七年级数学上册 1.5《有理数的乘方》教案(2) (新版)新人教版
七年级数学上册 (有理数乘方)教学设计 人教新课标版 教案
初中数学《有理数乘方》教学设计一、指导思想:根据《新课标》要求,联系实际使学生明确乘方的意义及表示方法.会根据定义进行有理数的乘方运算.引导学生用数学的眼光观察分析生活中的实际问题.培养学生通过类比、联想、归纳,加强对乘方意义的理解,发展学生的思维能力.二、教学分析1.教学内容分析有理数的乘方是初中七年级上学期第一章第五节的教学内容,是有理数的一种基本运算,从教材编排的结构上看,共需要4个课时,此课为第一课时,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后继学习有理数的混合运算、科学记数法、整式乘方以及开方的基础,起到承前启后、铺路架桥的作用.在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用.完成本课的教学,需要1课时的时间,教学时以学生自己为主,教师起组织、引导作用.2.教学方法分析本节课的教学是以学生为主体,教师为主导.通过创造情境,通过动手操作调动学生学习积极性,让学生在课堂上多活动,多观察、主动参与到整个教学的全过程,通过自己的努力,发现规律,总结出法则.它符合教学论中的自觉性和积极性.并有利于培养学生勇于探索新知的创新精神.3.学情分析初中七年级的学生,已具备了进行有理数的加减乘除四则运算的能力,对于一个具体的数,能用身边熟悉的、具体的事物来描述刻画它的大小.我主要通过一张纸对折20次后有多高来加深学生对乘方意义的理解,从而进行一些较为复杂的乘方运算.在这样的情景中,学生的许多个人知识和直接经验都能用的上,不同的学生会从中获得不同的心得.因此以这种内容设置作为培养学生数感的载体,恰当且顺应了中学生身心发展的需要.研究表明,这个阶段的学生还以抽象逻辑思维为主要发展趋势,他们的思维仍属于经验性的逻辑思维,很大程度上仍需依赖具体形象的经验材料来理解抽象的逻辑关系,故本节课老师在第一环节尽力通过学生的切身感受和体验发展他们的数感,提倡“做中学”,引导学生先进行猜想,再动手操作,后探索规律,再思考验证,帮助学生发展抽象思维能力.同时据初中七年级学生好动、好问、好奇的心理特征,课堂上创设情境,让每个学生都动口、动脑、动手,积极思考,参与讨论,自己归纳出运算法则.学会自主探究、合作交流的学习方式,在合作交流中培养学生学习的积极性和主动性,使学习方式由“学会”变为“会学”,培养学生良好的学习品质.4 教学环境分析学习地点:多媒体教室硬件条件:投影机和投影屏幕,教师用机1台软件条件:Windows XP系统,microsoft office,math3.0新课标、新理念要求学生充分发挥自身的主体性,通过实际操作,亲身体验得到新知.而多媒体教学具有信息容量大、直观、鲜明、省时等特点,恰好符合我想通过精讲多练让学生牢固掌握本节知识的要求,故做成幻灯片进行本节课的教学. 将实际问题直观化,以图片的形式展示出来,便于理解三、设计理念:1、数学教学的重要目的是发展智力,提高能力,而发展智力、提高能力的核心是发展学生的思维能力,教学中既要注重逻辑推理能力的培养,又要注重观察、归纳以及合情推理能力的培养,因此,根据教学内容和学生的认知水平,我们再一次把培养学生的观察、归纳、推理等能力列入了教学目标.2、学生是学习的“主人”,教学应以学生为中心.从学生已有的生活经验出发,创设有助于学生自主学习的的情境,让学生在老师的指导下主动地学习.学生必须通过自己的探索才能学会数学和会学数学,本人认为学习数学,不如说体验数学,始终给学生以创造发挥的机会,让学生自己在学习中扮演主动角色,教师不代替学生思考,把重点放在教学情境的设计上.3、把学生做巩固性练习和总结运算规律放在一起进行,其效果就远远超出了巩固性练习的初衷.四、教学目标1教学目标(1)知识技能:理解乘方的意义,理解底数、指数、幂的意义及相互关系,会进行有理数的乘方运算,会用计算器求有理数乘方.(2) 数学思考:培养学生通过类比、联想、归纳,加强对乘方意义的理解,发展学生的思维能力.使学生初步具备类比,特殊到一般,化归及分类讨论的数学思想,并培养学生的逆向思维.(3)解决问题:会进行简单的有理数乘方运算和解答简单的实际问题。
