13绝对值和相反数
相反数与绝对值
相反数与绝对值相反数是指两个数值绝对值相等,但符号相反的数。
在数学中,相反数的概念广泛应用于代数、几何和物理等领域。
绝对值则表示一个数距离原点的距离,无论该数是正数还是负数,其绝对值总是非负的。
相反数与绝对值的概念常常被同时介绍,因为它们之间存在一定的关联。
在本文中,我们将探讨相反数和绝对值的定义、性质以及在实际生活中的应用。
一、相反数的定义和性质相反数是指两个数值的绝对值相等,但符号相反。
如果一个数为a,那么其相反数为-b,即-a与b满足以下条件:1. 绝对值相等:|a| = |b|2. 符号相反:若a > 0,则b < 0;若a < 0,则b > 0例如,数值3与-3便是相反数。
它们的绝对值都是3,但一个是正数,另一个是负数。
相反数的性质也包括以下几点:1. 两个相反数相加等于0:a + (-a) = 02. 相反数与原数相乘等于-1:a * (-a) = -1这些性质在代数运算中经常被使用,在解方程、求根和简化复杂表达式等过程中都是必不可少的。
二、绝对值的定义和性质绝对值表示一个数距离原点的距离,它忽略了该数的正负,将其转化为非负数。
对于实数a来说,其绝对值表示为|a|。
其定义如下:1. 若a >= 0,则|a| = a2. 若a < 0,则|a| = -a例如,|4| = 4,|-4| = 4。
无论正数还是负数,绝对值总是非负的。
绝对值具有以下几个重要性质:1. 非负性质:对任意实数a,|a| >= 0,绝对值为非负数。
2. 正数性质:对任意正数a,|a| = a,绝对值与原数相等。
3. 负数性质:对任意负数a,|a| = -a,绝对值为原数的相反数。
4. 三角不等式性质:对任意实数a和b,有|a + b| <= |a| + |b|,绝对值的加法满足三角不等式。
绝对值在解决不等式、求解模型和统计分析等问题中具有广泛的应用。
三、相反数与绝对值的应用相反数和绝对值在实际生活中有许多应用,下面我们来看几个例子:1. 温度计:温度计可用来测量环境温度,其刻度分为正负两个方向。
初中数学_《绝对值与相反数 》教学设计学情分析教材分析课后反思
《绝对值与相反数》教学设计内容:《义务教育课程标准实验教科书》青岛版七上第二章第三节<相反数与绝对值>一.教学目标1.知识与技能:1.理解相反数的概念,会求一个数的相反数。
2.理解绝对值的概念,会求一个数的绝对值。
3.会利用绝对值比较两个负数的大小。
2.过程与方法:(1)经历观察、操作、交流等探究过程,体会由具体到抽象、由特殊到一般的认知规律,培养学生发现问题、提出问题的能力;(2)经历探索有理数加法法则的过程,深刻感受分类讨论、数形结合的思想方法.3.情感态度与价值观:(1)在动手操作以及探索的过程中,培养学生的问题意识和严谨科学的态度,从而提高学习的积极性;(2)在探索和交流的过程中,培养学生主动参与探索获得数学知识意识;(3)在探索和交流的过程中,培养善于观察、勤于思考的学习习惯,进一步体会数学源于生活并服务于生活.二.教学重点:经历探索发现“相反数与绝对值”概念的过程,发展学生发现问题、提出问题、分析问题和解决问题的能力。
教学难点:从数轴上发现数与数的不同之处;借助教具探索相反数的概念;探索绝对值的概念和代数意义。
三.复习回顾:1、数轴的三要素;2、比较两个数的大小(目的:一是让学生结合自己已有的学习经验,尝试探索相反数,绝对值的概念。
二是通过利用数轴比较两个数的大小为引出利用绝对值比较两个负数的大小打下基础。
)四.教学过程:一、交流与发现教师引导语预设:教师适时的引导,学生合作学习,有利于培养学生的观察和概括能力;充分体现了教师为主导,学生为主体的教学思想。
1.观察数轴上的两对点A与A′,B与B′它们分别表示什么数,它们有怎样的位置关系?根据学生的观察发现,讨论数-4与4有什么相同点和不同点?2.5与-2.5呢?你还能说出几对具有为种特征的两个数吗?【设计意图】:引入互为相反数的概念.2.看谁反应快 1.分别说出下面各数的相反数2.(1)-3.2的相反数是____,____的相反数是2.6;(2)11和____ 互这相反数,0的相反数是____【设计意图】给出相反数的描述性定义后,要让练习以巩固概念. 活动一:实验与探索(1)数轴上表示有理数5, 的点到原点的距离各是多少? (2)数轴上表示有理数-5, 的点到原点的距离各是多少?(3)数轴上表示0的点到原点的距离是多少?【设计意图】是将数学问题,建立数学模型,在此,引导学生独立阅读思考.活动二:实验与探索从上面的填空,你发现一个数和它的绝对值有什么关系?【设计意图】归纳出绝对值的代数意义活动三:实验与探索9818,,0,17.2,519---1212-2___;5___;0___=-==【设计意图】互为相反数的两个数的绝对值相等.活动四:小试牛刀1 .在数轴上,距离原点3个单位长度的点表示的是什么数?2.一个数的绝对值是12,那么这个数是:3. 若|x|=15,那么x=【设计意图】是为了巩固会求一个数的绝对值活动五:实验与探索【设计意图】通过利用数轴比较两个数的大小,寻找归纳比较两个负数大小的特殊方法活动五:例题讲解【设计意图】进一步巩固本节的重点,培养应用所学知识解决问题的能力,为本章以后的学习夯实基础五、课堂小结()()()()1-3 -1 2-0.5 -211353- - 4- -422234.45比较-和-的大小问题:本节课主要学习了哪些内容?我们一起来梳理一下,我们可以从哪些方面来总结我们的收获呢?要求:以小组为单位进行交流,学生分工明确:1人组织,1人记录,2人展示,要求组内人人参与,积极发言。
绝对值与相反数的计算
绝对值与相反数的计算绝对值和相反数是数学中两个常见的概念,它们在数学运算和解题过程中经常被用到。
本文将详细介绍绝对值和相反数的含义以及计算方法,希望能够帮助读者更好地理解和应用这两个概念。
一、绝对值的概念与计算方法绝对值是表示一个实数或者复数与零的距离的非负值。
在数学表示中,绝对值通常用两个竖线符号来表示,如|a|。
对于一个实数a,它的绝对值可以根据以下两种情况来计算:1. 若a大于等于零,则|a|等于a本身。
2. 若a小于零,则|a|等于a的相反数。
例如,对于实数-3和5,它们的绝对值分别为| -3 | = 3和| 5 | = 5。
对于复数,其绝对值的计算方法稍有不同。
复数的绝对值等于它的模。
复数的模可以通过复数的实部和虚部的平方和再开平方得到。
假设有一个复数z = a + bi,其中a为实部,b为虚部,则其绝对值表示为|z| = √(a² + b²)。
二、相反数的概念与计算方法相反数是指与某个数的和为零的数。
对于一个实数a,它的相反数通常用符号-a来表示。
相反数与原数的和等于零,即a + (-a) = 0。
相反数可以通过将原数取负来计算得到。
例如,实数3的相反数为-3,而实数-5的相反数为5。
对于复数,其相反数表示为将实部和虚部都取负。
假设有一个复数z = a + bi,其中a为实部,b为虚部,则其相反数表示为-z = -a - bi。
三、绝对值与相反数的应用绝对值和相反数在数学运算和解题中有着广泛的应用。
以下是几个常见的应用场景:1. 绝对值可以用于计算到原点的距离。
例如,在平面坐标系中,某个点P的坐标为(x, y),则点P到原点(0, 0)的距离可以表示为√(x² + y²),即点P的模。
2. 绝对值可以用于计算误差值。
在实际测量或计算中,我们经常需要比较一个近似值与精确值之间的误差。
绝对值可以将误差值转化为非负值进行比较和分析。
3. 相反数可以用于解方程。
整数的绝对值和相反数
整数的绝对值和相反数在数学中,整数是由自然数以及它们的相反数和零组成的。
整数具有一些特殊的性质,其中包括绝对值和相反数。
本文将介绍整数的绝对值和相反数的概念,并探讨它们在数学中的应用。
一、整数的绝对值绝对值是一个数的非负值,表示该数与零的距离。
对于整数来说,绝对值是该整数和零之间的距离。
如果一个整数为正数,则其绝对值等于该整数本身;如果一个整数为负数,则其绝对值等于该整数取负数(即去掉负号)后的值。
例如,整数-5的绝对值为5。
绝对值在数学中有广泛的应用。
在解决绝对值不等式、距离和速度等问题时,我们常常需要使用绝对值来表示数值的大小关系。
通过绝对值,我们可以消除负号对数值大小比较所带来的影响,简化计算和推导的过程。
二、整数的相反数整数的相反数是指与该整数绝对值相等,但符号相反的整数。
例如,整数5的相反数为-5,整数-7的相反数为7。
相反数可以通过改变整数的符号来得到。
相反数在数学中也具有重要的作用。
在代数运算中,相反数的概念在数的减法、求相反数、消去法则等运算中起着关键作用。
通过使用相反数,我们可以将减法转化为加法,简化运算过程,提高计算的效率。
三、整数的应用举例1. 绝对值的应用:在计算中,我们常常需要确定数值的大小关系,而绝对值是一个重要的工具。
比如,求两个整数中的最大值或最小值、确定数轴上两点的距离等问题都可以通过绝对值来解决。
2. 相反数的应用:在有向数的加减运算中,相反数的概念扮演着重要角色。
通过加上数的相反数,我们可以实现减法运算,从而简化计算过程。
此外,在解方程、证明数学定理等问题中,相反数的运用也能起到辅助推导的作用。
四、小结整数的绝对值和相反数是数学中两个基本概念,它们在数的大小比较、运算和问题求解中发挥着重要作用。
掌握和理解整数的绝对值和相反数的概念,能够帮助我们更好地理解整数运算和解决实际问题。
通过本文的介绍,我们了解了整数的绝对值是一个数与零的距离,通过去掉负号获得;整数的相反数与该整数绝对值相等,但符号相反。
数的相反数与绝对值
数的相反数与绝对值在数学中,相反数和绝对值是基本的概念和运算符号。
相反数表示一个数与其对立的数,而绝对值则表示一个数的大小。
一、相反数相反数是指在数轴上与一个数距离相等但方向相反的数。
例如,对于任意一个实数a,它的相反数记作-a。
两个相反数之和等于0,即a+(-a)=0。
相反数可以用于解决一些同向相反的数的计算问题,或者表示负数的情况下。
例如,对于数轴上的点A和点B,它们分别表示两个实数a和b。
那么A和B之间的距离为|a-b|。
而若要计算A与B之间的相反数之和,可以写作|a-(-b)|,再简化为|a+b|。
相反数可以应用于实际问题中,比如财务收支问题。
对于存款和取款这两个操作,在数轴上可以表示为正数和负数,它们的相反数一定程度上反映了资金的流动情况。
二、绝对值绝对值是指一个数离原点的距离,不考虑方向,总是非负数。
给定一个实数a,它的绝对值记作|a|。
绝对值可以用于表示一个数的距离或者大小,而不考虑其正负。
绝对值的计算有以下几种情况:1.若a大于等于0,则|a|=a。
2.若a小于0,则|a|=-a。
通过求绝对值,我们可以忽略数的正负号,而只专注于数值的大小。
这在比较大小、解决绝对值的方程或不等式等问题时十分有用。
例如,当我们需要比较两个数a和b的大小时,可以比较|a|和|b|的值。
这样做能够避免因为正负号导致的比较复杂化。
绝对值还可以应用于模量、距离和误差等问题中。
在物理学、工程学和统计学等学科中,绝对值经常出现在各类公式和方程中,扮演着重要的角色。
三、数的相反数与绝对值的联系数的相反数和绝对值有一定的联系。
当一个实数a的绝对值大于另一个实数b的绝对值时,它们的相反数也满足相反的关系。
具体来说,如果|a|>|b|,那么-a<-b。
这是因为,如果一个数的绝对值比另一个数的绝对值大,那么它的相反数与另一个数的相反数之间的关系也是相反的。
这个联系在数轴上也可以直观地表示出来。
将两个实数的相反数画在数轴上,它们的位置与原数的位置是相反的。
【举一反三系列】相反数、绝对值(十大题型)2023-2024学年七年级数学上册(苏科版)(解析版)
