西南大学《实变函数论》网上作业及参考答案
实变函数论答案范文
实变函数论答案范文1.设函数f(x)在区间[a,b]上连续,且在(a,b)内可导,且f'(x)>0,证明f(x)在区间[a,b]上严格单调递增。
答案:根据导数定义可知,f'(x)>0意味着对任意的x1<x2,有f(x2)-f(x1)>0。
由此可得f(x)在[a,b]上严格单调递增。
2.设函数f(x)在区间[a,b]上连续,求证存在c∈(a,b),使得f(b)-f(a)=(b-a)f'(c)。
答案:根据拉格朗日中值定理,存在c∈(a,b),使得f(b)-f(a)=(b-a)f'(c)。
3. 设函数f(x)在区间[a, b]上连续,且在(a, b)内有n阶导数,证明存在ξ∈(a, b),使得f(b) - f(a) = (b - a)f'(\(\xi\))/n。
答案:根据柯西中值定理,存在ξ∈(a, b),使得f'(ξ) = [f(b)- f(a)] / (b - a)。
再次应用柯西中值定理,存在η∈(a, b),使得f''(η) = [f'(ξ) - f'(a)] / (ξ - a)。
再继续应用n次柯西中值定理,最后得到存在ξ∈(a, b),使得f(b) - f(a) = [f'(\(\xi\))/n!](b - a)^n。
4.设函数f(x)在区间[a,b]上有n阶导数,且f(a)=f'(a)=…=f(n-1)(a)=0,证明存在ξ∈(a,b),使得f(b)=f^(n)(ξ)(b-a)^n/n。
答案:根据拉格朗日中值定理,对于j∈[1, n-1],存在xj∈(a, b),使得f(j)(xj) = f(j-1)(ξ)。
现在我们来考虑f(b) = f(n)(ξ),显然存在ξ∈(a, b)使得f(n-1)(x) = 0,带入拉格朗日中值定理的公式即可证明。
5.设函数f(x)在区间[a,b]上连续且非零,证明对任意的ε>0,存在ξ∈(a,b),使得,f(ξ),>ε。
第三版实变函数论课后答案
i 1
( Ei (
m j 1
Fj )c ) ( Ek (
m j 1
Fj ) c ) , (i k )
aij ci d j , 1 i n,1 j m
则 易 知
iE
(
m i 1
El )c ) , ( j k)
i 1
n
2. 证明当 f ( x) 既是 E1 上又是 E2 上的非负可测函数时, f ( x) 也是 E1 E2 上的非负可测函数 证明:显然 f ( x) 0 于 E1 ,且 f ( x) 0 于 E2 表明 f ( x) 0 于 E1 E2 又
由 P64Th5
m( E ) lim mAk ,而 mE ,则 m( E )
k
故 0 , k0 使 0 m( E ) mAk0 ,
2
,而 Ak0 E 故 m( E \ Ak0 )
2
a R1
由 E0 , Ak0 可测, 闭集 F1 Ak0 , m( Ak0 \ F1 )
, 闭集 F0 E0 使
E1 E2 x | f ( x) a E1 x | f ( x) a E2 x | f ( x) a
证毕.
8
m( E \ Ak0 ) m( Ak0 \ F1 )
8
2
8
4
2
E
上 几 乎 处 处 有 限 , mE 0 . 由 f ( x) 可 测 于 E 上 知 ,
E0 E x | f ( x) 0 E x | f ( x) 0 是可测集(P103Th2,P64Th4 可测集
实变函数参考答案.docx
依然是旧版书的题号19.证明:若E为有界集,根据第15题则存在E中的闭集F使得mF〉O,于是F为有界闭集。
假设Vx w 氏〉0,s"i(EnO(x,氏))=0 ,就有F U U0(X,Q),根据Borel 有XE F限覆盖定理知存在P,使得Fc(j0(x;,^ ),从而Z=1p P加F =加(尸门[^0(兀,心丿)<工加(£门0(兀,/心))=0,矛盾,故假设不成立,即需证结z=l i=\论成立。
co oo若E为无界集,设B k =O(,0,k),k=l,2,...,则E = E^R n =En(|J5J = °k=\ k=l由于协E〉0,于是必然存在k,使得m(EC\B k)>Q,而Eg为有界集,由上即知3x e E A , s.t.\/3 > 0, m((E A B,) A 0(x, ^)) > 0 ,故而对E 而言,相应结论亦成立。
注:此题当然可以不使用Borel有限覆盖定理而得到证明,但作为替代,我们需要求助于习题一的24题(旧版书),此时关于E是否有界的讨论就可以省掉。
在此,我们看到习题一的24题(旧版书)的好处,它能将不可数覆盖转化为至多可数覆盖,从而可以运用(外)测度的相关运算性质。
另外,课本上“提示:利用闭集套定理”,那样做也是可以的,但是感觉繁琐了些,就不在此写出了。
附:对《实变函数参考答案(3)》的补充(一)上次的7.题有个位置有点问题:应该将||处的九4改为m{B - A)“7证明:若mA =+00 ,则m(A U B) + m(A A B) = mA + mB两端皆是+ 8,等式自然成立。
若mA < +8 ,则加(4 U 5) = mA + m(B - A),mB = m(A Cl B) + m(B - A),于是m{A U B) + m{A Pl B) = mA + m(B -A) + mB - m(B - A) = mA + mB ,等式亦成立。
【西南●最新版】[0195]《实变函数论》网上作业及课程考试复习资料(有答案)
[0195]《实变函数论》第一次作业[单选题]1.开集减去闭集是()A:A.开集B:B.闭集C:C.既不是开集也不是闭集参考答案:A[单选题]2.闭集减去开集是()A:开集B:闭集C:既不是开集也不是闭集参考答案:B[单选题]3.可数多个开集的交是()A:开集B:闭集C:可测集参考答案:C[单选题]4.可数多个闭集的并是()A:开集B:闭集C:可测集参考答案:C[单选题]6.可数集与有限集的并是()A:有界集B:可数集C:闭集参考答案:B[判断题]5.任意多个开集的并仍是开集。
参考答案:正确[单选题]8.可数多个有限集的并一定是()A:可数集B:有限集C:以上都不对参考答案:C[单选题]7.设f(x)是定义在[a,b]上的单调函数,则f(x)的间断点集是()A:开集B:闭集C:可数集参考答案:C[单选题]9.设f(x)是定义在R上的连续函数,E=R(f>0),则E是A:开集B:闭集C:有界集参考答案:A[单选题]10.波雷尔集是()A:开集B:闭集C:可测集参考答案:C[判断题]7.可数多个零测集的并仍是零测集合。
参考答案:正确[单选题]1.开集减去闭集是()。
A:A.开集 B.闭集 C.既不是开集也不是闭集参考答案:A[单选题]5.可数多个开集的并是()A:开集B:闭集C:可数集参考答案:A[判断题]8.不可数集合的测度一定大于零。
参考答案:错误[判断题]6.闭集一定是可测集合。
参考答案:正确[判断题]10.开集一定是可测集合。
参考答案:正确[判断题]4.连续函数一定是可测函数。
参考答案:错误[判断题]3.零测度集合或者是可数集合或者是有限集。
参考答案:正确[判断题]2.有界集合的测度一定是实数。
参考答案:正确[判断题]1.可数集合是零测集参考答案:正确[判断题]9.任意多个闭集的并仍是闭集。
参考答案:错误[判断题]9.任意多个闭集的并仍是闭集。
参考答案:错误第三次作业[单选题]5.设f(x)为[0,2]上如下定义的函数:当x是[0,2]的有理数时,f(x)=sinx,当x是[0,2]的无理数时,f(x)=x,那么f(x)在[0,2]上的勒贝格积分是()A:2B:1-cos2C:0参考答案:A[单选题]4.设f(x)是可积函数,g(x)是不可积函数,则f(x)+|g(x)|是()A:可积函数B:不可积函数C:有界函数参考答案:B[单选题]3.有界可测集上的勒贝格可积函数一定是()A:可测函数B:连续函数C:简单函数参考答案:A[单选题]2.函数列依测度收敛是函数列几乎处处收敛的()A:必要条件B:充分条件C:无关条件参考答案:C[单选题]1.设f(x)是定义在[a,b]上的可测函数,则f(x)是()A:连续函数B:简单函数C:一列简单函数的极限参考答案:C[判断题]10.定义在区间上的单调函数是可积函数。
实变函数试题库参考答案 (2)
《实变函数》试题题库参考答案一、选择题1、D2、C3、D4、D5、A6、B7、C8、A9、B 10、C 11、C 12、D 13、C 14、B 15、C 16、D 17、A 18、D 19、C 20、A 21、B 22、C 23、B 24、C 25、A 26、C 27、D 28、D 29、B 30、D 31、A 32、B 33、C 34、A 35、B 36、D 37、C 38、B 39、C 40、B 41、B 42、D 43、B 44、A 45、A 46、D 47、D 48、B 49、A 50、B 51、A 52、D 53、C 54、D 55、B 56、A 57、D 58、C 59、A 60、D 61、A 62、B 63、D 64、C 65、C 66、D 67、B 68、A 69、B 70、C 71、D 72、C 73、C 74、B 75、A 76、B 77、A 78、C 79、C 80、D 81、B 82、A 83、B 84、C 85、C 86、B 87、C 88、D 89、A 90、A二、填空题1、n 2 ;2、c ;3、c ;4、c ;5、c ;6、c ;7、{x:对于任意的I ∈α,有αA x ∈};8、{x:存在I ∈α,使得αA x ∈};9、ααA C s I∈⋃;10、ααA C s I ∈⋂;11、n kn k A ∞=∞=⋃⋂1;12、n kn k A ∞=∞=⋂⋃1;13、211)(∑=nk k x ;14、|})()({|sup ],[t y t x b a x -∈;15、2112})({∑∞=-k k k y x ;16、21222211})(){(y x y x -+-;17、21233222211})()(){(y x y x y x -+-+-;18、21244233222211})()()(){(y x y x y x y x ++-+-+-;19、}1:),{(22≤+=y x y x E ;20、}1:),,{(222≤++z y x z y x ;21、}1:),{(22=+y x y x ; 22、}1:),{(22≤+y x y x ;23、}1:),,{(222=++z y x z y x ; 24、}1:),,{(222=++z y x z y x ; 25、2;26、0;27、1;28、)},({inf ,y x d By A x ∈∈;29、)},({sup ,y x d Ay A x ∈∈;30、1;31、∑∞=1||infi i I ;32、n n mS ∞→lim ;33、)(a f E >可测;34、0>∀σ有 ∞=<1i i I E ;35、C B D A ⊂⊂⊂;36、||x ;37、可测函数;38、点态收敛与一致收敛;39、)(*||E I m I --;40、次可数可加性;41、可测函数;42、可测函数;43、单调性;44、 ∞=1i i G (i G 开);45、推广;46、测度;47、)(*)(**CE T m E T m T m +=;48、 ∞=1n n F ,(n F 闭集);49、常数;50、可测函数,连续函数;51、n n mS ∞→lim ;52、零测集; 53、可测函数;54、依测度; 55、0; 56、0; 57、0; 58、0; 59、0;60、0三、判断题 1、( √ )理由: 集合具有无序性 2、( × )理由: 举一反例, 比如: 取A={1}, B={2} 3、( √ )理由: 空集Φ是任意集合的子集. 4、( × )理由:符号⊂表示集合间的关系,不能表示元素和集合的关系. 5、( × )理由:Φ表示没有任何元素的集合,而{Φ}表示单元素集合,这个元素是Φ6、( × )理由: Φ表示没有任何元素的集合,而{0}表示单元素集合,这个元素是07、( √ )理由: 根据内点的定义, 内点一定是聚点8、( × )理由: 举一反例,比如: E=(0,1),元素1不是E的外点,但却属于E的余集分9、( √ )理由: 有内点的定义可得.10、( √ )理由: 有内点的定义可得.11、( × )理由: 举例说明,比如: E=(0,1),元素1是E的边界点,但属于E.12、( × )理由: 举一反例,比如: E=(0,1),元素1是E的内点,但不属于E13、(×)理由: 因有若]1,0[]1,0)([-可测⊂E,E不可测,而EE14、(√)理由: 因)eaggf=>=≠E>f()(E()()gg(agaff>E==≠E>((())()f))g)(g((a两可测集的并可测。
实变函数参考答案
