指数函数的图像及其性质-ppt

合集下载

高一数学指数函数ppt课件

高一数学指数函数ppt课件

与对数式的转换、对数运算的性质等。
拓展延伸:挑战更高难度题目
复杂指数函数的性质研究
引入更复杂的指数函数形式,如复合指数函 数、分段指数函数等,探讨它们的性质和应 用。
指数函数在实际问题中的应 用
结合实际问题,如复利计算、人口增长等,展示指 数函数的应用价值,并引导学生运用所学知识解决 实际问题。
指数函数与其他数学知识 的综合应用
指数函数图像特征
当a>1时,图像在x轴上方,且随着x 的增大,y值迅速增大;当0<a<1时, 图像在x轴上方,但随着
当a>1时,指数函数在R上是增函数;当0<a<1时,指数函数在R 上是减函数。
指数函数的值域
指数函数的值域为(0, +∞)。
在解题时,要注意判断题目所给 条件是否满足对称性,以便更好
地应用这一性质。
05 复杂问题解决方 法与策略
分段讨论法在处理复杂问题时应用
分段讨论法概念
将复杂问题按照一定条件分成若 干段,每一段内问题相对简单,
易于解决。
分段讨论法应用
在处理指数函数问题时,当自变量 在不同区间内取值时,函数性质可 能发生变化,此时可以采用分段讨 论法。
数形结合思想概念
将数学中的“数”与“形”结合起来,通过图形 直观展示数量关系,帮助理解问题本质。
数形结合思想应用
在处理指数函数问题时,可以通过绘制函数图像 来观察函数性质,如单调性、周期性等。
数形结合思想优势
通过数形结合可以更加直观地理解问题,提高解 题准确性。
06 总结回顾与拓展 延伸
关键知识点总结回顾
幂的乘方规则
$(a^m)^n = a^{m times n}$,幂的乘方,底 数不变,指数相乘。

指数函数图像和性质-省公开课获奖课件说课比赛一等奖课件

指数函数图像和性质-省公开课获奖课件说课比赛一等奖课件

旳底数是1.7,它们能够看成函数 y= 1.7x
当x=2.5和3时旳函数值;
5
因为1.7>1,所以函数y= 1.7 x
4.5 4
在R上是增函数, ; 而2.5<3,所以,
3.5
3
fx
=
1.7x
2.5
2
1.5
1.72.5< 1.73
1 0.5
-2
-1
-0.5
1
2
3
4
5
6
② 0.80.1 , 0.80.2 解:利用函数单调性 0.80.1 与 0.80.2
y y=x3
y=x
y=x2
1
y=x1/2
0
1
X
a>0
y y=x-2
y=x-1
1
y=x-1/2
0
1
X
a<0
(1)图象都过(0,0)点和 (1,1)点;
(2)在第一象限内,函数值 随x 旳增大而增大,即
在(0,+∞)上是增函
数。
(1)图象都过(1,1)点;
(2)在第一象限内,函数值随 x 旳增大而减小,即在
旳底数是0.8,它们能够看成函数 y= 0.8x
当x=-0.1和-0.2时旳函数值;
因为0<0.8<1,所以函数y= 0.8x
1.8
在R是减函数, 而-0.1>-0.2,所以,
1.6
fx = 0.8x 1.4
1.2
1
0.8
0.80.1 < 0.80.2
0.6
0.4
0.2
-1.5
-1
-0.5
-0.2
0.5

指数函数图像和性质_完整ppt课件

指数函数图像和性质_完整ppt课件

-1.5
-1
-0.5
-0.2
-0.4
0.5
1
1.5
2
2.5
3.2
3
2.8
2.6
2.4
2.2
2 1.8
f x = 0.9 x
1.6
1.4
1.2
1
0.8
0.6
0.4
0.2
-0.5 -0.2
-0.4
0.5
1
1.5
2
2.5
3
3.5
4
13
练习: 1、已知下列不等式,试比较m、n的大小:
(2)m (2)n
ppt精选版
1
y y=x3
y=x
y=x2
1
y=x1/2
0
1
X
a>0
y y=x-2
y=x-1
1
y=x-1/2
0
1
X
a<0
(1)图象都过(0,0)点和 (1,1)点;
(2)在第一象限内,函数值 随x 的增大而增大,即
在(0,+∞)上是增函
数。
(1)图象都过(1,1)点;
(2)在第一象限内,函数值随 x 的增大而减小,即在
解 :根据指数函数的性质, 由图像得,
1.70.3 1 且 0.93.1 1 从而有
1.70.3 > 0.93.1
或者
1.70.3 > 1.7 0 > 0.90 > 0.93.1
ppt精选版
f x = 1.7
3.2
3
2.8
2.6
2.4
2.2
2
1.8
x
1.6