相反数、绝对值【十大题型】【苏科版】【题型1 相反数与绝对值的概念辨析】 (1)【题型2 相反数的几何意义的应用】 (3)【题型3 绝对值非负性的应用】 (5)【题型4 化简多重符号】 (6)【题型5 化简绝对值】 (8)【题型6 利用相反数的性质求值】 (9)【题型7 解绝对值方程】 (11)【题型8 绝对值几何意义的应用】 (13)【题型9 有理数的大小比较】 (15)【题型10 应用绝对值解决实际问题】 (17)【知识点1 相反数与绝对值】相反数:1.概念:只有符号不同的两个数叫做互为相反数.相反数的表示方法:一般地,a和-a互为相反数,这里的a表示任意一个数可以是正数、负数也可以是零,特别地,一个数的相反数等于它本身这个数是零.2.性质:若a与b互为相反数,那么a+b=0.绝对值:1.定义:一般地,数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|.2.性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.【题型1 相反数与绝对值的概念辨析】【例1】(2023秋·福建龙岩·七年级校考阶段练习)与-4的和为0的数是()A.14B.4C.-4D.−14【答案】B【分析】与-4的和为0的数,就是-4的相反数4.【详解】解:与-4的和为0的数,就是求出-4的相反数4,故选:B.【点睛】此题考查相反数的意义,掌握互为相反数的两个数的和为0的性质是解决问题的基础.【变式1-1】(2023·江苏·七年级假期作业)将符号语言“|a|=a(a≥0)”转化为文字表达,正确的是()A.一个数的绝对值等于它本身B.负数的绝对值等于它的相反数C.非负数的绝对值等于它本身D.0的绝对值等于0【答案】C【分析】根据绝对值的含义及绝对值的性质逐项判断即可解答.【详解】解:∵一个非负数的绝对值等于它本身,一个负数的绝对值等于它的相反数,∴A项不符合题意;∵a≥0,表示的是非负数的绝对值,不是负数的绝对值,∴B不符合题意;∵一个非负数的绝对值等于它本身,∴C符合题意;∵a≥0,表述的是非负数的绝对值,不只是0的绝对值,∴选项D不符合题意;故选:C.【变式1-2】(2023·江苏·七年级假期作业)下列各对数中,互为相反数的是()A.−(+1)和+(−1)B.−(−1)和+(−1)C.−(+1)和−1D.+(−1)和−1【答案】B【分析】先化简各数,然后根据相反数的定义判断即可.【详解】解:A、−(+1)=−1,+(−1)=−1,不是相反数,故此选项不符合题意;B、−(−1)=1,+(−1)=−1,是相反数,故此选项符合题意;C、−(+1)=−1,不是相反数,故此选项不符合题意;D、+(−1)=−1,不是相反数,故此选项不符合题意;故选:B.【点睛】本题主要考查了相反数.先化简再求值是解题的关键.【变式1-3】(2023秋·江苏盐城·七年级江苏省响水中学阶段练习)绝对值小于2016的所有的整数的和________.【答案】0【详解】绝对值小于2016的所有整数为:−2015,...,0,1, (2015)故-2015+(-2014)+(-2013)+…+2013+2014+2015=(-2015+2015)+( -2014+2014)+( -2013+2013)+…+(-1+1)+0=0;故答案为0.点睛:由于数比较多,不可能挨个求和,故考虑用“互为相反数的两个数的和等于0”这个性质.【题型2 相反数的几何意义的应用】【例2】(2023·全国·七年级假期作业)如图,图中数轴的单位长度为1.请回答下列问题:(1)如果点A、B表示的数是互为相反数,那么点C表示的数是多少?(2)如果点D、B表示的数是互为相反数,那么点C、D表示的数是多少?【答案】(1)-1(2)点C表示的数是0.5,D表示的数是-4.5【分析】(1)根据互为相反数的定义确定出原点的位置,再根据数轴写出点C表示的数即可;(2)根据互为相反数的定义确定出原点的位置,再根据数轴写出点C、D表示的数即可.【详解】(1)由点A、B故点C表示的数是-1.(2)由点D、B表示的数是互为相反数可知数轴上原点的位置如图,故点C表示的数是0.5,D表示的数是-4.5.【点睛】本题考查了相反数的定义和数轴,解题的关键是根据题意找出原点的位置.【变式2-1】(2023秋·七年级课时练习)如图,数轴上两点A、B表示的数互为相反数,若点B表示的数为6,则点A表示的数为()A.6B.﹣6C.0D.无法确定【答案】B【分析】根据数轴上点的位置,利用相反数定义确定出点A表示的数即可.【详解】解:∵数轴上两点A,B表示的数互为相反数,点B表示的数为6,∴点A表示的数为﹣6,故选:B.【点睛】此题考查数轴与有理数,相反数的定义,理解相反数的定义是解题的关键.【变式2-2】(2023·全国·七年级假期作业)如图,A,B,C,D是数轴上的四个点,已知a,b均为有理数,且a+b=0,则它们在数轴上的位置不可能落在()A.线段AB上B.线段BC上C.线段BD上D.线段AD上【答案】A【分析】根据相反数的性质,数轴的定义可知,a,b位于原点两侧,据此即可求解.【详解】解:∵a,b均为有理数,且a+b=0,∴a,b位于原点两侧,∴a,b在数轴上的位置不可能落在线段AB上,故选:A.【变式2-3】(2023秋·江苏无锡·七年级校考阶段练习)用“⇒”与“⇐”表示一种法则:(a⇒b)=﹣b,(a⇐b)=﹣a,如(2⇒3)=﹣3,则(2023⇒2018)⇐(2023⇒2015)=__________【答案】2018.【分析】根据题意,(a⇒b)=-b,(a⇐b)=-a,可知(2023⇒2018)=-2018,(2023⇒2015)=-2015,再计算(-2018⇐-2015)即可.【详解】解:∵(a⇒b)=-b,(a⇐b)=-a,∴(2023⇒2018)⇐(2023⇒2015)=(-2018⇐-2015)=2018.故答案为:2018.【点睛】本题这是一种新定义问题,间接考查了相反数的概念,一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.解题的关键是根据题意掌握规律.【题型3 绝对值非负性的应用】【例3】(2023秋·云南昭通·七年级校考阶段练习)已知|a﹣2|与|b﹣3|互为相反数,求a+b的值.【答案】5.【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列非常求出a、b的值,然后代入代数式进行计算即可得解.【详解】∵|a-2|与|b-3|互为相反数,∴|a-2|+|b-3|=0,∴a-2=0,b-3=0,解得a=2,b=3,所以,a+b=2+3=5.【点睛】本题考查了非负数的性质:几个非负数的和为0时,这几个非负数都为0.【变式3-1】(2023秋·云南楚雄·七年级校考阶段练习)对于任意有理数a,下列式子中取值不可能为0的是()A.|a+1|B.|−1|+a C.|a|+1D.−1+|a|【答案】C【分析】根据绝对值的非负性即可得出答案.【详解】解:A.当a=−1时,a+1=0,则|a+1|=0,故A选项不符合题意;B.当a=−1时,|−1|+a=1−0,故B选项不符合题意;C.|a|≥0,则|a|+1≥1,不可能为0,故C选项符合题意;D.当a=±1时,−1+|a|=−1+1=0,故D选项不符合题意;故选:C.【点睛】本题考查了绝对值的非负性,解题的关键是掌握任何数的绝对值都是非负数,两个非负数的和一定为非负数.【变式3-2】(2023秋·山东潍坊·七年级统考期中)若|a−1|+|b+2|=0,求a+|−b|.【答案】3【分析】根据绝对值的非负性求解即可.【详解】解:∵|a−1|+|b+2|=0,∴a−1=0,b+2=0,解得:a=1,b=−2,故a +|−b |=1+2=3.【点睛】本题考查了绝对值的非负性,准确的计算是解决本题的关键.【变式3-3】(2023秋·七年级课时练习)对于任意有理数m ,当m 为何值时,5−|m −3|有最大值?最大值为多少?【答案】5【分析】根据绝对值的非负性得到|m −3|≥0,得到当m =3时,|m −3|最小,代入求解即可;【详解】解:由绝对值都是非负数,得|m −3|≥0.当m =3时,|m −3|最小,最小值为0,此时5−|m −3|有最大值,最大值是5.【点睛】本题主要考查了绝对值的非负性应用,准确计算是解题的关键.【题型4 化简多重符号】【例4】(2023秋·全国·七年级专题练习)化简下列各数:(1)−(−23)=________ ;(2)−(+45)=________;(3)−{+[−(+3)]}=________.【答案】 23 −45 3【分析】根据多重符合化简的法则,化简结果的符合由符号的个数决定,确定符号后可得结果.【详解】解:−(−23)=23,−(+45)=−45,−{+[−(+3)]}=3,故答案为:23,−45,3.【点睛】本题考查了化简多重符号,多重符号的化简是由“−”的个数来定,若“−”个数为偶数个时,化简结果为正;若“−”个数为奇数个时,化简结果为负.【变式4-1】(2023·浙江·七年级假期作业)下列化简正确的是( )A .+(−6)=6B .−(−8)=8C .−(−9)=−9D .−[+(−7)]=−7 【答案】B【分析】根据化简多重符号的方法逐项判断即可求解.【详解】解:A. +(−6)=−6,原选项计算错误,不合题意;B. −(−8)=8,原选项计算正确,符合题意;C. −(−9)=9,原选项计算错误,不合题意;D. −[+(−7)]=7,原选项计算错误,不合题意.故选:B.【点睛】本题考查有理数的多重符合化简,化简多重符号就是看数字前负号的个数,如果负号的个数是奇数个则最终符号为负号,如果负号个数为偶数个则最终符号为正号.【变式4-2】(2023秋·江苏无锡·七年级统考期末)在−(+2.5),−(−2.5),+(−2.5),+(+2.5)中,正数的个数是()A.1B.2C.3D.4【答案】B【分析】根据多重符号化简原则逐一进行判断即可得到答案.【详解】解:∵−(+2.5)=−2.5,−(−2.5)=2.25,+(−2.5)=−2.5,+(+2.5)=2.5,∴正数的个数是2个,故选B.【点睛】本题考查了多重符号化简,解题关键是掌握多重符号化简的原则:若一个数前有多重符号,则看该数前面的符号中,符号“−”的个数来决定,即奇数个符号则该数为负数,偶数个符号,则该数为正数.【变式4-3】(2023·全国·七年级假期作业)化简下列各式的符号:(1)﹣(+4);(2)+(﹣37);(3)﹣[﹣(﹣325)];(4)﹣{﹣[﹣(﹣π)]}.化简过程中,你有何发现?化简结果的符号与原式中的“﹣”号的个数与什么关系吗?【答案】(1)-4;(2)−37;(3)−325;(4)π;最后结果的符号与﹣的个数有着密切联系,如果一个数是正数,当﹣的个数是奇数,最后结果为负数,当﹣的个数是偶数,最后结果为正数【分析】根据已知数据结合去括号的法则化简各数,进而得出结果的符号与原式中的“-”号的个数的关系.【详解】解:(1)﹣(+4)=﹣4;(2)+(−37)=−37;(3)﹣[﹣(﹣325)]=﹣325;(4)﹣{﹣[﹣(﹣π)]}=π.最后结果的符号与“﹣”的个数有着密切联系,如果一个数是正数,当“﹣”的个数是奇数,最后结果为负数,当“﹣”的个数是偶数,最后结果为正数.【点睛】本题考查了相反数的意义,正确发现数字变化规律是解题的关键.【题型5 化简绝对值】【例5】(2023春·黑龙江哈尔滨·六年级统考期中)有理数a,b,c在数轴上的位置如图所示,化简|b+c|+ |a−c|=_______.【答案】a−b−2c【分析】先由数轴判断a,b,c与0的大小关系,其中a>0,b<0,c<0,则b+c<0,a−c>0,再根据绝对值的意义,正数的绝对值是其本身,负数的绝对值是其相反数,0的绝对值是0,进而得出结果.