习题1解答(A 组题)一、选择题1、C ;2、A ;3、D ;4、C ;5、C ;6、A ;7、A ;8、B ;9、D ;10、C 二、判断题1、×;2、×;3、×;4、×;5、√;6、×;7、×;8、×;9、×; 10、× 三、填空题1、=;2、∅;3、()0,1;4、[]1,1-;5、,EF EF ;6、()2,3-;7、≥;8、c9、设有两个集合A 和B ,若≤A B ,≥A B ,则=A B 。
四、证明题1、(1)()()()()()\\====C C CC A A B A A B AAB A A AB A B ;(2)()()()()()()\\==C C CC A B CD A B CD A C B D()()()()\==CA C BD A C BD 。
2、111\lim \∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫=== ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C Cn n n n n N n N N n N N n N A B A B A B AB ()111lim(\)∞∞∞∞∞∞→∞======⎛⎫⎛⎫⎛⎫⎛⎫==== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭C C C n n n n n N n N N n N N n N A B A B A B A B 。
同理可证第2个集合等式。
3、当A =∅时,{}∅张成的环和σ-环均为它自身;张成的代数和σ-代数均为{},X ∅。
当A X =时,{}X张成的环、σ-环、代数和σ-代数均为{},X ∅。
当A 为X 的非空真子集时,{}A 张成的环和σ-环均为{},A ∅;张成的代数和σ-代数均为{},,,cA A X∅。
4、首先,令()()tan 12π⎡⎤=-⎢⎥⎣⎦f x x ,由于()f x 是()0,1上的严格单调递减的连续函数,且()()()0,10,=+∞f,所以()f x 是()0,1到()0,+∞的一一映射。
《实变函数》习题库参考答案
《实变函数》习题库参考答案《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ?),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。
满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-?--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ?知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由+∞<="" 4、(="" b="" m="" ma="" p="" √="" 。
从而移项可得结论。
="" 知,+∞<-+∞理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数,从而再其和集上也是可测函数。
5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。
6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。
[法二]:可建立一个映射==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合,1,,31,21,1,0n 到集合 ,1,,31,21,1n 的一一映射。
7、( √ )理由:由B A ?知A A B B )(-=,且φ=-A A B )(,故mA mA A B mmB =+-=)(8、( √ )理由:狄利克莱函数-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。
9、( √ )理由:由于E E ?Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。
实变函数论课后答案1
实变函数论课后答案第五章1第无章第一节习题1.试就[0,1]上的D i r i c h le 函数()D x 和Riemann 函数()R x 计算[0,1]()D x dx ⎰和[0,1]()R x dx ⎰解:回忆11()0\x Q D x x R Q∈⎧=⎨∈⎩即()()Q D x x χ= (Q 为1R 上全体有理数之集合)回忆: ()E x χ可测E ⇔为可测集和P129定理2:若E 是n R 中测度有限的可测集, ()f x 是E 上的非负有界函数,则_()()()EEf x dx f x dx f x =⇔⎰⎰为E 上的可测函数显然, Q 可数,则*0m Q =,()Q Q x χ可测,可测,有界,从而Lebesgue 可积由P134Th4(2)知[0,1][0,1][0,1][0,1][0,1]()()()10ccQ Q Q QQQ Q x dx x dx x dx dx dx χχχ⋂⋂⋂⋂=+=+⎰⎰⎰⎰⎰1([0,1])0([0,1])10010c m Q m Q =⋅⋂+⋅⋂=⋅+⋅= 回忆Riemann 函数()R x :1:[0,1]R R11,()0[0,1]n nx m n m R x x x Q⎧=⎪⎪==⎨⎪∈-⎪⎩和无大于的公因子1在数学分析中我们知道, ()R x 在有理点处不连续,而在所有无理点处连续,且在[0,1]上Riemann 可积, ()0.R x a e =于[0,1]上,故()R x 可测(P104定理3),且[0,1]()R x dx ⎰[0,1]()()QQR x dx R x dx -=+⎰⎰而0()10QQR x dx dx mQ ≤≤==⎰⎰(Q 可数,故*0m Q =)故[0,1][0,1][0,1]()()00QQR x dx R x dx dx --===⎰⎰⎰2.证明定理1(iii)中的第一式证明:要证的是:若mE <+∞,(),()f x g x 都是E 上的非负有界函数,则 ()()()EEEf x dx f x dxg x dx --≥+⎰⎰⎰下面证明之: 0ε∀>,有下积分的定义,有E 的两个划分1D 和2D 使 1()()2D Es f f x dx ε->-⎰,2()()2D Es g g x dx ε->-⎰此处1()D s f ,2()D s g 分别是f 关于1D 和g 关于2D 的小和数,合并12,D D 而成E 的一个更细密的划分D ,则当()D s f g +为()()f x g x +关于D 的小和数时12(()())()DD D D D f x g x dx sf g s f s g s f s g -+≥+≥+≥+⎰()()()()22EEEEf x dxg x dx f x dx g x dx εεε----≥-+-=+-⎰⎰⎰⎰(用到下确界的性质和P125引理1)由ε的任意性,令0ε→,而得(()())()()EEf xg x dx f x dx g x dx ---+≥+⎰⎰⎰3.补作定理5中()Ef x dx =+∞⎰的情形的详细证明证明:令{}|||||m E E x x m =≤,当()Ef x dx =+∞⎰时,()lim ()mm EE f x dx f x dx →∞+∞==⎰⎰0M ∀>,存在00()m m M N =∈,当0m m ≥时,2()lim [()]mmk k E E M f x dx f x dx →∞<=⎰⎰则存在k 使[()][lim ()]lim[()]mmmk n k n k n n E E E M f x dx f x dx f x dx →∞→∞<==⎰⎰⎰lim [()]lim()lim ()mmn k n n n n n E E Ef x dx f x dx f x dx →∞→∞→∞=≤≤⎰⎰⎰(利用[()]mn k E f x dx ⎰有限时的结论,Th5中已详证)由M 的任意性知lim ()()n n EEf x dx f x dx →∞=+∞=⎰⎰ 证毕.4.证明:若()f x 是E 上的非负函数, ()0Ef x dx =⎰,则()0.f x a e =证明:令[|()1],1,2,n E x n f x n n =<≤+= ,1[|()1]m F x f x m=<≤ 则11[|()0]()()n n n n E x f x E F +∞+∞==>=⋃f可测,故,,[|()0]n m E F E x f x >(1,2,;1,2,n m == )都是可测集,由P135Th4(2)和()0Ef x dx =⎰,()f x 非负知[;()0]0()()()0nnn EE x f x E E f x dx f x dx f x dx n dx nmE >=≥≥≥=≥⎰⎰⎰⎰故0,(1,2,)n mE n == ;同理0,(1,2,)m mF m == 故11[|()0]0n m n m mE x f x mE mF +∞+∞==>≤+=∑∑故从()f x 非负,[|()0][|()0]E x f x E E x f x ==->,知()0.f x a e=于E .证毕.5.证明:当mE <+∞时,E 上的非负函数的积分()Ef x dx <+∞⎰的充要条件是02[|()2]k k k mE x f x +∞=≥<+∞∑证明:令[|()2],0,1k k E Ex f x k =≥= ,1[|2()2]n n n E E x f x +=≤<,0,1,2,k =[|()1],n i j n E x f x E E E +∞=≥=⋂=∅ 当i j ≠,f 非负,故从mE <+∞知[|()1]0()E x f x f x dx <≤<+∞⎰,而[|0()1][|()1]()()()EE x f x E x f x f x dx f x dx f x dx ≤<≥=<⎰⎰⎰[|()1]()()EE x f x f x dx f x dx ≥<+∞⇔<+∞⎰⎰注意由单调收敛定理和()0f x ≥可测知lim [|()1]lim()()()()()lim ()()n n ni i n i i ni n n i n E E E x f x EE E E f x dx f x dx f x dx x f x dx x f x dxχχ+∞→∞==→∞==→∞≥====⎰⎰⎰⎰⎰00lim ()()lim()lim ()()LeviThn niiii ii n n n n E i i E E E E x f x dx f x dx f x dx f x dxχ==+∞→∞→∞→∞======∑∑⎰⎰⎰⎰ 110022222222[|()2]i i n nnn n n n n i n n n n E dx mE mE mF E x f x +∞+∞+∞+∞+∞++=====≤==≤=≥∑∑∑∑∑⎰所以,若02[|()2]k k k mE x f x +∞=≥<+∞∑,则有[;()1]()E x f x f x dx ≥<+∞⎰则()Ef x dx <+∞⎰,故充分性成立.为证必要性,注意,k i k i i k i kF E mF mE +∞+∞====∑ ,令1{0nkk n k nϕ≥=<若若,则0002[|()2]2222nnnn nn nn nkkkkkn n n k nn k nn k mE x f x mF mE mE mEϕϕ+∞+∞+∞+∞+∞+∞+∞+∞========≥====∑∑∑∑∑∑∑∑100000002122221k knnnnkk k k kk n k n k n k mE mE mE mE ϕ++∞+∞+∞+∞+∞+∞=======-====-∑∑∑∑∑∑∑11(21)222()k k kk k k k k k k k k k mE mE mE mE m E +∞+∞+∞+∞+∞++======-=-=-∑∑∑∑ 0022[[;()1]]2()kk k k k E mE m E x f x f x dx +∞+∞===-≥≤∑∑⎰[|()1]2()2()2()kk E x f x EE f x dx f x dx f x dx +∞=≥==≤<+∞⎰⎰⎰(,[|()1]mE mE x f x <+∞≥<+∞)证毕.