新人教版九年级上因式分解法同步练习含答案

合集下载

人教版九年级数学上册课后练习:因式分解法(包含答案)

人教版九年级数学上册课后练习:因式分解法(包含答案)

因式分解法一、填空题1.方程x (x ﹣2)=0的解为______.2.若分式22244x x x x ---+的值为0,则x 的值等于__________. 3.用因式分解法解方程x 2﹣kx ﹣16=0时,得到的两根均整数,则k 的值可以是______ (只写出一个即可)4.若x 2﹣mx ﹣15=(x+3)(x+n ),则n m 的值为______.5.若方程x 2﹣x =0的两根为x 1,x 2(x 1<x 2),则x 2﹣x 1=______.6.对于实数a ,b ,定义新运算“*”:2*a b a ab =-.如24*24428=-⨯=.若*56x =,则实数x 的值是______.7.已知a ,3是直角三角形的两条直角边,第三边的长满足方程x 2﹣9x +20=0,则a 的值为_____. 8.(2019·山东中考模拟)已知一元二次方程x 2﹣8x+15=0的两个解恰好分别是等腰△ABC 的底边长和腰长,则△ABC 的周长为_____.二、单选题9.方程22x x =的解是( )A .0x =B .2x =C .10x =,22x =D .10x =,22x =-10.方程ax (x-b )+(b-x )=0的根是( ).A .x 1=b ,x 2=aB .x 1=b ,x 2=1a C .x 1=a ,x 2=1a D .x 1=a 2,x 2=b 211.若实数x ,y 满足(x 2+y 2+2)(x 2+y 2﹣2)=0.则x 2+y 2的值为( )A .1B .2C .2 或﹣1D .﹣2或﹣112.(2019·内江)一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( )A .16B .12C .14D .12或1613.已知直角三角形的两条直角边长恰好是方程x 2-5x +6=0的两个根,则此直角三角形斜边长是( )A .BC .13D .514.(2019·广西中考模拟)如果三角形的两边长分别为方程x 2﹣8x+15=0的两根,则该三角形周长L 的取值范围是( )A .6<L <15B .6<L <16C .10<L <16D .11<L <1315.已知a+1b =2a +2b≠0,则a b的值为( ) A .-1 B .1 C .2. D .不能确定.16.若a b ,为方程2411()x x =-+的两根,且a b >,则a b = ( ) A .-5 B .-4 C .1 D .317.三角形的一边长为10,另两边长是方程214480x x -+=的两个实数根,则这个三角形是( ) A .等边三角形B .等腰三角形C .直角三角形D .等腰直角三角形三、解答题18.选用适当的方法解下列方程(1)3x 2-7x+2=0 (2)(x+1)(x-2)=x+1 (3)22(32)(23)x x -=-19.已知关于x 的方程226350x x m m -+--=的一个根为一1,求另一个根及m 的值.20.三角形两边长分别是6和8,第三边长是x 2-16x+60=0的一个实数根,求该三角形的第三条边长和周长。

人教版数学九年级上册解一元二次方程因式分解法同步练习题含答案与解析

人教版数学九年级上册解一元二次方程因式分解法同步练习题含答案与解析

21.2 解一元二次方程 21.2.3 因式分解法一、单项选择题1. 一元二次方程x 2-x +=0的根是( ) A ., B .x 1=2,x 2=-2 C .x 1=x 2= D .x 1=x 2=2. 方程3x 2=0与方程3x 2=3x 的解( )A .都是x=0B .有一个相同的解x=0C .都不相同D .无法确定3.解方程(x +5)2-3(x +5)=0,较为简便的方法是( )A .直接开平方法B .因式分解法C .配方法D .公式法4.方程x(x -4)=32-8x 的解是( )A .x =-8B .x 1=4,x 2=-8C .x 1=-4,x 2=8D .x 1=2,x 2=-85. 一个三角形的两边长为3和6,第三边的边长是方程(x-3)(x-4)=0的根,则这个三角形的周长( )A .13B .11或13C .11D .11和136、要使4452-+-x x x 的值为0,x 的值为( )A .4或1B .4C .1D .-4或-114112x =21=2x -12-127、已知x2-5xy+6y2=0,那么x与y的关系是()A.2x=y或3x=y B.2x=y或3y=xC.x=2y或x=3y D.x=2y或y=3x8、已知(a2+b2)2-2(a2+b2)+1=0,则a2+b2的值为()A.0 B.-1 C.1 D.±1二、填空题9.方程(x-1)(x+2)=2(x+2)的根是__________.10.如果代数式3x2-6的值为21,那么x的值为__________.11.已知x=2是一元二次方程(m-2)x2+4x-m2=0的一个根,则m的值是______.12. 一元二次方程x(x-1)=0的解是__________.13. 一元二次方程x2-3x=0的根是__________.14. 方程(x+1)(3x-2)=0的根是15. 请写出一个根为x=1,另一个根满足-1<x<1的一元二次方程:16. 已知一元二次方程(m-1)x2+7mx+m2+3m-4=0有一根为0,则m=y=17. 若2x2+9xy-5y2=0,则x三、解答题18. 用因式分解法解下列一元二次方程:(1)(x-1)(x+3)=-3;(2)(3x-1)2=4(2x+3)2.19. 如果方程x2+mx-2m=0的一个根为-1,求方程x2-6mx =0的根.20. 用因式分解法解方程x2-mx-7=0时,将左边分解后有一个因式为x+1,求m的值.21. 若m是关于x的方程x2+nx+m=0的根,切m≠0,则m+n的值是多少?22. 有一大一小两个正方形,小正方形的边长比大正方形边长的一半多4cm,大正方形的面积比小正方形面积的2倍少32cm2,求这两个正方形的边长.23. 阅读材料:为解方程(x 2-1)2-5(x 2-1)+4=0,我们可以将x 2-1看作一个整体,然后设x 2-1=y ①,那么原方程可化为y 2-5y+4=0,解得y 1=1,y 2=4,当y=1时,x 2-1=1,∴x 2=2,∴x=±2;当y=4时,x 2-1=4,∴x 2=5,∴x=±5,故原 方程的解为x 1=2,x 2= -2,x 3=5,x 4= -5解答问题:(1)上述解题过程,在由原方程得到方程①的过程中,利用 法达到了解方程的目的,体现了转化的数学思想。

九年级上第02讲 一元二次方程的解法(公式法、因式分解法)讲义+练习

九年级上第02讲 一元二次方程的解法(公式法、因式分解法)讲义+练习
教学难点
因式分解法解一元二次方程.
【知识导图】
1、观察一元二次方程 ,结合我们上节课学的知识解此方程.
2、思考这个一元二次方程还有没有其它的解法?
3、今天我们学习一元二次方程另外的解法:公式法、因式分解法.
1、形成表象,提出问题
用配方法解下列一元二次方程:
(1)x2+4x+2=0 ; (2)3x2-6x+1=0;
∴把m=1代入方程mx2﹣3mx+m﹣1=0得:x2﹣3x+1﹣1=0,
x2﹣3x=0,
x(x﹣3)=0,
x1=0,x2=3;
把m=﹣1代入方程mx2﹣3mx+m﹣1=0得:﹣x2+3x﹣2=0,
x2﹣3x+2=0,
(x﹣1)(x﹣2)=0,
x1=1,x2=2;
(3)|m|≤2不成立,理由是:
由(1)知:k≥﹣1且k≠1且k≠2,
一元二次方程的解法
(配方法和因式分解法)
适用学科
初中数学
适用年级
初三
适用区域
人教版区域
课时时长(分钟)
120
知识点
1、根的判别式;
2、公式法解一元二次方程;
3、因式分解法解方程.
教学目标
1、掌握公式法解一元二次方程的方法.
2、掌握应用因式分解法解某些系数较为特殊的一元二次方程的方法.
教学重点
能根据题目的要求及特点用恰当的方法求解方程.
我们仍以方程x2=4为例.
移项,得x2-4=0,
对x2-4分解因式,得(x+2)(x-2)=0.
我们知道:
∴x+2=0,x-2=0.
即x1=-2,x2=2.

九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题

九年级数学上册《解一元二次方程(因式分解法)》练习题(含答案解析)学校:___________姓名:___________班级:______________一、单选题1.方程x 2﹣x =0的解是( )A .x =0B .x =1C .x 1=0,x 2=﹣1D .x 1=0,x 2=12.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=33.如图,在Rt △ABC 中,∠C =90°,放置边长分别为3,4,x 的三个正方形,则x 的值为( )A .12B .7C .6D .54.若m ,n 是方程x 2-x -2 022=0的两个根,则代数式(m 2-2m -2 022)(-n 2+2n +2 022)的值为()A .2 023B .2 022C .2 021D .2 0205.下列关于x 的一元二次方程()200++=≠ax bx c a 的命题中,真命题有( )∠若0a b c -+=,则240b ac -≥;∠若方程()200++=≠ax bx c a 两根为1和-2,则0a b -=;∠若方程()200++=≠ax bx c a 有一个根是()0c c -≠,则1b ac =+A .∠∠∠B .∠∠C .∠∠D .∠∠6.若函数y =m 22m m x +++4是二次函数,则m 的值为( )A .0或﹣1B .0或1C .﹣1D .17.一个等腰三角形的两条边长分别是方程x 2﹣9x +18=0的两根,则该等腰三角形的周长是( )A .12B .9C .15D .12或158.下列式子运算正确的是( )A .(2a+b )(2a ﹣b )=2a 2﹣b 2B .(a+2)(b ﹣1)=ab ﹣2C .(a+1)2=a 2+1D .(x ﹣1)(x ﹣2)=x 2﹣3x+29.已知方程x 2+2x ﹣3=0的解是x 1=1,x 2=﹣3,则另一个方程(x +3)2+2(x +3)﹣3=0的解是( )A .x 1=﹣1,x 2=3B .x 1=1,x 2=﹣3C .x 1=2,x 2=6D .x 1=﹣2,x 2=﹣6 10.下列解方程变形:∠由3x +4=4x -5,得3x +4x =4-5;∠由1132x x +-=,去分母得2x -3x +3=6; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;∠由344x =,得x =3.其中正确的有( ) A .0个 B .1个 C .2个 D .3个二、填空题11.一元二次方程()()120x x --=可化为两个一次方程为______________,方程的根是_________.12.方程2x 2+1=3x 的解为________.13.已知()()212x kx x a x b ++=++,()()215x kx x c x d ++=++,其中a b c d ,,,均为整数,则k =____________ 14.已知()()2222142x y x y ++-=,则22x y +的值是___________.15.若a ,b 是一元二次方程2220220x x +-=的两个实数根,则242a a b ++的值是_________.三、解答题16.已知关于x 的方程()()2222130k k x k x +-++-=(k 为常数).(1)该方程一定是一元二次方程吗?如果一定是,请说明理由;如果不一定是,请求出当方程不是一元二次方程时k 的值;(2)求1k =时方程的解;(3)求出一个()1k k ≠的值,使这个k 的值代人原方程后,所得的方程中有一个解与(2)中方程的一个解相同.(本小题只需求一个k 的值即可)17.为解方程(x 2﹣1)2﹣5(x 2﹣1)+4=0,我们可以将x 2﹣1视为一个整体,然后设x 2﹣1=y ,则原方程可化为y 2﹣5y +4=0,解此方程得y 1=1,y 2=4.当y =1时,x 2﹣1=1,所以x =当y =4时,x 2﹣1=4,所以x =所以原方程的根为1x =,2x =3x =4x =.以上解方程的方法叫做换元法,利用换元法达到了降次的目的,体现了数学的转化思想.运用上述方法解下列方程:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4;(2)x 4+x 2﹣12=0.参考答案与解析:1.D【分析】因式分解后求解即可.【详解】x 2﹣x =0,x (x -1)=0,x =0,或x -1=0,解得x 1=0,x 2=1,故选:D【点睛】此题考查因式分解法解一元二次方程,因式分解法解一元二次方程的一般步骤:∠移项,使方程的右边化为零;∠将方程的左边分解为两个一次因式的乘积;∠令每个因式分别为零,得到两个一元一次方程;∠解这两个一元一次方程,它们的解就都是原方程的解.2.D【分析】利用因式分解法求解可得.【详解】解:∠x (x ﹣5)﹣3(x ﹣5)=0,∠(x ﹣5)(x ﹣3)=0,则x ﹣5=0或x ﹣3=0,解得x =5或x =3,故选:D .【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.3.B【分析】根据已知条件可以推出△CEF∠∠OME∠∠PFN然后把它们的直角边用含x的表达式表示出来,利用对应边的比相等,即可推出x的值.【详解】解:∠在Rt△ABC中(∠C=90°),放置边长分别3,4,x的三个正方形,∠OM∠AB∠PN∠EF,EO∠FP,∠C=∠EOM=∠NPF=90°,∠∠CEF∠∠OME∠∠PFN,∠OE:PN=OM:PF,∠EF=x,MO=3,PN=4,∠OE=x-3,PF=x-4,∠(x-3):4=3:(x-4),∠(x-3)(x-4)=12,即x2-4x-3x+12=12,∠x=0(不符合题意,舍去)或x=7.故选:B.【点睛】本题主要考查相似三角形的判定和性质、正方形的性质,解题的关键在于找到相似三角形,用x 的表达式表示出对应边.4.B【详解】解:∠m、n是方程x2-x-2022=0的两个根,∠m2-m-2022=0,n2-n-2022=0,mn=-2022,∠m2-m=2022,n2-n=2022,∠(m2-2m-2 022)(-n2+2n+2 022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【点睛】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m 2-m -2022=0,n 2-n -2022=0,mn =-2022是解此题的关键.5.A【分析】把b =a +c 代入判别式中得到24b ac -=(a -c )2≥0,则可对∠进行判断;利用根与系数的关系得到2c a=-,根据根的定义可得0a b c ++=,于是可对∠进行判断;由方程的根的定义可得20ac bc c -+=,即可对∠进行判断.【详解】解:a -b +c =0,则b =a +c ,24b ac -=(a +c )2-4ac =(a -c )2≥0,所以∠正确;∠方程ax 2+bx +c =0两根为1和-2, ∠2c a=-,则2c a =-,0a b c ++= 20a b a ∴+-=∠0a b -=,所以∠正确;∠方程()200++=≠ax bx c a 有一个根是()0c c -≠,∠20ac bc c -+=0c ≠∠10ac b -+=∠1b ac =+所以∠正确.故选:A .【点睛】本题考查了一元二次方程根的判别式,根与系数的关系,掌握以上知识是解题的关键.6.C【分析】利用二次函数定义可得m 2+m +2=2,且m ≠0,再解即可.【详解】解:由题意得:m 2+m +2=2,且m ≠0,解得:m =﹣1,故C 正确.故选:C .【点睛】本题主要考查了二次函数定义,关键是掌握形如y =ax 2+bx +c (a 、b 、c 是常数,a ≠0)的函数,叫做二次函数.7.C【分析】利用因式分解法求出x 的值,再根据等腰三角形的性质分情况讨论求解【详解】解:∠ x 2﹣9x +18=0,∠(x﹣3)(x﹣6)=0,则x﹣3=0或x﹣6=0,解得x=3或x=6,当3是腰时,三角形的三边分别为3、3、6,不能组成三角形;当6是腰时,三角形的三边分别为3、6、6,能组成三角形,周长为3+6+6=15.故选:C.【点睛】本题考查了因式分解法解一元二次方程,三角形的三边关系,等腰三角形的性质,要注意分情况讨论.8.D【分析】A、原式利用平方差公式计算即可得到结果;B、原式利用多项式乘以多项式法则计算得到结果,即可做出判断;C、原式利用完全平方公式计算得到结果,即可做出判断;D、原式利用多项式乘以多项式法则计算得到结果,即可做出判断.【详解】解:A、原式=4a2-b2,错误;B、原式=ab-a+2b-2,错误;C、原式=a2+2a+1,错误;D、原式=x2-3x+2,正确.故选D.【点睛】此题考查了平方差公式,多项式乘多项式,以及完全平方公式,熟练掌握公式及法则是解本题的关键.9.D【分析】根据已知方程的解得出x+3=1,x+3=﹣3,求出两个方程的解即可.【详解】解:∠方程x2+2x﹣3=0的解是x1=1,x2=﹣3,∠方程(x+3)2+2(x+3)﹣3=0中x+3=1或﹣3,解得:x=﹣2或﹣6,即x1=﹣2,x2=﹣6,故选:D.【点睛】本题考查了解一元二次方程,换元法解一元二次方程,能根据方程的解得出x+3=1,x+3=﹣3,是解此题的关键.10.B【分析】根据解一元一次方程的步骤进行逐一求解判断即可.【详解】解:∠由3x +4=4x -5,得3x -4x =-5-4;方程变形错误,不符合题意;∠由1132x x +-=,去分母得2x -3x -3=6;方程变形错误,不符合题意; ∠由()()221331x x ---=,去括号得4x -2-3x +9=1;正确,符合题意;∠由344x =,得x =163.方程变形错误,不符合题意; 综上,正确的是∠,只1个,故选:B .【点睛】本题主要考查了解一元一次方程,解题的关键在于能够熟练掌握解一元一次方程的方法. 11. x ﹣1=0,x ﹣2=0 11x =,22x =【分析】两个因式的积为0,这两个因式都可以为0,得到两个一次方程,然后求出方程的根.【详解】解:(x ﹣1)(x ﹣2)=0∠x ﹣1=0或x ﹣2=0∠11x =,22x =.故答案分别是:x ﹣1=0,x ﹣2=0;11x =,22x =. 【点睛】本题考查的是用因式分解法解一元二次方程,因式分解得到两个因式的积为0,这两个因式分别为0,得到两个一次方程,然后求出方程的根.12.1211,2x x == 【分析】先移项,再利用因式分解法解答,即可求解.【详解】解:移项得:22310x x -+=,∠()()2110x x --=,∠210x -=或10x -=, 解得:1211,2x x ==, 故答案为:1211,2x x ==. 【点睛】此题主要考查了解一元二次方程,熟练掌握一元二次方程的解法,并灵活选用合适的方法解答是解题的关键.13.8±.【分析】根据等式两边对应相等的关系,可得到ab 和cd 的值,以及a+b 和c+d 的关系,再根据a 、b 、c 、d 是整数,即可得到结果.【详解】解:由题可得()()()2x a x b x a b x ab ++=+++,()()()2x c x d x c d x cd ++=+++12ab ∴=,15cd =,a b c d k +=+=又a b c d ,,,均为整数,∠2a =,6b =,3c =,5d =或2a =-,6b =-,3c =-,5d =-即8k =±.故答案为:±8.【点睛】本题考查多项式乘多项式,属基础知识.14.7【分析】换元法,令22x y t +=,将原方程化为t (t -1)=42(t 0≥), 求解一次方程即可.【详解】令22x y t +=(t 0≥),∠原方程化为t (t -1)=42,解得t =7,或t =-6(舍),∠227x y +=,故答案为:7.【点睛】本题考查用换元法求解方程.解题关键是要注意换元之后一定要考虑新未知数的取值范围,换元法的实际应用,是解题关键.15.2018【分析】先根据一元二次方程的解的定义得到222022a a +=,再根据根与系数的关系得到2a b +=-,然后利用整体代入的方法计算.【详解】解:∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2220220a a +-=∠222022a a +=∠a ,b 是一元二次方程2220220x x +-=的两个实数根,∠2a b +=-,∠242a a b ++2222a a a b =+++()222a a a b=+++()202222=+⨯-2018=故答案为:2018.【点睛】本题考查的是一元二次方程的解的定义和根与系数的关系,还有整体的思想,熟练掌握一元二次方程的解的定义和根与系数的关系是解本题的关键.16.(1)不一定是,1k=-(2)x1=1,x2=-3;(3)4-或8 3 -【分析】(1)不一定,当2220k k+-=时该方程为一元一次方程,解得k的值即可;(2)把k=1代入方程计算即可;(3)把(2)中解得的x的值代入原方程解得k的值即可.(1)解:不一定是.当2220k k+-=时该方程为一元一次方程,解得:1k=-±答:方程不一定是一元二次方程,当方程不是一元二次方程时k的值为1-(2)解:当k=1代入得:2230x x+-=解得:x1=1,x2=-3;(3)解:x=1代入得k=-4,或x=-3代入得k=83 -,答:k的值为4-或83 -.【点睛】本题考查了一元二次方程的定义、一元二次方程的解以及解一元二次方程,掌握定义与解法是解题的关键.17.(1)x 1=2,x 2=﹣1;(2)12x x ==【分析】(1)设x 2﹣x =a ,原方程可化为a 2﹣4a +4=0,求出a 的值,再代入x 2﹣x =a 求出x 即可;(2)设x 2=y ,原方程化为y 2+y ﹣12=0,求出y ,再把y 的值代入x 2=y 求出x 即可.【详解】解:(1)(x 2﹣x )(x 2﹣x ﹣4)=﹣4,设x 2﹣x =a ,则原方程可化为a 2﹣4a +4=0,解此方程得:a 1=a 2=2,当a =2时,x 2﹣x =2,即x 2﹣x ﹣2=0,因式分解得:(x ﹣2)(x +1)=0,解得:x 1=2,x 2=﹣1,所以原方程的解是x 1=2,x 2=﹣1;(2)x 4+x 2﹣12=0,设x 2=y ,则原方程化为y 2+y ﹣12=0,因式分解,得(y ﹣3)(y +4)=0,解得:y 1=3,y 2=﹣4,当y =3时,x 2=3,解得:x =当y =﹣4时,x 2=﹣4,无实数根,所以原方程的解是1x 2x =【点睛】本题考查了用换元法解一元二次方程和用因式分解法解一元二次方程,能正确换元是解此题的关键.。