【详解】解:∵a>0,b<0,c<0,∴b+c<0,a−c>0,∴b+c+a−c=−(b+c)+a−c=−b−c+a−c=a−b−2c故答案为:a−b−2c.【点睛】本题主要考查了数轴上的点以及绝对值的意义,其中正确掌握正负数的绝对值是解题的关键.【变式5-1】(2023秋·江苏宿迁·七年级统考期中)如果|m|=|n|,那么m,n的关系()A.相等B.互为相反数C.都是0D.互为相反数或相等【答案】D【分析】利用绝对值的代数意义化简即可得到m与n的关系.【详解】解:∵m=n,∴m=n或m=−n,即互为相反数或相等,故选:D.【点睛】此题考查了绝对值,熟练掌握绝对值的代数意义是解本题的关键.【变式5-2】(2023·浙江·七年级假期作业)化简:(1)|−(+7)|;(2)−|−8|;【答案】(1)7(2)−8【分析】(1)先化简括号的符号,然后再根据绝对值的性质化简即可;(2)直接化简绝对值即可.【详解】(1)解:|−(+7)|=|−7|=7(2)−|−8|=−8.【点睛】本题主要考查绝对值的化简,熟练掌握运算法则是解题关键.【变式5-3】(2023·全国·七年级假期作业)求下列各数的绝对值:(1)−38;(2)0.15;(3)a(a<0);(4)3b(b>0);【答案】(1)38(2)0.15(3)−a(4)3b【分析】根据正数与0的绝对值是其本身,负数的绝对值是其相反数即可求解.【详解】(1)|−38|=38;(2)|0.15|=0.15;(3)∵a<0,∴|a|=−a;(4)∵b>0,∴3b>0,∴|3b|=3b【点睛】本题考查了绝对值的性质,准确把握“正数与0的绝对值是其本身,负数的绝对值是其相反数”是解题的关键.【题型6 利用相反数的性质求值】的相反数是x,-5的相反数是y,z的相反数是0,求x+y 【例6】(2023·全国·七年级专题练习)已知-213+z的相反数.【答案】-713【分析】根据相反数的概念求出x ,y ,z 的值,代入x+y+z 即可得到结果.【详解】解:∵-213的相反数是x ,-5的相反数是y ,z 相反数是0,∴x=213,y=5,z=0,∴x+y+z=213+5+0=713. ∴x+y+z 的相反数是-713 . 【点睛】本题考查了相反数的定义,熟记相反数的概念是解题的关键.【变式6-1】(2023秋·湖北孝感·七年级统考期中)在数轴上表示整数a 、b 、c 、d 的点如图所示,且a +b =0,则c +d 的值是________.【答案】−4.【分析】根据题意先确定原点的位置,然后得到c 、d 表示的数,再进行计算即可.【详解】解:∵a +b =0,∴a 与b 互为相反数,由数轴可知,如图:∴a =−2,b =2,c =−8,d =4,∴c +d =−8+4=−4;故答案为:−4.【点睛】本题考查了数轴的定义,相反数的定义,解题的关键是熟练掌握所学的知识进行解题.【变式6-2】(2023春·广东河源·七年级校考开学考试)若 a +b =0,则 a b 的值是 ( ) A .−1B .0C .无意义D .−1或无意义【答案】D 【分析】分b =0,b ≠0两种情形计算即可.【详解】当b ≠0时,∵a +b =0,∴a=−b,∴a b =−bb=−1;当b=0时,∵a+b=0,∴a=0,∴ab无意义,∴ab的值是−1或无意义,故选D.【点睛】本题考查了相反数的意义,及其商的意义,熟练掌握相反数的意义是解题的关键.【变式6-3】(2023秋·湖南永州·七年级校考阶段练习)已知a,b互为相反数,则a+2a+3a+⋯+49a+50a+ 50b+49b+⋯+3b+2b+b=________.【答案】0【分析】根据相反数的概念,得到a+b=0,继而可得出答案.【详解】解:∵a,b互为相反数,∴a+b=0.∴a+2a+3a+...+49a+50a+50b+49b+...+3b+2b+b=(a+b)+2(a+b)+3(a+b)+50(a+b)=0.故答案为:0.【点睛】本题考查了相反数的概念,属于基础题,注意掌握相反数的概念是关键.【题型7 解绝对值方程】【例7】(2023秋·江苏宿迁·七年级泗阳致远中学校考阶段练习)若|−m|=|−12|,则m的值为()A.±2B.−12或12C.12D.−12【答案】B【分析】根据绝对值的性质,进行化简求解即可.【详解】解:|−m|=|−12||−m|=12,∴m=±1,2故选:B.【点睛】本题考查了绝对值方程问题,解题的关键是掌握绝对值化简的性质,正数的绝对值是本身,负数的绝对值是其相反数.【变式7-1】(2023秋·海南省直辖县级单位·七年级校考阶段练习)如果|x|−2=2,那么x是()A.4B.-4C.±2D.±4【答案】D【分析】根据绝对值意义进行解答即可.【详解】解:∵|x|−2=2,∴|x|=4,∴x=±4,故选:D.【点睛】本题考查了绝对值的意义,绝对值表示该数在数轴表示的点距原点的距离.【变式7-2】(2023秋·湖北孝感·七年级统考期中))已知|a+1|=2,|2b−1|=7,a<b,求|a|+|b|.【答案】5或7【分析】根据绝对值的意义以及a与b的关系求出a和b的值,代入计算即可.【详解】解:∵|a+1|=2,|2b−17,∴a=1或-3,b=4或-3,∵a<b,∴a=1,b=4,或a=-3,b=4,|a|+|b|=5或7.【点睛】本题考查了绝对值的意义,解题的关键是掌握已知一个数的绝对值,求这个数.【变式7-3】(2023秋·江苏·七年级专题练习)解方程:3x−|x|+5=1.【答案】x=−1【分析】根据绝对值的意义,分类讨论求解即可.【详解】解:当x≥0时,3x−x+5=1,解得:x=−2(不符合题意,舍去),当x<0时,3x+x+5=1,解得:x=−1,综上所述:x=−1,∴原方程的解为:x=−1.【点睛】本题考查了绝对值方程,解本题的关键在熟练掌握绝对值的意义.正数的绝对值为它本身,负数的绝对值则是它的相反数,0的绝对值还是为0.【题型8 绝对值几何意义的应用】【例8】(2023秋·全国·七年级专题练习)|x−1|+|x−2|+|x−3|+⋅⋅⋅+|x−2021|的最小值是()A.1B.1010C.1021110D.2020【答案】C【分析】x为数轴上的一点,|x-1|+|x-2|+|x-3|+…|x-2021|表示:点x到数轴上的2021个点(1、2、3、…2021)的距离之和,进而分析得出最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|求出即可.【详解】解:在数轴上,要使点x到两定点的距离和最小,则x在两点之间,最小值为两定点为端点的线段长度(否则距离和大于该线段);所以:当1≤x≤2021时,|x-1|+|x-2021|有最小值2020;当2≤x≤2020时,|x-2|+|x-2020|有最小值2018;…当x=1011时,|x-1011|有最小值0.综上,当x=1011时,|x-1|+|x-2|+|x-3|+…|x-2021|能够取到最小值,最小值为:|1011-1|+|1011-2|+|1011-3|+…|1011-2021|=1010+1009+…+0+1+2+…+1010=1011×1010=1021110.故选:C.【点睛】本题考查了绝对值的性质以及利用数形结合求最值问题,利用已知得出x=1011时,|x-1|+|x-2|+|x-3|+…|x-2021|能够取到最小值是解题关键.【变式8-1】(2023秋·七年级单元测试)小亮把中山路表示成一条数轴,如图所示,把路边几座建筑的位置用数轴上的点,其中火车站的位置记为原点,正东方向为数轴正方向,公交车的1站地为1个单位长度(假设每两站之间距离相同)回答下列问题:(1)到火车站的距离等于2站地的是和.(2)到劝业场的距离等于2站地的是和.(3)在数轴上,到表示1的点的距离等于2的点有个,表示的数是.(4)如果用a表示图中数轴上的点,那么|a|表示该点到火车站的距离,当|a|=2时,a=2或−2.请你结合图形解释等式|a−1|=2表达的几何意义,并求出当|a−1|=2时,a的值.【答案】(1)烈士陵园,北国商城(2)人民商场,博物馆(3)2,−1或3(4)表达的几何意义见解析,a的值为3或−1【分析】(1)由图即可直接得出结论;(2)由图即可直接得出结论;(3)结合数轴即可直接得出结论;(4)结合图形可知|a−1|=2的几何意义为:该点到劝业场的距离等于2,进而可直接得出a的值.【详解】(1)解:由图可知到火车站的距离等于2站地的是人民商场和劝业场.故答案为:烈士陵园,北国商城;(2)解:由图可知到劝业场的距离等于2站地的是人民商场和博物馆.故答案为:人民商场,博物馆;(3)解:在数轴上,到表示1的点的距离等于2的点有2个,分别是−1和3.故答案为:2,−1或3;(4)解:该题中|a−1|=22,且为人民商场或博物馆.即到表示1的点的距离等于2的点.结合图形可知当|a−1|=2时,a的值为3或−1.【点睛】本题考查数轴上两点之间的距离,用数轴上的点表示有理数,绝对值的意义.利用数形结合的思想是解题关键.【变式8-2】(2023春·浙江·七年级期末)方程|x|+|x−2022|=|x−1011|+|x−3033|的整数解共有()A.1010B.1011C.1012D.2022【答案】C【详解】根据绝对值的意义,方程表示整数x到0与2022的距离和等于到1011与3033的距离的和,进而得出x为1011与2022之间的整数,据此即可求解.【分析】解:方程的整数解是1011至2022之间的所有整数,共有1012个.故选:C.【点睛】本题考查了绝对值的意义,数轴上两点的距离,理解绝对值的意义是解题的关键.【变式8-3】(2023秋·七年级单元测试)阅读材料:因为|x|=|x−0|,所以|x|的几何意义可解释为数轴上表示数x的点与表示数0的点之间的距离.这个结论可推广为:|x1−x2|的几何意义是数轴上表示数x1的点与表示数x2的点之间的距离.根据上述材料,解答下列问题:(1)等式|x−2|=3的几何意义是什么?这里x的值是多少?(2)等式|x−4|=|x−5|的几何意义是什么?这里x的值是多少?(3)式子|x−1|+|x−3|的几何意义是什么?这个式子的最小值是多少?【答案】(1)几何意义为数轴上表示数x的点与表示数2的点之间的距离等于3,x=−1或5(2)几何意义是点P到点A的距离等于点P到点B的距离,x=412(3)几何意义是点P到点M的距离与点P到点N的距离的和,最小值为2【分析】(1)根据|x1−x2|的几何意义求解可得;(2)先去绝对值,再解方程即可求解;(3)由题意知|x−1|+|x−3|表示数x到1和3的距离之和,当数x在两数之间时式子取得最小值.【详解】(1)解:等式|x−2|=3的几何意义为数轴上表示数x的点与表示数2的点之间的距离等于3,这里x=−1或5.(2)解:设数轴上表示数x,4,5的点分别为P,A,B,则等式|x−4|=|x−5|的几何意义是点P到点A的距离等于点P到点B的距离,即PA=PB,所以x=41.2(3)解:设数轴上表示数x,1,3的点分别为P,M,N,则式子|x−1|+|x−3|的几何意义是点P到点M的距离与点P到点N的距离的和,即PM+PN.结合数轴可知:当1≤x≤3时,式子|x−1|+|x−3|的值最小,最小值为2.【点睛】本题考查了一元一次方程的应用,数轴,绝对值的性质,读懂题目信息,理解数轴上两点间的距离的表示是解题的关键.【题型9 有理数的大小比较】这四个数中,绝对值最小的数是()【例9】(2023·湖北孝感·七年级统考期中))在1,−2,0,32A.1B.−2C.0D.32【答案】C【分析】先求绝对值,然后根据有理数大小比较即可求解.【详解】解:∵1,−2,0,32这四个数的绝对值分别为1,2,0,32∴绝对值最小的数是0,故选:C .【点睛】本题考查了绝对值,有理数的大小比较,熟练掌握绝对值的定义,有理数的大小比较是解题的关键.