七年级数学《有理数的乘方-复习课》教案
3、例3是在有理数的混合运算顺序给给出后,教师引导学生尝试计算,循序渐进,推进对有理数混合运算的学习。
4、例4的学习,一是进一步培养学生的计算能力,在计算能力的基础上进一步提高,二是培养学生的探究能力,激发他们的学习欲望。
0,6,-6,18,-30,66,…;
-1,2,-4,8,-16,32,…;
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和。
【教师活动】
1、口述问题1,学生口答,课件演示六种运算及结果一览表。
2、课件出示一组温故知新题目,组织学生口答结果,关注学生表现适时点拨。
学情分析
教学对象是七年级学生,在学习本节前,已经掌握了有理数的加减法、乘除法和乘方。能正确运用法则进行有理数加、减、乘、除、乘方运算,积累了一定的运算经验,对理解有理数混合运算的运算顺序难度不大。难点是运算中符号的确定。
知识分析
本节学习有理数混合运算,重点是正确运用运算顺序进行混合运算。使学生认识到小学学习的运算律同样适用于有理数运算。
【教师活动】
引导学生自主小结的基础上,进行概括小结,教师应关注学生的表现,包括知识掌握情况、情绪状况等。
【学生活动】
按要求,进行自主小结,注意倾听同伴意见,反思梳整存在问题。
加强教学反思,帮助学生使所学知识条理化、系统化;让学生在交流中共享,在反思中提升。
活动五推荐作业,延展新知
必做题:阅读课本43页内容、习题1.5第3题
【学生活动】
1、口答问题1、2
2、先观察式子确定运算顺序尝试计算再积极思考混合运算顺序,在小组和同伴交流,发表见解。
人教版七年级数学上册教案 1.5 有理数的乘方(3课时)
1.5有理数的乘方1.5.1乘方(第1课时)一、基本目标【知识与技能】1.理解有理数乘方的意义,能正确区分幂的底数与指数.2.能进行有理数的乘方运算,并能进行有理数的混合运算.【情感态度与价值观】培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.二、重难点目标【教学重点】乘方的意义,利用乘方运算法则进行有理数乘方运算.【教学难点】理解一个负数的奇次幂和偶次幂的符号,有理数混合运算的顺序.环节1自学提纲,生成问题【5 min阅读】阅读教材P41~P44的内容,完成下面练习.【3 min反馈】(一)乘方1.求n个相同因数的积的运算叫乘方,乘方的结果叫做幂.2.在式子a n(n为正整数)中,a叫底数,n叫指数,a n叫幂.读作a的n次方或a的n 次幂.3.在94中,底数是9,指数是4,读作9的4次方,或9的4次幂.一个数可以看作这个数本身的一次方,例如5就是5的一次方.指数1通常省略不写.4.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何正整数次幂都是0.5.计算:(1)(-3)4;(2)-34;(3)⎝⎛⎭⎫-233; (5)(-1)2018. 解:(1)原式=81. (2)原式=-81. (3)原式=-827. (4)原式=1. (二)有理数的混合运算做有理数的混合运算时,先乘方,再乘除,最后加减;同级运算,从左到右进行;如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.环节2 合作探究,解决问题活动1 小组讨论(师生互学)【例1】计算:(1)(-2)100+(-2)101;(2)(-0.25)2017×42018.