酸分解代谢的最主要反应是脱氨基作用。脱氨基方式有:氧化脱氨基、转氨基、联

合脱氨基和非氧化脱氨基等,其中,以联合脱氨基最为重要。氨基酸脱氨基后生成的α-酮酸进一步代谢:①经氨基化生成非必需氨基酸;②转变成碳水化合物及脂类;③氧化供给能量。氨基酸脱氨基作用产生的氨,在正常情况下主要在肝脏合成尿素而解毒;只有少部分氨在肾脏以铵盐的形式由尿排出。体内氨基酸的主要功用是合成蛋白质和多肽。此外,也可以转变成某些生理活性物质,如嘌呤、嘧啶、肾上腺素等。正常人尿中排出的氨基酸极少。各种氨基酸在结构上具有共同特点,所以也有共同的代谢途径;但不同的氨基酸由于结构的差异,也各有其特殊的代谢方式。

1.个别氨基酸代谢氨基酸代谢除了一般代谢过程,有些氨基酸还有特殊代谢途径。例如,氨基酸的脱羧基作用和一碳单位的代谢、含硫氨基酸、芳香氨基酸及支链氨基酸的代谢等。

(1)脱氨基作用:氨基酸分解代谢的主要途径是脱氨基作用。但是,部分氨基酸也可以进行脱羧基作用生成相应的胺。生成的胺类含量虽然不高,但具有重要生理意义。例如,谷氨酸脱羧基生成的γ-氨基丁酸(γ-amino butyric acid,GABA),在脑组织中含量较多,是抑制性神经递质,对中枢神经有抑制作用;半胱氨酸脱羧基生成的牛磺酸在脑组织中含量也颇高,对脑发育和脑功能有重要作用;组氨酸脱羧基生成的组胺在体内分布广泛,在乳腺、肺、肝、肌肉及胃粘膜中含量较高,组胺是一种强烈的血管舒张剂,并能增加毛细血管的通透性;色氨酸脱羧基生成的5-羟色胺(5-hydroxytryptamine,5-HT)广泛分布体内各组织,除神经组织外,还存在于胃肠道、血小板及乳腺细胞中,脑中的5-羟色胺作为神经递质,具有抑制作用,在外周组织中的5-羟色胺有收缩血管的作用等。

(2)一碳单位的代谢:某些氨基酸在分解代谢过程中可以产生含有一碳原子的基团,称一碳单位。体内重要的一碳单位有:甲基(-CH3)、甲烯基(-CH2)、甲炔基(-CH=)、甲酰基(-CHO)、亚甲氨基(-CH=NH)等。一碳单位不能游离存在,常与四氢叶酸(tetrahydrofolic acid FH4)结合而转运和参加代谢。一碳单位主要来源于丝氨酸、甘氨酸、组氨酸及色氨酸的代谢。一碳单位的主要生理功能是作为合成嘌呤及嘧啶的原料,故在核酸的生物合成中占有重要地位。

(3)含硫氨基酸的代谢:体内的含硫氨基酸有三种:蛋氨酸、半胱氨酸及胱氨酸。这三种氨基酸的代谢是相互联系的,蛋氨酸可以转变为半胱氨酸和胱氨酸,半胱氨酸和胱氨酸也可以互变,但半胱氨酸及胱氨酸不能转变为蛋氨酸,所以半胱氨酸及胱氨酸是非必需氨基酸或条件必需氨基酸,而蛋氨酸则是必需氨基酸。

(4)芳香氨基酸的代谢:芳香氨基酸包括苯丙氨酸、酪氨酸和色氨酸。苯丙氨酸和酪氨酸在结构上相似,在正常情况下苯丙氨酸的主要代谢途径是经苯丙氨酸羟化酶的作用生成酪氨酸;当苯丙氨酸羟化酶先天性缺乏时,苯丙氨酸不能正常转变成酪氨酸,体内的苯丙氨酸蓄积,并可经转氨基作用生成苯丙酮酸,后者进一步转变成苯乙酸等衍生物,尿中出现大量苯丙酮酸等代谢产物,称为苯丙酮尿症(phenyl ketonuria,PKU),是一种先天性代谢性疾病。苯丙酮酸的堆积对中枢神经系统有毒性,故患儿的智力发育障碍。对此种患儿的治疗原则是早期发现,并适当控制膳食苯丙氨酸含量。

酪氨酸经酪氨酸羟化酶的作用,生成多巴[3,4-二羟苯丙氨酸(3,4-dihydroxypheny-lalanine,doba)];再经多巴脱羧酶的作用生成多巴胺(dopamine)。多巴胺是脑中的一种神经递质,帕金森病(Parkinson’disease)患者,多巴胺生成减少。多巴胺在肾

相关文档
最新文档