【变式9-1】(2023秋·广东河源·七年级校考开学考试)已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.−5,+3,−|−3.5|,0,−(−2),−1【答案】数轴见解析,−5<−|−3.5|<−1<0<−(−2)<+3【分析】先去括号,去绝对值符号,把各数在数轴上表示出来,按原数从小到大的顺序用“<”把这些数连接起来即可.【详解】解:−|−3.5|=−3.5,−(−2)=2,如图,故−5<−|−3.5|<−1<0<−(−2)<+3.【点睛】本题主要考查数轴上有理数的表示及大小比较,熟练掌握数轴上有理数的表示及大小比较是解题的关键.【变式9-2】(2023·浙江·七年级假期作业)(1)试用“<”“ >”或“=”填空:①|+6|−|+5| |(+6)−(+5)|;②|−6|−|−5| |(−6)−(−5)|;③|+6|−|−5| |(+6)−(−5)|;(2)根据(1)的结果,请你总结任意两个有理数a 、b 的差的绝对值与它们的绝对值的差的大小关系为|a|−|b| |a −b|;(3)请问,当a 、b 满足什么条件时,|a|−|b|=|a −b|?【答案】(1)①=;②=;③<;(2)≤;(3)①当a >b >0,②a <b <0,③a =b ,④b =0,时|a|−|b|=|a −b|.【分析】(1)先计算,再比较大小即可;(2)根据(1)的结果,进行比较即可;(3)根据(1)的结果,可发现,当a 、b 同号时,|a|−|b|=|a −b|.【详解】解:(1)①|+6|−|+5|=1,|(+6)−(+5)|=1,∴|+6|−|+5|=|(+6)−(+5)|;②|−6|−|−5|=1,|(−6)−(−5)|=1,∴|−6|−|−5|=|(−6)−(−5)|;③|+6|−|−5|=1,|(+6)−(−5)|=11,∴|+6|−|−5|<|(+6)−(−5)|;故答案为:=,=,<;(2)|a|−|b|⩽|a−b|;故答案为:≤;(3)①当a>b>0,②a<b<0,③a=b,④b=0,时|a|−|b|=|a−b|.【点睛】本题考查了有理数的大小比较及绝对值的知识,解题的关键是注意培养自己由特殊到一般的总结能力.【变式9-3】(2023秋·湖北黄冈·七年级统考期末)有理数a,b,c在数轴上的位置如图所示,下列关系正确的是()A.|a|>|b|B.a>﹣b C.b<﹣a D.﹣a=b【答案】C【分析】先根据各点在数轴上的位置得出b﹤-c﹤0﹤a﹤c,再根据绝对值、相反数、有理数的大小逐个判断即可.【详解】从数轴可知:b﹤-c﹤0﹤a﹤c,∴∣a∣﹤∣b∣,a﹤-b,b﹤-a,-a≠b,所以只有选项C正确,故选:C.【点睛】本题考查了有理数的大小比较、相反数、绝对值、数轴的应用,解答的关键是熟练掌握利用数轴比较有理数的大小的方法.【题型10 应用绝对值解决实际问题】【例10】(2023·浙江·七年级假期作业)某汽车配件厂生产一批圆形的零件,现从中抽取6件进行检查,比标准直径长的毫米数记作正数,比标准直径短的毫米数记作负数,检查记录如下表:(1)找出哪件零件的质量相对好一些?(2)若规定与标准直径相差不大于0.2毫米的产品为合格产品;则这6件产品中有哪些产品不合格?【答案】(1)第4件质量最好;(2)第1件、第2件产品不合格.【分析】(1)根据绝对值越小质量越好,越大质量越差即可知道哪件零件的质量相对来讲好一些;(2)按绝对值由大到小排即可.【详解】(1)解:∵|+0.5|=0.5,|-0.3|=0.3,|+0.1|=0.1,|0|=0,|-0.1|=0.1,|+0.2|=0.2,∵0<0.1=0.1<0.2<0.3<0.5,∴|0|<|+0.1|=|-0.1|<|+0.2|<|-0.3|<|+0.5|,∴第4件质量最好;(2)解:∵|+0.5|=0.5>0.2,|-0.3|=0.3>0.2,∴第1件、第2件产品不合格.【点睛】本题主要考查绝对值的意义,可以结合绝对值的意义进行解答.【变式10-1】(2023秋·辽宁沈阳·七年级统考期中)如图,为了检测4个足球质量,规定超过标准质量的克数记为正数,不足标准质量的克数记为负数.下列选项中最接近标准的是()A.B.C.D.【答案】B【分析】根据绝对值最小的最接近标准,可得答案.【详解】解:|−1.4|=1.4,|−0.5|=0.5,|0.6|=0.6,|−2.3|=2.3,0.5<0.6<1.4<2.3,则最接近标准的是−0.5.故选:B.【点睛】本题考查了正数和负数,利用绝对值的意义是解题关键.【变式10-2】(2023秋·山东济南·七年级校考阶段练习)按规定,食品包装袋上都应标明袋内装有食品多少克,下表是几种饼干的检验结果,“+”“-”分别表示比标准重量多和少,用绝对值判断最符合标准的一种食品是_____.【答案】甜味【分析】找出表格中四个数值的绝对值最小的即可得.【详解】解:|+10|=10,|−8.5|=8.5,|+5|=5,|−7.3|=7.3,因为5<7.3<8.5<10,所以最符合标准的一种食品是甜味,故答案为:甜味.【点睛】本题考查了绝对值的应用,理解题意,正确求出各数的绝对值是解题关键.【变式10-3】(2023秋·浙江金华·七年级校考阶段练习)已知零件的标准直径是100mm,超过标准直径的数量记作正数,不足标准直径的数量记作负数,检验员抽查了五件样品,检查结果如下:(1)指出哪件样品的直径最符合要求;(2)如果规定误差的绝对值在0.18mm之内是正品,误差的绝对值在0.18~0.22mm之间是次品,误差的绝对值超过0.22mm是废品,那么这五件样品分别属于哪类产品?【答案】(1)第4件样品的直径最符合要求;(2)第1,2,4件样品是正品;第3件样品为次品;第5件样品为废品.【分析】(1)表中的数据是零件误差数,所以这些数据中绝对值小的零件较好;(2)因为绝对值越小,与规定直径的偏差越小,每件样品所对应的结果的绝对值,即为零件的误差的绝对值,看绝对值的结果在哪个范围内,就可确定是正品、次品还是废品.【详解】解:(1)∵|−0.05|<|+0.10|<|−0.15|<|+0.20|<|+0.25|,∴第4件样品的直径最符合要求.(2)因为|+0.10|=0.10<0.18,|−0.15|=0.15<0.18,|−0.05|=0.05<0.18.所以第1,2,4件样品是正品;因为|+0.20|=0.20,0.18<0.20<0.22,所以第3件样品为次品;因为|+0.25|=0.25>0.22,所以第5件样品为废品.【点睛】考查了绝对值,绝对值越小表示数据越接近标准数据,绝对值越大表示数据越偏离标准数据.。
初中数学 正数和负数的相反数是什么
初中数学正数和负数的相反数是什么在初中数学中,我们经常会遇到正数和负数的相反数的概念。
相反数是指一个数与它的对称位置的数之间的关系,它们具有相同的绝对值但符号相反。
下面我将详细解释正数和负数的相反数的定义、性质以及应用。
1. 正数的相反数:对于一个正数a,它的相反数是一个与它绝对值相等但符号相反的数,记作-a。
例如,正数3的相反数是-3,正数5的相反数是-5。
2. 负数的相反数:对于一个负数b,它的相反数是一个与它绝对值相等但符号相反的数,记作-b。
例如,负数-2的相反数是2,负数-7的相反数是7。
3. 相反数的定义:相反数表示了一个数的对称位置的数,它们具有相同的绝对值但符号相反。
相反数的定义可以用如下的数学表达式表示:如果a > 0,那么-a 是一个负数,且|-a| = a;如果a < 0,那么-a 是一个正数,且|-a| = -a。
4. 相反数的性质:-绝对值相等:正数和它的相反数的绝对值相等,即|a| = |-a|。
-符号相反:正数和它的相反数的符号相反,即如果a > 0,则-a < 0;如果a < 0,则-a > 0。
-零的相反数是零:零的相反数仍然是零,即-0 = 0。
-相反数的相反数等于原数:正数和它的相反数的相反数等于它本身,即-(-a) = a。
5. 相反数的应用:相反数在数学中和实际生活中都有广泛的应用,例如:-计算:相反数可以用于计算中,例如在加法和减法运算中,我们可以利用相反数的性质简化计算过程。
-建模问题:相反数可以用于建模问题,例如在物理学中,正数和负数可以用来表示物体的方向和速度。
-几何问题:相反数可以用于几何问题中,例如在坐标平面上,正数和负数可以用来表示点的位置和方向。
总结起来,正数和负数的相反数是一个与它绝对值相等但符号相反的数。
相反数具有绝对值相等、符号相反的性质,并且在数学和实际生活中具有广泛的应用。
它们可以用于简化计算、建模问题以及表示方向和位置等几何问题。
《1.3绝对值与相反数》
练一练
1.填空
(1)绝对值等于0的数是___, 0
(2)绝对值等于5.25的正数是_____, 5.25 (3)绝对值等于5.25的负数是______, -5.25 (4)绝对值等于2的数是_______. 2或-2
2.判断下列说法是否正确. (1)一个数的绝对值是4 ,则这数是-4. ×
(2)|3|>0. √
3 5
5
-5 -4
3
3 5
3
1 2 3 4
5
5
-3 -2 -1
0
(2)观察各点在数轴上的位置,得到
3 3 3 3 |3|=3,|-3|=3;|5|=5,|-5|=5; | | ,| | . 5 5 5 5
二 相反数
观察与思考
观察例1中的三组数在数轴上的位置和绝对值的大小, 想一想这三组数的共同特点是什么? 符号不同
课后作业
见教材本课时习题
x x 3x 5. 的相反数是_____ ,-3x的相反数是___. 2 2
6.判断并改错: (1) 相反数等于它本身的数只有0; ﹙ (2) 符号不同的两个数互为相反数;﹙ ﹚ ﹚ ( )
(3)一个数的绝对值等于本身,则这个数一定是正数;
(4)一个数的绝对值等于它的相反数,这个数一定是负数;(
(5)如果两个数的绝对值相等,那么这两个数一如果两个数不相等,那么这两个数的绝对值一定不等;(
(7)有理数的绝对值一定是非负数. ( )
)
7. 化简下列各数,并求出它们的绝对值. (1)-(+10) (2)+(-0.15) (3)+(+3)
(4)-(-12)
解:
(5)+[-(-1.1)]
相反数与绝对值的概念及计算
相反数与绝对值的概念及计算数学作为一门基础学科,贯穿于我们的日常生活中。
在数学的学习过程中,相反数与绝对值是非常重要的概念。
它们不仅在数学运算中有着广泛的应用,还能帮助我们更好地理解数的性质。
本文将重点介绍相反数与绝对值的概念,并对其计算方法进行详细说明。
一、相反数的概念相反数是指两个数的和等于零的一对数。
具体而言,对于任意一个实数a,它的相反数记作- a,满足以下条件:a + (- a) = 0。
例如,2的相反数是-2,-3的相反数是3。
相反数的概念在数学运算中有着广泛的应用。
例如,在加法运算中,对于任意一个数a,a + (- a) = 0。
这意味着,如果我们需要求一个数的相反数,只需将该数的符号取反即可。
相反数的概念也在解方程、解不等式等问题中发挥着重要的作用。
二、绝对值的概念绝对值是指一个数到零的距离,用符号|a|表示。
对于任意一个实数a,它的绝对值满足以下条件:1. 如果a大于等于零,那么|a| = a;2. 如果a小于零,那么|a| = -a。
绝对值的概念在数学中也有着广泛的应用。
例如,在求解不等式时,我们常常需要利用绝对值来消去不等式中的绝对值符号,从而得到更简洁的不等式。
绝对值还可以用来表示距离、误差等概念,在几何学、物理学等领域中有着重要的应用。
三、相反数与绝对值的计算1. 相反数的计算计算一个数的相反数非常简单,只需将该数的符号取反即可。
例如,要计算2的相反数,只需将2的符号变为负号,即得到-2。
同样,要计算-3的相反数,只需将-3的符号变为正号,即得到3。
2. 绝对值的计算计算一个数的绝对值也非常简单,只需根据该数的正负情况进行判断。