指数函数的概念图象及性质PPT课件

指数函数的概念图象及性质PPT课件
栏目 导引
第4章 指数函数、对数函数和幂函数
(4)y=(a2+2)-x=a2+1 2x,底数a2+1 2∈0,12,前面系数为 1, 指数为自变量 x,故它是指数函数. (5)y=2×3x+a(a≠0),3x 前面系数为 2≠1,故它不是指数函 数. 故(1)(3)(4)为指数函数.
栏目 导引
第4章 指数函数、对数函数和幂函数
指数式的比较大小问题 比较下列各组数的大小. (1)1.8-π,1.8-3;(2)1.7-0.3,1.9-0.3; (3)0.80.6,0.60.8.
栏目 导引
第4章 指数函数、对数函数和幂函数
【解】 (1)构造函数 f(x)=1.8x. 因为 a=1.8>1,所以 f(x)=1.8x 在 R 上是增函数. 因为-π<-3,所以 1.8-π<1.8-3. (2)因为 y=11..79x在 R 上是减函数, 所以11..79--00..33=11..79-0.3>11..790=1. 又因为 1.7-0.3 与 1.9-0.3 都大于 0, 所以 1.7-0.3>1.9-0.3.
栏目 导引
第4章 指数函数、对数函数和幂函数
(3)取中间值 0.80.8. 因为 y=0.8x 在 R 上单调递减,而 0.6<0.8, 所以 0.80.6>0.80.8. 又因为00..6800..88=00..860.8>00..680=1,且 0.60.8>0, 0.80.8>0,所以 0.80.8>0.60.8.所以 0.80.6>0.60.8.
x=0 时,__y_=__1___; 质 y值
x<0 时__0_<_y_<_1__
x>0 时,_0_<__y_<_1__; x=0 时,_y_=__1____;

人教B版(2019)数学必修(第二册):4.1.2 指数函数的性质与图像 课件(共104张PPT)

人教B版(2019)数学必修(第二册):4.1.2 指数函数的性质与图像  课件(共104张PPT)

c=0.22.1,则a,b,c的大小关系是( )
A.a<c<b
B.b>a>c
C.b<a<c
D.c>a>b
【解析】选B.a=0.52.1∈(0,1),b=20.5>1,c=0.22.1, 0.52.1>0.22.1,所以a>c,所以b>a>c.
【加练·固】
已知
a

(
3
)
1 3
,
b

(
3 )
1 4
类型一 指数函数的概念 【典例】1.函数y=(a2-3a+3)·ax是指数函数,则a的值 为________. 2.指数函数y=f(x)的图像经过点(π,e),则f(-π) =________.
【思维·引】1.根据指数函数的解析式的特征列方程 求解. 2.设出指数函数的解析式,代入点的坐标求f(-π).
A.[3,9] C. [ 1,3]
3
B.[ 1,9]
3
D. [ 1,1]
93
3.已知函数f(x)=ax(a>0,a≠1)在区间[-1,1]上的最 大值与最小值的差是1,则实数a的值为________.
【思维·引】1.根据被开方数大于等于0求定义域. 2.先确定函数的单调性,再求最值. 3.分情况表示出最大值、最小值,列方程求a的值.
【加练·固】
函数y= 1-(1)x 的定义域为________.
3
【解析】因为函数有意义的充要条件是1- (1)x ≥0,则
3
(1)x ≤1,即x≥0,
3
所以函数的定义域为[0,+∞).
第2课时 指数函数的性质与图像的应用

指数函数的图像及其性质-ppt

指数函数的图像及其性质-ppt

……
y2
xபைடு நூலகம்
细胞 总数
2个 21
4个 22
8个 23
16个 24
2
x
探究问题2
问题2、《庄子· 天下篇》中写道:“一尺 之棰,日取其半,万世不竭。”请你写出 截取x次后,木棰剩余量y关于x的函数关 系式?
探究问题2
截取 次数
1次
2次
3次
4次
x次
1 x y( ) 2
木棰 剩余
1 尺 2
1 尺 4
数函数,其中 x 是自变量, 函数的定义 域是 R.
注意三点: (1)底数:大于0且不等于1的常数 (2)指数:自变量x (3)系数:1
?
思考2:为什么要规定 a 0且a 1?