【互动探索】(引发学生思考)观察算式的特点,利用乘方的意义进行简算.【解答】(1)原式=(-2)100+(-2)×(-2)100=(1-2)×(-2)100=(-1)×2100=-2100.(2)原式=(-0.25)2017×4×42018=(-0.25×4)2017×4=(-1)2017×4=(-1)×4=-4.【互动总结】(学生总结,老师点评)灵活运用乘方的定义的逆应用,把底数相同的幂转化成指数也相同后,再逆应用运算律解答问题.【例2】计算:(1)-14+|3-5|-16÷(-2)×12; (2)6×⎝⎛⎭⎫13-12-32÷(-12). 【互动探索】(引发学生思考)利用有理数的混合运算顺序进行计算.【解答】(1)原式=-1+2-16×⎝⎛⎭⎫-12×12=-1+2+4=5.(2)原式=6×13-6×12-9×⎝⎛⎭⎫-112 =2-3+34=-14. 【互动总结】(学生总结,老师点评)计算有理数的混合运算,正确掌握运算法则是解题关键.活动2 巩固练习(学生独学)1.一根长1 m 的绳子,第一次剪去一半,第二次剪去剩下的一半,如此剪下去,第六次剪后剩下的绳子长度为( C )A.⎝⎛⎭⎫123 mB .⎝⎛⎭⎫125 m C.⎝⎛⎭⎫126 mD .⎝⎛⎭⎫1212 m2.计算:(1)⎝⎛⎭⎫-172; (2)-1.52;(3)8+(-3)2×(-2);(4)-14-16×[2-(-3)2]; (5)-33+(-1)2018÷16+(-5)2; (6)(-0.125)2016×82018.解:(1)原式=149. (2)原式=-2.25. (3)原式=-10. (4)原式=16. (5)原式=4. (6)原式=64.活动3 拓展延伸(学生对学)【例3】阅读下列材料:求1+2+22+23+...+22017的值,可令S =1+2+22+23+...+22017,则2S =2+22+23+24+ (22018)所以2S -S =22018-1,故S =22018-1.仿照以上推理,求1+5+52+53+…+52017的值.【互动探索】根据题目提供的信息,设S =1+5+52+53+…+52017,用5S -S 整理即可得解.【解答】设S =1+5+52+53+ (52017)则5S =5+52+53+54+ (52018)所以5S -S =52018-1,故S =52018-14. 【互动总结】(学生总结,老师点评)本题考查了乘方,读懂题目提供的信息,是解题的关键,注意整体思想的利用.环节3 课堂小结,当堂达标(学生总结,老师点评)有理数的乘方⎩⎪⎨⎪⎧ 乘方的定义负数的奇、偶次幂有理数的混合运算请完成本课时对应练习!1.5.2 科学记数法(第2课时)一、基本目标【知识与技能】理解科学记数法的意义和特征,能够用科学记数法表示大数.【过程与方法】通过收集一些大数,让学生感受大数的普遍存在以及数学与现实的联系,同时增强活动性和趣味性.【情感态度与价值观】正确使用科学记数法表示数,表现出一丝不苟的精神.二、重难点目标【教学重点】会用科学记数法表示大数.【教学难点】掌握10n的特征以及科学记数法中n与数位的关系.环节1自学提纲,生成问题【5 min阅读】阅读教材P44~P45的内容,完成下面练习.【3 min反馈】1.把下面各数写成幂的形式.(1)100=102;(2)1000=103;(3)10000=104;(4)100000=105.2.一个大于10的数都可以表示成a×10n的形式,其中a的取值范围是大于等于1且小于10的数,n是正整数,用这种方法表示数叫做科学记数法.3.用科学记数法表示数时,整数的位数与10的指数的关系是整数位数-1=指数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】用科学记数法表示下列各数:(1)24 800 000;(2)-5 764.3;(3)361万.【互动探索】(引发学生思考)科学记数法中的n怎样确定?