如果这个数大于等于零,那么它的绝对值就等于它本身;如果这个数小于零,那么它的绝对值就等于它的相反数。
例如,|2| = 2,|-3| = 3。
绝对值的计算在数学运算中也有着广泛的应用。
例如,在求解不等式时,我们常常需要利用绝对值来消去不等式中的绝对值符号,从而得到更简洁的不等式。
人教版2020七年级数学上册数轴、相反数、绝对值讲义(新版)新人教版
数轴、相反数、绝对值(讲义)➢ 课前预习1. 为了表示相反意义的量,我们可以把其中一个量规定为正的, 用正数来表示,而把与这个量意义相反的量规定为负的,用负数来表示.请根据上述内容回答问题:(1)如果规定向东为正,那么向东走 5 m 可记作+5 m,向西走 8 m可记作m.(2)一种袋装食品标准净重为 200 g,质监工作人员为了了解该种食品每袋的净重与标准的误差,把食品净重 205 g 记为+5 g,那么食品净重 197 g 就记为g.2. 正数可分为正整数和正分数,那么负数也可以分为负整数和负分数.比如:-2,-5 等都是负整数,而-1.5, 数.请将下列各数进行分类:1 都是负分 23 3,-2.5,3.14, ,-9,100,02其中属于整数的有:;其中属于分数的有:;其中属于正数的有:;其中属于负数的有:.3. 如图,点 A 表示小明的家,动物园在小明家西边 500 米,书店在小明家东边 500 米,车站在书店东边 200 米,小明从动物园出发向东走 1000 米,到达;动物园和书店到小明家的距离都是米;小明从家出发,走了 500 米,可以到达 ; 动 物 园 和 车 站 之间的距离为米.B 动物园ACD家书店 车站1➢ 知识点睛1.与2. 有理数的分类:统称为有理数.有理数有理数3. 非正数:非正整数:;非负数: ;非负整数:4. 数轴的定义:规定了、、叫做数轴.任何一个都可以用数轴上的一个点来表示.画数轴时注意以下几点: ①三要素; ②直线; ③数字和点的位置.. . 的一条画数轴:5. 数轴的作用:、、.6. 利用数轴比较大小:数轴上两个点表示的数,越往右数越,越往左数越,右边的总比左边的.正数0,负数0,正数负数.7. 相反数的定义:地,的两个数,互为相反数.特别 .互为相反数的两个数,和为 0.8. 绝对值的定义:在上,一个数所对应的点与原点的叫做这个数的绝对值.9. 绝对值法则:正数的绝对值是;;.字母表示: a 请尝试写出下列式子的相反数:a 的相反数是 a 的相反数是 a b 的相反数是; ; .事实上:绝对值是它本身的数是;绝对值是它的相反数的数是.2➢ 精讲精练1. 若上升 5 m 记作+5 m,则 8 m 表示表示支出 10 元,那么+50 元表示;如果 10 元 ;如果零上 5℃记作+5℃,那么零下 2℃记作;太平洋中的马里亚纳海沟深达 11 034 m,可记作海拔 11 034 m(即低于海平面 11 034m),则比海平面高 50 m 的地方,它的高度记作海拔 , 比 海 平 面 低30 m 的地方,它的高度记作海拔.2. 有四包真空小包装火腿,每包以标准克数(450 克)为基数, 超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( ) A.+2B. 3 C.+3D.+43. 某超市出售的三种品牌的洗衣液袋上分别标有净重为(800±2) g,(800±3) g,(800±5) g 的字样,从中任意拿出两袋,它们的质量最多相差( )A.10 gB.8 gC.7 gD.5 g4. 把下列各数填入它所在的集合里:2,7, 2 ,0,2 015,0.618,3.14, 1.732, 5,+3 3①正数集合:{…}②负数集合:{…}③整数集合:{…}④非正数集合:{…}⑤非负整数集合:{…}⑥有理数集合:{…}5. 在数轴上表示下列各数:0, 3.5,11 , 1,+3, 2 2 ,并23比较它们的大小.36. a,b 为有理数,在数轴上的位置如图所示,则下列关于 a,b,0 三者之间的大小关系,正确的是()a0bA.0<a<bB.a<0<bC.b<0<aD.a<b<07. 在数轴上大于 4.12 的负整数有.8. 到原点的距离等于 3 的数是.9. 数轴上表示 2 和 101 的两个点分别为 A,B,则 A,B 两点间的距离是.10. 在数轴上,点 M 表示的数是 2,将它先向右移 4.5 个单位, 再向左移 5 个单位到达点 N,则点 N 表示的数是.11. 文具店、书店和玩具店依次坐落在一条东西走向的大街上, 文具店在书店西边 20 米处,玩具店位于书店东边 100 米处, 小明从书店沿街向东走了 40 米,接着又向东走了 60 米,此时小明的位置在()A.玩具店B.文具店C.文具店西边 40 米D.玩具店东边 60 米12. 已知数轴上点 A 与原点的距离为 2,则点 A 对应的有理数是,点 B 与点 A 之间的距离为 3,则点 B 对应的有理数是.13. 下列各组数中,互为相反数的是()A.0.4 与 0.41 C. ( 8) 与 8 14. 下列化简不正确的是(B.3.8 与 2.9D. ( 3) 与 ( 3) )A. ( 4.9)4.9B. ( 4.9)4.9C.( 4.9)4.915. 下列各数中,属于正数的是(A. ( 2)C. ( a)D. 4.9 )( 4.9)B. 3 的相反数D. 3 的相反数的相反数16. a,b 是有理数,它们在数轴上的对应点的位置如图所示,把a, a,b, b 按照从小到大的顺序排列正确的是()A. baabC. b aaba0B. baD. b bbba aa417. 有理数的绝对值一定是()A.正数B.整数C.正数或零D.非正数18. 下列说法正确的是()A.一个数的绝对值一定大于它本身B.只有正数的绝对值等于它本身C.负数的绝对值是它的相反数D.一个数的绝对值是它的相反数,则这个数一定是负数19. 填空:3.5 =; 1= 2;5=;若 x<0,则 x,x;若 m<n,则 m n.20. 下列各数中: 2, 1 , 3 , 0 ,2 , ( 2),2,3是正数的有.21. 若 xx ,则 x 的取值范围是( )A. x 22. 若 a1B. x 0C.x≥03 ,则 a=;若 3 a ,则 a=D.x≤0 ;若 a 2 ,a<0,则 a=.23. 若 a b ,b=7, 则 a=;若 a b ,b=7,a≠b, 则 a=.24. 填空:(1)11 =;3(2) 4.2 4.2 == _;(3) 35= + = ;(4) 22 =||=;(5) 3 6.2 = × = _;2 (6)14=÷ = × =.335【参考答案】➢ 课前预习1. (1)-8.(2)-3.2. 其中属于整数的有:3,-9,100,0;其中属于分数的有:-2.5,3.14, 其中属于正数的有:3,3.14,100;3 ; 2其中属于负数的有:-2.5, 3 ,-9. 23. 书店,500,动物园或书店,1 200.➢ 知识点睛1. 整数、分数正整数 整数 0正有理数 正整数2. 有理数 负整数正分数分数负分数 正分数 有理数 0负整数 负有理数 负分数3. 负数和 0;正数和 0;负整数和 0;正整数和 0 4. 原点、单位长度、正方向、直线; 有理数.5. 表示数比较大小表示距离6. 大,小;大;大于,小于,大于7. 符号不同.0 的相反数为 0.8. 数轴,距离9. 它本身;负数的绝对值是它的相反数;0 的绝对值是 0a (a 0)a 0 (a 0) a (a 0)右侧框内答案框 2:图略框 3:-a,a,-a+b框 4:正数和 0,负数和 06➢ 精讲精练1. 下降 8 m 收入 50 元-2℃ +50 m -30 m2. A3. A4. ①7,2 015,0.618,3.14,+3; ②-2,2 ,-1.732,-5 3③-2,7,0,2 015,-5,+3; ④-2,2 ,0,-1.732,-5 3⑤7,0,2 015,+3;⑥-2,7,2 ,0,2 015,0.618,3.14,-1.732,-5,+3 35. 11223 31 0 图略; 26. B 7. -4,-3,-2,-18. ±39. 99 10. -2.511. B 12. ±2;-5,1,-1,513. C14. D15. B16. C17. C18. C19. 3.51-5-x -x2120., 3 ,-(-2)3-m +n21. D22. ±3 3-223. ±7 -724. (1) 11 ; (2)4.2 3(4)2 2 0;(5)3(6) 2 14 3323 3 144.2 0; (3)3 6.2 18.6; 1 7.5 8;7。
第03讲 绝对值与相反数(解析版)
第3讲 绝对值与相反数1.借助数轴理解绝对值和相反数的概念;2.知道|a|的绝对值的含义以及互为相反数的两个数在数轴上的位置关系; 3.会求一个数的绝对值和相反数,并会用绝对值比较两个负有理数的大小; 4.通过应用绝对值解决实际问题,体会绝对值的意义和作用.考点01:相反数1.定义:如果两个数只有符号不同,那么称其中一个数为另一个数的相反数.特别地,0的相反数是0. 要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同. (2)“0的相反数是0”是相反数定义的一部分,不能漏掉. (3)相反数是成对出现的,单独一个数不能说是相反数. (4)求一个数的相反数,只要在它的前面添上“-”号即可. 2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.考法01:20161-的相反数是( ) A .2016 B .﹣2016 C .20161 D .20161-【思路】解决这类问题的关键是抓住互为相反数的特征“只有符号不同”,所以只要将原数的符号变为相反的符号,即可求出其相反数. 【答案】C【解析】解:∵20161-与20161只有符号不同, ∴﹣20161的相反数是20161.故选:C .【总结】求一个数的相反数,只改变这个数的符号,其他部分都不变.考点02:多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 . 要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.考法02:(本溪校级月考)化简:(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)]}. 【答案】解:(1)原式=﹣{+[﹣3]}=﹣{﹣3}=3;(2)原式=﹣{﹣[﹣(﹣3)]}=﹣{﹣[+3]}=﹣{﹣3}=3.【总结】运用多重符号化简的规律解决这类问题较为简单.即数一下数字前面有多少个负号.若有偶数个,则结果为正;若有奇数个,则结果为负.考点03:绝对值1.定义:在数轴上,一个数所对应的点与原点的距离叫做这个数的绝对值,例如+2的绝对值等于2,记作|+2|=2;-3的绝对值等于3,记作|-3|=3. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小. (3)一个有理数是由符号和绝对值两个方面来确定的. 2.性质:(1)0除外,绝对值为一正数的数有两个,它们互为相反数. (2)互为相反数的两个数(0除外)的绝对值相等.(3)绝对值具有非负性,即任何一个数的绝对值总是正数或0.考法03:求下列各数的绝对值. 112-,-0.3,0,132⎛⎫-- ⎪⎝⎭【思路】112,-0.3,0,132⎛⎫-- ⎪⎝⎭在数轴上位置距原点有多少个单位长度,这个数字就是各数的绝对值.还可以用绝对值法则来求解. 【答案】 方法1:因为112-到原点距离是112个单位长度,所以111122-=. 因为-0.3到原点距离是0.3个单位长度,所以|-0.3|=0.3. 因为0到原点距离为0个单位长度,所以|0|=0. 