21.2.3 解一元二次方程-因式分解法同步练习(解析版)

21.2.3 解一元二次方程-因式分解法同步练习(解析版)

21.2.2因式分解法同步练习一、单选题1、一元二次方程()x x 22x -=-的根是( )A. -1B. 2C. 1和2D. -1和22、已知三角形的两边长为4和5,第三边的长是方程x 2-5x +6=0的一个根,则这个三角形的周长是( )A. 11B. 12C. 11或12D. 153、关于x 的一元二次方程x 2-4x +3=0的解为( )A. x 1=-1,x 2=3B. x 1=1,x 2=-3C. x 1=1,x 2=3D. x 1=-1,x 2=-34、已知2340x x --=,则代数式24x x x --的值是( ) A. 3 B. 2 C. 13 D. 125、一个等腰三角形的底边长是6,腰长是一元二次方程28150x x -+=的一根,则此三角形的周长是( )A. 16B. 12C. 14D. 12或166、若x =-2是关于x 的一元二次方程x 2+32ax -a 2=0的一个根,则a 的值为( ) A. -1或4 B. -1或-4 C. 1或-4 D. 1或47、已知()222226x y y x +-=+,则22x y +的值是( ) A. -2 B. 3 C. -2或3 D. -2且38、已知x 、y 都是实数,且(x 2+y 2)(x 2+y 2+2)-3=0,那么x 2+y 2的值是( )A. -3B. 1C. -3或1D. -1或39、若方程()()2310x x -+=,则31x +的值为( )A. 7B. 2C. 0D. 7或010、若实数x 、y 满足(3)()20x y x y +-++=,则x +y 的值为( )A. -1或-2;B. -1或2;C. 1或-2;D. 1或2;11、我们知道方程x 2+2x -3=0的解是x 1=1,x 2=-3,现给出另一个方程(2x +3)2+2(2x +3)-3=0,它的解是( )A. x 1=1,x 2=3B. x 1=1,x 2=-3C. x 1=-1,x 2=3D. x 1=-1,x 2=-3二、填空题12、若关于x 的方程()(4)0x a x +-=和2340x x --=的解完全相同,则a 的值为______. 13、已知在△ABC 中,AB =3,AC =5,第三边BC 的长为一元二次方程x 2-6x +8=0的一个根,则该三角形为______三角形.14、若多项式x 2-mx +n (m 、n 是常数)分解因式后,有一个因式是x -2,则2m -n 的值为______. 15、我们知道方程x 2-2x +1=0的解是x 1=x 2=1,则给出的另一个方程(x -1)2-2(x -1)+1=0的解是______.16、如果(x 2+y 2)2+3(x 2+y 2)-4=0,那么x 2+y 2的值为______.17、方程34x x =的实数根是______.三、解答题18、解方程:(1)2450x x +-=(配方法);(2)x 2−5x +6=0(因式分解法);(3)22730x x -+=(公式法).19、选择适当方法解下列方程(1)(3x -1)2=(x -1)2(2)3x (x -1)=2-2x20、阅读下面的材料,回答问题:解方程x4-5x2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x2=y,那么x4=y2,于是原方程可变为y2-5y+4=0①,解得y1=1,y2=4.当y=1时,x2=1,∴x=±1;当y=4时,x2=4,∴x=±2;∴原方程有四个根:x1=1,x2=-1,x3=2,x4=-2.(1)在由原方程得到方程①的过程中,利用______法达到______的目的,体现了数学的转化思想.(2)解方程(x2+x)2-4(x2+x)-12=0.1、答案:①x1=-1,x2=2;②x1=-1,x2=3;③x1=-1,x2=4;(2)①x1=-1,x2=10;②x1=-1,x2=10;(3)x2-nx-(n+1)=0分析:本题考查了用因式分解法和配方法解一元二次方程,数字类探索与规律,掌握因式分解法是解(1)的关键,掌握配方法是解(2)的关键,观察出二次项系数、一次项系数、常数项与两根之间的关系是解(3)的关键.解答:①∵x2-x-2=0,∴(x+1)(x−2)=0,∴x1=-1,x2=2;②∵x2-2x-3=0,∴(x+1)(x−3)=0,∴x1=-1,x2=3;③∵x2-3x-4=0,∴(x+1)(x−4)=0,∴x1=-1,x2=4;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x-10=0的解为x1=-1,x2=10;②x2-9x-10=0,移项,得x2-9x=10,配方,得x2-9x+814=10+814,即(x-92)2=1214,开方,得x-92=112.x1=-1,x2=10;(3)应用:关于x的方程x2-nx-(n+1)=0的解为x1=-1,x2=n+1.2、答案:D分析:本题考查了因式分解法解一元二次方程.解答:()x x 22x -=-⇒()()x x 2x 20-+-=⇒()()x 2x 10-+=⇒x 20x 10-=+=⇒或12x 2x 1,==-,选D .3、答案:C分析:本题考查了因式分解法解一元二次方程.解答:x 2-5x +6=0,解得x 1=2,x 2=3,∴三角形周长是4+5+2=11,4+5+3=12,选C .4、答案:C分析:本题考查了因式分解法解一元二次方程.解答:x 2-4x +3=0,分解因式得:(x -1)(x -3)=0,解得:x 1=1,x 2=3,选C .5、答案:D分析:本题考查了因式分解法解一元二次方程、代数式求值.解答:x 2-3x -4=0,(x -4)(x +1)=0,解得x 1=4,x 2=-1,∴当x =4时,24x x x --=12;当x =-1时,24x x x --=12. 选D .6、答案:A分析:本题考查了因式分解法解一元二次方程、三角形的三边关系.解答:解方程28150x x -+=,得:3x =或5x =,若腰长为3,则三角形的三边为3、3、6,显然不能构成三角形;若腰长为5,则三角形三边长为5、5、6,此时三角形的周长为16,选A .7、答案:C分析:本题考查了因式分解法解一元二次方程.解答:∵x =-2是关于x 的一元二次方程22302x ax a +-=的一个根, ∴(-2)2+32a ×(-2)-a 2=0,即a 2+3a -4=0, 整理,得(a +4)(a -1)=0,解得a 1=-4,a 2=1.即a 的值是1或-4.选C .8、答案:B分析:本题考查了因式分解法解一元二次方程.解答:根据题意,先移项得()2222260x y y x +---=, 即()2222260x y x y ()+-+-=,然后根据“十字相乘法”可得2222(2)(3)0x y x y +++-=,由此解得22x y +=-2(舍去)或223x y +=.选B .9、答案:B分析:本题考查了因式分解法解一元二次方程.解答:∵(x 2+y 2)(x 2+y 2+2)-3=0,∴(x 2+y 2)2+2(x 2+y 2)-3=0,解得:x 2+y 2=-3或x 2+y 2=1∵x 2+y 2>0∴x 2+y 2=1选B .10、答案:D分析:本题考查了解一元二次方程−因式分解法,利用此方法解方程时首先将方程右边化为0,左边的多项式分解因式,然后利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解.解答:方程(2)(31)0x x -+=,可得20x -=或310x +=, 解得:12123x x ==-,,当2x =时,313217x +=⨯+=; 当13x =-时,1313103x +=⨯-+=(). 选D .11、答案:D分析:本题考查了因式分解法解一元二次方程.解答:t =x +y ,则由原方程,得t (t -3)+2=0,整理,得(t -1)(t -2)=0.解得t =1或t =2,∴x +y 的值为1或2.选D .12、答案:D分析:本题考查了因式分解法解一元二次方程.解答:将x 1=1,x 2=-3代入到x 2+2x -3=0得12+2×1-3=0,(-3)2+2×(-3)-3=0对比方程(2x +3)2+2(2x +3)-3=0,可得2x +3=1或-3解得:x 1=-1,x 2=-3选D .二、填空题13、答案:1分析:本题考查了因式分解法解一元二次方程.解答:解:2340x x --=,∴(4)(1)0x x -+=,∵关于x 的方程()(4)0x a x +-=和2340x x --=的解完全相同,∴a =1,故答案为:1.14、答案:直角分析:本题考查了因式分解法解一元二次方程、勾股定理的逆定理.解答:解一元二次方程x 2-6x +8=0,得,x =2或4,∵AB =3,AC =5,∴2<BC <8,∵第三边BC 的长为一元二次方程x 2-6x +8=0的一个根,∴BC =4,当BC =4时,AB 2+BC 2=AC 2,△ABC 是直角三角形.故答案为:直角.15、答案:4分析:本题考查了因式分解法解一元二次方程.解答:设另一个因式为x -a ,则x 2-mx +n =(x -2)(x -a )=x 2-ax -2x +2a =x 2-(a +2)x +2a ,得:22a m a n +=⎧⎨=⎩, ∴2m -n =2(a +2)-2a =4,故答案为4.16、答案:x 1=x 2=2分析:本题考查了换元法解一元二次方程.解答:∵方程x 2-2x +1=0的解是x 1=x 2=1,∴方程(x -1)2-2(x -1)+1=0的解满足:x −1=1,∴x 1=x 2=2.17、答案:1分析:先设22x y m +=,则原方程可变形为:2340m m +-=,解方程即可求得m 的值,从而求得22x y +的值.解答:设22x y m +=,则原方程可变形为:2340m m +-=,分解因式得,(1)(4)0m m -+=∴m =-4,m =1,∵22xy +≥0 ∴22x y +=1 故答案为:1.18、答案:10x =,22x =,32x =-分析:本题考查了因式分解法解方程.解答:34x x =340x x -=2(4)0x x -=x (x -2)(x +2)=0∴10x =,22x =,32x =-.故答案为:10x =,22x =,32x =-.三、解答题19、答案:(1)x 1=1,x 2=−5;(2)x 1=2,x 2=3;(3)x 1=3,x 2=12. 分析:本题考查的是一元二次方程的解法,掌握一元二次方程的解法:配方法,公式法,因式分解法的解答步骤是关键.解答:(1)2450x x +-=,245x x +=,24454x x ++=+,()229x +=,23x +=±,23x +=或23x +=-,∴121,5x x ==-.(2)x 2-5x +6=0,(x -2)(x -3)=0,x -2=0或x -3=0,∴x 1=2,x 2=3,(3)22730x x -+=,∵a =2,b =−7,c =3,2449423250b ac -=-⨯⨯=>,754x ±==, ∴1213,2x x ==. 20、答案:(1)x 1=0,x 2=12;(2)x 1=1,x 2=-23. 分析:本题考查了因式分解法解一元二次方程.解答:(1)3x -1=±(x -1),即3x -1=x -1或3x -1=-(x -1),∴x 1=0,x 2=12; (2)3x (x -1)+2(x -1)=0,(x -1)(3x +2)=0,x -1=0或3x +2=0,∴x 1=1,x 2=-23. 20、答案:(1)换元,降次;(2)x 1=-3,x 2=2.分析:本题考查了因式分解法解一元二次方程.解答:解:(1)在由原方程得到方程①的过程中,利用换元法达到降次的目的,体现了数学的转化思想;(2)设x 2+x =y ,原方程可化为y 2-4y -12=0,解得y 1=6,y 2=-2.由x 2+x =6,得x 1=-3,x 2=2.由x2+x=-2,得方程x2+x+2=0,b2-4ac=1-4×2=-7<0,此时方程无实根.∴原方程的解为x1=-3,x2=2.【答题】根据要求,解答下列问题:(1)①方程x2-x-2=0的解为______;②方程x2-2x-3=0的解为______;③方程x2-3x-4=0的解为______;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2-9x-10=0的解为______;②请用配方法解方程x2-9x-10=0,以验证猜想结论的正确性.(3)应用:关于x的方程______的解为x1=-1,x2=n+1.。