【解答】(1)24 800 000=2.48×107.(2)-5 764.3=-5.7643×103.(3)361万=3 610 000=3.61×106.【互动总结】(学生总结,老师点评)对于一个绝对值大于10的有理数,用科学记数法表示时,a是原数的小数点向左移动后的结果,n是比原数整数位数少1的正整数.【例2】将下列用科学记数法表示的数还原成原数.(1)1.2×105;(2)2.3×107;(3)3.6×108;(4)-4.2×106.【互动探索】(引发学生思考)将用科学记数法表示的数还原成原数怎样确定位数?【解答】(1)1.2×105=120 000.(2)2.3×107=23 000 000.(3)3.6×108=360 000 000.(4)-4.2×106=-4 200 000.【互动总结】(学生总结,老师点评)把用科学记数法表示的绝对值大于10的有理数化成原数时,只需把小数点向右移动n位即可,不足的用零补充.活动2巩固练习(学生独学)1.2017年,山西省接待入境游客95.71万人次,实现海外旅游创汇3.5亿美元,同比增长分别为6.38%、10.32%;累计接待国内游客5.6亿人次,实现国内旅游收入5338.61亿元,同比增长分别为26.49%、26.27%.实现旅游总收入约5360亿元,同比增长26.21%.数据5360亿元用科学记数法可表示为(B)A.0.536×1012元B.5.36×1011元C.53.6×1010元D.536×109元2.用科学记数法表示出下列各数.(1)30 060;(2)15 400 000;(3)123 000.解:(1)3.006×104.(2)1.54×107.(3)1.23×105.3.已知下列用科学记数法表示的数,写出原来的数:(1)2.01×104;(2)6.070×105;(3)-3×103.解:(1)20 100.(2)607 000.(3)-3000.活动3拓展延伸(学生对学)【例3】比较下列两个数的大小.(1)-3.65×105与-1.02×106;(2)1.45×102017与9.8×102018.【互动探索】根据有理数的大小比较方法对比比较用科学记数法表示的数的方法.【解答】(1)|-3.65×105|=3.65×105,|-1.02×106|=1.02×106.因为1.02×106>3.65×105,所以-3.65×105>-1.02×106.(2)因为9.8×102018=98×102017,98>1.45,所以1.45×102017<9.8×102018.【互动总结】(学生总结,老师点评)比较用科学记数法表示的数时,利用乘方的意义,把10的指数转化成相同的,然后比较a 的大小,若a 大,则原数就大;若a 小,则原数就小.环节3 课堂小结,当堂达标(学生总结,老师点评)科学记数法⎩⎪⎨⎪⎧ 用科学记数法表示数还原用科学记数法表示的数比较用科学记数法表示的数请完成本课时对应练习!1.5.3 近似数(第3课时)一、基本目标【知识与技能】了解近似数的概念,能按要求取近似数.【过程与方法】在认识、理解近似数的过程中感受大数目近似数的使用价值,增强学生的应用意识,提高应用能力.二、重难点目标【教学重点】近似数、精确度和有效数字的意义.【教学难点】由给出的近似数求其精确度及有效数字,按给定的精确度或有效数求一个数的近似数.环节1自学提纲,生成问题【5 min阅读】阅读教材P45~P46的内容,完成下面练习.【3 min反馈】1.在现实生活与生产实践中,能准确地表示一些量的数,称为准确数;近似数是与实际的准确数非常接近的数.2.下列各个数据中,哪些数是准确数?哪些数是近似数?(1)小琳称得体重为38千克;(2)现在的气温是-2 ℃;(3)1 m等于100 cm;(4)教窒里有50张课桌;(5)由于我国人口众多,人均森林面积只有0.128公顷.解:(1)小琳称得体重为38千克,是近似数.(2)现在的气温是-2 ℃,是近似数.