因为132⎛⎫-- ⎪⎝⎭到原点的距离是132个单位长度,所以113322⎛⎫--= ⎪⎝⎭.方法2:因为1102-<,所以111111222⎛⎫-=--= ⎪⎝⎭. 因为-0.3<0,所以|-0.3|=-(-0.3)=0.3. 因为0的绝对值是它本身,所以|0|=0 因为1302⎛⎫--> ⎪⎝⎭,所以113322⎛⎫--= ⎪⎝⎭【总结】求一个数的绝对值有两种方法:一种是利用绝对值的几何意义求解(如方法1),一种是利用绝对值的代数意义求解(如方法2),后种方法的具体做法为:首先判断这个数是正数、负数还是零.再根据绝对值的意义,确定去掉绝对值符号的结果是它本身,是它的相反数,还是零.从而求出该数的绝对值.考点04:有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b . 2.法则比较法:两个数比较大小,按数的性质符号分类,情况如下:两数同号同为正号:绝对值大的数大同为负号:绝对值大的反而小两数异号 正数大于负数 -数为0正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2)比较绝对值的大小:(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1ab<,则a b <;反之也成立.若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于零,那么倒数大的反而小.考法04:比较下列有理数大小:(1)-1和0; (2)-2和|-3| ; (3)13⎛⎫-- ⎪⎝⎭和12- ; (4)1--______0.1-- 【答案】(1)0大于负数,即-1<0;(2)先化简|-3|=3,负数小于正数,所以-2<3,即-2<|-3|;(3)先化简1133⎛⎫--=⎪⎝⎭,1122-=,1123>,即1132⎛⎫--<- ⎪⎝⎭.(4)先化简11--=-,0.10.1--=-,这是两个负数比较大小:因为11-=,0.10.1-=,而10.1>,所以10.1-<-,即1--<0.1--【解析】(2)、(3)、(4)先化简,再运用有理数大小比较法则.【总结】在比较两个负数的大小时,可按下列步骤进行:先求两个负数的绝对值,再比较两个绝对值的大小,最后根据“两个负数,绝对值大的反而小”做出正确的判断.考向01:绝对值的非负性已知|2-m|+|n-3|=0,试求m-2n 的值.【思路】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3. 【答案】解:因为|2-m|+|n-3|=0且|2-m|≥0,|n-3|≥0 所以|2-m|=0,|n-3|=0 即2-m =0,n-3=0 所以m =2,n =3 故m-2n =2-2×3=-4.【解析】由|a |≥0即绝对值的非负性可知,|2-m |≥0,|n-3|≥0,而它们的和为0.所以|2-m |=0,|n-3|=0.因此,2-m =0,n-3=0,所以m =2,n =3.【总结升华】若几个数的绝对值的和为0,则每个数都等于0,即|a|+|b|+…+|m|=0时,则a =b =…=m =0.考向02:绝对值的应用正式足球比赛对所用足球的质量有严格的规定,下面是6个足球的质量检测结果,用正数记超过规定质量的克数,用负数记不足规定质量的克数.检测结果(单位:克):-25,+10,-20,+30,+15,-40.裁判员应该选择哪个足球用于这场比赛呢?请说明理由.【答案】 因为|+10|<|+15|<|-20|<|-25|<|+30|<|-40|,所以检测结果为+10的足球的质量好一些.所以裁判员应该选第二个足球用于这场比赛.【解析】根据实际问题可知,哪个足球的质量偏离规定质量越小,则足球的质量越好.这个偏差可以用绝对值表示,即绝对值越小偏差也就越小,反之绝对值越大偏差也就越大. 【总结】绝对值越小,越接近标准.考向03:化简已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:【答案】由图所示,可得.∴ 30a c ->,,,∵.∴ 原式.【易错01】若|x ﹣2|与(y+3)2互为相反数,则x+y= . 【答案】-1.∵|x ﹣2|与(y+3)2互为相反数, ∴|x ﹣2|+(y+3)2=0, ∴x ﹣2=0,y+3=0, 解得x=2,y=﹣3, ∴x+y=2+(﹣3)=﹣1. 故答案为:﹣1. 【易错02】如果|x|=6,|y|=4,且x <y .试求x 、y 的值.四、考场失分防范【思路】6和-6的绝对值都等于6,4和-4的绝对值都等于4,所以要注意分类讨论.【答案】因为|x|=6,所以x=6或x=-6;因为|y|=4,所以y=4或y=-4;由于x<y,故x只能是-6,因此x=-6,y=±4.【总结】已知绝对值求原数的方法:(1)利用概念;(2)利用数形结合法在数轴上表示出来.无论哪种方法但要注意若一个数的绝对值是正数,则此数有两个,且互为相反数.此外,此题x=-6,y=±4,就是x=-6,y=4或x=-6,y=-4.【易错03】若﹣1<x<4,则|x+1|﹣|x﹣4|= .【思路】根据绝对值的性质:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a的绝对值是它的相反数﹣a,可得|x+1|=x+1,|x﹣4|=﹣x+4,然后再合并同类项即可.【答案】2x﹣3.【解析】解:原式=x+1﹣(﹣x+4),=x+1+x﹣4,=2x﹣3.【总结】此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x﹣4的正负性.【易错04】已知a、b为有理数,且满足:12,则a=_______,b=________.【答案】由,,,可得∴【总结】由于任何一个数的绝对值大于或等于0,要使这两个数的和为0,需要这两个数都为0.几个非负数的和为0,则每一个数均为0.五、考试真题探秘【真题01】一只可爱的小虫从点O 出发在一条直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,小虫爬行的各段路程(单位:cm)依次记为:+5,-3,+10,-8,-6,+12,-10,在爬行过程中,如果小虫每爬行1cm 就奖励2粒芝麻,那么小虫一共可以得到多少粒芝麻?【思路】总路程应该为小虫爬行的距离和,和方向无关. 【答案】小虫爬行的总路程为:|+5|+|-3|+|+10|+|-8|+|-6|+|+12|+|-10|=5+3+10+8+6+12+10=54(cm) 小虫得到的芝麻数为54×2=108(粒) 答:小虫一共可以得到108粒芝麻.【总结】此题是绝对值的应用问题,当求爬行路程是即为各数的绝对值之和,如果求最后所在的位置时即为各数之和,最后看正负来决定方向.【真题02】已知|a|=2,|b|=2,|c|=3,且有理数a ,b ,c 在数轴上的位置如图所示,计算a+b+c 的值.【答案】解:由数轴上a 、b 、c 的位置知:b <0,0<a <c ; 又∵|a|=2,|b|=2,|c|=3, ∴a=2,b=﹣2,c=3; 故a+b+c=2﹣2+3=3.【真题03】已知有理数a ,b 满足ab 2<0,a +b >0,且|a |=2,|b |=3,求⎪⎪⎪⎪⎪⎪a -13+(b -1)2的值.【答案】解:由ab 2<0,知a <0.因为a +b >0,所以b >0.又因为|a |=2,|b |=3, 所以a =-2,b =3.所以⎪⎪⎪⎪⎪⎪a -13+(b -1)2=⎪⎪⎪⎪⎪⎪-2-13+(3-1)2=73+4 =613. 【真题04】如图,A ,B ,C 三点在数轴上,A 表示的数为-10,B 表示的数为14,点C 在点A 与点B 之间,且AC =BC .(1)求A ,B 两点间的距离; (2)求C 点对应的数;(3)甲、乙分别从A ,B 两点同时相向运动,甲的速度是1个单位长度/s ,乙的速度是2个单位长度/s ,求相遇点D 对应的数.【答案】解:(1)A ,B 两点间的距离为24. (2)C 点对应的数为2. (3)相遇点D 对应的数为-2.【真题05】已知|2-xy |+(1-y )2=0. (1)求y2 019+(-y )2 019的值;(2)求1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 019)(y +2 019)的值.【答案】解:因为|2-xy |+(1-y )2=0,而|2-xy |≥0,(1-y )2≥0, 所以2-xy =0 ①,1-y =0 ②. 由②得y =1.把y =1代入①得2-x =0,故x =2. (1) y2 019+(-y )2 019=12 019+(-1)2 019=1+(-1)=0. (2)1xy +1(x +1)(y +1)+1(x +2)(y +2)+…+1(x +2 019)(y +2 019)=11×2+12×3+13×4+…+12 020×2 021=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+(13-14)+…+⎝ ⎛⎭⎪⎫12 020-12 021 =1-12+12-13+13-14+…+12 020-12 021=1+⎝ ⎛⎭⎪⎫-12+12+⎝ ⎛⎭⎪⎫-13+13+⎝ ⎛⎭⎪⎫-14+14+…+(-12 020+12 020)-12 021=1-12 021=2 0202 021.1.2021的相反数是( )A.2021B.-2021C. 20211-D.20211【答案】B2.如果0a b +=,那么,a b 两个数一定是( ).A .都等于0B .一正一负C .互为相反数D .互为倒数 【答案】C【解析】若0a b +=,则,a b 一定互为相反数;反之,若,a b 互为相反数,则0a b += 3.下列判断中,正确的是( ).A .如果两个数的绝对值相等,那么这两个数相等;B .如果两个数相等,那么这两个数的绝对值相等;C .任何数的绝对值都是正数;D .如果一个数的绝对值是它本身,那么这个数是正数. 【答案】B【解析】A 错误,因为两个数的绝对值相等,这两个数可能互为相反数;B 正确;C 错误,因为0的绝对值是0,而0不是正数;D 错误,因为一个数的绝对值是它本身的数除了正数还有0.4.已知点M 、N 、P 、Q 在数轴上的位置如图,则其中对应的数的绝对值最大的点是( )A .MB .NC .PD .Q 【答案】D【解析】解:∵点Q 到原点的距离最远,∴点Q 的绝对值最大. 故选:D .5.下列各式中正确的是( ). A .103<- B .1134->- C .-3.7<-5.2 D .0>-2 【答案】D六、对点通关训练【解析】0大于负数.6.若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是( ).A .a >bB .|a|>|b|C .-a <-bD .-a <|b|【答案】B【解析】离原点越远的数的绝对值越大.7.如果a 与1互为相反数,则|a+2|等于________.【答案】1【解析】∵a 与1互为相反数,∴a=﹣1,把a=﹣1代入|a+2|得,|a+2|=|﹣1+2|=1.8. 化简下列各数: (1)23⎛⎫--= ⎪⎝⎭_ ;(2)45⎛⎫-+= ⎪⎝⎭ ;(3){[(3)]}-+-+=________. 【答案】24;;335- 【解析】多重符号的化简是由“-”的个数来定,若“-”个数为偶数个时,化简结果为正;若“-”个数为奇数个时,化简结果为负.9.已知|x|=2,|y|=5,且x >y ,则x =________,y =________.【答案】 ±2,-5【解析】| x |=2,则x=±2; | y |=5, y=±5.但由于x >y ,所以x=±2,y=-510.