人教版九年级上数学因式分解法同步练习含答案

人教版九年级上数学因式分解法同步练习含答案

测试时间:15分钟一、选择题1.(2018辽宁沈阳沈河期末)方程x2+x=0的根为( )A.x=-1B.x=0C.x1=0,x2=-1D.x1=0,x2=12.(2018四川宜宾期末)一元二次方程(x+3)(x-7)=0的两个根是( )A.x1=3,x2=-7B.x1=3,x2=7C.x1=-3,x2=7D.x1=-3,x2=-73.一元二次方程2x(3x-2)=(x-1)(3x-2)的解是( )A.x=-1B.x=C.x1=,x2=0D.x1=,x2=-14.对于方程(x-1)(x-2)=x-2,下面给出的说法不正确的是( )A.与方程x2+4=4x的解相同B.两边都除以x-2,得x-1=1,解得x=2C.方程有两个相等的实数根D.移项,因式分解得(x-2)2=0,解得x1=x2=2二、填空题5.若a2+a=0,则(a+1)2019的值为.6.(2017安徽合肥包河一模)一元二次方程x-1=x2-1的根是.三、解答题7.(2017甘肃定西临洮期中)按要求解一元二次方程:(1)x2-10x+9=0(配方法);(2)x(x-2)+x-2=0(因式分解法).21.2.3 因式分解法一、选择题1.答案 C 因式分解,得x(x+1)=0,∴x=0或x+1=0,∴x1=0,x2=-1.故选C.2.答案 C ∵(x+3)(x-7)=0,∴x+3=0或x-7=0,∴x1=-3,x2=7,故选C.3.答案D移项,得2x(3x-2)-(x-1)(3x-2)=0,因式分解,得(3x-2)[2x-(x-1)]=0,解得x1=,x2=-1.故选D.4.答案 B 方程(x-1)(x-2)=x-2,移项得(x-1)(x-2)-(x-2)=0,因式分解得(x-2)(x-2)=0,解得x1=x2=2.选项A,与方程x2+4=4x的解相同,正确;选项B,当x-2=0时,方程两边不可以都除以x-2,错误;选项C,方程有两个相等的实数根,正确;选项D,移项,因式分解得(x-2)2=0,解得x1=x2=2,正确.故选B.二、填空题5.答案0或1解析∵a2+a=a(a+1)=0,∴a=0或a=-1.当a=0时,原式=1;当a=-1时,原式=0.综上,原式的值为0或1.6.答案x=0或x=1解析整理,得(x-1)-(x+1)(x-1)=0,因式分解,得(x-1)(1-x-1)=0,即-x(x-1)=0,则x=0或x=1.三、解答题7.解析(1)x2-10x+9=0,x2-10x=-9,x2-10x+-=-9+-,(x-5)2=16,∴x-5=4或x-5=-4,∴x1=9,x2=1.(2)x(x-2)+x-2=0,(x-2)(x+1)=0,∴x-2=0或x+1=0,∴x1=2,x2=-1.。

人教版九年级上册数学 《 一元二次方程的解法 公式法 因式分解法》(含答案)

人教版九年级上册数学 《 一元二次方程的解法 公式法 因式分解法》(含答案)

一元二次方程的解法 公式法 因式分解法一、选择题1. 方程x 2+x ﹣12=0的两个根为( )A .x 1=﹣2,x 2=6B .x 1=﹣6,x 2=2C .x 1=﹣3,x 2=4D .x 1=﹣4,x 2=32.整式x+1与整式x-4的积为x 2-3x-4,则一元二次方程x 2-3x-4=0的根是( ).A .x 1=-1,x 2=-4B .x 1=-1,x 2=4C .x 1=1,x 2=4D .x 1=1,x 2=-43.如果x 2+x -1=0,那么代数式3227x x +-的值为( )A .6B .8C .-6D .-84.若最新x 的一元二次方程(m -1)x 2+5x+m 2-3m+2=0的常数项为0,则m 的值等于( )A .1B .2C .1或2D .05.若代数式(2)(1)||1x x x ---的值为零,则x 的取值是( ). A .x =2或x =1 B .x =2且x =1C .x =2D .x =-16.一个等腰三角形的两条边长分别是方程x 2-7x+10=0的两根,则该等腰三角形周长是( ).A .12B .9C .13D .12或9二、填空题7.已知实数x 满足4x 2-4x+1=0,则代数式122x x +的值为________. 8.已知y =x 2+x-6,当x =________时,y 的值是24.9.若方程2x mx n ++可以分解成(x-3)与(x+4)的积的形式,则m =________,n =________.10.若规定两数a 、b 通过“※”运算,得到4ab ,即a ※b =4ab ,例如2※6=4×2×6=48.(1)则3※5的值为 ;(2)则x ※x+2※x-2※4=0中x 的值为 ;(3)若无论x 是什么数,总有a ※x =x ,则a 的值为 .11.阅读下面的材料,回答问题:解方程x 4﹣5x 2+4=0,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设x 2=y ,那么x 4=y 2,于是原方程可变为y 2﹣5y+4=0 ①,解得y 1=1,y 2=4.当y=1时,x 2=1,∴x=±1;当y=4时,x 2=4,∴x=±2;∴原方程有四个根:x 1=1,x 2=﹣1,x 3=2,x 4=﹣2.(1)在由原方程得到方程①的过程中,利用 法达到 的目的,体现了数学的转化思想.(2)方程(x 2+x )2﹣4(x 2+x )﹣12=0的解为 .12.三角形两边的长分别是8和6,第3边的长是一元二次方程x 2﹣16x +60=0的一个实数根,则该三角形的面积是 .三、解答题13. 用公式法解下列方程:2(1)210x ax --=; (2)22222(1)()ab x a x b x a b +=+> .14.用适当方法解下列方程:(1)(2x-3)2=25 (2)x 2-4x+2=0 (3)x 2-5x-6=015.(1)利用求根公式计算,结合①②③你能得出什么猜想?①方程x 2+2x+1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.②方程x 2-3x-1=0的根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.③方程3x 2+4x-7=0的根为x 1=_______,x 2=________,x 1+x 2=________,x 1·x 2=________.(2)利用求根公式计算:一元二次方程ax 2+bx+c =0(a ≠0,且b 2-4ac ≥0)的两根为x 1=________,x 2=________,x 1+x 2=________,x 1·x 2=________.(3)利用上面的结论解决下面的问题:设x 1、x 2是方程2x 2+3x-1=0的两个根,根据上面的结论,求下列各式的值:①1211x x +; ②2212x x +.答案与解析一、选择题1.【答案】D【解析】x 2+x ﹣12=(x +4)(x ﹣3)=0,则x +4=0,或x ﹣3=0,解得:x 1=﹣4,x 2=3.故选D .2.【答案】B ;【解析】∵ 234(1(4)x x x x --=+-,∴ 2340x x --=的根是11x =-,24x =.3.【答案】C .【解析】∵ 210x x +-=,∴ 21x x +=.∴ 32322222277()77176x x x x x x x x x x x +-=++-=++-=+-=-=-.4.【答案】B ;【解析】由常数项为0可得m 2-3m+2=0,∴ (m -1)(m -2)=0,即m -1=0或m -2=0, ∴ m =1或m =2,而一元二次方程的二次项系数m -1≠0,∴ m ≠1,即m =2.5.【答案】C ;【解析】(2)(1)0x x --=且||1x ≠,∴ 2x =.6.【答案】A ;【解析】x 2-7x+10=0,x 1=2,x 2=5,此等腰三角形的三边只能是5,5,2,其周长为12.二、填空题7.【答案】2;【解析】用因式分解法解方程24410x x -+=得原方程有两个等根,即1212x x ==, 所以121122x x+=+=. 8.【答案】5或-6;【解析】此题把y 的值代入得到最新x 的一元二次方程,解之即可.如:根据题意,得2624x x +-=,整理得2300x x +-=,解得15x =,26x =-. 9.【答案】 1 ; -12 ;【解析】22(3)(4)12x mx n x x x x ++=-+=+-,∴ m =1,n =-12.10.【答案】(1)60;(2) 12x =,24x =-;(3) 14a =. 【解析】(1)3※5=4×3×5=60;(2)∵ x ※x +2※2x -※4=24(28)0x x +-=,∴ 12x =,24x =-; (3)∵ a ※4x ax ==x ,4(41)0ax x a x -=-=,∴ 只有410a -=,等式才能对任何x 值都成立.∴ 14a =. 11.【答案】(1) 换元; 降次; (2) x 1=﹣3,x 2=2.【解析】解:(1)换元,降次(2)设x 2+x=y ,原方程可化为y 2﹣4y ﹣12=0,解得y 1=6,y 2=﹣2.由x 2+x=6,得x 1=﹣3,x 2=2.由x 2+x=﹣2,得方程x 2+x+2=0,b 2﹣4ac=1﹣4×2=﹣7<0,此时方程无实根.所以原方程的解为x 1=﹣3,x 2=2.12.【答案】24或8.【解析】解:∵x 2﹣16x +60=0,∴(x ﹣6)(x ﹣10)=0,解得:x 1=6,x 2=10,当x=6时,则三角形是等腰三角形,如图①:AB=AC=6,BC=8,AD 是高,∴BD=4,AD==2,∴S △ABC =BC•AD=×8×2=8; 当x=10时,如图②,AC=6,BC=8,AB=10,∵AC 2+BC 2=AB 2,∴△ABC 是直角三角形,∠C=90°,S △ABC =BC•A C=×8×6=24.∴该三角形的面积是:24或8.故答案为:24或8.三、解答题13.【答案与解析】(1)∵1,2,1,a b a c ==-=-∴2224(2)41(1)440b ac a a -=--⨯⨯-=+> ∴2224412a a x a a ±+==±+ ∴22121, 1.x a a x a a =++=-+(2)222(1)ab x a x b x +=+,即222()0abx a b x ab -++=,令A =ab ,B =22()a b -+,C =ab .∵ 22222224()4()0B AC a b ab ab a b ⎡⎤-=-+-•=-⎣⎦>, ∴ 222224()2B B AC a b a b x ab-±-+±-==, ∴ 222221222a b a b a a x ab ab b++-===, 222222()222a b a b b b x ab ab a+--===, ∴ 1a x b =,2b x a=. 14.【答案与解析】解:(1)直接开平方得:2x-3=±5,∴2x-3= 5或2x-3=-5∴x 1= 4,x 2= -1(2)∵a=1,b=-4,c=2,∴△=b 2-4ac=16-8=8.∴ 42x ±=± ∴12=2=2.x x +(3)分解因式得:(x-6)(x+1)=0∴ x-6= 0或 x+1=0∴x 1= 6,x 2= -1.15.【答案与解析】(1)两根之和等于一次项系数除以二次项系数的相反数,两根之积等于常数项除以二次项系数.① -1 ; -1 ; -2 ; 1.② 32 ;32; 3 ;-1. ③ 73- ; 1 ; 43- ; 73- . ;;b a - ;c a. (3)1232x x +=-,1212x x =-. ①1212123112312x x x x x x -++===-. ②22212121291913()2214244x x x x x x ⎛⎫+=+-=-⨯-=+= ⎪⎝⎭.1、最困难的事就是认识自己。