注意以上用到正项二重级数的二重求和的可交换性,这可看成是Fubini 定理的应用,也可看成是Lebsgue 基本定理的应用,或Levi 定理的应用.0000nmnm m n n m aa +∞+∞+∞+∞=====∑∑∑∑0000lim lim ()lim ()kkknmnm nm nmk k k m n m n n n aa a d m ad m μμ+∞+∞+∞+∞+∞→∞→∞→∞=========∑∑∑∑∑∑⎰⎰00000lim ()()knm nm nm k n n n m a d m a d m a μμ+∞+∞+∞+∞+∞→∞=======∑∑∑∑⎰⎰μ是1R 上的一个测度(离散的),[[]]1,()#[]m N m A A N μμ∀∈==⋂,N为自然数集,nm a 看成(){nxn a x Na x x N∈=∉当当 ,也可这样设1111,nm nm n m m n a a a b +∞+∞+∞+∞======∑∑∑∑,则,k p N ∀∈111111pppkknmnm nm n m m n m n aa ab +∞=======≤≤∑∑∑∑∑∑,令p →∞,11knm n m a b +∞==≤∑∑,令00,nm n m k a a b +∞+∞==→∞=≤∑∑,同理,b a ≤,则a b =,0000nm nm n m m n a a +∞+∞+∞+∞=====∑∑∑∑,[1,),1(){0i n a i i i nx x n ϕ-≤≤=≥为简单函数,()lim ()n n f x x ϕ→∞=,则()f x 可测6.如果(),()f x g x 都是E 上的非负可测函数,并且对于任意常数a 都有 [|()][|()]mE x f x a mE x g x a ≥=≥ 则()()EEf x dxg x dx =⎰⎰证明:若存在0b >使[|()]E x f x b ≥=+∞,则()()EEf x dx gx dx ==+∞⎰⎰结论成立.故b a ∀>,1,a b R ∈,[|()]E x f x b ≥<+∞,则[|()][|()][|()]E x f x a E x f x b E x a f x b ≥-≥=≤<[|()][|()][|()]mE x a f x b mE x f x a mE x f x b ≤<=≥-≥[;()][;()][;()]mE x g x a mE x g x b mE x a g x b =≥-≥=≤<m N ∀∈,及0,1,2,,21m k =- ,令,1[|()]22m k m m k k E E x f x +=≤<及 ,2[|()]m m m E E x f x m =≥则2,0mm m k k E E == ,,m k E 互不相交同样 ,,21[|()],[|()]22m m km m m m k k E E x g x E E x g x m +=≤<=≥, 2,0mm m k k E E == ,,m kE 互不相交 令 ~,,2200()(),()()22mmm k m km m m E m m m E k k k k x x x x ψχψχ====∑∑,则()m x ψ, ()mx ψ都是非负简单函数,且 (),()m m x x ψψ 均为单调不减关于m ,()()m x f x ψ→, ()()mx g x ψ→ 注意到,,11()[|()][|()]()2222m k m k m m m m k k k k m E mE x f x mE x g x m E ++=≤<=≤<= 故 22,,00()()()()22mmm m m m k m k m m m k k E Ek k x dx m E m E x dx ψψ=====∑∑⎰⎰ 故由Levi 定理知 ()lim ()lim ()()m m n n EEEEf x dx x dx x dxg x dx ψψ→∞→∞===⎰⎰⎰⎰ 7.设mE <+∞,()f x 是E 上的有界非负可测函数,0()f x M ≤<,()()()010,1,2,nn n n k g g g M n =<<<== 使 {}()(1)max |1,2,,0()n n i i n n y y i k l n --==→→∞ ,()()()()1[|()],,1,2,,;1,2,3,n n n n n i i i i i n E E x y f x y E i k n ξ-=≤<∈== 证明: ()1()lim ()nk n n i i n i Ef x dx f mE ξ→∞==∑⎰证明:显然,由f 可测于E 知,()n i E 是可测集(1,n i k n N ∀≤≤∈)且()1nk n i i E E == ,又在()n i E 上()()1()n n i i y f x y -≤<表明()()()()1inf ()sup ()n n ii n n i i x E x E y f x f x y -∈∈≤≤≤ 记()()1sup ()nnn ik n D ix E i S f x mE ∈==∑ (大和数),()()1inf ()nn ni k n D i x E i s f x mE ∈==∑ (小和数)则从()f x 有界可测知()f x 在E 上可积(P129Th2),故()()()n n D D E EEs f x dx f x dx f x dx S ---∞<≤==≤<+∞⎰⎰⎰,又从()n n i i E ξ∈知()()()11()sup ()nnn n n ik k nn n D iii D x E i i s f mEf x mE S ξ∈==-∞<≤≤=<+∞∑∑()1()()nn n n nk n n D D i i D D i Es S f x dx f mE S s ξ=-≤-≤-∑⎰,则()(1111|()()|nnnn n k k kn n n nnn niiD D i i i n in i i i Ef x dx f mES s y ymE l mE l mE ξ→∞-===-≤-≤-≤=→∑∑∑⎰(从0n l →知)故()1()lim ()nk n n i i n i Ef x dx f mE ξ→∞==∑⎰ 8.设mE <+∞,()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,[;()]n e E x f x n =≥,证明:lim 0n n n me →∞⋅=证明:由本节习题5知()Ef x dx <+∞⎰,mE <+∞则02[|()2]k k k mE x f x +∞=≥<+∞∑ ,故lim 2[|()2]0k k n mE x f x →∞≥= (1)反证设l i m n n n m e →∞⋅>,则00,,k k N n ε∃>∀∈∃使0kk n n me ε⋅≥,,k k N i N ∀∈∃∈使122k k i i k n +≤<,所以2i k k n e e ⊂,显然从k n →∞知2k i →+∞10222220()kki i kkki i k n n me me me k ε+≤⋅≤=⋅→→∞得矛盾所以lim0n n n me →∞⋅= 9.设()f x 是E 上的非负可测函数,()Ef x dx <+∞⎰,对任意的0r >,令[|||||]()()E x x r F r f x dx <=⎰证明:()F r 是(0,)+∞上的连续函数证明:[|||||](0,)E x x r E B r <=⋂显然为可测集;又()f x 在E 上非负可测,故0r ∀>,f 在[|||||]r E E x x r < 上也可测,且0()()rE Ef x dx f x dx ≤≤<+∞⎰⎰,故()F r 是(0,)+∞上有定义的函数1)先设0()f x M ≤≤<+∞于E 上,此时00,0r r ∀>∀>有0000[|||||]0()()()E x r x r r F r r F r f x d ≤<+≤+-=⎰0000[;||||][(0,)\(0,)]MmE x r x r r Mm B r r B r ≤≤<+≤+0000(((0,))\(0,))(()()]0n n n n M m B r r mB r M w r r w r =+=+-→ (当0r →)这里(0,)n n mB r w r =最好是用(0,)(0,)()1nn B r mB r R dx w r ==⎰来看.(下一节!)也可这样看00((0,))(0,)0m B r r mB r +-→,0R r ∀>>{}12(0,)(,,,);n R n i B R I x x x x R R x R ⊂==∈-<< ,而12(,,,);(0,)n r n i nr r Ix x x x R x B r n n ⎧⎫==∈-<<⊂⎨⎬⎩⎭ ,故(0,)\(0,)\R r nB R B r I I⊂((0,)\(0,))(\)()()(2)(2)22()n n n n n n R r R r nnr rm B R B r m I I m I m I R R n n≤=-=-=-得不出结果!则000()()0F r r F r ≤+-→ 当0r <时0000|()()|()()(()()]0n n n n F r r F r F r F r r M w r w r r +-=-+≤-+→则()F r 是连续的对一般可测函数()f x ,令(),()(),()m f x f x Mf x m f x M ≤⎧=⎨>⎩ min((),)f x m =,则0N f ≤可测于E ,且()()N f x f x →于E ,N f 单调不减,故由Levi 定理知lim ()m m EEf dx f x dx →∞=<+∞⎰⎰0,()N εε∀>∃,使0()()[()()]6N N EEEf x dx f x dx f x f x dx ε≤-=-<⎰⎰⎰对上述固定的()N N ε=,[|||||]()()N N E x x r F r f x dx <=⎰是连续于(0,)+∞上的则00(,,())(0,),r N r εεδδ∈+∞∃=0(,)0r εδ=>,当0||r r δ-<时0|()()|3N N F r F r ε-<则当0||r r δ-<时1230000|()()||()()||()()||()()|N N N N N N NF r F r F r F r F r F r F r F r I I I -≤-+-+-=++ 1[|||||][|||||][|||||]|()()||()()||(()())|N N N N E x x r E x x r E x x r I F r F r f x dx f x dx f x f x dx <<<-=-=-⎰⎰⎰[|||||]|(()())||(()())|3N N E x x r Ef x f x dx f x f x dx ε<≤-≤-<⎰⎰20|()()|3N N N I F r F r ε-< ,0300[|||||]|()()||(()())|(()())3N N N N E x x r EI F r F r f x f x dx f x f x dx ε<-=-≤-<⎰⎰则0|()()|F r F r ε-≤从而()F x 在(0,)+∞上连续得证.10.证明:若非负可测函数()f x 在E 上的积分()Ef x dx <+∞⎰,则对任意c ,0()Ec f x dx ≤≤<+∞⎰都有E 的可测集1E ,使1()E f x dx c =⎰证明:由第9题知,在本题条件下[|||||]()()E x x r F r f x dx <=⎰是(0,)+∞上的连续函数若0c =,则任取一单点0x E ∈,{}10E x =,则{}{}000()()0x f x dx f x m x ==⎰,即1()0E f x dx =⎰若()Ec f x dx =⎰,则取1E E =,则1()E f x dx c =⎰若0()Ec f x dx <<⎰注意到0r ∀>,{}(0,),||||B r x r r ∂== ((0,)B r 的边界) 满足11(0,)((0,)\(0,))m B r B r B r m+∞=∂=+11((0,))(((0,)\(0,)))m m B r m B r B r m+∞=∂=+11lim ((0,)\(0,))lim (())0n n n n n m B r B r w r r mm→∞→∞=+=+-= 若[|||||]m E E x x m =≤,0[|||||]m E E x x m =<,则0(\)((0,))0m m m E E m B m ≤∂=而()f x 非负可测,故011lim ()lim ()lim()()m m mm m EE EF m f x dx f x dx f x dx →∞→∞→∞===⎰⎰⎰则m 充分大时,()F m c >另一方面,0lim ()0r F r +→=(当0f M <<有界时,010()()()((0,))0m r E F r f x dx Mm E Mm B r ≤=≤≤→⎰)一般,0ε∀>,()N ε∃,使||3N E Ef dx f dx εε-<⎰⎰,min(,)N f f N =,又()()0N F r ε→,当0r +→时,((),)N δδεε∃=当0r δ<<时,()|()|3N F r εε<当0r δ<<时()()()()20()|()()||()||||()|333N N N N EF r F r F r F r f f dx F r εεεεεεε≤≤-+≤-+<+=⎰ 故0lim ()0r F r +→= 由连续函数的中介值定理知,存在00r >使000[|||||]()()E x x r c F r f x dx <==⎰,令10[|||||]E E x x r =<,则1E E ⊂,1E f dx c =⎰,证毕.11.