数a 在数轴上的位置如图所示.则|a-2|= .【答案】a-2【解析】由图可知:a ≥2,所以|a-2|=a-2.11.在数轴上,与-1表示的点距离为2的点对应的数是 .【答案】-3,112.已知4334x x -=-,则x 的取值范围是________.【答案】 34x ≤ 【解析】将43x -看成整体a ,即a a =-,则0a ≤,故430x -≤,34x ≤.13.绝对值大于2而小于6的所有整数的和是多少?(列式计算)【解析】解:根据题意画出数轴,如图所示:根据图形得:绝对值大于2而小于6的所有整数有:﹣3,﹣4,﹣5,3,4,5,这几个整数的和为:(﹣3)+(﹣4)+(﹣5)+3+4+5=[(﹣3)+3]+[(﹣4)+4]+[(﹣5)+5]=0.答:绝对值大于2而小于6的所有整数的和是0.14.化简下列各数,再用“<”连接.(1)-(-54) (2)-(+3.6) (3)53⎛⎫-+ ⎪⎝⎭(4)245⎛⎫--⎪⎝⎭【解析】 (1)-(-54)=54(2)-(+3.6)=-3.6(3)5533⎛⎫-+=- ⎪⎝⎭(4)224455⎛⎫--=⎪⎝⎭,按从小到大排列可得:52(+3.6)<(+)<(4)(54)35----<--15.已知:a是﹣(﹣5)的相反数,b比最小的正整数大4,c是最大的负整数.计算:3a+3b+c 的值是多少?【解析】解:∵a是﹣(﹣5)的相反数,∴a=﹣5,∵b比最小的正整数大4,∴b=1+4=5,∵c是最大的负整数,∴c=﹣1,∴3a+3b+c=3×(﹣5)+3×5﹣1,=﹣15+15﹣1=-11.(漳州)﹣13的相反数是()A . 13 B .-13 C .-3 D .3【答案】A2.在①+(+1)与-(-1);②-(+1)与+(-1);③+(+1)与-(+1);④+(-1)与-(-1)中,互为相反数的是().A.①② B.②③ C.③④ D.②④【答案】C【解析】先化简在判断,①+(+1)=1,-(-1)=1,不是相反数的关系;②-(+1)=-1,+(-1)=-1,不是相反数的关系;③+(+1)=1,-(+1)=-1,是相反数的关系;④+(-1)=-1,-(-1)=1,是相反数的关系,所以③④中的两个数是相反数的关系,所以答案为:C 3.满足|x|=-x的数有( ).A.1个 B.2个 C.3个 D.无数个【答案】D【解析】x为负数或零时都能满足|x|=-x,故有无数个.4.已知1|3|a=-,则a的值是( ).A.3 B.-3 C.13D.13+或13-【答案】D【解析】∵13a=,∴13a=±,∴13a=±5.a、b为有理数,且a>0、b<0,|b|>a,则a、b、-a、-b的大小顺序是( ). A.b<-a<a<-b B.-a<b<a<-b C.-b<a<-a<b D.-a<a<-b<b 【答案】A【解析】画数轴,数形结合.6.下列推理:①若a =b ,则|a|=|b|;②若|a|=|b|,则a =b ;③若a ≠b ,则|a|≠|b|;④若|a|≠|b|,则a ≠b .其中正确的个数为( ).A .4个B .3个C .2个D .1个【答案】C【解析】①正确;②错误,如|-2|=|2|,但是-2≠2;③错误,如-2≠2,但是|-2|=|2|;④正确.故选C .7.数轴上离原点的距离小于3.5的整数点的个数为m , 距离原点等于3.5的点的个数为n , 则3____m n -=.【答案】1【解析】由题意可知:7,2m n ==,所以27321m n -=-⨯=8.已知x 与y 互为相反数,y 与z 互为相反数,又2z =,则z x y -+= .【答案】-2【解析】因为,x z 均为y 的相反数,而一个数的相反数是唯一的,所以z x =,2z =,而y 为z 的相反数,所以y 为-2,综上可得:原式等于-2.9.1的相反数是 ; 的相反数是它本身.【答案】213-,0.10.绝对值不大于11的整数有 个.【答案】23【解析】要注意考虑负数.绝对值不大于11的数有:-11 、-10……0 、1 ……11共23个.11.如果m ,n 互为相反数,那么|m+n ﹣2021|= .【答案】2021.【解析】解:∵m ,n 互为相反数,∴m+n=0,∴|m+n ﹣2021|=|﹣2021|=2021;故答案为2021.12.若1a a =-,则a 0;若a a ≥,则a . 【答案】<;任意数.13.若有理数x 、y 满足|x|=5,|y|=2,且|x+y|=x+y ,求x ﹣y 的值.【解析】∵|x|=5,∴x=±5,又|y|=2,∴y=±2,又∵|x+y|=x+y ,∴x+y ≥0,∴x=5,y=±2,当x=5,y=2时,x ﹣y=5﹣2=3,当x=5,y=﹣2时,x ﹣y=5﹣(﹣2)=7.14.若|a+1.2|+|b ﹣1|=0,那么a+(﹣1)+(﹣1.8)+b 等于多少?【解析】解:∵|a+1.2|+|b ﹣1|=0,∴a+1.2=0,b ﹣1=0,∴a=﹣1.2,b=1,∴a+(﹣1)+(﹣1.8)+b=﹣3.15.阅读下面的材料:点A 、B 在数轴上分别表示实数a 、b ,A 、B 两点之间的距离表示为∣AB ∣,当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1-1-1,∣AB ∣=∣OB ∣=∣b ∣=∣a-b ∣;当A 、B 两点都不在原点时:①如图1-1-2,点A 、B 都在原点的右边:∣AB ∣=∣OB ∣-∣OA ∣=∣b ∣-∣a ∣=b-a=∣a-b ∣;②如图1-1-3,点A 、B 都在原点的左边:∣AB∣=∣OB∣-∣OA∣=∣b∣-∣a∣=-b-(-a)=∣a-b∣;③如图1-1-4,点A、B在原点的两边:∣AB∣=∣OA∣+∣OB∣=∣a∣+∣b∣=a+(-b)=∣a-b∣,综上,数轴上A、B两点之间的距离∣AB∣=∣a-b∣.回答下列问题:①数轴上表示2和5的两点之间的距离是_________,数轴上表示-2和-5的两点之间的距离是________,数轴上表示1和-3的两点之间的距离是___________;②数轴上表示x和-1的两点A和B之间的距离是________,如果∣AB∣=2,那么x为__________.③当代数式∣x+1∣+∣x-2∣取最小值时,相应的x的取值范围是______________.【解析】①∣2-5∣=3,∣-2-(-5)∣=3,∣1-(-3)∣=4.②∣AB∣=∣x-(-1)∣=∣x+1∣.∵∣AB∣=2,∴∣x+1∣=2,∴x+1=2或-2,∴x=1或-3.③令x+1=0,x-2=0,则x=-1,x=2.将-1、2在数轴上表示出来,如图1-1-5,则-1、2将数轴分为三部分x<-1、-1≤x≤2、x>2.当x<-1时,∣x+1∣+∣x-2∣=-(x+1)+〔-(x-2)〕=-2x+1>3;当-1≤x≤2时,∣x+1∣+∣x-2∣=x+1+2-x=3;当x>2时,∣x+1∣+∣x-2∣=x+1+x-2=2x-1>3.∴∣x+1∣+∣x-2∣的最小值是3,相应的x的取值范围是-1≤x≤2.。
相反数与绝对值
相反数与绝对值一、知识精讲1、相反数(1)只有不同的两个数叫互为相反数的数;特别的,0的相反数是。
(2)数a 的相反数是,a >0时,-a ;当a <0时,-a ;当a=0时,a.(3)a 、b 互为相反数,那么;反之,若a+b=0,则。
(4)互为相反数的两个数在数轴上位于原点两旁,且到原点的距离。
2、绝对值(1)一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,零的绝对值是零。
a =(2)绝对值的几何意义:b a -在数轴上表示:(3)互为相反数的两个数绝对值相等,即a b b a a a 22,-=--=。
(4)任意一个数的绝对值是非负数,即a 0.注:(1)222a a a ==(2)b a b a ⋅=⋅;)0(,≠=b ba b a (2)0是绝对值最小的有理数。
当0=a 时,a 取得最小值0,反过来成立。
二、典例剖析类型1:相反数例1、已知b a -=1,b 的相反数是1,则a=。
变式:下列说法:①有理数的绝对值一定是正数;②一个数的绝对值的相反数一定是负数;③互为相反数的两个数,必然一个是正数,一个是负数;④互为相反数的两个数绝对值相等;⑤π的相反数是-3.14;⑥任何一个数都有它的相反数。
其中正确的有(填序号)1、n m ,互为相反数,则下列结论错误的是( )A.022=+n mB.2m mn -=C.n m =D.1-=nm 例2、如图所示,已知A ,B ,C ,D 四个点在一条没有原点的数轴上(1)若点A 和点C 表示的两个数互为相反数,则原点为;(2)若点B 和点D 表示的两个数互为相反数,则原点为;(3)若点A 和点D 表示的两个数互为相反数,请在数轴上表示出原点的位置。
变式:如图,四个数q p n m ,,,在数轴上对应的点分别为Q P N M ,,,,若0=+q n ,则q p n m ,,,四个实数中,绝对值最大的一个是( )例3、已知数m 小于它的相反数且数轴上表示数m 的A 点与原点相距3个单位长度,将点A 向右移动5个单位长度后,点A 对应的数是。
1.3绝对值和相反数-冀教版七年级数学上册教案
1.3 绝对值和相反数-冀教版七年级数学上册教案一、教学目标1.认识绝对值的概念,会计算含有绝对值的简单算式。
2.了解相反数的概念,会判断两个数是否为相反数。
3.能够在实际生活中运用绝对值和相反数的概念。
二、教学重点难点1.绝对值的概念和计算方法。
2.判断两个数是否为相反数。
三、教学准备1.PPT课件、教科书。
2.计算器、白板、黑板和粉笔。
3.学生练习册。
四、教学过程1. 绝对值的概念和计算方法绝对值的定义:对于任意实数a,其绝对值表示为|a|,表示a到原点的距离。
计算方法:•当a≥0时,|a|=a•当a<0时,|a|=-a1.引入绝对值的概念。
让学生观察以下图示,介绍绝对值的概念:imageimage2.计算绝对值。
计算以下绝对值,并让学生分别说明计算过程:•|5| = 5•|-5| = -(-5) = 5•|0| = 03.解决运算含有绝对值的复合算式。
计算以下含有绝对值的复合算式,并让学生说明计算步骤:•|7-10| = |-3| = 3•|3-8|+|5| = |-5|+5 = 0小结:通过以上计算练习,学生可以对含有绝对值的算式有一个简单的认识。
2. 判断两个数是否为相反数1.引入相反数的概念。
引导学生通过观察以下图示,介绍相反数的概念:image2.判断两个数是否为相反数。
在黑板上给出几组数字,让学生判断两个数是否为相反数,并让他们解释判断原因。
•4和-4•-2和3•0和0• 1.5和-1.53.实际运用引导学生想一想在日常生活中,哪些物品或现象中包含相反数的概念。
小结:学生通过以上练习,可以更清晰地认识相反数的概念和如何判断两个数是否为相反数。
3. 练习1.课堂练习。
让学生在练习册上完成P8-P10的各种练习题。
2.课后作业。
留给学生完成P10-P11的课后练习题。
五、教学反思通过本节课的教学,学生对绝对值和相反数的概念和计算方法有了一定的认识,但是学生的普及程度还需要加强。
相反数与绝对值
C、任何一个数都有它的相反数 D、数轴上原点两旁的两个点表示的数互为相反数
4.a.如果a=-13,那么-a=______;b.如果-a=-5.4,那么a=______;
c.如果-x=-6,那么x=______; d.-x=9,那么x=______.
用式子表示: =
注意:绝对值等于它本身的数是正数和0;绝对值等于它的相反数的数是负数和0,不要漏掉0。
【例5】求下列各数的绝对值:2,-5,-3.14,2 ,-3.5,0
【例6】(1)已知|x|=2015,则x=;
(2)已知|x|=|-3 |,则x=;
(3)已知|x-28|=0,则x=.