人教版九年级数学上学期(第一学期)《因式分解法》专题练习及答案.docx

人教版九年级数学上学期(第一学期)《因式分解法》专题练习及答案.docx

新人教版数学九年级上册第二十一章第二节因式分解法同步训练一、选择题1、方程的解是()A、B、C、D、2、方程的正确解法是()A、化为B、C、化为D、化为3、方程正确解法是()A、直接开方得B、化为一般形式C、分解因式得D、直接得或4、经计算整式与的积为,则的所有根为()A、B、C、D、5、关于的一元二次方程的两实根都是整数,则整数的取值可以有()A、2个B、4个C、6个D、无数个6、若关于x的多项式含有因式x-3,则实数p的值为()A、-5B、5C、-1D、17、关于x的一元二次方程有一根为0,则m的值为()A、1B、-1C、1或-1D、8、三角形一边长为,另两边长是方程的两实根,则这是一个().A、直角三角形B、锐角三角形C、钝角三角形D、任意三角形9、将4个数排成2行、2列,两边各加一条竖直线记成,定义,上述记号就叫做2阶行列式.若,则x的值为().A、B、C、D、210、若,则的值为().A、-3B、-1或4C、4D、无法计算11、因式分解结果为()A、B、C、D、12、一元二次方程的解是()A、1或-1B、2C、0或2D、013、若关于的方程的一个根是0,则另一个根是()A、1B、-1C、5D、14、下面一元二次方程的解法中,正确的是().A、,∴,∴B、,∴,∴C、,∴D、两边同除以x,得x=115、下列命题:①关于x的方程是一元二次方程;②与方程是同解方程;③方程与方程是同解方程;④由可得或.其中正确的命题有().A、0个B、1个C、2个D、3个二、填空题16、因式分解结果为________,方程的根为________.17、小华在解一元二次方程时,只得出一个根是x=4,则被他漏掉的一个根是x=________.18、方程的解是________.19、方程的解是________.20、三角形的每条边的长都是方程的根,则三角形的周长是________.三、解答题21、用适当的方法解方程.22、用因式分解法解下列方程:(1);(2);(3);(4).23、如果方程与方程有一个公共根是3,求的值,并分别求出两个方程的另一个根.24、把小圆形场地的半径增加5m得到大圆形场地,场地面积是小圆形场地的4倍,求小圆形场地的半径.25、如图所示,在长和宽分别是、的矩形纸片的四个角都剪去一个边长为的正方形.(1)用,,表示纸片剩余部分的面积;(2)当=6,=4,且剪去部分的面积等于剩余部分的面积时,求剪去的正方形的边长.答案解析部分一、选择题1、【答案】B【考点】解一元二次方程-因式分解法【解析】【解答】如果两个因式的积为0,那么至少有一个因式为0.【分析】本题考查直接利用因式分解法的求解.2、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】将方程移项得,以x+1为整体提取公因式即可得C.【分析】将x+1看作整体进行提公因式可以简化计算.3、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】将9和4分别看作3和2的平方,利用平方差公式进行因式分解求方程解.【分析】公式法中常利用的公式有:平方差公式,与完全平方公式.4、【答案】B【考点】解一元二次方程-因式分解法【解析】【解答】整式x+1与x-4的积为,则为,∴.【分析】本题考查直接利用因式分解法的求解.【考点】解一元二次方程-因式分解法【解析】【解答】因为-5可以写成无数对整数的和,将其中一对整数相乘即可得到p的值得,所以p的值有无数个.【分析】本题考查因式分解法的逆向使用.6、【答案】D【考点】解一元二次方程-因式分解法【解析】【解答】因为关于x的多项式含有因式x-3,那么x-3=0即x=3是一元二次方程的解,将x=3代入得,解得p=1.【分析】本题的关键是多项式含有因式x-3,那么x-3=0即x=3是一元二次方程的解.7、【答案】B【考点】一元二次方程的定义,一元二次方程的解,解一元二次方程-因式分解法【解析】【解答】将x=0代人方程得,∴,∴,又∵关于x的方程为一元二次方程,∴m-1≠0即m≠1,∴m=-1.【分析】本题先根据0为方程的根列关于出m的方程,解所得的方程求得m的值,再根据一元二次方程的定义将m=1的情况排除即可.8、【答案】A【考点】解一元二次方程-因式分解法,勾股定理的逆定理【解析】【解答】在方程中,∵,∴,∴这个三角形的三边长分别为6,8,10,且,∴这个三角形为直角三角形.【分析】先解方程求得三角形的另两条边,再利用勾股定理的逆定理可知该三角形为直角三角形.【考点】完全平方公式,解一元二次方程-因式分解法,定义新运算【解析】【解答】根据题意有,∴,∴,∴,∴,∴.【分析】对于定义新运算的试题,我们可以将字母换成相应位置的式子或数,如在本题中可以认为a=x +1等.10、【答案】C【考点】解一元二次方程-因式分解法,平方的非负性【解析】【解答】在方程中,∴,又∵,∴.【分析】本题的关键在于将看作整体.11、【答案】D【考点】因式分解-提公因式法【解析】【解答】将多项式提公因式x-3得.【分析】本题考查因式分解中的提公因式法.12、【答案】C【考点】解一元二次方程-因式分解法【解析】【解答】对所给方程移项得,提公因式x得,∴.【分析】利用提公因式进行因式分解可以简化求解过程.13、【答案】C【考点】一元二次方程的解,解一元二次方程-因式分解法【解析】【解答】将x=0代人方程得k=0,∴所给方程为,∴,∴,∴方程的另一个根为5.【分析】先利用0为方程的一个根求得k的值,进而得到原方程,解方程即可求得另一个根.14、【答案】B【考点】解一元二次方程-因式分解法【解析】【解答】A中方程没有化成积为0的两个因式,所以错误;C中没有化成两个因式的积的形式,所以错误;D中同时除以x ,将x为0的解漏掉了,所以错误;B将方程化成了两个因式的积为0的形式,所以说法正确.【分析】用因式分解法解方程的关键是要将方程化为一边为两个一次式的乘积等于0的形式.15、【答案】A【考点】一元二次方程的定义,解一元二次方程-因式分解法【解析】【解答】①中方程当k=0时不是一元二次方程;②中x=1比方程x2=1少一个解x=-1;③中方程x2=x比方程x=1多一个解x=0;④中由不能必然地得到x+1=3或x-1=3,因此没有正确的命题.【分析】同解方程有完全相同的解.二、填空题16、【答案】(x+24)(x-4);x1=-24 ,x2=4【考点】解一元二次方程-因式分解法,因式分解-十字相乘法【解析】【解答】用十字相乘法得,∴方程可以变为(x+24)(x-4) ,∴方程的根为x1=-24,x2=4.【分析】可以利用十字相乘进行因式分解,进而解方程.17、【答案】0【考点】解一元二次方程-因式分解法【解析】【解答】在方程中,∴,∴,∴被他漏掉的一个根是x=0.【分析】可以利用提公因式的方法进行因式分解.18、【答案】【考点】解一元二次方程-因式分解法【解析】【解答】将方程移项得,提取公因式x+2得,∴方程的解为.【分析】考查提取公因式法的求解,且以x+2为整体提取公因式.19、【答案】【考点】解一元二次方程-直接开平方法【解析】【解答】∵,∴,∴,∴方程的解为.【分析】将256看作16的平方,利用平方差进行因式分解求方程解.20、【答案】6或10或12【考点】解一元二次方程-因式分解法,三角形三边关系【解析】【解答】将所给方程十字相乘进行因式分解得,∴方程的实数根为,当组成的三角形为等边三角形时:边长为2则周长为6,边长为4则周长为12;当组成的三角形为等腰三角形时,只能为:腰长为4,底边为2,那么周长为10,∴三角形的周长为6或10或12.【分析】一定要依据三角形的三边关系检验能否构成三角形.三、解答题21、【答案】解:,∴,∴,∴,∴.【考点】解一元二次方程-因式分解法【解析】【分析】以2t+3为整体提取公因式.22、【答案】(1)解:,∴,∴;(2)解:,∴,∴,∴;(3)解:,∴,∴,∴,∴;(4)解:,∴,∴,∴.【考点】解一元二次方程-因式分解法【解析】【分析】(1)利用十字相乘法进行因式分解;(2)将看作整体进行提公因式进行因式分解;(3)利用平方差公式进行因式分解;(4)将看作整体进行因式分解.23、【答案】解:将代入两个方程得,解得:,∴;将代入方程得,∴,∴,∴该方程的另一个根为-2;将代入方程得,∴,∴,∴该方程的另一个根为-5.【考点】解二元一次方程组,一元二次方程的解,解一元二次方程-因式分解法【解析】【分析】先根据题意列出关于的二元一次方程组,求得的值,再将其代入所给方程利用因式分解进行求解即可.24、【答案】解:设小圆形场地的半径为r ,根据题意得:,∴,∴,∴即,∴,∴小圆形场地的半径5m .【考点】解一元二次方程-因式分解法,一元二次方程的应用【解析】【分析】能根据实际问题列方程,利用平方差进行因式分解求方程解,会对解进行取舍.25、【答案】(1)解:纸片剩余部分的面积为:,(2)解:当a=6,b=4时,根据题意有:,∴,∴即,∴剪去的正方形的边长.【考点】解一元二次方程-因式分解法【解析】【分析】能根据实际问题列方程,利用平方差进行因式分解求方程解,会对解进行取舍.。

人教版九年级上册数学因式分解法解一元二次方程同步训练(含答案)

人教版九年级上册数学因式分解法解一元二次方程同步训练(含答案)

人教版九年级上册数学21.2.3因式分解法解一元二次方程同步训练一、单选题1.一元二次方程230x x -=的解为( )A .x =3B .x =0C .x =0 且x =3D .x =0或x =3 2.一元二次方程2x x =的解为( )A .1x -=B .121x x ==C .120,1x x ==D .120x x == 3.已知三角形的两边长为3和6,第三边的长是方程27120x x -+=的一个根,则这个三角形的周长是( )A .12B .13C .12或13D .15 4.方程(1)(3)0x x +-=的解是( )A .1213x x ==,B .1213x x =-=,C .1242x x ==-,D .1242x x =-=, 5.关于x 的方程x (x ﹣5)=3(x ﹣5)的根是( )A .x =5B .x =﹣5C .x 1=﹣5;x 2=3D .x 1=5;x 2=3 6.若2x =-是一元二次方程220x x m ++=的一个根,则方程的另一个根及m 的值分别是( )A .0,2-B .0,0C .2-,2-D .2-,0 7.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .20 8.若等腰三角形三边的长分别是a ,b ,3,且a ,b 是关于x 的一元二次方程240x x m -+=的两个根,则满足上述条件的m 的值有( )A .1个B .2个C .3个D .3个以上二、填空题9.方程220x x -=的解为___________.10.一元二次方程()25410x x x -=-的根是__________.11.方程22131x x -=-()()的解是_______________. 12.三角形两边的长分别为2和7,第三边的长是方程210160x x -+=的根,则该三角形的周长为______.13.如果(a 2+b 2)2﹣(a 2+b 2)﹣2=0,则a 2+b 2=__.14.一元二次方程()()270x x -+=的根是_________.15.已知关于x 的一元二次方程230x mx m --+=有两个相等的实数根,那么m 的值为_______.16.已知a 、b 是一元二次方程2230x x +-=的两个根,则代数式22a b +的值为______.三、解答题17.用适当的方法解下列方程:(1)2(21)3(21)x x x -=- (2)23557x x -+=18.已知关于x 的一元二次方程x 2−mx +m −2=0.(1)求证:此方程总有两个不相等的实数根;(2)若此方程有一个根是0,求出m 的值和另一个根.19.已知三角形的两边长分别为3和7,第三边长是方程x(x-7)-10(x-7)=0的一个根,求这个三角形的周长.20.如果方程 260--=ax bx 与方程 22150ax bx +-=有一个公共根是3,求 a 、b 的值,并分别求出两个方程的另一个根.参考答案:1.D2.C3.B4.B5.D6.B7.D8.B9.10x=,22x=10.12x=,25 2x=11.11x=,25 2x= 12.1713.214.12x=或27x=-15.2或6-16.1017.(1)11 2x=,21x=-(2)11 3x=-,22x=18.(2)m=2,方程的另一个根是2.19.17.20.a=b=1;该方程的另一个根为-2;该方程的另一个根为-5.答案第1页,共1页。

2014年秋新人教版九年级上21.2.3因式分解法同步练习含答案

2014年秋新人教版九年级上21.2.3因式分解法同步练习含答案

21.2降次--解一元二次方程(第四课时)21.2.3 因式分解法◆随堂检测1、下面一元二次方程的解法中,正确的是( )A .(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x 1=13,x 2=7B .(2-5x )+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x 1=25,x 2=35C .(x+2)2+4x=0,∴x 1=2,x 2=-2D .x 2=x 两边同除以x ,得x=1 2、x 2-5x 因式分解结果为_______;2x (x-3)-5(x-3)因式分解的结果是______. 3、用因式分解法解方程:(1)2411x x =; (2)2(2)24x x -=-.点拨:用因式分解法解方程的关键是要将方程化为一边为两个一次式的乘积,另一边为0的形式.4、已知三角形两边长分别为2和4,第三边是方程2430x x -+=的解,求这个三角形的周长.◆典例分析方程2200920100x x +-=较大根为m ,方程2(2010)2009201110x x +⨯-=较小根为n ,求n m +的值.分析:本题中两个方程的系数都较大,用配方法和公式法都会遇到烦琐的运算,因此考虑到系数的特点,选用因式分解法最合适.◆课下作业 ●拓展提高1、二次三项式x 2+20x+96分解因式的结果为________;如果令x 2+20x+96=0,那么它的两个根是_________.2、下列命题:①方程kx 2-x-2=0是一元二次方程;②x=1与方程x 2=1是同解方程;③方程x 2=x 与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3.其中正确的命题有( ) A .0个 B .1个 C .2个 D .3个 3、已知()(2)80x y x y +++-=,求x y +的值.点拨:将x y +看作一个整体,不妨设x y z +=,则求出z 的值即为x y +的值.4、我们知道2()()()x a b x ab x a x b -++=--,那么2()0x a b x ab -++=就可转化为()()0x a x b --=,请你用上面的方法解下列方程:(1)2340x x --=; (2)2760x x -+=; (3)2450x x +-=.5、已知22940a b -=,求代数式22a b a b b a ab+--的值.分析:要求22a b a b b a ab+--的值,首先要对它进行化简,然后从已知条件入手,求出a 与b 的关系后代入即可.6、已知1x =是一元二次方程2400ax bx +-=的一个解,且a b ≠,求2222a b a b--的值.●体验中考1、方程2x x =的解是( )A .1x =B .0x =C .11x =,20x =D .11x =-,20x =2、小华在解一元二次方程240x x -=时,只得出一个根是4x =,则被他漏掉的一个根是________. (提示:方程两边不能同除以含有未知数的式子,否则会失根的.)●挑战能力参考答案: ◆随堂检测1、B 用因式分解法解方程的关键是要将方程化为一边为两个一次式的乘积等于0的形式.只有B 是正确的.2、x (x-5);(x-3)(2x-5).3、解:(1)移项,得:24110x x -=, 因式分解,得:(411)0x x -=于是,得:0x =或4110x -=,∴10x =,2114x =. (2)移项,得2(2)240x x --+=,即2(2)2(2)0x x ---=,因式分解,得:(2)(22)0x x ---=,整理,得:(2)(4)0x x --=, 于是,得20x -=或40x -=,∴12x =,24x =.4、解方程:2430x x -+=,得(3)(1)0x x --=,∴13x =,21x =. ∵三角形两边长分别为2和4,∴第三边只能是3.∴三角形周长为9. ◆课下作业 ●拓展提高1、(x+12)(x+8);x 1=-12,x 2=-8.2、A ①中方程当k=0时不是一元二次方程;②中x=1比方程x 2=1少一个解x=-1;③中方程x 2=x 比方程x=1多一个解x=0;④中由(x+1)(x-1)=3不能必然地得到x+1=3或x-1=3.因此没有正确的命题,故选A.3、解:设x y z +=,则方程可化为(2)80z z +-=,∴2280z z +-=,∴(4)(2)0z z +-=,∴14z =-,22z =.∴x y +的值是4-或2. 4、解(1)∵234(4)(1)x x x x --=-+,∴(4)(1)0x x -+=, ∴40x -=或10x +=,∴14x =,21x =-.(2)∵276(6)(1)x x x x -+=--,∴(6)(1)0x x --=, ∴60x -=或10x -=,∴16x =,21x =.(3)∵245(5)(1)x x x x +-=+-,∴(5)(1)0x x +-=, ∴50x +=或10x -=,∴15x =-,21x =.5、解:原式=22222a b a b bab a---=- ∵22940a b -=,∴(32)(32)0a b a b +-=, ∴320a b +=或320a b -=,∴23a b =-或23a b =, ∴当23a b =-时,原式=-223b b -=3;当23a b =时,原式=-3. 6、解:把1x =代入方程,得:a +b =40,又∵a b ≠,∴2222a b a b --=()()2()a b a b a b +--=2a b +=20.●体验中考1、C 先移项,得20x x -=,因式分解,得:(1)0x x -=,∴10x =,21x =. 故选C.2、0x = 将方程因式分解,得(4)0x x -=,∴10x =,24x =.∴被他漏掉的根是0x =.。