设mE <+∞,12,,,m E E E 是E 的m 个可测子集,正整数k m ≤,证明:若E 中每一点至少属于k 个i E ,则有i ,使i kmE mE m≥ 证明:反证,设(1,2,,)i i m ∀= 有i kmE mE m<,则由于x E ∀∈,x 至少属于k 个i E ,故1()imE i x k χ=≥∑ (x E ∀∈),而i E E ⊂,故11()()im mi E i i E Em E E x dx k dx kmE χ==⋂=≥=∑∑⎰⎰111()m m mi i i i i kkmE m E E mE mE kmE m===≤⋂=<=∑∑∑得矛盾 所以i ∃使i kmE mE m≥.(徐森林书P242)12. 设mE <+∞,()0f x >且在E 上可测,证明:对任意0δ>,都有0d >,使只要1E E ⊂,1mE δ≥,便有1E f dx d ≥⎰证明:反证,设000,,,k k k E E mE δδ∃>∀∃⊂≥,但1kE f dx k<⎰令11[|()]1n F E x f x n n=≤<+ 1,2,n = ;[|()1]F E x f x =≥则n F ,F 都是可测集,且从()0f x >知1[|()0]n n E E x f x F F +∞==>=⋃1n n mE mF mF +∞=+∞>=+∑ (n F ,F 互不相交)所以0n ∃使00011()2n n n n n n mE mF mF mF δ+∞==+-+=<∑∑1()2n n n mE m F F δ=-⋃<,01(\)2n n n m E F F δ=⋃<0111(())((\))(())2n n n k k n k n k n n n n mE m E F F m E E F F m E F F δδ===≤=⋂⋃+⋂⋃<⋂⋃+故01(())2n k n n m E F F δ=⋂⋃≥在01n k n n E F F =⋂⋃ 上,01()1f x n ≥+ 所以111000()()1111()()(())1112n n kk n k n n n n k n n E E F F E F F f x dx f x dx dx m E F F k n n n δ===⋂⋃⋂⋃>≥≥=⋂⋃≥+++⎰⎰⎰k →+∞,得0010012n δ≥>+得矛盾,故结论不成立 0mE =时,1E E ∀⊂,1()0E f x dx =⎰,结论不会成立13.设mE <+∞,()f x 是E 上的有界非负可测函数,证明有[0,]mE 上的非负单调不增函数()g y 使对任意常数a 都有[|()][|0m Exfx am E y y m E g ya≥=≤≤≥,进而证明[0,]()()EmE f x dx g y dy =⎰⎰证明:1s R ∀∈,令()[|()|]f s mx f x s μ=>且{}*()inf 0|()f f t s s t μ=>≤,显然*()f t 是[0,)+∞上的非负单调不增函数,因为12t t ∀>,{}{}20|()0|()ff s s t s s t μμ>≤⊂>≤,从而**21()()f t f t ≥注意{}|()()f f s s ημημ⊂≤,从而*(())ff s s μ≤ (1)又由Levi 定理知()f s μ是右连续的121,,n n n n s s s s s s s s +∀→>≥≥≥≥≥ ,则{}{}1||()|||()|n n x f x s x f x s +>⊂>11[||()|][||()|]lim ()lim [||()|]lim ()lim ()n n f n n x f x s x f x s n n n n R R s m x f x s y dy y dy μχχ>>→∞→∞→∞→∞=>==⎰⎰1[||()|]()[||()|]()x f x s f R y dy m x f x s s χμ>==>=⎰,0,()n f n t s s tμ∀∃>≤,*()n s f t →,故从()f s μ右连续知*(())lim ()f f n n f t s t μμ→∞=≤ 即*(())f f t tμ≤(2)令**()[|()]f s m t f t s μ=>,则从*f 非增,知{}**()sup 0|()f s t f t s μ=>>(3)事实上*0()f t s μ∀≤<,则***,(),(),()f t t t s f t s f t s μ'''∃<<>>,则{}***[0,][0,()]0;()[0,()]f f t s t f t s s μμ⊂⊂>>⊂,故{}**0|()[0,()]f t f t s s μ>>=故{}**sup 0|()()f t f t s s μ>>=从(1)*(())f f s s μ≤知*()()f f s s μμ≥,从(3)若*()f t s μ>,则:*()f t s≤由(2)*()(())f f s f t t μμ≤≤ (注意f μ单调不增!) 由*()f t s μ>之任意性知*()()f f s s μμ≤,所以*()()f f s s μμ=即*[|()][|()][|()]mE x f x s m x f x s m t f t s >=>=>1a R∀∈ 111[|()][[|()]]lim [[|()]]n n mE x f x a m E x f x a m E x f x a n n+∞→∞=≥=>-=>-***111lim [;()][[;()]][,()]n n m t f t a m t f t a m t f t a n n +∞→∞==>-=>-=≥ 注意:t mE >时*()0f t ≡,故当0a >时*[|()][0,]t f t a mE ≥⊂*[|()][|0,()]m x f x a m t t mE f t a ≥=≤≤≥当0a ≤时,[|()]m x f x a mE ≥=*[|0,()][|0]m x t mE f t a m t t mE mE ≤≤≥=≤≤=.所以有*[|()][|0,()]m x f x a m t t mE f t a ≥=≤≤≥. 令*()()g t f t =即证明了本题的第一部分.记[0,],mE I mI mE ==则且[|()][|()]mE x f x a mI y g y a ≥=≥[|()][|()][|()][|()]m x f x a mE m x f x a mI mI y g y a mI y g y a <=-≥=-≥=<故b a ∀<,有[|()][|()][|()][|()]mE x f x a mE x f x b mE x b f x a mI y b g y a <-<=≤<=≤<14.设(),1,2,3,n f x n = 都是E 的非负可测函数,1()()n n f x f x +≥ ,(,1,2,3,x E n ∈= ),()l i m ()nn fxf x →∞= 并且有0n 使0()n Ef x dx <+∞⎰,举例说明,当()n Ef x dx ⎰恒为+∞时,上述结论不成立.证明:()lim ()n n EEf x dx f x dx →∞=⎰⎰证明:令00()()(),()n n n s x f x f x n n =-≥ ,则()n s x 非负可测,且1()()n n s x s x +≥,0lim ()()()n n n s x f x f x →∞=-,对()n s x 用Levi 定理得lim ()lim ()n n n n E Es x dx s x dx →∞→∞=⎰⎰ ,即00()lim ()(()())()()n n n n n EEEEEfx dx f x dx f x f x dx f x dx f x dx →∞-=-=-⎰⎰⎰⎰⎰,00(),lim ()()n n n EEEf x dx f x dx f x dx →∞≤<+∞=⎰⎰⎰成立.反例:令n E R ⊂可测,mE =+∞,1()n f x n=于E 上,则11()()()n n f x f x f x +≥≥≥≥于E 上,lim ()0()n n f x f x →∞==于E 上,且1()n Ef x dx mE n==+∞⎰, ()0lim ()n n EEf x dx f x dx →∞=≠=+∞⎰⎰15.设()f x 是可测集E 上的非负可测函数,如果对任意m N ∀∈,都有[()]()mEEf x dx f x dx =<+∞⎰⎰ 则()f x 几乎处处等于一可测集合的示性函数.证明:令0[|()0]E E x f x ==,1[|()1]E E x f x ==,[|()1]E E x f x ∞=>,[|0()1]E E x f x =<<,则 01E E E E E ∞=⋃⋃⋃ 由于()f x 非负可测,故[()]m f x (m N ∀∈)也非负可测,故由Fatou 引理知lim[()]lim[()]lim [()]()m m m m m m E E EEmE f x dx f x dx f x dx f x dx ∞∞→∞→∞→∞∞⋅=≤≤=<+∞⎰⎰⎰⎰故0mE ∞=,从而有11[()][()]()()m m E E EEf x dx f x dx f x dx f x dx +=+⎰⎰⎰⎰而在1E 上()1f x =,故 11()[()]()()m E E EEf x dx f x dx f x dx f x dx +=+⎰⎰⎰⎰由0f ≥,且()Ef x dx <+∞⎰知1()E f x dx <+∞⎰,故 [()]()m E Ef x dx f x dx =⎰⎰,即 (()[()])0m Ef x f x dx -=⎰,而()[()]0m f x f x ->于 E上(m ∀),由此可知 0mE=(本节第4题)(Lemma :若0g >可测于可测集E 上,()0Eg x dx =⎰,则0mE =证明:令11[|()],[|()1]1k F E x g x F E x g x k k ∞=≤<=≥+,则 1k k E F F +∞∞=⎛⎫=⋃ ⎪⎝⎭,k N∀∈1()()0,01k k k F EmF g x dx g x dx mF k ≤≤==+⎰⎰ 0()()0,0F EmF g x dx g x dx mF∞∞∞≤≤≤==⎰⎰则10k k mE mF mF +∞∞==+=∑)由此可知,111()0.cE f x a e E ⎧=⎨⎩,于上 ,于上 所以对几乎处处x E ∈有1111()()0E x E f x x x E χ∈⎧==⎨∉⎩, ,16.证明:如果()f x 是E 上的可测函数,则对于任意常数0a >都有 1[||()|]|()|EmE x f x a f x dx a ≥≤⎰ [|()]exp ()a EmE x f x a e f x dx -≥≤⎰ 证明: [||()|]|()||()|[||()|]EE x f x a f x dx f x dx amE x f x a ≥≥≥≥⎰⎰则 1[||()|]|()|EmE x f x a f x dx a ≥≤⎰ 又若x E ∈,则()()f x a f x a e e ≥⇔≥,故[|()][|exp ()]a E x f x a E x f x e ≥=≥,从而由前一部分结果知[|()][|exp ()][||exp ()|]a a mE x f x a mE x f x e mE x f x e ≥=≥=≥ |exp ()|exp ()a a EEe f x dx e f x dx --≤=⎰⎰17.证明;如果()f x 是1R 上的非负可测函数,则对任意实数,,,,,0a b c t a b c <>,都有[,][,]1()()a b ca t cb t f cx t dx f x dx c +++=⎰⎰证明:1)若()()E f x x χ=,(E 为1R 上任一可测集),则结论成立,这里1()0E x Ex x E χ∈⎧=⎨∉⎩, , 此时[,][,]111()([,])ca t cb t ca t cb t f x dx dx m E ca t cb t c c c++++==⋂++⎰⎰ 而[,][,][,][|]()()([,][|])E a b a b a b x cx t E f cx t dx cx t dx dx m a b x cx t E χ⋂+∈+=+==⋂+∈⎰⎰⎰([,][])E tm a b c-=⋂[][]1,,c E t E t m a b m c a b c c c c ⎡⎤⎡⎤⎛-⎫⎛-⎫⎛⎫⎛⎫==⎢⎥⎢⎥ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦⎣⎦[][][][]11,,m ca cb E t m ca cb E t t c c ⎡⎤⎡⎤=-=-+⎣⎦⎣⎦ []()[],11,ca t cb t m ca t cb t E f x dx c c ++⎡⎤=++=⎣⎦⎰ 2)由内积的线性性质,当()f x 为简单函数时,结论也成立。