【变式1】化简下列各数
五、直通中考
[2011年宜宾市] 的值是()
A、 B、5 C、-5 D、
[2007年北京市]若 +(n-1)2=0则m+2n的值是()
A、-4 B、-1 C、0 D、4
3.到原点距离越远,绝对值越大,到原点距离越远,其绝对值越小;两个负数,绝对值大的反而小。
二、比较大小
方法一、在数轴上表示,右边点表示的数大于左边点表示的数。
方法二、用绝对值比较大小,正数都大于0,负数都小于0,两 ,-1_____-4 ;(2) ,-π____-3,
(3)若
(4)若
6、(1)若 (2)若
【例9】已知|m+2|+|n-3|=0,求m、n的值。
【变式1】(1)
(2) (3)
【变式2】若|m+n|=-(m+n),则()
A、m+n=0 B、m+n>0 C、m+n<0 D、m+n≤0
【例10】一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离为 单位长,则这个数是( )
初一数学相反数和绝对值
第二讲相反数和绝对值一、知识梳理1.相反数的概念2.相反数的表示方法以及性质判定3.有理数多重符号的化简4.绝对值的概念5.绝对值的性质6.利用绝对值比较大小二、课堂例题精讲与随堂演练知识点1:相反数的概念(1)只有符号不同的两个数叫做互为相反数,如-1999与1999互为相反数。
(2)从数轴上看,位于原点两旁,且与原点距离相等的两点所表示的两个数叫做互为相反数。
如5与-5是互为相反数。
(3)0的相反数是0。
也只有0的相反数是它的本身。
(4)相反数是表示两个数的相互关系,不能单独存在。
例1 5的相反数是( )A. -5B. 5C.D.例2 下列判断不正确的有()①互为相反数的两个数一定不相等;②互为相反数的数在数轴上的点一定在原点的两边;③所有的有理数都有相反数;④相反数是符号相反的两个点.A.1个B.2个C.3个D.4个【分析与解答】根据相反数的概念:只有符号不同的两个数叫做互为相反数,易知本【随堂演练】【A类】1.写出下列各数的相反数:526,8, 3.9,,,100,0211---【B类】2. -7的相反数的倒数是()知识点2:相反数的表示在一个数的前面添上“-”号就成为原数的相反数。
若表示一个有理数,则的相反数表示为-。
在一个数的前面添上“+”号仍与原数相同。
例如,+7=7,特别地,+0=0,-0=0。
若互为相反数,则,反之若,则互为相反数。
例3下面说法中正确的是()C .-a 的相反数是正数;D .两个表示相反意义的数是相反数.【分析与解答】 互为相反的数应是数字相同,符号不同的数.A 中的两个数是互为倒数,它们不是互为相反数,要注意区别相反数与倒数;B 中的两个数的符号不同,数字相同,81=0.125,所以它们是互为相反数;C 中的-a 不一定是负数,若a 是负数,则-a 是正数,正数的相反数是负数;D 中要注意区别相反数和相反意义的量,在数轴上互为相反数是在原点两旁,并且与原点距离相等的两个数,相反意义的量则不同,如向东行40米和向西行50米是相反意义的量,不是相反数.根据分析,A.C.D 均错,只有B 对, ∴选B【随堂演练】【A 类】3.填空【B 类】4.若4-=a ,则________=-a .若3.2+=a ,则_________=-a ;若1=-a ,则_____=a ;若2-=-a ,则_____=a ;如果a a =-,那么_____=a .知识点3:多重符号化简(1)相反数的意义是简化多重符号的依据。
相反数和绝对值
相反数和绝对值在数学中,相反数和绝对值是两个与数值相关的概念。
相反数是指对于一个数a,其相反数为-b,即两个数的和为0。
而绝对值则表示一个数离原点的距离,无论该数为正数还是负数,其绝对值都是非负数。
本文将详细介绍相反数和绝对值的概念、性质以及在数学运算和实际生活中的应用。
一、相反数的概念与性质相反数指的是两个数的和为0的一对数。
对于任意实数a,其相反数记作-a,即满足a + (-a) = 0。
相反数具有以下性质:1. 相反数的定义:对于任意实数a,其相反数为-a,即满足a + (-a)= 0。
2. 相反数的唯一性:每个实数都有唯一的相反数。
3. 相反数的性质:相反数的相反数仍为原数,即对于任意实数a,有-a的相反数为a,即-(-a) = a。
4. 相反数的加法性质:两个数的相反数相加等于0,即对于任意实数a,有a + (-a) = 0。
二、绝对值的概念与性质绝对值表示一个数与原点的距离,无论该数为正数或者负数,绝对值都是非负数。
对于任意实数a,其绝对值记作|a|,即|a| = a(当a≥0);|a| = -a(当a<0)。
绝对值具有以下性质:1. 非负性:绝对值永远是非负数。
2. 正数的绝对值:正数的绝对值等于该正数本身,即对于任意正数a,有|a| = a。
3. 负数的绝对值:负数的绝对值等于该负数的相反数,即对于任意负数a,有|a| = -a。
4. 零的绝对值:零的绝对值等于0,即|0| = 0。
5. 绝对值的不等式:对于任意实数a和正数b,如果|a| < b,则-a < b,并且a < b。
三、相反数和绝对值的应用1. 相反数和绝对值在数学运算中的应用:相反数和绝对值在数学运算中经常被使用,如在求解方程、不等式、绝对值函数等过程中。
2. 相反数和绝对值在几何中的应用:在几何中,相反数和绝对值可以用于表示向量的方向和大小,帮助解决几何问题。
3. 相反数和绝对值在实际生活中的应用:相反数和绝对值在实际生活中也有广泛的应用。
京改版七年级上册1.3相反数和绝对值说课稿
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
1.设计有趣的生活实例导入新课,让学生感受到数学与生活的紧密联系;
2.利用数轴游戏和小组竞赛,激发学生的学习兴趣,增强他们的参与感;
3.创设问题情境,引导学生自主探究,发现相反数和绝对值的性质;
4.及时给予学生反馈,鼓励他们表达自己的想法,培养他们的自信心;
2.探究式教学:鼓励学生自主探究、发现知识,培养他们的逻辑思维能力和问题解决能力。这一方法基于认知心理学,强调学习过程中的主体性和实践性。
3.分组合作学习:通过小组合作,促进学生之间的交流与合作,提高他们的团队意识和沟通能力。这种方法符合社会建构主义学习理论,强调学习者在社会互动中共同建构知识。
(二)媒体资源
1.在课前精心设计板书内容,避免冗余和复杂;
2.书写工整,使用不同颜色粉笔突出重点;
3.在课堂上适时更新板书,保持与教学进度同步。
(二)教学反思
在教学过程中,我预见到以下可能的问题或挑战:
1.学生对相反数和绝对值的概念理解不深入;
2.学生在解决问题时,可能难以灵活运用所学知识;
3.部分学生可能因为基础薄弱,学习兴趣不足。
(二)学习障碍
学生在学习本节课之前,已经掌握了有理数的基本概念和运算法则,这是学习相反数和绝对值的前置知识。然而,可能存在的学习障碍包括:
1.对相反数概念的理解不够深入,特别是对正负数相反数的理解;
2.对绝对值的概念和性质理解困难,难以将其与数轴上的距离联系起来;
3.在解决实际问题时,可能难以灵活运用相反数和绝对值的性质。
3.培养学生团结协作、共同探究的精神,提高学生的集体荣誉感。
(三)教学重难点
根据对学生的了解和教学内容的分析,本节课的教学重点和难点如下:
冀教版初中数学七年级上册1.3 绝对值和相反数 教案
1、知识及技能
(1)借助数轴,理解绝对值和相反数的概念。
(2)知道︱a︱的含义(这里a表示有理数)以及互为相反数的两个数在数轴上的位置关系。
(3)能求一个数的绝对值和相反数,会利用绝对值比较两个负数的大小。
(4)通过应用绝对值解决实际问题,体会绝对值的意义和作用
2、过程与方法
(1)经历运用数学符号描述相反数和绝对值概念的过程,发展抽象思维。经历从相反数到绝对值的学习过程,使学生感知数学知识具有普遍的联系性。
(1) |+0.5 |=_0.5_;
(2) |+2 |=_2_;
(3) |-2|=_2_;
(4) |-0.5|=_0.5__;
(5) | 0 |=_0__.
问题四:从上面的结果你能得到哪些结论?
(教师板书展示)
(1)正数的绝对值是它本身;
(2)负数的绝对值是它的相反数;
(3)0的绝对值是0.
(4)任何一个有理数的绝对值都是非负数
学生积极参与,动脑思考,展示结果。
鼓励学生通过画数轴表示,再利用定义求上面各数的绝对值。这个环节使学生在充分实践及思考的基础上,来理解绝对值的概念,使知识在活动的过程中达到层层深入,循序渐进的教育教学效果。
目的是使学生在已有结论的基础上,能够不同方面来考虑问题,从而获得新的结论
目的是让学生初步感受“分类讨论”思想在数学学习中的作用。
2、绝对值的性质:
正数的绝对值是它本身;
负数的绝对值是它的相反数:
0的绝对值是0
任何一个有理数的绝对值都是非负数
互为相反数的两个数的绝对值相等.
3、通过用字母a来表示上述的结论
(逐步渗透分类思想)
4、两个负数比较大小,绝对值大的值反而小
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
|4|=4
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6
说一说
利用数轴上点到原点的距离口答:
|5|= 5 |3.5|= 3.5 |-3|= 3 |-4.5|= 4.5 |0|= 0
-3 -4.5
0
5
0 3.5 0
0
01
典例精析
例1 (1)用数轴上的点表示下列各组数: ?3,-3;?5,-5;? 3 ,- 3 . 55
二 相反数
观察与思考
观察例1中的三组数在数轴上的位置和绝对值的大小, 想一想这三组数的共同特点是什么?
符号不同
| ? 3 |? 3 | ? 3 |? 3
绝对值相等
知识要点
像3和-3,5和-5这样,符号不同,绝对值相等的 两个数,我们称其中一个数是另一个数的相反数, 这两个数互为相反数.
0的相反数规定为0. 表示一个数的相反数时,可以在这个数的前面添
际意义是什么?
B
O
A-10010在数轴上,表示一个数的点到原点的距离叫 做这个数的绝对值,用“| |”表示.
-5到原点的距离是5, 所以-5的绝对值是5, 记作|-5|=5
0到原点的距离是0, 所以0的绝对值是0, 记作|0|=0
4到原点的距离是4,所以 4的绝对值是4,记作 |4|=4
|-5|=5
a是__正___数.
5. x 2
的相反数是_?__2x__,-3x的相反数是_3_x_.
6.判断并改错:
(1) 相反数等于它本身的数只有0; ﹙ ﹚
(2) 符号不同的两个数互为相反数;﹙ ﹚
(3)一个数的绝对值等于本身,则这个数一定是正数; ( )
典例精析
例2 化简下列各数: -(-11),-(+2),-(-3.75), ? (? 8 ) 13
解:因为-11的相反数是11,所以-(-11)= 11. 因为+2的相反数是-2,所以-(+2)= -2. 同理,-(-3.75)= +3.75. ? (? 8 ) ? ? 8 . 13 13
方法归纳
当堂练习
1.-1.6是_1_._6_的相反数,_-0_._3_的相反数是0.3.
2.下列几对数中互为相反数的一对为( C ).
A.? (? 8) 和 ? (? 8) B.? (? 8) 与? (? 8)
C.? (? 8) 与 ? (? 8)
3.5的相反数是__-5__;a的相反数是_-_a_;
4.若a是负数,则-a是_正____数;若-a是负数,则
加一个“-”,因此,数a的相反数可以表示为-a,这
里a表示任意一个数,即它可以是正数、负数或者0.
想一想
1.如果a 表示有理数,那么a的相反数是-a ,-a一定
是负数吗?
解:不一定,可以是正数、负数,也可以是0.
2.数轴上表示相反数的两个点和原点有什么关系? ?表示互为相反数的两个数的点在数轴上分别位于原点的两 侧(0除外); ?表示互为相反数的两个数的点与原点的距离相等.
1.3 绝对值与相反数
学习目标
1.理解绝对值的定义,会求一个有理数的绝对值;(重点) 2.理解相反数的定义,会求一个有理数的相反数;(重点) 3.掌握绝对值的性质.(难点、重点)
画一条数轴,并在数轴上标出表示下 列各数的点:
1, -2, -3.5, 2.5, 0.
导入新课
情境引入
-3 -2 -1 0 1 2 3 4
(2) 观察表示上述各组数的点在数轴上的位置,写出
这些数的绝对值.
解:(1)如下图:
?5
?3
?3
3
5
5
3
5
-5 -4 -3 -2 -1 0 1 2 3 4 5
(2)观察各点在数轴上的位置,得到
?|3|=3,|-3|=3;?|5|=5,|-5|=5;?| 3 |? 3 ,| ? 3 |? 3 . 55 55
练一练
1.填空 (1)绝对值等于0的数是__0_, (2)绝对值等于5.25的正数是_5_._2_5_, (3)绝对值等于5.25的负数是_-_5_._2_5_, (4)绝对值等于2的数是__2_或__-2__.
2.判断下列说法是否正确. (1)一个数的绝对值是4 ,则这数是-4. × (2)|3|>0. √ (3)|-1.3|>0. √ (4)有理数的绝对值一定是正数. × (5)若a=-b,则|a|=|b|. √ (6)若|a|=|b|,则a=b. × (7)若|a|=-a,则a必为负数. × (8)互为相反数的两个数的绝对值相等. √
讲授新课
一 绝对值的意义
合作探究
甲、乙两辆出租车在一条东西走向的街道上行驶,记向
东行驶的里程数为正.两辆出租车都从O地出发,甲车向东行
驶10km到达A处,记作 +10 km,乙车向西行驶10km到达B处,
记做 -10 km.
以O为原点,取适当的单位长度画数轴,并在数轴上标出
A、B的位置,则A、B两点与原点距离分别是多少?它们的实
对于数字前面含有多个符号的数的化简,只要观察“-” 号的个数即可.如果有奇数个“-”号,结果的符号就 是“-”号;如果有偶数个“-”号,结果的符号就是 “+”号.
三 绝对值的性质
观察与思考
|5|=5
|3.5|= 3.5
|-3|=3
|-4.5|=4.5
|0|=0
…
|-10|=10 |-3.5|=3.5 |50|=50 |+4.5|=4.5
互为相反数的两个 数的绝对值相等.
例4 若|a|+|b|=0,求a,b的值. 解析:由绝对值的性质可得|a|≥0,|b|≥0. 解:由题意得|a|≥0,|b|≥0,又因为|a|+|b|=0, 所以|a|=0,|b|=0,所以a=0,b=0.
方法归纳:如果几个非负数的和为0,那么这几个非 负数都等于0.
思考: 一个正数的绝对值是什么? 一个负数的绝对值是什么? 0的绝对值是什么?
结论
一个正数的绝对值是它本身.
一个负数的绝对值是它的相反数. 0 的绝对值是0.
一般地,如果a表示一个有理数,则
(1)当a是正数时,| a |= a ;
(2)当a是负数时,| a |= - a ;
(3)当a=0时,| a |= 0
.
|a|≥0
典例精析
例3 求下列各数的绝对值:
? 3 , 3 , -2.5,+2.5 88
[解析] 判断该数的符号,再根据正数的绝对值是它本身;
负数的绝对值是它的相反数;0的绝对值是0,即可求
解. 解:| ? 3 |? 3 ,| ?2.5 |? 2.5, 88
| 3 |? 3 ,| 2.5 |? 2.5 88