因式分解练习题加答案-200道

因式分解练习题加答案-200道

因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)3.因式分解xy+6-2x-3y=(x-3)(y-2)4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^25.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^28.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)10.因式分解a2-a-b2-b=(a+b)(a-b-1)11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^212.因式分解(a+3)2-6(a+3)=(a+3)(a-3)13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)abc+ab-4a=a(bc+b-4)(2)16x2-81=(4x+9)(4x-9)(3)9x2-30x+25=(3x-5)^2(4)x2-7x-30=(x-10)(x+3)35.因式分解x2-25=(x+5)(x-5)36.因式分解x2-20x+100=(x-10)^237.因式分解x2+4x+3=(x+1)(x+3)38.因式分解4x2-12x+5=(2x-1)(2x-5)39.因式分解下列各式:(1)3ax2-6ax=3ax(x-2)(2)x(x+2)-x=x(x+1)(3)x2-4x-ax+4a=(x-4)(x-a)(4)25x2-49=(5x-9)(5x+9)(5)36x2-60x+25=(6x-5)^2(6)4x2+12x+9=(2x+3)^2(7)x2-9x+18=(x-3)(x-6)(8)2x2-5x-3=(x-3)(2x+1)(9)12x2-50x+8=2(6x-1)(x-4)40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)41.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)42.因式分解9x2-66x+121=(3x-11)^243.因式分解8-2x2=2(2+x)(2-x)44.因式分解x2-x+14 =整数内无法分解45.因式分解9x2-30x+25=(3x-5)^246.因式分解-20x2+9x+20=(-4x+5)(5x+4)47.因式分解12x2-29x+15=(4x-3)(3x-5)48.因式分解36x2+39x+9=3(3x+1)(4x+3)49.因式分解21x2-31x-22=(21x+11)(x-2)50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)53.因式分解x(y+2)-x-y-1=(x-1)(y+1)54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)55.因式分解9x2-66x+121=(3x-11)^256.因式分解8-2x2=2(2-x)(2+x)57.因式分解x4-1=(x-1)(x+1)(x^2+1)58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)59.因式分解4x2-12x+5=(2x-1)(2x-5)60.因式分解21x2-31x-22=(21x+11)(x-2)61.因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)62.因式分解9x5-35x3-4x=x(9x^2+1)(x+2)(x-2)63.因式分解下列各式:(1)3x2-6x=3x(x-2)(2)49x2-25=(7x+5)(7x-5)(3)6x2-13x+5=(2x-1)(3x-5)(4)x2+2-3x=(x-1)(x-2)(5)12x2-23x-24=(3x-8)(4x+3)(6)(x+6)(x-6)-(x-6)=(x-6)(x+5)(7)3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)(8)9x2+42x+49=(3x+7)^2 。

最新人教版九年级上册数学解一元二次方程(因式分解法)同步练习(含答案)

最新人教版九年级上册数学解一元二次方程(因式分解法)同步练习(含答案)

解一元二次方程(因式分解法)一、填空题(填出下列一元二次方程的根)1.x (x -3)=0.______2.(2x -7)(x +2)=0.______3.3x 2=2x .______4.x 2+6x +9=0.______5.______6.______ 7.(x -1)2-2(x -1)=0.______.8.(x -1)2-2(x -1)=-1.______二、选择题9.方程(x -a )(x +b )=0的两根是( ).A .x 1=a ,x 2=bB .x 1=a ,x 2=-bC .x 1=-a ,x 2=bD .x 1=-a ,x 2=-b10.下列解方程的过程,正确的是( ).A .x 2=x .两边同除以x ,得x =1.B .x 2+4=0.直接开平方法,可得x =±2.C .(x -2)(x +1)=3×2.∵x -2=3,x +1=2, ∴x 1=5, x 2=1.D .(2-3x )+(3x -2)2=0.整理得3(3x -2)(x -1)=0, .03222=-x x .)21()21(2x x -=+.1,3221==∴x x三、解答题(用因式分解法解下列方程,*题用十字相乘法因式分解解方程)11.3x (x -2)=2(x -2).12.*13.x 2-3x -28=0.14.x 2-bx -2b 2=0.*15.(2x -1)2-2(2x -1)=3.*16.2x 2-x -15=0.四、解答题17.x 取什么值时,代数式x 2+8x -12的值等于2x 2+x 的值. .32x x综合、运用、诊断一、写出下列一元二次方程的根18..______________________.19.(x -2)2=(2x +5)2.______________________.二、选择题20.方程x (x -2)=2(2-x )的根为( ).A .-2B .2C .±2D .2,221.方程(x -1)2=1-x 的根为( ).A .0B .-1和0C .1D .1和022.方程的较小的根为( ). A .B .C .D .三、用因式分解法解下列关于x 的方程23.24.4(x +3)2-(x -2)2=0.0222=-x x 0)43)(21()43(2=--+-x x x 43-218543.2152x x =-25.26.abx 2-(a 2+b 2)x +ab =0.(ab ≠0)四、解答题27.已知关于x 的一元二次方程mx 2-(m 2+2)x +2m =0.(1)求证:当m 取非零实数时,此方程有两个实数根;(2)若此方程有两个整数根,求m 的值..04222=-+-b a ax x参考答案1.x =0,x 2=3. 2. 3.4.x 1=x 2=-3. 5. 6. 7.x =1,x 2=3. 8.x 1=x 2=2. 9. B . 10. D .11.12. .2,2721-==x x ⋅==32,021x x .6,021==x x .322,021-==x x ⋅==32,221x x ⋅==33,021x x13.x 1=7,x 2=-4.14.x 1=2b ,x 2=-b . 15.x 1=0,x 2=2.16. 17.x 1=3,x 2=4.18. 19.x 1=-1,x 2=-7.20.C . 21.D . 22.C .23.x 1=0,x 2=-10.24. 25.26. 27.(1)∆=(m 2-2)2.当m ≠0时,∆≥0;(2)(mx -2)(x -m )=0,m =±1或m =±2. .3,2521=-=x x .2,021==x x ⋅-=-=34,821x x .2,221b a x b a x +=-=⋅==b a x a b x 21,。

初中数学人教版初三复习讲义 5..因式分解(含知识点 答案)

初中数学人教版初三复习讲义 5..因式分解(含知识点 答案)

专题05 因式分解一、因式分解及其方法因式分解,就是把一个多项式化成几个整式乘积的形式。

因式分解是恒等变形的基础,它作为数学的一个有力工具、一种数学方法在代数、几何、三角等的解题中起着重要的作用。

因式分解的方法有许多,除中学课本上介绍的提取公因式法、公式法、分组分解法、十字相乘法等外,还有如利用拆项添项、求根分解、换元、待定系数等等。

1.提公因式法:一般地,如果多项式的各项有公因式可以把这个公因式提到括号外面,将多项式写成因式乘积的形式,这种分解因式的方法叫做提公因式法.比如:am+an=a (m+n )2.运用公式法:如果把乘法公式反过来,就可以用来把某些多项式分解因式,这种分解因式的方法叫做运用公式法.(1)平方差公式两数平方差,等于这两数的和乘以这两数的差,字母表达式:()()22a b a b a b -=+- (2)完全平方公式两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方.字母表达式:()2222a ab b a b ±+=±(3)立方和与立方差公式两个数的立方和(或者差)等于这两个数的和(或者差)乘以它们的平方和与它们积的差(或者和).a 3+b 3=(a+b )(a 2-ab+b 2)a 3﹣b 3=(a-b )(a 2+ab+b 2)3.十字相乘法分解因式:利用十字交叉线来分解系数,把二次三项式分解因式的方法叫做十字相乘法.(1)对于二次三项式,若存在 ,则 (2)首项系数不为1的十字相乘法在二次三项式(≠0)中,如果二次项系数可以分解成两个因数之积,即,常数项可以分解成两个因数之积,即,把排列如下:按斜线交叉相乘,再相加,得到,若它正好等于二次三项式的一次项系数,即,那么二次三项式就可以分解为两个因式与之积,即.4.分组分解法:对于一个多项式的整体,若不能直接运用提公因式法和公式法进行因式分解时,可考虑分步处理的方法,即把这个多项式分成几组,先对各组分别分解因式,然后再对整体作因式分解——分组分解法.即先对题目进行分组,然后再分解因式.比如:am ﹣an ﹣bm+bn=(am ﹣an )﹣(bm ﹣bn )=a (m ﹣n )﹣b (m ﹣n )=(m ﹣n )(a ﹣b ).二、因式分解策略1.因式分解的一般步骤:(1)先看各项有没有公因式,若有,则先提取公因式;(2)再看能否使用公式法;(3)用分组分解法,即通过分组后提取各组公因式或运用公式法来达到分解的目的;(4)因式分解的最后结果必须是几个整式的乘积,否则不是因式分解;(5)因式分解的结果必须进行到每个因式在有理数范围内不能再分解为止.2x bx c ++pq c p q b=⎧⎨+=⎩()()2x bx c x p x q ++=++2ax bx c ++a a 12a a a =c 12c c c =1212a a c c ,,,1221a c a c +2ax bx c ++b 1221a c a c b +=11a x c +22a x c +()()21122ax bx c a x c a x c ++=++若有公因式,先提公因式;然后再考虑用公式法(平方差公式a2-b2=(a+b)(a-b),完全平方公式a2±2ab+b2=(a±b)2)或其它方法分解;直到每个因式都不能再分解为止.2.从多项式的项数来考虑用什么方法分解因式.(1)如果是两项,应考虑用提公因式法,平方差公式,立方和或立方差公式来分解因式.(2)如果是二次三项式,应考虑用提公因式法,完全平方公式,十字相乘法.(3)如果是四项式或者大于四项式,应考虑提公因式法,分组分解法.3.因式分解要注意的几个问题:(1)每个因式分解到不能再分为止.(2)相同因式写成乘方的形式.(3)因式分解的结果不要中括号.(4)如果多项式的第一项系数是负数,一般要提出“-”号,使括号内的第一项系数为正数.(5)因式分解的结果,如果是单项式乘以多项式,把单项式写在多项式的前面.【例题1】(2019•江苏无锡)分解因式4x2-y2的结果是()A.(4x+y)(4x﹣y) B.4(x+y)(x﹣y)C.(2x+y)(2x﹣y) D.2(x+y)(x﹣y)【答案】C【解析】此题主要考查了公式法分解因式,正确应用公式是解题关键.直接利用平方差公式分解因式得出答案. 4x2-y2=(2x)2-y2 =(2x+y)(2x﹣y).【对点练习】(2019广西贺州)把多项式2a-分解因式,结果正确的是()41A.(41)(41)+-a a+-B.(21)(21)a aC .2(21)a -D .2(21)a +【答案】B【解析】运用公式法 241(21)(21)a a a -=+-,故选:B .【例题2】(2020贵州黔西南)多项式34a a -分解因式的结果是______.【答案】(2)(2)a a a +-【解析】先提出公因式a ,再利用平方差公式因式分解.解:a 3-4a=a (a 2-4)=a (a+2)(a-2).【点拨】本题考查提公因式法和公式法进行因式分解,解题的关键是熟记提公因式法和公式法.【对点练习】(2019宁夏)分解因式:2a 3﹣8a = .【答案】2a (a +2)(a ﹣2)【解析】先提取公因式,再利用二数平方差公式。

(人教版数学)初中9年级上册-同步练习-21.2.3 因式分解法-九年级数学人教版(上)(解析版)

(人教版数学)初中9年级上册-同步练习-21.2.3 因式分解法-九年级数学人教版(上)(解析版)

第二十一章一元二次方程21.2.3因式分解法一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的.1.方程x2=2x的根是A.x=2 B.x=﹣2C.x1=0,x2=2 D.x1=0,x2=﹣2【答案】C【名师点睛】此题考查用因式分解法解一元二次方程.因式分解法只适用于一些可以整理为2个一次项的积等于0的方程.2.一元二次方程x2−3x=0的解为A.x=0 B.x=3C.x1=x2=−3 D.x1=0 ,x2=3.【答案】D【解析】x=0或x−3=0所以故选D.【名师点睛】本题考查了解一元二次方程−因式分解法:先把方程右边变形为0,然后把方程左边进行因式分解,这样把一元二次方程转化为两个一元一次方程,再解一次方程可得到一元二次方程的解.3.方程的两个根是等腰三角形的底和腰,则这个等腰三角形的周长为A.6 B.8C.10 D.8或10【答案】C【解析】,或,,,当2为腰,4为底时,,不符合三角形三边的关系,等腰三角形的底为2,腰为4,这个等腰三角形的周长,故选C.【名师点睛】本题考查了解一元二次方程因式分解法,等腰三角形的性质和三角形三边关系,熟练掌握解一元二次方程的方法是解题的关键.4.一元二次方程x2+3x=0的根为A.﹣3 B.3C.0,3 D.0,﹣3【答案】D【名师点睛】本题考查了因式分解法解一元二次方程,能利用因式分解法进行求解的一元二次方程左侧能进行因式分解,右侧为0,熟练掌握是解题的关键.5.一元二次方程3x2– 2x=0的解是A.23x=B.x=0C.x1=23-,x2=0 D.x1=23,x2=0【答案】D【解析】x(3x−2)=0,x=0或3x−2=0,所以x1=0,x2=23.故选D.【名师点睛】解一元二次方程−因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).6.关于x的一元二次方程x2−2x−3=0的根是A.x1=1,x2=3 B.x1=−1,x2=3C.x1=1,x2=−3D.x1=−1,x2=−3【答案】B二、填空题:请将答案填在题中横线上.7.方程(x﹣3)(x﹣9)=0的根是_____.【答案】x1=3,x2=9【解析】(x﹣3)(x﹣9)=0,x﹣3=0,x﹣9=0,x1=3,x2=9,故答案为:x1=3,x2=9.8.方程x2+x=0的根为__________.【答案】x 1=−1,x2=0【解析】故答案为:9.若实数a、b满足(a+b)(a+b−2)−8=0,则a+b=_________.【答案】−2或4.【解析】设t=a+b,则由原方程得到:t(t−2)−8=0,整理得:(t+2)(t−4)=0,解得t=−2或t=4,即a+b=−2或a+b=4.故答案是:−2或4.10.用换元法解方程+=,设y =,那么原方程化为关于y 的整式方程是__. 【答案】26520y y -+=【解析】原式=, ∵, ∴原式=,化为整式方程为26520y y -+=. 【名师点睛】本题主要考查的是换元法的应用,属于基础题型.换元法的关键就是把某个式子看成一个整体,然后用另外一个字母来替换它.11.一元二次方程x 2﹣x ﹣2=0的解是_____.【答案】2或﹣1【名师点睛】考查了一元二次方程的解法,解一元二次方程常用的方法有直接开平方法,配方法,公式法,因式分解法,要根据方程的特点灵活选用合适的方法,此题方程的公因式较明显,所以本题运用的是因式分解法.12.我们知道方程x 2﹣2x +1=0的解是x 1=x 2=1,则给出的另一个方程(x ﹣1)2﹣2(x ﹣1)+1=0的解是_____.【答案】x 1=x 2=2【解析】∵方程x 2﹣2x +1=0的解是x 1=x 2=1,∴方程(x ﹣1)2﹣2(x ﹣1)+1=0的解满足:x −1=1,∴x 1=x 2=2.【名师点睛】本题考查了换元法解一元二次方程,认真观察所给两个方程的特点,合理换元是解答本题的突破点.13.关于x 的一元二次方程260x mx +-=的一个根的值为3,则另一个根的值是_____.【答案】−2【解析】由题意把3x =代入方程260x mx +-=得:9360m +-=,解得: 1m =-,∴原方程为: 260x x --=,解此方程得: 1232x x ==-,,∴原方程的另一根为:−2.三、解答题:解答应写出文字说明、证明过程或演算步骤.14.解方程:(2x+1)2=(2﹣x)2.【答案】x1=﹣3,x2=【名师点睛】此题考查用公式法和因式分解法解一元二次方程.公式法适用于所有的方程,因式分解法只适用于一些可以整理为2个一次项的积等于0的方程.15.根据要求,解答下列问题:(1)①方程x2﹣x﹣2=0的解为;②方程x2﹣2x﹣3=0的解为;③方程x2﹣3x﹣4=0的解为;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x﹣10=0的解为;②请用配方法解方程x2﹣9x﹣10=0,以验证猜想结论的正确性.(3)应用:关于x的方程的解为x1=﹣1,x2=n+1.【答案】①x1=﹣1,x2=2;②x1=﹣1,x2=3;③x1=﹣1,x2=4;(2)①x1=﹣1,x2=10;②x1=﹣1,x2=10;(3)x2﹣nx﹣(n+1)=0【解析】①∵x2﹣x﹣2=0,∴(x+1)(x−2)=0,∴x1=﹣1,x2=2;②∵x2﹣2x﹣3=0,∴(x+1)(x−3)=0,∴x1=﹣1,x2=3;③∵x2﹣3x﹣4=0,∴(x+1)(x−4)=0,∴x1=﹣1,x2=4;…(2)根据以上方程特征及其解的特征,请猜想:①方程x2﹣9x﹣10=0的解为x1=﹣1,x2=10;②x2﹣9x﹣10=0,移项,得x2﹣9x=10,配方,得x2﹣9x+814=10+814,即(x﹣92)2=1214,开方,得x﹣92=112.x1=﹣1,x2=10;(3)应用:关于x的方程x2﹣nx﹣(n+1)=0的解为x1=﹣1,x2=n+1.【名师点睛】本题考查了用因式分解法和配方法解一元二次方程,数字类探索与规律,掌握因式分解法是解(1)的关键,掌握配方法是解(2)的关键,观察出二次项系数、一次项系数、常数项与两根之间的关系是解(3)的关键.。