0

1
a
当a<0时, a x 不一定有意义,
1 1 如-2 ,当x , 等等, 2 4 在实数范围内函数无意义。
奇偶性:非奇非偶函数
例2:已知指数函数f(x)=ax(a>0且a≠1)的 图象经过点(2,16),求f(0),f(2)的值。 解:∵ f(x)的图象过点(2,16), ∴ f(2)=16即a2=16, 又a>0且a≠1 ∴ a=4 ,f(x)=4x.
∴ f(0)=40=1,f(2)=42=8
变式: 已知指数函数 f x a x ( a>0,且 a 1 ) 的图象经过点 2,9 ,求 f 0, f 1, f 3的值. 解: f 2 9 即: a 2 9 a 9 3

1 ( a 且 a 1 ) 2

y 5
2 x 2 1
y (4)
x
yx
x

数学人教A版必修第一册4.2.2指数函数的图像与性质课件

数学人教A版必修第一册4.2.2指数函数的图像与性质课件
轴且与轴无交点.
(2)所有图像都过(0,1)
之势;y =
1 x
和y
2
=
1 x
呈下降之势.
3
x
y
7
6
y = 3x
5
4
y=
不同点:
y = 2x 和y = 3x 的图像从左到右呈上升
()
1
3
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x
思考2:你认为是什么原因造成y = 2x 和y = 3x 的图像从
的大小是否有关?如有,底数的大小是如何影响函
数图像在第一象限内的分布呢?
y=
()
1
3
x
y
7
6
y = 3x
5
4
底数越大,其图像越在上方
y=
()
1
2
x
3
2
y = 2x
1
–2 –1
O 1
–1
2 x




思考4:你能根据对上述四个函数图像及其性质的分
析,填写下表吗?
0<a<1
图像
y
y
4
4
3
3
2
2
1
1
–2 –1 O 1
(2)判断该函数的奇偶性和单调性.
1
解:(1)根据题意,函数 = (2)|| + 的图象过原点,则
有0 = + ,则 = −,
又由 () 的图象无限接近直线 = −2 但又不与该直线相交,
则 = 2,又由 + = 0,则 = −2,

指数函数及其图像与性质_图文

指数函数及其图像与性质_图文

小试牛刀
例2.判断下列函数在其定义域上的单调性
(1)y=4x; 解:
知识积累:
y
指数函数y=2x的性质 x
(1)函数的定义域为R,值域为(0,∞); (2)图像都在x轴的上方,向上无限延伸,
向下无限接近x轴; (3)函数图象都经过(0,1)点; (4)函数图像自左至右呈上升趋势。
动手试一试
列表:
x

-3

8
图像:
指数函数y= 的图像
-2
-1.5
-1
-0.5
指数函数及其图像与性质_图文.ppt
直观感知:核裂变
如果裂变次数为x ,裂变后的原子核为 y,则y与x之间的关 系是什么?
y=2x
你还能举出一些类似的例子吗? (如细胞分裂……)
归纳结论
指数函数的概念:
一般地,设a>0且a≠1,形如y=ax的函数称为指数函数。 定义域:R
学以致用
问题:对于其它a的值,指数函数的图像又 是怎样的呢?
及时复习~~积沙成塔
指数函数的图像和性质:
y=ax
a
a>1
0<a<1


性 质
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时,y>1;当x<0时, 0<y<1; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
(1)函数值都是正的; (2)x=0时,y=1; (3)当x>0时, 0<y<1 ;当x<0时, y>1 ; (4)f(x)=2x在(-∞,+ ∞)上是增函数。
0
0.5

指数函数的性质与图像ppt课件

指数函数的性质与图像ppt课件

资料下载:./ziliao/
个人简历:./j ia nli/
试卷下载:./shiti/
教案下载:./j ia oa n/
手抄报:./shouchaobao/
P P T课件:./ke j ia n/
语文课件:./kejian/y uwen/ 数学课件:./kejian/shuxue/
英语课件:./kejian/y ingy u/ 美术课件:./kejian/meishu/
化学课件:./kejian/huaxue/ 生物课件:./kejian/shengwu/
地理课件:./ke j ia n/dili/
历史课件:./ke j ia n/lishi/
第四章 指数函数、对数函数与幂函数
■名师点拨 底数 a 与 1 的大小关系决定了指数函数图像的“升”与“降”.当 a>1 时,指数函数的图像是“上升”的;当 0<a<1 时,指数函数 的图像是“下降”的.
科学课件:./kejian/kexue/ 物理课件:./kejian/wuli/
化学课件:./kejian/huaxue/ 生物课件:./kejian/shengwu/
地理课件:./ke j ia n/dili/
历史课件:./ke j确的打“√”,错误的打“×”) (1)y=x2 是指数函数.(× )
栏目 导引
⑤指数函数的图像.
P P T模板:./m oba n/
PPT素材:./sucai/
P P T背景:./be ij ing/
PPT图表:./tubiao/
PPT下载:./xiazai/
PPT教程: ./powerpoint/
资料下载:./ziliao/
个人简历:./j ia nli/