《实变函数论》纯答案
1. 证明:()B A A B -=U 的充要条件是A B ⊂.证明:若()B A A B -=U ,则()A B A A B ⊂-⊂U ,故A B ⊂成立.反之,若A B ⊂,则()()B A A B A B B -⊂-⊂U U ,又x B ∀∈,若x A ∈,则()x B A A ∈-U ,若x A ∉,则()x B A B A A ∈-⊂-U .总有()x B A A ∈-U .故 ()B B A A ⊂-U ,从而有()B A A B -=U 。
证毕2. 证明cA B A B -=I .证明:x A B ∀∈-,从而,x A x B ∈∉,故,c x A x B ∈∈,从而x A B ∀∈-, 所以c A B A B -⊂I .另一方面,cx A B ∀∈I ,必有,cx A x B ∈∈,故,x A x B ∈∉,从而x A B ∈-, 所以 cA B A B ⊂-I .综合上两个包含式得c A B A B -=I . 证毕3. 证明定理4中的(3)(4),定理6(De Morgan 公式)中的第二式和定理9. 证明:定理4中的(3):若A B λλ⊂(λ∈∧),则A B λλλλ∈∧∈∧⊂I I .证:若x A λλ∈∧∈I ,则对任意的λ∈∧,有x A λ∈,所以A B λλ⊂(∀λ∈∧)成立知x A B λλ∈⊂,故x B λλ∈∧∈I ,这说明A B λλλλ∈∧∈∧⊂I I .定理4中的(4):()()()A B A B λλλλλλλ∈∧∈∧∈∧=U U U U U .证:若()x A B λλλ∈∧∈U U ,则有'λ∈∧,使 ''()()()x A B A B λλλλλλ∈∧∈∧∈⊂U U U U .反过来,若()()x A B λλλλ∈∧∈∧∈U U U 则x A λλ∈∧∈U 或者x B λλ∈∧∈U .不妨设x A λλ∈∧∈U ,则有'λ∈∧使'''()x A A B A B λλλλλλ∈∧∈⊂⊂U U U .故()()()A B A B λλλλλλλ∈∧∈∧∈∧⊂U U U U U .综上所述有()()()A B A B λλλλλλλ∈∧∈∧∈∧=U U U U U .定理6中第二式()c c A A λλλλ∈∧∈∧=I U .证:()cx A λλ∈∧∀∈I ,则x A λλ∈∧∉I ,故存在'λ∈∧ ,'x A λ∉所以'c cx A A λλλ∈∧∉⊂U从而有()c c A A λλλλ∈∧∈∧⊂I U .反过来,若c x A λλ∈∧∈U ,则'λ∃∈∧使'cx A λ∉,故'x A λ∉,x A λλ∈∧∴∉I ,从而()c x A λλ∈∧∈I()c c A A λλλλ∈∧∈∧∴⊃I U . 证毕定理9:若集合序列12,,,,n A A A K K 单调上升,即1n n A A +⊂(相应地1n n A A +⊃)对一切n 都成立,则 1lim n n n A ∞→∞==U (相应地)1lim n n n A ∞→∞==I .证明:若1n n A A +⊂对n N ∀∈成立,则i m i mA A ∞==I .故从定理8知11lim inf n i m n m i mm A A A ∞∞∞→∞=====U I U另一方面,m n ∀,令m i i mS A ∞==U ,从1m m A A +⊂对m N ∀∈成立知11111()()m i m i m i i m i mi m i m i m S A A A A A A S ∞∞∞∞++==+=+=+==⊂==U U U U U U .故定理8表明1111lim sup lim inf n i m m n n n m i mm m A A S S A A ∞∞∞∞→∞→∞=========I U I U故1lim lim sup lim inf n n n m n n n m A A A A ∞→∞→∞→∞====U .4. 证明()()A B B A B B -=-U U 的充要条件是B =∅.证:充分性 若B =∅,则()()A B B A A A A A -=-∅∅=-∅==∅=∅-∅U U U U 必要性 若()()A B B A B B -=-U U ,而B ≠∅则存在x B ∈.所以()()x A B B A B B ∈-=-U U 即所以,x A B x B ∈∉U 这与x B ∈矛盾, 所以x B ∈.4. 设{}{}{}{}1,2,3,4,1,2,3,4S A ==,求()F A .又如果1;1,2,3,,S n n ⎧⎫==⎨⎬⎩⎭L01;A n ⎧⎫=⎨⎬⎩⎭为奇数,{}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎨⎬⎬-⎩⎭⎩⎭⎩⎭L L ,问()()01,F A F A 是什么.解:若{}{}{}{}1,2,3,4,1,2,3,4S A ==,则(){}{}{}{},1,2,3,4,1,2,3,4F A =∅.若011111;1,2,3,,;1,,,,3521S n A n n i ⎧⎫⎧⎫⎧⎫====⎨⎬⎨⎬⎨⎬-⎩⎭⎩⎭⎩⎭L LL 为奇数, 则从1111111,,,,,,,3521242ci i ⎧⎫⎧⎫=⎨⎬⎨⎬-⎩⎭⎩⎭L L L L ,易知()111111,,1,,,,,,,,3521242F A S i i ⎧⎫⎧⎫⎧⎫=∅⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭LL L L . {}1111,,,,321A i ⎧⎫⎧⎫⎧⎫=⎨⎨⎬⎨⎬⎬-⎩⎭⎩⎭⎩⎭LL . 令11;1,2,,;1,2,212B i C i i i ⎧⎫⎧⎫====⎨⎬⎨⎬-⎩⎭⎩⎭L L .{}{}{}°1,F A S A K A B K C K A=∅==∅U U @为的子集,或. 证明: 因为{}111,,,,,321A B i ⎧⎫⎧⎫∈⎨⎬⎨⎬-⎩⎭⎩⎭L L 的任何子集()1F A . 所以有()1B F A ∈,而c B C =,故()1C F A ∈,又()1F A ∅∈. 任取B 的一子集A ,()1A A F A ∅=∈U ,且()1A C F A ∈U .显°S A ∈,故只用证°A 的确是一个 -域.(1) °,ccS S A∅==∅∈,且B ∀的子集A ,若K =∅,则 °,c K A A A C ∅==U U(B A -是B 的子集,故()°°()ccA A C F A ∅=∈U U )又B ∀的子集A ,()ccccA C A C AB ==U I I .显然是B 的子集,所以()()°ccA C AB A =∅∈U I U .又若n A 为B 的子集()1,2,3,,n n K C ==L 或∅.则()°°111n n n n n n n A K A K A K∞∞∞===⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭U U U U U U . 这里°1n n A A B ∞==⊂U 是B 的子集.°1nn K K C ∞===U 或∅. 所以()°1n n n A K A ∞=∈U U .若n A 中除B 的子集外,还有S ,则()°1n n n A K S A ∞==∈U U .若n A 中有∅,不影响1n n A B ∞=⊂U .故°A 是σ-域,且()°1F A A =. 证毕.6.对于S 的子集A ,定义A 的示性函数为()10A x Ax x A ϕ∈⎧=⎨∉⎩证明:(1)()()liminf liminf n n A A x x ϕϕ= (2)()()limsup lim sup n n A A x x ϕϕ= 证明:x S ∀∈,若()liminf n A x x ϕ∈则()liminf 1n A x ϕ=。
(完整版)实变函数论课后答案第一章3
实变函数论课后答案第一章3(p20-21)第一章第三节1. 证明[]0,1上的全体无理数构成一不可数无穷集合.证明:记[]0,1上的全体有理数的集合为°()12,,,,nQ r r r =L L . []0,1全体无理数的集合为°R,则[]°°0,1Q R =U . 由于°Q 是一可数集合,°R 显然是无穷集合(否则[]0,1为可数集,°°Q R U 是可数集,得矛盾).故从P21定理7得 []°°°0,1QR R =U :. 所以°R=ℵ,°R 为不可数无穷集合. 2. 证明全体代数数(即整系数多项式的零点)构成一可数集合,进而证明必存在超越数(即非代数数). 证明:记全体整系数多项式的全体的集合为z P ,全体有理多项式的集合为Q P .则上节习题3,已知Q P 是可数集,而z Q P P ⊂,故z P 至多是可数集,()z Q P P ≤,而z P 显然为无穷集合,故z P 必为可数集.,0z z m m P P ∞==U .任取一,0,z f P m ∈∃≥有,z m f P ∈.f 的不同零点至多有m 个,故全体,z m f P ∈的零点的并至多为无数.((){},;0z mf P z f z ∈=U至多为可数集,所以全体代数数之集(){},0;0z mm f P z f z ∞=∈=UU也是至多可数集.又{},1;1,2,n N nx n ∀∈+=L 是可数集,110nx x n+=⇔=. 带市数显然有无穷个,故全体代数数之集为一可数集.3. 证明如果a 是可数基数,则2ac =.证明:一方面对于正整数N 的任意子集A ,考虑A 的示性函数()()()10A A An n An n n A ϕϕϕ=∈⎧⎪=⎨=∉⎪⎩当当{}2N A N ∀∈@的子集所构成的集令()()()0.1,2A A J A x ϕϕ==L则()()0,1J A x =∈若()()J A J B =,则()(),1,2,A B n n n ϕϕ=∀=L故A B =(否则()()0000,10A B n A n B n n ϕϕ∃∈∉⇒=≠=)故2N与()0,1的一个子集对等(()20,1N≤)另一方面,()0,1x ∀∈.令±{};,x A r r x r R =≤∈ (这里±0R 为()0,1中的全体有理数组成的集合) 若(),,0,1x y x y ≠∈,则由有理数的稠密性,x y A A ≠x A 是±0R 这一与N 对等的集合的子集. 故()0,1与±0R 的全体子集组成的集合的一个子集对等(()±00,1R ≤的全体子集组成集的势,即()()0,120,1N≤≤)也就与2N的一个子集对等. 由Berrstein 定理()0,12N:所以2ac =.4. 证明如果A B c =U ,则,A B 中至少一个为c . 证明:E A B c ==U ,故不妨认为(){},;01,01E x y x y =<<<<,,A B 为E 的子集.若存在x ,01x <<使得(){},;01x A E x y y ⊃=<<.则由于x E c =(显然()0,1x E :) 故A c ≥,而,A E A E c ⊂≤=. 由Berrsrein 定理A c =.若,01,x x x E A ∀<<⊄,则从x E E A B ⊂=U 知(){},;01x B E B x y y =<<≠∅I I所以(),x x y B ∃∈,则显然(){},;01xx y x <<具有势c故易知c B E c ≤≤= 由Berrsrein 定理B c = 证毕5. 设F 是[]0,1上全体实函数所构成的集合,证明2cF =证明:[]0,1∀的子集A ,作A 的示性函数()10A x Ax x A ϕ∈⎧=⎨∉⎩则映射()A A x ϕa规定了[]0,1的所有子集的集合到[]0,1上全体实函数所构成的集合的一个对应,且若A ,B ⊂[]0,1使得()()[],0,1A B x x x ϕϕ=∀∈成立 则必有A B = 所以[]0,12与F 的一个子集对等.反过来,任取()f x F ∈,()()[]{},;0,1f A t f t t =∈,fA 是f 在2R中的图象,是2R 中的一个子集.且若,f g F ∈,使f g A A =则[]0,1t ∀∈,()(),f g t f t A A ∈= 表明[]10,1t ∃∈使()()()()11,,t f t t g t =()()1,,t t f t g t t ⇒==∀故f g =.所以F 与2R 的全体子集所组成的集合的一个子集对等,故从[]20,1R :知[]20,122R F ≤=即F 与[]0,12的一个子集对等.所以由Berstein 定理[]0,122c F ==.。
实变函数论课后答案第一章2