【初中数学】人教版九年级上册21.2.3 因式分解法(练习题)

【初中数学】人教版九年级上册21.2.3  因式分解法(练习题)

人教版九年级上册21.2.3 因式分解法(353)1.已知(x2+y2−2)(x2+y2−1)=0,求x2+y2的值2.阅读下列材料:(1)将x2+2x−35分解因式,我们可以按下面的方法解答:解:步骤:①竖分二次项与常数项:x2=x·x,−35=(−5)×(+7).②交叉相乘,验中项:.③横向写出两因式:x2+2x−35=(x+7)(x−5).我们将这种用十字交叉相乘分解因式的方法叫做十字相乘法.(2)根据乘法原理:若ab=0,则a=0或b=0.试用上述方法和原理解下列方程:(1)x2−10x+21=0;(2)x2+2x=8;(3)x2−5x−6=03.用因式分解法解下列方程:(1)9t2−(t−1)2=0;(2)2(x+2)2=x(x+2);(3)(x+1)(x−1)+2(x+3)=8;(4)(x+2)2−10(x+2)+25=04.一个三角形的两边长分别为3和6,第三边的长是方程(x−2)(x−4)=0的根,则这个三角形的周长是()A.11B.11或13C.13D.11或145.若一元二次方程(x−4)2=x−4的两个根是等腰三角形的两条边长,则这个三角形的周长为6.若a>1,已知关于x的方程(ax−2)(x−2a+1)=0的一个根为x=3.(1)求a的值及方程的另一个根;(2)如果一个三角形的三条边长都是这个方程的根,求这个三角形的周长.7.下列一元二次方程最适合用因式分解法来解的是()A.(x+1)(x−3)=2B.2(x−2)2=x2−4C.x2+3x−1=0D.5(2−x)2=38.解下列方程:①3x2−27=0;②2x2−3x−1=0;③x2−5x+2=0;④2(3x−1)2=3x−1.较简便的方法是()A.依次为:直接开平方法,配方法,公式法,因式分解法B.依次为:因式分解法,公式法,配方法,直接开平方法C.①用直接开平方法,②③用公式法,④用因式分解法D.①用直接开平方法,②用公式法,③④用因式分解法9.用适当的方法解下列方程:(1)2(x−4)2=32(2)x2−4x+1=0;(3)2x2−7x−3=0(4)x2−6x+9=7x−2110.方程(x+4)(x−5)=0的根是()A.x=−4B.x1=4,x2=−5C.x=5D.x1=−4,x2=511.解一元二次方程5x2−2x=0时,最适当的解法是()A.直接开平方法B.配方法C.公式法D.因式分解法12.我们解一元二次方程3x2−6x=0时,可以运用因式分解法,将此方程化为3x(x−2)=0,从而得到两个一元一次方程:3x=0或x−2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是()A.转化思想B.函数思想C.数形结合思想D.公理化思想13.用因式分解法解方程:(1)x2−4=0(2)y2−4y=−414.计算整式3x−5与x+3的积得3x2+4x−15,则一元二次方程3x2+4x−15=0的根是()A.x1=53,x2=3 B.x1=53,x2=−3C.x1=−53,x2=3 D.x1=−53,x2=−315.用因式分解法解方程,下列方法中正确的是()A.由(2x−2)(3x−4)=0,得2x−2=0或3x−4=0B.由(x+3)(x−1)=1,得x+3=0或x−1=1C.由(x−2)(x−3)=2×3,得x−2=2或x−3=3D.由x(x+2)=0,得x+2=016.若定义一种新运算:a@b=a2−b,那么方程(x−1)@2x=−3的解是参考答案1.【答案】:解:∵(x 2+y 2−2)(x 2+y 2−1)=0,∴x 2+y 2−2=0或x 2+y 2−1=0,∴x 2+y 2=2或x 2+y 2=12(1)【答案】因式分解,得(x −3)(x −7)=0,∴x −3=0或x −7=0,∴x 1=3,x 2=7.(2)【答案】整理,得x 2+2x −8=0.因式分解,得(x −2)(x +4)=0.∴x −2=0或x +4=0,∴x 1=2,x 2=−4.(3)【答案】因式分解,得(x −6)(x +1)=0,∴x −6=0或x +1=0,∴x 1=6,x 2=−13(1)【答案】t 1=−12,t 2=14(2)【答案】原方程可变形为2(x +2)2−x(x +2)=0,∴(x +2)(x +4)=0,∴x +2=0或x +4=0,∴x 1=−2,x 2=−4 (3)【答案】原方程可变形为x 2+2x −3=0,∴(x +3)(x −1)=0,∴x +3=0或x −1=0,∴x 1=−3,x 2=1(4)【答案】原方程可变形为(x +2−5)2=0,即(x −3)2=0,∴x −3=0,∴x 1=x 2=34.【答案】:C【解析】:由方程(x−2)(x−4)=0,可得x−2=0或x−4=0,解得x=2或x=4.当x=2时,2,3,6不能构成三角形,舍去;故x=4,此时这个三角形的周长为3+4+6=13.故选C5.【答案】:13或14【解析】:解方程(x−4)2=x−4,得x1=4,x2=5,由题意可得这个三角形的边长为4,4,5或4,5,5,因此这个三角形的周长为13或146(1)【答案】根据题意,得ax−2=0或x−2a+1=0,=3或x=2a−1=3,∴x=2a解得a=2(舍去)或a=2.3把a=2代入原方程,可求得方程的另一个根是1.(2)【答案】由题设知,三角形的三边中至少有两条边相等,则有下列两种情形:①三边相等,边长为1,1,1或3,3,3.那么这个三角形的周长是3或9;②仅有两边相等,因为1+1=2<3,所以这个三角形的三边长只能为3,3,1.那么这个三角形的周长是7.由①②可知,这个三角形的周长可以是3或7或9.7.【答案】:B8.【答案】:C【解析】:①能化成x2=9这种形式,因此采用直接开平方法,④左右两边含有公因式,因此采用因式分解法,②③用公式法.9(1)【答案】解:原方程可化为(x−4)2=16,直接开平方,得x−4=±4,即x1=8,x2=0.(2)【答案】x2−4x+1=0,∵a=1,b=−4,c=1,∴b2−4ac=(−4)2−4×1×1=12>0,∴x=−b±√b2−4ac2a=4±√122×1=4±2√32,即x1=2+√3,x2=2−√3.(3)【答案】这里a=2,b=−7,c=−3,Δ=b2−4ac=(−7)2−4×2×(−3)=73,∴x=7±√734,即x1=7+√734,x2=7−√734.(4)【答案】原方程可变形为(x−3)2=7(x−3),(x−3)(x−3−7)=0,解得x1=3,x2=1010.【答案】:D11.【答案】:D12.【答案】:A【解析】:上述解题过程利用了转化的数学思想.我们解一元二次方程3x2−6x=0时,可以运用因式分解法,将此方程化为3x(x−2)=0,从而得到两个一元一次方程:3x=0或x−2=0,进而得到原方程的解为x1=0,x2=2.这种解法体现的数学思想是转化思想.故选A.13(1)【答案】x1=2,x2=−2(2)【答案】y1=y2=214.【答案】:B【解析】:由题意可得3x2+4x−15=(3x−5)(x+3)=0,即3x−5=0,x+3=0,解之即可.15.【答案】:A【解析】:用因式分解法解方程时,方程的右边为0,才可以达到化为两个一次方程的目的.因此选项B,C错误,选项D漏了一个一次方程,应该是x=0或x+2=0.选项A正确16.【答案】:x1=x2=2。

人教版九年级上册数学 21.2.3 因式分解法 同步练习(含答案)

人教版九年级上册数学 21.2.3  因式分解法 同步练习(含答案)

21.2.3 因式分解法一、选择题1、方程的解是()A、B、C、D、2、方程的正确解法是()A、化为B、C、化为D、化为3、方程正确解法是()A、直接开方得B、化为一般形式C、分解因式得D、直接得或4、经计算整式与的积为,则的所有根为()A、B、C、D、5、关于的一元二次方程的两实根都是整数,则整数的取值可以有()A、2个B、4个C、6个D、无数个6、若关于x的多项式含有因式x-3,则实数p的值为()A、-5B、5C、-1D、17、关于x的一元二次方程有一根为0,则m的值为()A、1B、-1C、1或-1D、8、三角形一边长为,另两边长是方程的两实根,则这是一个().A、直角三角形B、锐角三角形C、钝角三角形D、任意三角形9、将4个数排成2行、2列,两边各加一条竖直线记成,定义,上述记号就叫做2阶行列式.若,则x的值为(). A、B、C、D、210、若,则的值为().A、-3B、-1或4D、无法计算11、因式分解结果为()A、B、C、D、12、一元二次方程的解是()A、1或-1B、2C、0或2D、013、若关于的方程的一个根是0,则另一个根是()A、1B、-1C、5D、14、下面一元二次方程的解法中,正确的是().A、,∴,∴B、,∴,∴C、,∴D、两边同除以x,得x=115、下列命题:①关于x的方程是一元二次方程;②与方程是同解方程;③方程与方程是同解方程;④由可得或.其中正确的命题有().A、0个B、1个D、3个二、填空题16、因式分解结果为________,方程的根为________.17、小华在解一元二次方程时,只得出一个根是x=4,则被他漏掉的一个根是x=________.18、方程的解是________.19、方程的解是________.20、三角形的每条边的长都是方程的根,则三角形的周长是________.三、解答题21、用适当的方法解方程.22、用因式分解法解下列方程:(1);(2);(3);(4).23、如果方程与方程有一个公共根是3,求的值,并分别求出两个方程的另一个根.24、把小圆形场地的半径增加5m得到大圆形场地,场地面积是小圆形场地的4倍,求小圆形场地的半径.25、如图所示,在长和宽分别是、的矩形纸片的四个角都剪去一个边长为的正方形.(1)用,,表示纸片剩余部分的面积;(2)当=6,=4,且剪去部分的面积等于剩余部分的面积时,求剪去的正方形的边长.答案解析一、选择题1、【答案】B2、【答案】C3、【答案】C4、【答案】B5、【答案】D6、【答案】D7、【答案】B8、【答案】A9、【答案】A10、【答案】C11、【答案】D12、【答案】C13、【答案】C14、【答案】B15、【答案】A二、填空题16、【答案】(x+24)(x-4);x1=-24 ,x2=417、【答案】018、【答案】19、【答案】20、【答案】6或10或12三、解答题21、【答案】解:,∴,∴,∴,∴.22、【答案】(1)解:,∴,∴;(2)解:,∴,∴,∴;(3)解:,∴,∴,∴,∴;(4)解:,∴,∴,∴.23、【答案】解:将代入两个方程得,解得:, ∴;将代入方程得,∴,∴,∴该方程的另一个根为-2;将代入方程得,∴,∴,∴该方程的另一个根为-5.24、【答案】解:设小圆形场地的半径为r ,根据题意得:,∴,∴,∴即,∴,∴小圆形场地的半径5m .25、【答案】(1)解:纸片剩余部分的面积为:,(2)解:当a=6,b=4时,根据题意有:,∴,∴即,∴剪去的正方形的边长.。