2024版高一数学指数函数及其性质PPT课件图文

2024版高一数学指数函数及其性质PPT课件图文

学习方法建议
深入理解指数函数的概念
掌握指数函数的定义、图像和性质, 理解底数、指数和幂的含义。
多做练习题
通过大量的练习题,加深对指数函数 的理解和掌握,提高解题能力。
系统学习指数函数的运算
学习指数函数的四则运算,掌握运算 规则和技巧。
解题技巧分享
换元法
通过将指数函数中的变量 进行换元,简化问题,使 问题更容易解决。
指数函数在数学模 型中的应用举例
在经济学中,指数函数被用来描 述复利、折旧等问题;在物理学 中,指数函数被用来描述放射性 元素的衰变等问题;在工程学中, 指数函数被用来描述材料的疲劳 寿命等问题。
数学模型在解决实际问题中的价值
提高解决问题的效率
揭示问题的本质和规律
通过建立数学模型,可以将实际问题转化为 数学问题,利用数学方法和技术进行求解, 从而提高解决问题的效率。
05
指数函数与数学模型
数学模型简介
01
数学模型的定义
数学模型是描述客观事物或它的本质和本质的一系列数学形 式。它或能利用现有的数学形式如数学公式、数学方程、数 学图形等加以表述,或能抽象出数学的基本概念和基本结构。
02
数学模型的分类
根据研究目的,可以将数学模型分为描述性模型和预测性模 型。
03
数学模型的作用
指数方程求解
通过对方程两边取相同的底数的对数或者 利用换元法等方法求解指数方程。
指数函数性质应用
利用指数函数的单调性、奇偶性、周期性 等性质解决相关问题。
03
指数函数性质探究
单调性
01
指数函数的单调性取决于底数a的 大小
02
当a>1时,指数函数在整个定义 域上是增函数;
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y2
x
1 , y 的图象, 2
x
并思考:两个函数的图象有什么关系?
x

-3
-2
-1
0.5 2
7 8
-0.5
0.71 1.4
0
1 1
0.5
1.4
1
2
2
4
3
8


2x x 2
… 0.13 0.25 … 8 4
0.71 0.5 0.25 0.13 …
6
1 y 2
x
对任意实数有意义
为了便于研究,规定:a>0 且a≠1
例题
(口答)判断下列函数是不是指 数函数,为什么?

yx
2
√⑤

x
y
x
√②
y 8
x
√ ③ y (2a 1)

1 ( a 且 a 1 ) 2

y 5
2 x 2 1
y (4)
x
yx
x
x

x y 2 和y 3 是指数函数吗? 能力提升: 2 x 3
x
解: f 3
即: a 3 a 3
1 3
f x ( ) f 0 1
0 0 3
1 3 x
x 3
f 1
1
1 3
f 3
3 3

1

设问2:得到函数的图象一般用什么方法?
列表、描点、连线作图 在同一直角坐标系画出
问题2、《庄子· 天下篇》中写道:“一尺 之棰,日取其半,万世不竭。”请你写出 截取x次后,木棰剩余量y关于x的函数关 系式?
研究
截取 次数
1次
2次
3次
4次
x次
1 x y( ) 2
木棰 剩余
1 尺 2
1 尺 4
1 尺 8
1 尺 16
1 ( )x 尺 2
提炼
1 x y2 y ( ) 2 设问 1:以上两个函数有何 共同特征 ?
x
(1)均为幂的形式; ( 2)底数是一个正的常数;
(3)自变量x在指数的位置,
ya
x
指数函数的定义:
x (a 0,且a 1) y a 一般地,函数 叫做指 数函数,其中 x 是自变量, 函数的定义 域是 R.
注意三点: (1)底数:大于0且不等于1的常数 (2)指数:自变量x (3)底数a的系数:1
?
思考 2:为什么要规定 a 0且 a 1 ?