实变函数论课后答案第一章2(p20-21)第一章第二节1. 证明平面上坐标为有理数的点构成一可数集合。
证明:将全体有理数排成一列 12,n r r r ,则平面上的有理点)({}1,;,jj Q Q r s r Q s Q A ∞=⨯=∈∈= ,其中)({},;1,2,j i jA r r i n == 为可列集,故作为可数个j A 的并1j j Q Q A ∞=⨯= 为可数集。
(第20页定理5)。
2. 以直线上的互不相交的开区间为元素的任意集合至多只有可数多个元素. 证明:设这里Λ为某指标集。
则我们可在任意I α∈A 这一开区间中选定一个有理数r α,与之对应,从而给出一个对应,A Q I r αα→→由于I α互不相交,当αβαβ∈Λ≠,,时,显然r r αβ≠,故上述对应是11-的. 故A 与有理数集的一个子集对等,所以A 的势最多与Q 的势相同,不会超过Q 的势, 故A 要么为有限,要么为可数集.3. 所有系数为有理数的多项式组成一可数集合. 证明:我们称系数为有理的多项式为有理多项式 任取非负整数n ,全体n 阶有理多项式的集合的势是0ℵ. 事实上,∀ n 阶有理数()()120,,,,ni n i i n i X x a x a Q a a a ==∈∑ 令与之对应,这一对应显然是11-的,即0,m mm Q Q Q Q ∀⨯⨯=ℵ的势是,这是因为由第一题:已知2Q Q Q =⨯是可数集,利用归纳法,设kkQ Q Q Q =⨯⨯是可数集,,待证1k k Q Q Q +=⨯是可数集,.将Q 中的点排成一列12,,m γγγ ,将kQ 中的点排成一列12,,m l l l , 则11k kj j QQ Q A ∞+==⨯= ,其中(){},,,1,2,3,j i j A l i j γ== 显然为可数集,故11k j j QA ∞+== 也是可数集,这表明0,n n ∀≥阶有理多项式全体是一可数集,而全体有理多项式{}0n n ∞= 全体阶有理多项式作为可数集的并也是可数集.4. 如果()f x 是(),-∞∞上的单调函数,则()f x 的不连续点最多有可数多个.证明:我们在数学分析中知道(),-∞∞上的单调函数的不连续点,只能是跳跃间断点,其任取(),-∞∞上的单调函数()f x ,设其可能的间断点为{};,A x αα=∈ΛΛ 为某指标集,在x A α∀∈,令()()lim ,lim ,x xx xf x y f x y αααα+-+-→→==则,y y αα+-=故A α∀∈,有一1R 上的开区间(),y y αα-+与之对应.不妨设x x αβ>,设0δ∃>使x x αβδδ->+,()(),,,x x x y x x ααββδδ∀∈-∀∈+, 有()()f x f y ≥,故()()lim lim x xx xf x y y f x αααα-+-+→→=≥=,所以()(),,y y y y αααβ-+-+=∅ ..故()f x 的间断点的集合A 与1R 上的一族互不相交的开区间11-对应,而后者的势为0ℵ,故()f x 的间断点至多为可数多个.5.设A 是一无穷集合,证明必有A A *⊂,使~A A *,且A A *-可数.证明:若A 为可数集,则不妨设{};1,2,i A a i n == ,令{}2;1,2,i A a i n *==,则 ~A A *,且{}21,1,2,,i A A a i n *+-== .显然仍为可数集,故此时结论成立.若A 为无穷集,且不是可数集,则由P19定理1,A 中包含一个可数子集B ,令A A B *=-,则由于A 是无穷集,且不是可数集,A B -是无穷集. 由P21定理7和B 为可数集知:.A A B A **= 证毕6. 若A 为一可数集合,则A 的所有有限子集构成的集合也是可数集.证明:由第一,第三题的证明已知,mmm N Q Q Q Q ∀∈⨯⨯⨯=(Q 为有理数集).由于A是可数集,故m 个由全体A 中的一个元素组成的集合{}{}1;A a a A N =∈ ,1A 是可数集.由全体A 中的两个元素组成的集合{}{}221212,;,A a a a aA N =∈ ,2A 是可数集若{}{}12,,,;,1,2,m miA a a a a A i n =∈= ,记A 中的m 个元素组成的子集全体,则mmm A N N N N ⨯⨯⨯=故是可数集.显然A 的所有有限子集构成的集合可表示为1m m A ∞= ,m A 为可数集,故1m m A ∞= 作为可数个可数集的并也是可数集.注意:A 的全体子集构成的集合不是可数集.7. 若A 是有非蜕化的(即左,右端点不相等的)开区间组成的不可数无穷集合,则有0δ>,使A 中无穷多个区间的长度大于δ.证明:设Λ为一指标集,{};,A I I ααα=∈Λ为非蜕化的开区间, 记I α的长度为I α.若本题的结论不成立,则n N ∀∈,只有有限个12,,n m I I I ∈Λ ,使1,I nα>{}12,,n n m A I I I = 记,由于A 中的区间都是非蜕化的,,0I A I αα∀∈>, {}1;0n n A A I I αα∞===>由于n A 是有限集,故作为可数个可数集的并,A 也是可数集,这与A 是不可数无穷集矛盾. 故0,δ∃>,使A 中有无穷多个区间的长度大于0δ>. 事实上,A 中有不可数无穷多个区间的长度大于δ.8. 如果空间中的长方形(){}121212,,;,,I x y z ax a b y b c z c =<<<<<<,中的121212,,,,,a a b b c c ()121212,,a a b b c c <<<都是有理数,则称I 为有理长方形,证明全体有理长方形构成一可数集合.证明:由前面题3,6中已知mmQ Q Q Q =⨯⨯⨯是可数集(Q 为有理数组成的集合)设{};A I I =为有理长方形,任取(){}121212,,;,,I x y z ax a b y b c z c A =<<<<<<∈,记之为()1212126,,,,,121212,,,,,,a a b b c c I a a b b c c Q ∈. 与之对应,由于两有理长方形121212121212,,,,,,,,,,,a ab bc c a a b b c c I I 相等112211221122,,,,,a a a a b b b b c c c c ⇔======,故上述对应是单射, 故A 与6Q 这一可数集的一个子集 Q11-对应.反过来,01111,,r I r Q ∈与Q 显然11-对应,故6Q 与01111,,r I r Q ⎧⎫∈⎨⎬⎩⎭11-对应所以6Q 与A 的一个子集对等. 由Berrstein 定理 6A Q 对等 所以A 是可数集.。
实变函数参考答案(习题一)
旧版书习题一2.证明:(i )右边=⊂--))(())((D B C D B A 左边 (ii )右边=⊃--))(())((D B C D B A 左边3.解:等式右边=)()()(C C C A B A C B A --=- ,我们猜想C C A C =-,即A C ⊂为等式成立的充要条件。
由上充分性是显然的,再注意到由原等式,我们有A CB AC B A C ⊂--=-⊂)()( ,故而必要性也成立。
4.证明:(i )因为1inf lim ,..,inf lim 100inflim =⇔∈≥∀∈∃⇔∈⇔=n nnA nn n nA A x n n t s N n A x χχ,所以等式成立。
(ii )因为1sup lim ..,,sup lim 1sup lim =⇔∈≥∃∈∀⇔∈⇔=nknnA nn k n nA A x t s k n N k A x χχ,所以等式成立。
5.证明:先证明}{n B 互不相交。
事实上,Φ=-⊂>∀⊂≥∀n m n m m n n B B A A B n m A B n 故而,,,,1。
再证明集合等式。
等式左边。
等式右边时,时显然成立,当==-=-=≥===-===-=nj j ni i j j ij j ni i j j i A A A A A n n 11111111)()(216.证明:(i )左边⊃右边是显然的,下证另一边也成立。
右边。
故于是左边,则∈-≤∃>-∈∀x a x f nt s n a x f x ,)(1..,,0)((ii )以E 为全集,左边=ca x f E x a x f E x a x f x E })(|{})(|{})(|{->-∈=-≤-∈=≥∞=∞=+-<-=+-≥-=11)(}1)(|{)}1)(|{(n cn i na x f x E na x f x E右边=->=∞= 1}1)(|{n na x f x E7.证明:将需证的等式记为M=F=P 。
实变函数试题库参考答案
《实变函数》试题库及参考答案(完整版)选择题1,下列对象不能构成集合的是:( )A 、全体自然数 B、0,1 之间的实数全体 C 、[0, 1]上的实函数全体 D、全体大个子2、下列对象不能构成集合的是:( )A 、{全体实数} B、{全体整数} C 、{全体小个子} D 、{x :x>1}3、下列对象不能构成集合的是:( )A 、{全体实数}B 、{全体整数} C、{x:x >1}D 、{全体胖子}4、下列对象不能构成集合的是:( )A 、{全体实数} B、{全体整数} C 、{x :x>1} D 、{全体瘦子}5、下列对象不能构成集合的是:( )A 、{全体小孩子}B 、{全体整数}C 、{x:x 〉1} D、{全体实数}6、下列对象不能构成集合的是:( )A、{全体实数} B 、{全体大人} C 、{x:x 〉1} D 、{全体整数}7、设}1:{ααα≤<-=x x A , I 为全体实数, 则ααA I∈⋃= ( ) A 、(-1, 1) B 、(-1, 0) C、(—∞, +∞)D、(1, +∞)8、设}1111:{ix i x A i -≤≤+-=, N i ∈, 则i i A ∞=⋃1= ( ) A 、(-1, 1) B、(-1, 0) C 、[0, 1] D、[—1, 1]9、设}110:{ix x A i +≤≤=, N i ∈, 则i i A ∞=⋂1= ( ) A、(0, 1) B 、[0, 1] C 、[0, 1]D 、(0, +∞)10、设}1211:{ix i x A i +<<-=, N i ∈, 则i i A ∞=⋃1= ( ) A、[1, 2] B 、(1, 2) C、 (0, 3)D 、(1, 2)11、设}23:{+≤≤=i x i x A i , N i ∈, 则i i A ∞=⋂1= ( ) A 、(—1, 1) B 、[0, 1] C 、ΦD 、{0}12、设}11:{ix i x A i <<-=, N i ∈, 则i i A ∞=⋂1= ( ) A 、(-1, 1) B 、[0, 1] C、Φ D 、{0}13、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈,则=∞→n n A lim ( )A、[0, 2] B 、[0, 2] C 、[0, 1] D 、[0, 1]14、设]1212,0[12--=-n A n , ]211,0[2nA n +=, N n ∈, 则=∞→n n A lim ( ) A 、[0, 2]B 、[0, 2]C 、[0, 1]D 、[0, 1]15、设),0(n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、[0, n]C 、RD、(0, ∞)16、设)1,0(n A n =, N n ∈, 则=∞→n n A lim ( )A、(0, 1) B 、(0, n 1) C 、{0}D 、Φ17、设)1,0(12n A n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim ( )A 、ΦB 、(0, n 1) C 、(0, n )D 、(0, ∞)18、设)1,0(12n A n =-, ),0(2n A n =, N n ∈, 则=∞→n n A lim () A 、Φ B 、(0, n 1) C 、(0, n)D 、(0, ∞)19、设A 、B 、C 是三个集合, 则A-(A -B)= ( )A、B B、A C 、A ⋂BD、A ⋃B 20、设A 、B 、C 是三个集合, 则A-(B⋃C )= ()A 、(A —B)⋂(A-C ) B、(A-B)⋃(A -C )C 、A⋂BD、A ⋂C21、设A 、B 、C 是三个集合, 则A—(B ⋂C)= ( )A 、(A -B)⋂(A-C )B 、(A —B )⋃(A-C ) C 、A ⋂BD 、A⋂C22、设A 、B 、S 是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s -= ( ) A、B C A