初中数学新人教版因式分解法解一元二次方程练习题及答案

初中数学新人教版因式分解法解一元二次方程练习题及答案

初中数学新人教版因式分解法解一元二次方程练习题及答案1.选择题方程=0的根是A.x1=-16,x2=B.x1=16,x2=-C.x1=16,x2=D.x1=-16,x2=-8222下列方程4x-3x-1=0,5x-7x+2=0,13x-15x +2=0中,有一个公共解是1 B.x=C.x=1D.x=-1方程5x=3解为3333A.x1=,x2=B.x= C.x1=-,x2=- D.x1=,x2=-5555方程=1的根为A.y1=5,y2=-2B.y= C.y=-2D.以上答案都不对22方程-4=0的根为A.x1=1,x2=-B.x1=-1,x2=-C.x1=1,x2=D.x1=-1,x2=522一元二次方程x+5x=0的较大的一个根设为m,x -3x+2=0较小的根设为n,则m+n的值为 A.x=A.1 B. C.-4D.42已知三角形两边长为4和7,第三边的长是方程x-16x+55=0的一个根,则第三边长是A.5B.5或11C. D.112.填空题方程t=28的解为_______.2方程+3=0的解为__________.2方程+3+2=0的解为__________.2关于x的方程x+x+mn=0的解为__________.方程x=-x的解为__________.3.用因式分解法解下列方程:222x+12x=0;4x-1=0; x=7x;2x-4x-21=0;=12; 3x+2x-1=0;2210x-x-3=0;-4-21=0.4.用适当方法解下列方程:222x-4x+3=0;=256; x-3x+1=0;2222x-2x-3=0;=3;+y=9;22x-8x=7;-2-8=0.5.解关于x的方程:2222x-4ax+3a=1-2a; x+5x+k=2kx+5k+6; 2222x-2mx-8m=0; x+x+m+m=0.2222226.已知-12=0.求x+y的值.7.解方程:x=864.228.已知x+3x+5的值为9,试求3x+9x-2的值.9.一跳水运动员从10米高台上跳水,他跳下的高度h与所用的时间t的关系式h=-5.求运动员起跳到入水所用的时间.10.解方程22242-5+4=0x-3x-4=0.初中数学用因式分解法解一元二次方程一.选择题1.用因式分解法解一元二次方程x﹣2=0,正222222二.填空题8.一元二次方程3x2﹣4x﹣2=0的解是.9.一元二次方程x2﹣2x﹣3=0的解是.10.一元二次方程2﹣36=0的解是.三.解答题11.用指定的方法解下列一元二次方程:2x2﹣4x+1=0;3x=2﹣2x;x2﹣x﹣3=0.第1页12.用因式分解法解下列关于x的一元二次方程.22x+x﹣kx=0222x﹣2mx+m﹣n=0.13.计算:;我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个,并选择你认为适当的方法解这个方程.①x﹣3x+1=0;②=3;③x﹣3x=0;④x﹣2x=4.14.用因式分解法解下列一元二次方程:25x=x24﹣=022==.15.因式分解法解方程:3x﹣12x=﹣12.16.用因式分解法解方程:x﹣9x+18=0.第2页2222222217.用因式分解法解方程:12x+x﹣6=0.18.用因式分解法解方程:3=219.用因式分解法解方程=520.因式分解法解一元二次方程.+1﹣=.22第3页初中数学用因式分解法解一元二次方程参考答案与试题解析一.选择题1.用因式分解法解一元二次方程x﹣2=0,正22第4页2222第5页因式分解法解一元二次方程练习题1.选择题方程=0的根是A.x1=-16,x2=B.x1=16,x2=-C.x1=16,x2=D.x1=-16,x2=-8222下列方程4x-3x-1=0,5x-7x+2=0,13x-15x +2=0中,有一个公共解是1 B.x=C.x=1D.x=-1方程5x=3解为3333A.x1=,x2=B.x= C.x1=-,x2=- D.x1=,x2=-5555方程=1的根为A.y1=5,y2=-2B.y= C.y=-2D.以上答案都不对22方程-4=0的根为A.x1=1,x2=-B.x1=-1,x2=-C.x1=1,x2=D.x1=-1,x2=522一元二次方程x+5x=0的较大的一个根设为m,x -3x+2=0较小的根设为n,则m+n的值为A.1 B. C.-4D.42已知三角形两边长为4和7,第三边的长是方程x-16x+55=0的一个根,则第三边长是A.5B.5或11C. D.112方程x-3|x-1|=1的不同解的个数是A.0 B.1 C.D.32.填空题方程t=28的解为_______.2方程+3=0的解为__________.2方程+3+2=0的解为__________.2关于x的方程x+x+mn=0的解为__________. A.x =方程x=-x的解为__________.3.用因式分解法解下列方程:2222x+12x=0; 4x-1=0; x=7x; x-4x-21=0;222=12; 3x+2x-1=0;10x-x-3=0;-4-21=0.4.用适当方法解下列方程:2222x-4x+3=0;=256; x-3x+1=0; x-2x -3=0;222=3;+y=9;x-x=0; x-x+=0;222x-8x=7;-2-8=0.25.解关于x的方程:2222x-4ax+3a=1-2a; x+5x+k=2kx+5k+6; 2222x-2mx-8m=0; x+x+m+m=0.x?y226.已知x+3xy-4y=0,试求的值. x?y2222227.已知-12=0.求x+y的值.8.请你用三种方法解方程:x=864.229.已知x+3x+5的值为9,试求3x+9x-2的值. 10.一跳水运动员从10米高台上跳水,他跳下的高度h与所用的时间t的关系式h=-5.求运动员起跳到入水所用的时间.222222211.为解方程-5+4=0,我们可以将x-1视为一个整体,然后设x-1=y,则y=,原方程化为y-5y +4=0,解此方程,得y1=1,y2=4.当y=1时,x-1=1,x=2,∴x=±2.当y=4时,x-1=4,x=5,∴x=±.∴原方程的解为x1=-2,x2=2,x3=-5,x4=5.以上方法就叫换元法,达到了降次的目的,体现了转化的思想.42运用上述方法解方程:x-3x-4=0.2既然可以将x-1看作一个整体,你能直接运用因式分解法解这个方程吗?222。

人教版初中数学因式分解技巧及练习题含答案

人教版初中数学因式分解技巧及练习题含答案

人教版初中数学因式分解技巧及练习题含答案一、选择题1.下列因式分解正确的是( )A .x 2﹣y 2=(x ﹣y )2B .a 2+a+1=(a+1)2C .xy ﹣x=x (y ﹣1)D .2x+y=2(x+y )【答案】C【解析】【分析】【详解】解:A 、x 2﹣y 2=(x+y )(x ﹣y ),故此选项错误;B 、a 2+a+1无法因式分解,故此选项错误;C 、xy ﹣x=x (y ﹣1),故此选项正确;D 、2x+y 无法因式分解,故此选项错误.故选C .【点睛】本题考查因式分解.2.把32a 4ab -因式分解,结果正确的是( )A .()()a a 4b a 4b ?+-B .()22a a 4b ?-C .()()a a 2b a 2b +-D .()2a a 2b - 【答案】C【解析】【分析】当一个多项式有公因式,将其分解因式时应先提取公因式a ,再对余下的多项式继续分解.【详解】a 3-4ab 2=a (a 2-4b 2)=a (a+2b )(a-2b ).故选C .【点睛】本题考查用提公因式法和公式法进行因式分解的能力,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.3.下列分解因式正确的是( )A .x 2-x+2=x (x-1)+2B .x 2-x=x (x-1)C .x-1=x (1-1x )D .(x-1)2=x 2-2x+1【答案】B【解析】【分析】根据因式分解的定义对各选项分析判断后利用排除法求解.【详解】A 、x 2-x+2=x (x-1)+2,不是分解因式,故选项错误;B 、x 2-x=x (x-1),故选项正确;C 、x-1=x (1-1x),不是分解因式,故选项错误; D 、(x-1)2=x 2-2x+1,不是分解因式,故选项错误.故选:B .【点睛】本题考查了因式分解,把一个多项式写成几个整式的积的形式叫做因式分解,也叫做分解因式.掌握提公因式法和公式法是解题的关键.4.下列等式从左到右的变形属于因式分解的是( )A .a 2﹣2a +1=(a ﹣1)2B .a (a +1)(a ﹣1)=a 3﹣aC .6x 2y 3=2x 2•3y 3D .mx ﹣my +1=m (x ﹣y )+1【答案】A【解析】【分析】直接利用因式分解的定义分析得出答案.【详解】解:A 、a 2﹣2a+1=(a ﹣1)2,从左到右的变形属于因式分解,符合题意;B 、a (a+1)(a ﹣1)=a 3﹣a ,从左到右的变形是整式乘法,不合题意;C 、6x 2y 3=2x 2•3y 3,不符合因式分解的定义,不合题意;D 、mx ﹣my+1=m (x ﹣y )+1不符合因式分解的定义,不合题意;故选:A .【点睛】本题考查因式分解的意义,解题关键是熟练掌握因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式的乘法的区别.5.将3a b ab -进行因式分解,正确的是( )A .()2a a b b -B .()21ab a -C .()()11ab a a +-D .()21ab a - 【答案】C【解析】【分析】多项式3a b ab -有公因式ab ,首先用提公因式法提公因式ab ,提公因式后,得到多项式()21x -,再利用平方差公式进行分解.【详解】()()()32111a b ab ab a ab a a -=-=+-,故选:C .【点睛】此题主要考查了了提公因式法和平方差公式综合应用,解题关键在于因式分解时通常先提公因式,再利用公式,最后再尝试分组分解;6.多项式22ab bc a c -+-分解因式的结果是( )A .()()a c a b c -++B .()()a c a b c -+-C .()()a c a b c ++-D .()()a c a b c +-+【答案】A【解析】【分析】根据提取公因式和平方差公式进行因式分解即可解答.【详解】解:22))))))=((((((+)+(ab bc a c b a c a c a c a c b a c a c a b c -+--++-=-+=-+; 故选:A.【点睛】本题考查了利用提取公因式和平方差公式进行因式分解,熟练掌握是解题的关键.7.已知:3a b +=则2225a a b b ab -+-+-的值为( )A .1B .1-C .11D .11-【答案】A【解析】【分析】将2225a a b b ab -+++-变形为(a+b )2-(a+b )-5,再把a+b=3代入求值即可.【详解】∵a+b=3,∴a 2-a+b 2-b+2ab-5=(a 2+2ab+b 2)-(a+b )-5=(a+b )2-(a+b )-5=32-3-5=9-3-5=1,故选:A .【点睛】本题考查因式分解的应用,解答本题的关键是明确题意,利用完全平方公式解答.8.若a 2-b 2=14,a-b=12,则a+b 的值为( ) A .-12 B .1 C .12 D .2【答案】C【解析】【分析】已知第二个等式左边利用平方差公式分解后,将第一个等式变形后代入计算即可求出.【详解】∵a 2-b 2=(a+b )(a-b)=12(a+b)=14∴a+b=12故选C. 点睛:此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.9.下列各式从左到右的变形中,是因式分解的为( ).A .()x a b ax bx -=-B .()()222111x y x x y -+=-++C .()()2111x x x -=+-D .()ax bx c x a b c ++=+【答案】C【解析】【分析】根据因式分解的定义作答.把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式.【详解】解:A 、是整式的乘法运算,故选项错误;B 、右边不是积的形式,故选项错误;C 、x 2-1=(x+1)(x-1),正确;D 、等式不成立,故选项错误.故选:C .【点睛】熟练地掌握因式分解的定义,明确因式分解的结果应是整式的积的形式.10.把代数式2x 2﹣18分解因式,结果正确的是( )A .2(x 2﹣9)B .2(x ﹣3)2C .2(x +3)(x ﹣3)D .2(x +9)(x ﹣9)【答案】C试题分析:首先提取公因式2,进而利用平方差公式分解因式得出即可.解:2x 2﹣18=2(x 2﹣9)=2(x+3)(x ﹣3).故选C .考点:提公因式法与公式法的综合运用.11.多项式2()()()x y a b xy b a y a b ---+-提公因式后,另一个因式为( ) A .21x x --B .21x x ++C .21x x --D .21x x +-【答案】B【解析】【分析】各项都有因式y (a-b ),根据因式分解法则提公因式解答.【详解】 2()()()x y a b xy b a y a b ---+-=2()()()x y a b xy a b y a b -+-+-=2()(1)y a b x x -++,故提公因式后,另一个因式为:21x x ++,故选:B.【点睛】此题考查多项式的因式分解,掌握因式分解的方法是解题的关键.12.若a b +=1ab =,则33a b ab -的值为( )A .±B .C .±D .【答案】C【解析】【分析】将原式进行变形,3322()()()a b ab ab a b ab a b a b -=-=+-,然后利用完全平方公式的变形22()()4a b a b ab -=+-求得a-b 的值,从而求解. 【详解】解:∵3322()()()a b ab ab a b ab a b a b -=-=+-∴33)a b b ab a =--又∵22()()4a b a b ab -=+-∴22()414a b -=-⨯=∴2a b -=±∴33(2)a b ab =±=±-【点睛】本题考查因式分解及完全平方公式的灵活应用,掌握公式结构灵活变形是解题关键.13.若实数x 满足2210x x --=,则322742017x x x -+-的值为( )A .2019B .2019-C .2020D .2020-【答案】D【解析】【分析】根据2210x x --=推出x 2-2x=1,然后把-7x 2分解成-4x 2-3x 2,然后把所求代数式整理成用x 2-2x 表示的形式,然后代入数据计算求解即可.【详解】解:∵x 2-2x-1=0,∴x 2-2x=1,2x 3-7x 2+4x-2017=2x 3-4x 2-3x 2+4x-2017,=2x (x 2-2x )-3x 2+4x-2017,=6x-3x 2-2017,=-3(x 2-2x )-2017=-3-2017=-2020故选D.【点睛】本题考查了提公因式法分解因式,利用因式分解整理出已知条件的形式是解题的关键,整体代入思想的利用比较重要.14.若△ABC 三边分别是a 、b 、c ,且满足(b ﹣c )(a 2+b 2)=bc 2﹣c 3 , 则△ABC 是( )A .等边三角形B .等腰三角形C .直角三角形D .等腰或直角三角形【答案】D【解析】试题解析:∵(b ﹣c )(a 2+b 2)=bc 2﹣c 3,∴(b ﹣c )(a 2+b 2)﹣c 2(b ﹣c )=0,∴(b ﹣c )(a 2+b 2﹣c 2)=0,∴b ﹣c=0,a 2+b 2﹣c 2=0,∴b=c 或a 2+b 2=c 2,∴△ABC 是等腰三角形或直角三角形.故选D .15.一次课堂练习,王莉同学做了如下4道分解因式题,你认为王莉做得不够完整的一题是( )A .x 3﹣x=x (x 2﹣1)B .x 2﹣2xy+y 2=(x ﹣y )2C .x 2y ﹣xy 2=xy (x ﹣y )D .x 2﹣y 2=(x ﹣y )(x+y )【答案】A【解析】A. 提公因式法后还可以运用平方差公式继续分解,应为:原式=x(x+1)(x−1),错误;B. 是完全平方公式,已经彻底,正确;C. 是提公因式法,已经彻底,正确;D. 是平方差公式,已经彻底,正确.故选A.16.将下列多项式因式分解,结果中不含有因式(a+1)的是( )A .a 2-1B .a 2+aC .a 2+a-2D .(a+2)2-2(a+2)+1【答案】C【解析】试题分析:先把四个选项中的各个多项式分解因式,即a 2﹣1=(a+1)(a ﹣1),a 2+a=a (a+1),a 2+a ﹣2=(a+2)(a ﹣1),(a+2)2﹣2(a+2)+1=(a+2﹣1)2=(a+1)2,观察结果可得四个选项中不含有因式a+1的是选项C ;故答案选C .考点:因式分解.17.已知x ﹣y =﹣2,xy =3,则x 2y ﹣xy 2的值为( )A .2B .﹣6C .5D .﹣3 【答案】B【解析】【分析】先题提公因式xy ,再用公式法因式分解,最后代入计算即可.【详解】解:x 2y ﹣xy 2=xy (x ﹣y )=3×(﹣2)=﹣6,故答案为B .【点睛】本题考查了因式分解,掌握先提取公因式、再运用公式法的解答思路是解答本题的关键.18.下列分解因式错误的是( ).A .()2155531a a a a +=+B .()()22x y x y x y --=-+-C .()()1ax x ay y a x y +++=++D .()()2a bc ab ac a b a c --+=-+ 【答案】B【解析】【分析】利用因式分解的定义判断即可.【详解】解:A. ()2155531a a a a +=+,正确; B. ()2222x y x y --=-+,所以此选项符合题意;C. ()()()1ax x ay y a x y x y a x y +++=+++=++ ,正确;D. ()()2()()a bc ab ac a a b c a b a b a c --+=-+-=-+,正确 故选:B.【点睛】此题考查了因式分解-运用公式法,熟练掌握因式分解的方法是解本题的关键.19.若实数a 、b 满足a+b=5,a 2b+ab 2=-10,则ab 的值是( )A .-2B .2C .-50D .50【答案】A【解析】试题分析:先提取公因式ab ,整理后再把a+b 的值代入计算即可. 当a+b=5时,a 2b+ab 2=ab (a+b )=5ab=-10,解得:ab=-2.考点:因式分解的应用.20.下列因式分解正确的是( )A .()222x xy x x y -=-B .()()2933x x x +=+- C .()()()2x x y y x y x y ---=-D .()22121x x x x -+=-+ 【答案】C【解析】【分析】根据提公因式法和公式法进行判断求解即可.【详解】 A. 公因式是x ,应为()222x xy x x y -=-,故此选项错误; B. 29x +不能分解因式,故此选项错误;C. ()()()()()2x x y y x y x y x y x y ---=--=-,正确;D. ()2221=1x x x x -+=-,故此选项错误.故选:C【点睛】此题考查了多项式的因式分解,符号的变化是学生容易出错的地方,要克服.。