0

1
a
当a<0时, a x 不一定有意义,
1 1 如-2 ,当x , 等等, 2 4 在实数范围内函数无意 义。
x
当a=0时, 当a=1时, 当a>0时,
x>0
x≤0
ax 0
,无研究价值
a x 无意义 y 1x 1 常量,无研究价值
◆方法指导: 数形结合思想
1
y=1
利用函数图像研究函数性质是一种直观而形象的
方法,记忆指数函数性质时可以联想它的图像。
思考题:右图是指数函数① y=ax, ② y=bx, ③y=cx, ④ y=dx
的图象,则a,b,c,d与1的大
小关系是 A.a<b<1<c<d B.b<a<1<d<c C.1<a<b<c<d D.a<b<1<d<c ( )
y 10
例题讲解
例1:已知指数函数f(x)=ax(a>0且a≠1)的 图象经过点(2,16),求f(0),f(2)的值。 解:∵ f(x)的图象过点(2,16), ∴ f(2)=16即a2=16, 又a>0且a≠1 ∴ a=4 ,f(x)=4x.
∴ f(0)=40=1,f(2)=42=16
变式: 已知指数函数 f x a ( a>0,且 a 1) 的图象经过点3, ,求 f 0 , f 1, f 3的值.
R 定义域: ( 0,+ ∞ ) 性 值 域: 恒 过 点: ( 0 , 1 ) ,即 x = 0 时, y = 1 . 质 在 R 上是单调 增函数 在 R 上是单调 减函数
奇偶性:非奇非偶函数
三、图像与性质
例2. 比较下列各题中两个值的大小:
(1)1.72.5 , 1.73 ;
解① :利用函数单调性 考查函数 y=
4.2.1 指数函数 及其图像与性质
问题 引入
问题1、某种细胞分裂时,由1个分裂成 2个,2个分裂成4个,1个这样的细胞分 裂x次后,得到的细胞个数y与x的函数 关系式是什么?
研究
分裂 次数 1次 2次 3次 4次 x次
……
y2
x
பைடு நூலகம்细胞 总数
2个 21
4个 22
8个 23
16个 24
2
x
问题 引入
1.7
x
因为1.7>1,所以函数y= 1.7 x 在R上是增函数,而2.5<3, 所以,
5 4.5
4
3.5
1 .7
2 .5
<
1.7
3
fx = 1.7x
2.5 2 1.5 1
3
0.5
-2
-1
1
2
3
4
5
6
-0.5
三、图像与性质
② 0.8 0.1 , 0.8 0.2 解② :利用函数单调性 考查函数 y= 0.8 x 因为0<0.8<1,所以函数y=
1.7 0.3 1
从而有
0.93.1 1
0.3
1 .7
>
0 .9
3 .1
三、图像与性质
例2. 比较下列各题中两个值的大小:
0.2
(1)1.72.5 , 1.73 ; (2)0.8-0.1 ,0.8 -
(3)1.70.3 , 0.93.1.
小结 :比较指数幂大小的方法: ①、单调性法:利用函数的单调性,数的特征 是底同指不同(包括可以化为同底的)。 ②、中间值法:找一个 “中间值”如“1”来过 渡, 数的特征是底不同指不同。
练习
1.下列函数中一定是指数函数的是( )
A. y 2 x1
C. y 2
x
B. y x 3 x D. y 3 2
0.7 0.9 0.8 a 0 . 8 , b 0 . 8 , c 1 . 2 , 2.已知
则 a, b, c 的大小关系是____________________.
5
y2
x
4
3
2
1
-6
-4
-2
2
4
6
认识
指数函数
的图像及性质
a>1
0<a<1
y=ax
(a>1)
图 象
y=1
y
y=ax
(0<a<1)
y
(0,1)
y=1
(0,1)
0 当 x > 0 时,y > 1.
当 x < 0 时,. 0< y < 1
x
0时,y > 1; x 当x<0
当 x > 0 时, 0< y < 1。
三、图像与性质
变式. 比较大小: < (1)3.10.5 , 3.12.3
2 0.3 2 0.24 ( ) >, ( ) (2) 3 3
(3) 2.3-2.5 , 0.2 -0.1
<
课堂小结
1、指数函数概念: y x 函数y = ax(a0,且a 1)叫做指数函数,其中 是自变量 .函数的定义域是R . 2、指数函数的图像与性质; o x 3、指数式比较大小的方法: 构造函数法:同底不同指利用函数的单调性, 底不同指不同利用中间值
0.8
x
在R是减函数, 而-0.1>-0.2, 所以,
0.8 0.1 < 0.8 0.2
三、图像与性质
例:求函数的定义域:
(1) y 2x 1
(2) y 1 0.5x2 16
(3) y
1 1 ( ) x 1 81 3
三、图像与性质
③比较大小: 1.7 0.3 0.9 3.1 解③ :根据指数函数的性质,得
相关文档
最新文档