C s s ⋃ B 、B C A C s s ⋂ C 、B A C s ⋃ D 、B A C s ⋂23、设A 、B 、S是三个集合, 且S A ⊂, S B ⊂, 则)(B A C s ⋃= ( )A 、BC A C s s ⋃ B、B C A C s s ⋂ C 、B A C s ⋃D 、B C A s ⋃24、设A 、B 、C 是三个集合, 则A-(B -C) = ( )A 、 A ⋃C -BB 、 A-B -C C、 (A —B)⋃(A ⋂C)D 、 C -(B -A)25、集合E 的全体内点所成的集合称为E的 ( )A 、开核 B、边界 C 、导集 D、闭包26、集合E的全体聚点所成的集合称为E 的 ( )A 、开核 B、边界 C、导集 D 、闭包27、集合E的全体边界点和内点所成的集合是E 的 ( )A 、开核B 、边界C 、导集D 、闭包28、E —E ’所成的集合是 ( )A 、开核B 、边界C 、外点 D、{E 的全体孤立点}29、E 的全体边界点所成的集合称为E 的 ( )A 、开核 B、边界 C 、导集 D 、闭包30、设点P是集合E的边界点, 则 ( )A 、P 是E 的聚点B 、P 是E的孤立点 C、P是E的内点 D 、P 是CE 的边界点31、设)3,2()1,0(⋃=G , 则下列那一个是G的构成区间: ( )A 、(0, 1) B、(21, 1) C、[0, 1] D 、(0, 2) 32、设)1,0(1=G , )2,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A、(0, 1) B 、(0, 2) C、(—1, 21) D 、(—1, 2) 33、设)4,0(1=G , )4,3()1,0(2⋃=G 21G G G ⋃=, 则下列那一个是G的构成区间: ( )A 、(0, 1) B、(3, 4) C 、(0, 4) D 、 (1, 4)34、设)1,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A、(0, 1) B 、(0, 3) C 、(0, 4) D 、(1, 4)35、设)2,0(1=G , )4,3()2,1(2⋃=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(0, 1)B 、(0, 2)C 、(1, 2)D 、(1, 4)36、设)2,1()1,0(1⋃=G , )23,21()0,1(2⋃-=G 21G G G ⋃=, 则下列那一个是G 的构成区间: ( )A 、(21, 23) B 、(1, 2) C 、(0, 1) D 、(—1, 0) 37、若B A ⊂ ,则下列命题错误的是: ( )A 、B A ⊂ B、A'⊂B'C 、B A ∂⊂∂D 、B A ⊂38、若C B A =⋃, 则下列命题正确的是:( )A 、 CB A =⋃ B、 A'⋃B ’=C'C 、C B A ∂=∂⋃∂D 、{A 的孤立点}⋃{B 的孤立点}={C的孤立点}39、若C B A =⋂, 则下列命题错误的是:( )A 、 CB A =⋂ B、C '⊂ A’⋂B ’ C 、C B A =⋂D 、{A 的孤立点}⋂{B 的孤立点}={C的孤立点}40、设CA 是A的余集,则下列命题正确的是:( )A 、 )()(CA A C = B、)(CA A ∂=∂ C 、C(A ’)=(C A)' D 、CA A C =)( 41、设A-B=C , 则下列命题正确的是:( )A 、CB A ∂=∂-∂ B、C B A =- C、A’-B '=C'D 、{A的孤立点}-{B 的孤立点}={C 的孤立点}42、 (2-4—1-2) 下列命题错误的是:( )A 、A 是闭集B 、A'是闭集C 、A ∂是闭集D 、 A 是闭集 43、若A 是闭集,B 是开集,则A -B 是:( )A 、开集 B、闭集 C 、既非开集又非闭集 D、无法判断44、若A 是开集,B是闭集,则A-B是:( )A 、开集B 、闭集 C、既非开集又非闭集 D、无法判断45、若}{n A 是一开集列,则n n A ∞=⋃1是:( )A 、开集B 、闭集C 、既非开集又非闭集D 、无法判断46、若}{n A 是一开集列,则n n A ∞=⋂1是:( ) A 、开集 B、闭集 C 、既非开集又非闭集 D、无法判断47、若}{n A 是一闭集列,则n n A ∞=⋃1是:( ) A、开集 B 、闭集 C、既非开集又非闭集 D、无法判断48、若}{n A 是一闭集列,则n n A ∞=⋂1是:( ) A 、开集 B 、闭集 C、既非开集又非闭集 D 、无法判断49、若]1,0[ Q E =,则=mE ( )A、0 B 、1 C 、2 D 、350、下述结论( )正确.A 、E m E m **>B 、E m E m *≥* C、E m E m **< D、E m E m **≤ 51、下列说法正确的是( ) A、xx f 1)(=在(0,1)有限 B 、xx f 1)(=在)1,21(无界 C 、⎪⎩⎪⎨⎧=∞+∈=0,]1,0(,1)(x x x x f ,在[0,1]有限 D 、⎪⎩⎪⎨⎧=∈=0,1]1,0(,1)(x x x x f ,在[0,1]有界 52、函数列n n x x f =)(在[0,1]上( )于0.A 、a ,e 一致收敛B 、收敛C 、一致收敛D 、基本上一致收敛53、设E 是[0,1]中的不可测集,⎩⎨⎧-∈-∈=Ex E x x f ]1,0[,1,1)( 则下列函数在[0,1]上可测的是( ).A 、)(x fB 、)(x f + C、|)(|x f D 、)(x f -54、若)(x f 可测,则它必是( ).A 、连续函数B 、单调函数C 、简单函数D 、简单函数列的极限55、若Q E -=]1,0[,则=mE ( )A 、0 B、1 C 、2 D 、356、下列说法不正确的是( )A 、E的测度有限,则E 必有界B 、E的测度无限,则E 必无界C 、有界点集的测度有限D 、n R 的测度无限57、(4-4-2-1)下述论断正确的是( )A 、x x f tg )(=在)4,0(π无界 B 、⎪⎩⎪⎨⎧=∞+∈=2,)2,0[,tg )(ππx x x x f 在]2,0[π有限 C 、⎪⎩⎪⎨⎧=∈=2,1)2,0[,tg )(ππx x x x f 在]2,0[π有界 D 、x x f tg )(=在)2,0(π有限58、函数列n n x x f )21()(=在[0, 2]上( )于0. A 、收敛 B 、一致收敛 C 、基本上一致收敛 D 、a 。
实变函数论课后答案
λ∈∧
λ∈∧
λ∈∧
定理 4 中的(4): ∪ ( Aλ ∪ Bλ ) = ( ∪ Aλ ) ∪ ( ∪ Bλ ) .
λ∈∧
λ∈∧
λ∈∧
证 : 若 x ∈ ∪ ( Aλ ∪ Bλ ) , 则 有 λ ' ∈ ∧ , 使 λ∈∧
x
∈
(
A λ
'
∪
Bλ'
)
⊂
(∪
λ∈∧
Aλ ) ∪ ( ∪ λ∈∧
Bλ ) .
∞
∞
An ⊃ An+1 )对一切 n 都成立,则
lim
n→∞
=
∪
n=1
An
(相应地)
lim
n→∞
=
∩
n=1
An
.
∞
证明:若 An ⊂ An+1 对 ∀n ∈ N 成立,则 ∩ Ai = Am .故从定理 8 知 i=m
∞∞
∞
lim inf
n→∞
An
=
∪∩
m=1 i=m
Ai
=
∪
m=1
Am
∞
另一方面 ∀m, n ,令 Sm = ∪ Ai ,从 Am ⊂ Am+1 对 ∀m ∈ N 成立知 i=m
.
{ } F {A1} = {∅, S} ∪ A ∪ K A为B的子集,K = C或K = ∅ ≜ �A .
证明:
因为
{1}
,
⎧ ⎨ ⎩
1 3
⎫ ⎬ ⎭
,⋯,
⎧ ⎨ ⎩
1 2i −
1
⎫ ⎬ ⎭
,⋯
∈
A,
B
的任何子集
F
(
《实变函数》作业参考答案
《实变函数》作业参考答案一.判断题1.对; 2.错; 3.对;4.对; 5.错; 6.对; 7.错; 8.对; 9.对; 10.对; 11.对; 12.错。
13、错 14、对 15、错16、错 17、对 18、对 二.1.证明:).()(B A B A II-=-∈∈αααα证明:直接的用定义,证明左边包含右边,右边包含左边。
2.试找出使)1,0(和]1,0[之间一一对应的一种方法。
证明:令)1,0(,...},,{321⊂x x x ,做)(x f ,使得⎪⎩⎪⎨⎧>====+2,01)(212n x x x x x x x x f n n ,其它处,.)(x x f =3令,...},{21r r 表示(0,1)上的全体有理数,则,...},,1,0{21r r 是[0,1]上的全体有理数,且有,...},,1,0{\]1,0[,...},{\)1,0(2121r r r r =如下定义一个函数)(x f⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧====∈=-............10,...},{\)1,0()(3212121n n r x r x r x r x r r r r x x x f ,则这是满足条件的一一对应。
4)).(()()(1111B A BA BA B A i i ci i ci i i i -=⋂=⋂=-∞=∞=∞=∞=三.证明题1. 设)(x f n 是E 上几乎处处有限的可测函数列,∞<mE ,而)(x f n 几乎处处收敛于有限函数)(x f ,则对任意的0>ε,存在常数c 与可测集E E ⊂0,ε<)\(0E E m ,使在0E 上,对一切n ,有c x f <|)(|。
证明:直接利用鲁津定理。
2. 证明:证明})(|{a x f x CG >=是开集,事实上,对任意CG x ∈,则a x f >)(,由连续函数的局部保号性,存在0>δ,使得对一切的),(δx B t ∈,有a t f >)(,即CG x B ⊂),(δ,所以x 是内点,从而})(|{a x f x CG >=是开集。
实变函数论课后答案第二章(精品)
实变函数论课后答案第二章1第二章第一节1.证明'0p E ∈的充要条件是对于任意含有0p 的邻域()0,N p δ(不一定以0p 为中心)中,恒有异于0p 的点1p 属于E (事实上这样的1p 其实还是有无穷多个)而0p 为E 的内点的充要条件则上有含有0p 的邻域()0,N p δ(同样,不一定以0p 为中心)存在,使()0,N p E δ⊂. 证明:先设'0p E ∈,则()00,,N p E δδ∀> 中有无穷多个点。
现在设()00,p N p δ∈,这表明()00,p p ηρδ≤=<,故()0,y N p δη∀∈-,有()()()00,,,y p y p p p ρρρδηηδ≤+<-+= 故()()0,,N p N p δηδ-⊂故()0,N p E δη- 有无穷个点,自然有异于0p 的点()10,p N p E δη∈-(),N p δ⊂.这就证明了必要性,事实上,(){}00,N p E p δη-- 是无穷集,故(),N p δ中有无穷多个异于0p 的E 中的点.反过来,若任意含有0p 的邻域(),N p δ中,恒有异于0p 的点1p 属于E ,则0δ∀>,(),N p δ中,有异于0p 的点1p 属于E ,记()101,p p ρδ=,则显然1δδ<由条件()01,N p δ中有异于0p 的点2p E ∈,()2021,p p ρδδ=<由归纳法易知,有{}11,1,2,,n n n n δδδδ+∀=<<< 和()01,n n p E N p δ-∈ ,0,1,2,n p p n ≠=这表明()0,N p δ中有无穷个E 中的点.由0δ>的任意性知,'0x E ∈若0p 为E 的内点,则0,δ∃>使()0,N p E δ⊂,故必要性是显然的. 若存在邻域(),N p E δ⊂,使()0,p N p δ∈,则从前面的证明知()()()00,,,N p p p N p E δρδ-⊂⊂,故0p 为E 的内点.2.设1n R R =是全体实数,1E 是[]0,1上的全部有理点,求'11,E E .解:[]0,1x ∀∈,由有理数的稠密性知,()()0,,,N x x x εεεε∀>=-+中有无穷个1E 中的点,故'1x E ∈,故[]'10,1E ⊂.而另一方面,[]0,1x ∀∉,必有0δ>,使()[]0,0,1N x δ=∅ ,故'01x E ∉ 故[]'10,1E ⊂,所以[][]'10,10,1E ⊂⊂. 表明[]'10,1E =而[][]'11110,10,1E E E E === 故[]'110,1E E ==.1. 设2n R R =是普通的xy 平面(){}222,;1E x y xy =+<,求'22,E E .