21.2.3因式分解法课后练「含答案」

21.2.3因式分解法课后练「含答案」

1.一元二次方程(1)2(1)x x x -=-的解完全正确的是( )A .2x =B .122,1x x ==C .122,1x x =-=D .123,1x x ==-2.方程23x x =的解是( )A .0x =B .13x =C .113x =-,20x =D .113x =,20x =3.已知a b c ,,满足0,420a b c a b c ++=++=,则关于x 的一元二次方程20(0)ax bx c a ++=¹的解的情况为( )A .121,2x x ==B .121,2x x =-=-C .方程的解与a b ,的取值有关D .方程的解与a b c ,,的取值有关4.若实数x 满足方程()()22280x x x x +×+--=,那么2x x +的值为( )A .2-B .4C .2-或4D .2或4-5.如图,在ABCD Y 中,AE BC ^于点E ,BE a =,2AE CE a ==,且a 是一元二次方程2340x x +-=的根,则ABCD Y 的周长为( )A .6+B .8C .10D .4+6.如果2368x x +-的值与221x -的值相等,则x = .7.一元二次方程()()240x x --=的较大的根是 .8.定义:如果关于x 的一元二次方程20ax bx c ++=有两个实数根为a b ,,且满足2a b =,则称这样的方程为“倍根方程”.(1)方程 29180x x -+= (选填“是”或“不是”)“倍根方程”.(2)若()()50x x a --=是“倍根方程”,则=a9.一个菱形的边长是方程29180x x -+=的一个根其中一条对角线长为6,则该菱形的面积为 .10.解方程.(1)220x -=(公式法);(2)22330x x +-=(配方法);(3)()()22221y y +=+(因式分解法).11.已知关于x 的一元二次方程()22210x k x k k -+++=.(1)求证:方程有两个不相等的实数根;(2)若ABC V 的两边,AB AC 的长是这个方程的两个实数根,第三边BC 的长为5,当ABC V 是直角三角形时,求k 的值.12.阅读下面的材料,回答问题:解方程42540x x -+=,这是一个一元四次方程,根据该方程的特点,它的解法通常是:设2x y =,那么42x y =,于是原方程可变为2540y y -+=①,解得11y =,24y =.当1y =时,21x =,1x \=±;当4y =时,24x =,2x \=±;\原方程有四个根:11x =,21x =-,32x =,42x =-.这一方法,在由原方程得到方程①的过程中,利用“换元法”达到降次的目的,体现了数学的转化思想.(1)方程4260x x --=的解为________.(2)仿照材料中的方法,尝试解方程()()2224120x x x x +-+-=.【分析】此题考查了解一元二次方程,利用因式分解法解一元二次方程即可得到答案.【详解】解:∵(1)2(1)x x x -=-,∴(1)(2)0x x --=,∴20x -=或10x -=,∴1221x x ==,,故选:B .2.D【分析】本题考查了一元二次方程的解法,熟悉其解法是解决问题的关键.利用因式分解法解一元二次方程即可.【详解】解:Q 23x x =,\ 230x x -=,即(31)0x x -=,\ 113x =,20x =,故选:D .3.A【分析】根据已知条件求出a b c 、、之间的关系,代入方程即可解答.本题考查了一元二次方程的概念及利用因式分解法解一元二次方程,理解一元二次方程的概念是解题的关键.【详解】解:∵0a b c ++=,420a b c ++=,∴a c b +=-①,42a c b +=-②,∴-②①得3b a =-,将3b a =-代入0a b c ++=得:30a a c -+=,∴2c a =,将3b a =-,2c a =代入20(0)ax bx c a ++=¹得:()2320a x x -+=,∵0a ¹,∴2320x x -+=,∴()()120x x --=,解得121,2x x ==,故选A .【分析】此题考查了换元法解一元二次方程.设2y x x =+,则原方程转化为关于y 的新方程,通过解新方程来求y 的值,即2x x +的值.【详解】解:设2y x x =+,原方程变形为()280y y --=,整理得:2280y y --=,解得:1242y y ==-,,当14y =时,24x x +=,即240x x +-=,此时()21414170D =-´´-=>;当22y =-时,22x x +=-,即220x x ++=,此时2141270D =´´=-<-;此时方程220x x ++=无解;∴24x x +=.故选:B5.A【分析】本题考查了平行四边形的性质,勾股定理,以及用因式分解法解一元二次方程,是基础知识要熟练掌握.先解方程求得a ,再根据勾股定理求得AB ,从而计算出ABCD Y 的周长即可.【详解】解:a Q 是一元二次方程2340x x +-=的根,2340a a \+-=,即()()140a a -+=,解得,1a =或4a =-(不合题意,舍去).∴1BE =,2AE CE ==,在Rt ABE △中,AB ===,3BC EB EC \=+=,ABCD \Y 的周长())2236AB BC =+==+故选:A .6.7-或1【分析】本题主要考查解一元二次方程,解一元一次方程,等式的性质等知识,根据题意得到方程2236821x x x +-=-,求出方程的解即可.【详解】解:根据题意得:2236821x x x +-=-,∴2670x x +-=,分解因式得:(7)(1)0x x +-=,∴70x +=,10x -=,解方程得:17x =-,21x =.故答案为:7-或1.7.4x =【分析】本题主要考查了用因式分解法解一元二次方程,先运用因式分解法解一元二次方程,再根据两根的大小得到较大的根,这种方法简便易用,是解一元二次方程最常用的方法.【详解】解:(2)(4)0x x --=20x \-=或40x -=,解得12x =,24x =,\较大的根是4x =,故答案为:4x =.8. 是 10或52【分析】本题主要考查了解一元二次方程,新定义:(1)利用因式分解法求出方程的两个根,再根据“倍根方程”的定义求解即可;(2)先解方程得到125x a x ==,,再根据“倍根方程”的定义求解即可.【详解】解:(1)∵29180x x -+=,∴()()360x x --=,解得1236x x ==,,∴212x x =,∴方程 29180x x -+=是 “倍根方程”.故答案为:是;(2)解方程()()50x x a --=得125x a x ==,,∵()()50x x a --=是“倍根方程”,∴2510a =´=或15522a =´=,故答案为:10或52.9.【分析】本题考查了因式分解法解一元二次方程、菱形的性质、勾股定理,先解方程得出16x =,23x =,结合一条对角线长为6得出菱形的边长为6,利用勾股定理得出菱形的另一条对角线为=,再由面积公式计算即可.【详解】解:29180x x -+=Q ,()()630x x \--=,解得:16x =,23x =,Q 菱形一条对角线长为6,\菱形的边长为6,\菱形的另一条对角线为=\菱形的面积为162´´=故答案为:10.(1)12x x ==(2)1x =2x =(3)11y =-,21y =.【分析】本题考查解一元二次方程,(1)根据公式法直接求解即可;(2)先将二次项系数化为1,再移项,再进行配方,最后开平方即可求解;(3)先进行移项,再利用平方差公式进行因式分解即可求解.【详解】(1)解:220x -=,1a =,b =-2c =,∵2244120b ac -=--´´=,∴x ==,∴12x x ==(2)解:22330x x +-=两边都除以2,得233022x x +-=.移项,得23322x x +=.配方,得22233332424x x æöæö++=+ç÷ç÷èøèø,即2333416x æö+=ç÷èø,开平方,得34x +=即x x ∴1x =2x (3)解:原方程可变形为()()222210y y +-+=.∴()()2212210y y y y ++++--=.∴330y +=,10y -=,∴11y =-,21y =.11.(1)见解析(2)k 的值为12或3【分析】本题考查一元二次方程综合,涉及一元二次方程根的情况与判别式关系,一元二次方程根与直角三角形结合等,熟练掌握一元二次方程相关定义与性质是解决问题的关键.(1)根据方程的系数结合根的判别式,可得出10D =>进而可证出方程有两个不相等的实数根;(2)利用因式分解法可求出,AB AC 的长,分BC 为直角边及BC 为斜边两种情况,利用勾股定理可得出关于k 的一元一次方程或一元二次方程解之即可得出k 值,取其正值(利用三角形的三边关系判定其是否构成三角形)即可得出结论.【详解】(1)由题意得:22[(21)]4()10k k k D =-+-´+=>∴方程有两个不相等的实数根(2)∵()22210x k x k k -+++=,即()[(1)]0x k x k --+=解得:12,1x k x k ==+当BC 为直角边时,2225(1)k k +=+,解得:12k =当BC 为斜边时,222(1)5k k ++=,解得:123,4k k ==-(不合题意,舍)综上:k 的值为12或312.(1)1x =2x =(2)13x =-,22x =;【分析】本题考查了根的判别式,换元法解一元二次方程,能够正确换元是解此题的关键.(1)结合材料,利用2x m =,再换元,求出m 的值,再代入求出x 即可;(2)结合材料,利用2x x n +=,再换元,求出n 的值,再代入求出x 即可.【详解】(1)解:设2x m =,则原方程变为260m m --=,解得:13m =,22m =-,当3m =时,23x =,解得x =当2m =-时,22x =-,方程无解;故原方程的解为:1x =2x =,故答案为:1x =2x =.(2)解:设2x x n +=,则原方程变为24120--=n n ,解得:16n =,22n =-,当6n =时,26x x +=,解得:13x =-,22x =;当2n =-时,22x x +=-,即220x x ++=,Q 2141270D =´´=-<-,\方程无解;故原方程的解为:13x =-,22x =.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新人教版九年级上因式分解法同步练习含答案
要点感知1 当一元二次方程的一边为0,另一边易于分解成两个一次因式的乘积时,通常将一元二次方程化为_____的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做_____.
预习练习1-1 用因式分解法解方程:
(1)x(x-7)=0; (2)(x+7)(x-7)=0.
要点感知2 _____适用于所有的一元二次方程,
_____适用于某些一元二次方程.总之,解一元二次方程的差不多思路是:将二次方程化为一次方程,即_____.
预习练习2-1 用适当的方法解方程.
(1)
21(2x-1)2-32=0; (2)x 2+4x+1=0.
知识点1 用因式分解法解一元二次方程
1.方程x(x+2)=0的根是( )
A.x=2
B.x=0
C.x 1=0,x 2=-2
D.x 1=0,x 2=2
2.(河南中考)方程(x-2)(x+3)=0的解是( )
A.x=2
B.x=-3
C.x 1=-2,x 2=3
D.x 1=2,x 2=-3
3.(宁夏中考)一元二次方程x(x-2)=2-x 的根是( )
A.-1
B.2
C.1和2
D.-1和2
4.用因式分解法解下列方程:
(1)x 2-9=0; (2)x 2-2x=0; (3)x 2+9x=0;
(4)x 2-32x=0; (5)(2+x)2-9=0; (6)(自贡中考)3x(x-2)=2(2-x).
知识点2 用适当的方法解一元二次方程
5.用适当的方法解方程:
(1)2(x+1)2=4.5; (2)(徐州中考)x 2+4x-1=0;
(3)3x 2=5x ; (4)4x 2+3x-2=0.
6.方程3x(x+1)=3x+3的解为( )
A.x=1
B.x=-1
C.x1=0,x2=-1
D.x1=1,x2=-1
7.用因式分解法解方程,下列方法中正确的是( )
A.(2x-2)(3x-4)=0化为2x-2=0或3x-4=0
B.(x+3)(x-1)=1化为x+3=0或x-1=1
C.(x-2)(x-3)=2×3化为x-2=2或x-3=3
D.x(x+2)=0化为x+2=0
8.若用因式分解法解一元二次方程4(x+2)2-9(2x-1)2=0,第一将左端的式子用_____公式分解为[2(x+2)+3(2x-1)][2(x+2)-3(2x-1)]=0,从而求得方程的根为_____
9.(鞍山中考)关于实数a,b,我们定义一种运算“※”为:a※b=a2-ab,例如:1※3=12-1×3.若x※4=0,则_____
10.(襄阳中考)若正数a是一个一元二次方程x2-5x+m=0的一个根,-a是一元二次方程x2+5x-m=0的一个根,则a的值是_____.
11.用因式分解法解下列方程:
(1)3y2-6y=0;(2)(1+x)2-9=0;(3)(x+2)(x+3)=x+3.
12.用适当的方法解下列方程:
(1)9(x-1)2=5;(2)6x2+2x=0;(3)x2-8x+11=0 (4)x2-1=3x+3; (5)(x-3)2+x2=9.
13.已知三角形的两边长分别为3和7,第三边长是方程x(x-7)-10(x-7)=0的一个根,求那个三角形的周长.
挑战自我
14.先阅读下列材料,然后解决后面的问题:
材料:因为二次三项式:
x2+(a+b)x+ab=(x+a)(x+b),
因此方程x2+(a+b)x+ab=0能够如此解:
(x+a)(x+b)=0,x+a=0或x+b=0,
∴x1=-a,x2=-b.
问题:
(1)(铁岭中考)假如三角形的两边长分别是方程x2-8x+15=0的两个根,那么连接那个三角形三边的中点,得到的三角形的周长可能是( )
A.5.5
B.5
C.4.5
D.4
(2)(广安中考)方程x2-3x+2=0的根是_____;
(3)(临沂中考)关于实数a,b,定义运算“﹡”:a﹡b= b)≥ab(a-a b)<(a b-ab22,例如4﹡2,因为4>2,因此4﹡2=42-4×2=8.若x1,x2是一元二次方程x2-5x+6=0的两个根,则x1﹡x2=_____;
(4)用因式分解法解方程x2-kx-16=0时,得到的两根均为整数,则k的值能够为_____;
(5)已知实数x满足(x2-x)2-4(x2-x)-12=0,则代数式x2-x+1的值为_____.
参考答案
21.2.3 因式分解法
要点感知1 两个一次式,因式分解法.
预习练习1-1 (1)x 1=0,x 2=7;(2)解:x 1=-7,x 2=7. 要点感知2 配方法、公式法,因式分解法,即降次. 预习练习2-1 (1)(2x-1)2=64,2x-1=±8, ∴x 1=29,x 2=-2
7. (2)x 2+4x=-1,(x+2)2=3,x+2=±3, ∴x 1=-2+3,x 2=-2-3.
1.C
2.D
3.D
4.(1)(x+3)(x-3)=0,
∴x 1=-3,x 2=3. (2)x(x-2)=0,
∴x 1=0,x 2=2.
(3)x(x+9)=0, x 1=0,x 2=-9.
(4)x(x-32)=0, x 1=0,x 2=32.
(5)(x+5)(x-1)=0,
x 1=-5,x 2=1. (6)原方程变形为3x(x-2)+2(x-2)=0,即(3x+2)(x-2)=0,解得x 1=-
3
2,x 2=2. 5.(1)(x+1)2=2.25.x+1=±1.5.
∴x 1=0.5,x 2=-2.5. (2)(x+2)2=5,x+2=±5, ∴x 1=-2+5,x 2=-2-5. (3)3x 2-5x=0, x(3x-5)=0.x=0或3x-5=0.∴x 1=0,x 2=
335. (4)a=4,b=3,c=-2;b 2-4ac=41>0. ∴x 1=8413+-,x 2=8
413--.
6.D
7.D
8.平方差,x 1=-81,x 2=
47. 9.x=0或4. 10.5. 11.(1)3y(y-2)=0, ∴y 1=0,y 2=2.
(2)(4+x)(x-2)=0, ∴x 1=2,x 2=-4.
(3)(x+3)(x+1)=0,
∴x 1=-1,x 2=-3. 12.(1)x 1=335+,x 2=3
35-. (2)x 1=0,x 2=-3
1.
(3)x 1=4+5,x 2=4-5.
(4)原方程可化为(x+1)(x-1)-3(x+1)=0.
∴(x+1)(x-4)=0.
∴x+1=0或x-4=0.
∴x1=-1,x2=4.
(5)x1=3,x2=0.
13.∵方程x(x-7)-10(x-7)=0,
∴x1=7,x2=10.
当x=10时,3+7=10,因此x2=10不合题意,舍去.
∴那个三角形的周长为3+7+7=17.
挑战自我
14.(1)A (2)1或2;(3)3或-3;(4)-15,-6,0,6,15;(5)7.。

相关文档
最新文档