解:(){}'222,;1E x y xy =+≤事实上,若()'0002,p x y E =∈,则由于()22,f x y x y =+是2R 上的连续函数,必存在0δ>,使()()0,,x y N p δ∀∈有()22,1f x y x y =+>.故()02,N p E δ=∅ ,故0p 不是'2E 中的点矛盾. 故22001x y +≤时(){}220,;1p x y xy ∈+≤反过来,若()(){}22000,,;1p x y x y x y =∈+≤则0δ∀>,作[]0,1上的函数()()()()22000000,f t tp p tx x ty y ρ==-+-()22222000011t x y t x y =-+=-+则()f t 是[]0,1上的连续函数,()220001f x y =+≤,()10f =,01δ∀<<,[]0,1t δ∃∈使()f t δδ=现在任取()0,0min 1,ηδη>∃<<,使()()00,,N p N p δη⊂. 由上面的结论,存在01t δ<<,使()1f t δδ=<.故0t p δ满足(1)00t p p δ≠;(2)0001t p t p t p t δδδδ==≤<.故02t p E δ∈ (3)()00,t p p δρδη=<,故()0,t p N p δη∈所以(){}020,t p N p E p δη∈- 由习题1的结论知'02p E ∈,所以(){}'222,;1E x y xy =+≤.而(){}''222222,;1E E E E x y xy ===+≤ .2. 设2nR R =是普通的xy 平面,3E 是函数1sin00x y xx ⎧≠⎪=⎨⎪=⎩的图形上的点所作成的集合,求'3E . 解:设函数的图形是()(){}{}'131,;,,sin ;0x f x x R Ex x R x ⎧⎫⎛⎫∈=∈-⎨⎬ ⎪⎝⎭⎩⎭(){}0,0 . 下证(){}'330,;11E E δδ=-≤≤()'0003,p x y E =∈⇔存在()(){}300,,n n n p x y E x y =∈-, ()000,,n n n n n p x y p x x y y =→⇔→→,()0,0n p p ρ→设()'0003,p x y E =∈,则存在()(){}30,,n n x y E x y ∈-使00,nn xx y y →→若00x ≠,则0n x ≠(当n 充分大) 则0011sinsin n n y y x x =→= 所以()003,x y E ∈若00x ≠,则0n x →,01sinn ny y x =→,011y -≤≤ 所以()(){}00,0,;11x y δδ∈-≤≤ 故(){}'330,;11E E δδ⊂-≤≤反过来:()(){}0003,0,;11p x y E δδ∀=∈-≤≤ , 若00x ≠,001siny x =, 故存在0n x x ≠,使0n x ≠,0n x x →从而011sinsin n x x → 即存在()001,sin,n n x x y x ⎛⎫→ ⎪⎝⎭故'03p E ∈.若()(){}000,0,;11p y δδ=∈-≤≤ 则从[]01,1y ∈-知存在0x 使00sin x y =, 令()010,1,2,2k x k k x π=≠=+ .则()0001sinsin 2sin kk x x y x π=+==, 所以()3011,sin,,sin 0,k kkk x E x y x x ⎛⎫⎛⎫∈→ ⎪ ⎪⎝⎭⎝⎭,()()00,0,k x y y → ()()00,0,k x y y ≠故'03p E ∈ 故结论成立.3. 证明当E 是nR 中的不可数无穷点集时,'E 不可能是有限集. 证明:记B 为E 的孤立点集,则'E B E -= 所以()'E E B B E B =-⊂ .若能证明B 是至多可数集,则若'E 是有限集或可列集知'E B E ⊃ 为至多可数集,这将与E 是n R 中的不可数无穷点集矛盾.故只用证E 的孤立点集B 是至多可数集p B ∀∈,0p δ∃>使(){},p N p E p δ=故(),np p N p R δ⊂ 是B 到nR 中的一个互不相交的开球邻域组成的集的11-对应.而任一互不相交开球邻域作成的集合{},A αα∈Λ是可数的,因为任取α∈Λ,取有理点p A α∈,则从,A A αβαβ=∅≠ 则{},A αα∈Λ与Q 11-对应故{},A αα∈Λ是至多可数集. 证毕。
《实变函数论》课后答案
Xn c, (0, 0, · · · , 0, x∗ , 0 , · · · ) ∈ / Pn (Dn ), n
∞
Dn < c, Pn (Dn ) ≤ Dn < c, ∀n, ∃x∗ n, ∗ ∗ ∗ (x1 , x2 , · · · , xn , · · ·) ∈ / Dn , (x1 , x2 , · · · , x∗ / n , · · ·) ∈ Dn0 = c, An0 = c.
(ii) Ex 5: {(x, y ) : x2 + y 2 < 1} {(x, y ) : x2 + y 2 < 1} {(x, y ) : x2 + y 2 ≤ 1} [0, 1) [0, 1]
r ∈[0,1]
f (x) = x2 , X = [−1, 1], Y = [0, 1], A = [0, 1]. {(x, y ) : x2 + y 2 ≤ 1}
n=1
An ∼ [0, 1]∞ .
An
E
ቤተ መጻሕፍቲ ባይዱ
∞
ww ¿À ' · T S Á¿À C õ d WÃX ÃÄ T WX à « Å Æ ÇÈ ' WXÉÊ UV Å« ! "#ËÌ"Í$%')({|12 t vw # 8 u#2v
n→∞
F
lim En = [a, b] \ E .
HGI T P
n→∞
lim fn (x) = χ[a,b]\E (x) =
Ex 4: f : X → Y, A ⊂ X, B ⊂ Y , (i)f −1 (Y \ B ) = f −1 (Y ) \ f −1 (B ); (ii)f (X \ A) = f (X ) \ f (A). (i)
《实变函数》习题库参考答案
《实变函数》习题库参考答案一、判断题 1、( √ )理由:由内点定义知,存在A P U ⊂),(0δ,从而对任意的)(0P U ,必含有A 中无穷多个点。
满足聚点定义 2、( √ )理由:[法一]:都具有连续基数,故对等 [法二]:可建立一个映射)2tan()(ππ-⋅--=a b a x x f ,则f(x)为),(b a 到R 的一一映射.3、( √ )理由:由B A ⊂知, A A B B )(-=,从而由有限可加性知,mA A B m mB +-=)(,又由 +∞<mB 知,+∞<-+∞<)(,A B m mA 。
从而移项可得结论。
4、( √ )理由:f(x)在区间[0,5)及[5,10]上均为连续函数,故分别在2个区间上是可测函数, 从而再其和集上也是可测函数。
5、( × )理由:例如有理数集Q ,无理数2是Q 的聚点,但不是其内点。
6、( √ )理由:[法一]:都是可数集,故有相同的基数,即对等。
[法二]:可建立一个映射⎪⎩⎪⎨⎧==+==...2,1,1,11,0,1)(n n x n x x f ,则f(x)为集合 ⎭⎬⎫⎩⎨⎧ ,1,,31,21,1,0n 到集合⎭⎬⎫⎩⎨⎧ ,1,,31,21,1n 的一一映射。
7、( √ )理由:由B A ⊂知A A B B )(-=,且φ=-A A B )(, 故mA mA A B m mB =+-=)(8、( √ )理由:狄利克莱函数⎩⎨⎧-∈∈=.]1,0[,0]1,0[,1)(Q x Qx x D 是[0,1]上的简单函数,故可测。
9、( √ )理由:由于E E ⊆Φ=',所以.}3,2,1{为闭集=E 10、( × )理由:如无界。
,但,则N mN N E +∞<==0 11、( √ )理由:由于可测。
在连续,从而在]2,1[2)(]2,1[2)(-=-=x f x f 12、( √ ) 理由:事实上:)()(***CE T m E T m T m T E +=∀⇔:可测]([)(**CE C T m CE T m +=可测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1:[单选题]1.开集减去闭集是()
A:A.开集
B:B.闭集
C:C.既不是开集也不是闭集
参考答案:A
2:[单选题]2.闭集减去开集是()
A:开集
B:闭集
C:既不是开集也不是闭集
参考答案:B
3:[单选题]
A:开集
B:闭集
C:可测集
参考答案:C
4:[单选题]6.可数集与有限集的并是()
A:有界集
B:可数集
C:闭集
参考答案:B
5:[判断题]7.可数多个零测集的并仍是零测集合。
参考答案:正确
6:[单选题]1.开集减去闭集是()。
A:A.开集 B.闭集 C.既不是开集也不是闭集
参考答案:A
7:[单选题]5.可数多个开集的并是()
A:开集
B:闭集
C:可数集
参考答案:A
8:[判断题]8.不可数集合的测度一定大于零。
参考答案:错误
9:[判断题]6.闭集一定是可测集合。
参考答案:正确
10:[判断题]10.开集一定是可测集合。
参考答案:正确
11:[判断题]4.连续函数一定是可测函数。
参考答案:错误
12:[判断题]
参考答案:正确
13:[判断题]2.有界集合的测度一定是实数。
参考答案:正确
14:[判断题]1.可数集合是零测集
参考答案:正确
15:[判断题]9.任意多个闭集的并仍是闭集。
参考答案:错误
16:[判断题]9.任意多个闭集的并仍是闭集。
参考答案:错误
1:[单选题]4.设E是平面上边长为2的正方形中所有无理点构成的集合,则E的测度是A:0
B:2
C:4
参考答案:C
2:[单选题]3.设E是平面上边长为2的正方形中所有有理点构成的集合,则E的测度是A:0
B:2
C:4
参考答案:A
3:[单选题].2.[0,1] 中的全体有理数构成的集合的测度是()
A:0
B:1
C:2
参考答案:A
4:[单选题]1.[0,1] 中的全体无理数构成的集合的测度是()
A:0
B:1
C:2
参考答案:B
5:[单选题]5.若E是R的子集,x是一个实数,如果x的任何邻域内均有E中异于x的点,则x是E的()
A:内点
B:界点
C:聚点
参考答案:C
6:[判断题]10.简单函数一定是可测函数。
参考答案:正确
7:[判断题]
参考答案:错误
8:[判断题]8.可测函数一定是有界函数。
参考答案:错误
9:[判断题]7.任何函数与其立方有相同的可测性。
参考答案:正确
10:[判断题]6.依测度收敛的函数列一定是几乎处处收敛。
参考答案:错误
11:[判断题]5.任何函数与其平方有相同的可测性。
参考答案:错误
12:[判断题]4.几乎处处收敛的函数列一定是依测度收敛。
参考答案:正确
13:[判断题]2.几乎处处相等的函数具有相同的可测性。
参考答案:正确
14:[判断题]1.任何连续函数均为可测函数
参考答案:错误
15:[判断题]3.定义在零测集上的任何函数均可测。
参考答案:正确
1:[单选题]5.设f(x)为[0,2]上如下定义的函数:当x是[0,2]的有理数时,f(x)=sinx,当x 是[0,2]的无理数时,f(x)=x,那么f(x)在[0,2]上的勒贝格积分是()
A:2
B:1-cos2
C:0
参考答案:A
2:[单选题]4.设f(x)是可积函数,g(x)是不可积函数,则f(x)+|g(x)|是()
A:可积函数
B:不可积函数
C:有界函数
参考答案:B
3:[单选题]3.有界可测集上的勒贝格可积函数一定是()
A:可测函数
B:连续函数
C:简单函数
参考答案:A
4:[单选题]2.函数列依测度收敛是函数列几乎处处收敛的()
A:必要条件
B:充分条件
C:无关条件
参考答案:C
5:[单选题]1.设f(x)是定义在[a,b]上的可测函数,则f(x)是()
A:连续函数
B:简单函数
C:一列简单函数的极限
参考答案:C
6:[判断题]10.定义在区间上的单调函数是可积函数。
参考答案:正确
7:[判断题]9.定义在有界可测集合上的连续函数是可积函数。
参考答案:正确
8:[判断题]8.定义在同一个可测集合上的两个可积函数的和函数仍是可积函数。
参考答案:正确
9:[判断题]7.定义在有界可测集合上的简单函数是可积函数。
参考答案:正确
10:[判断题]6.可测函数列的极限函数仍是可测函数。
参考答案:正确
11:[判断题]5.可积函数列的极限函数仍是可积函数。
参考答案:错误
12:[判断题]4.任何函数与其绝对值函数有相同的可积性。
参考答案:正确
13:[判断题]3.几乎处处相等的函数有相同的可积性与积分值。
参考答案:正确
14:[判断题]2.可积函数是几乎处处有限的函数。
参考答案:正确
15:[判断题]1.可积函数是有界函数。
参考答案:错误。