(3)1 m等于100 cm,是准确数.(4)教室里有50张课桌,是准确数.(5)由于我国人口众多,人均森林面积只有0.128公顷,是近似数.环节2合作探究,解决问题活动1小组讨论(师生互学)【例1】按照括号内的要求,用四舍五入法对下列各数取近似数:(1)0.0238(精确到0.001);(2)2.605(精确到0.1);(3)20 543(精确到百位).【互动探索】(引发学生思考)什么是精确度?怎样求一个数的近似数?【解答】(1)0.0238(精确到0.001)≈0.024.(2)2.605(精确到0.1)≈2.6.(3)20 543(精确到百位)≈2.05×104.【互动总结】(学生总结,老师点评)近似数一般是由四舍五入得到的,当用四舍五入法取近似值时,近似数的末位数字0不能省略.活动2 巩固练习(学生独学)1.下列说法正确的是( C )A .近似数32与32.0的精确度相同B .近似数5万与近似数5000的精确度相同C .近似数0.0108有3个有效数字2.近似数1.02×105精确到了千位.3.把489 960按四舍五入法保留三个有效数字是4.90×105.4.用四舍五入法,对下列各数按括号中的要求取近似数:(1)0.6328(精确到0.01);(2)7.9122(精确到个位);(3)130.96(精确到十分位);(4)46 021(精确到百位).解:(1)0.63. (2)8.(3)131.0. (4)4.60×104.活动3 拓展延伸(学生对学)【例2】已知有理数x 的近似值是5.40,则x 的取值范围是________.【互动探索】如果近似值5.40是“四舍”得到的,那么原数x 最大是5.4+0.004=5.404;如果近似值5.40是“五入”得到的,那么原数x 最小是5.40-0.005=5.395.原数x 的取值范围是5.395<x <5.404.【答案】5.395<x <5.404【互动总结】(学生总结,老师点评)本题考查了准确值的取值范围,如果近似值是“四舍”得到的,那么原数最大;如果近似值是“五入”得到的,那么原数最小.环节3 课堂小结,当堂达标(学生总结,老师点评)近似数⎩⎪⎨⎪⎧ 求一个数的近似数精确度、有效数已知近似数求原数请完成本课时对应练习!。
七年级上册数学人教版教案《乘方》
1.5 有理数的乘方1.5.1 乘方第1课时乘方的概念及性质一、教学目标1.理解有理数乘方的意义.2.理解乘方、幂、底数等概念.3.有理数乘方的运算及幂的符号法则.二、教学重难点重点理解有理数乘方的意义,会进行有理数乘方的运算.难点有理数乘方的运算及幂的符号法则.重难点解读1.有理数的乘方,是求几个相同因数的积的运算,所以乘方是特殊的有理数的乘法运算,因而乘方结果的符号与有理数乘法中积的符号的确定方法是一样的.2.在乘方运算时,底数是负数或分数,要先用括号将底数括上,再在其右上角写上指数.负号在括号内,参与乘方的运算,负号在括号外,不参与乘方的运算,先保留,到最后再化简.3.有理数乘方的运算:(1)正数的任何次幂都是正数;(2)负数的偶次幂是正数,负数的奇次幂是负数;(3)0的任何正整数次幂都是0;(4)1的任何次幂都是1,-1的偶次幂是1,奇次幂是-1.三、教学过程活动1 旧知回顾1.回顾有理数的乘法法则.2.算式(-2.5)×0.37×1.25×(-4)×(-8)的值为.活动2 探究新知1.教材第41页内容.提出问题:(1)2个2相乘记作22,3个2相乘记作23,n 个2相乘记作多少?(2)引入负数后,4个-2相乘记作多少?-24和(-2)4一样吗?为什么?(3)求n 个相同因数的积的运算,叫做什么?它们的结果又叫做什么?(4)在a n 中,a 和n 分别叫做什么?2.教材第42页 思考.活动3 知识归纳1.一般地,n 个相同的因数a 相乘,即n a aa ⋅⋅个,记作 a n .在a n 中,a 叫做 底数 ,n 叫做 指数 .求n 个相同因数的积的运算,叫做 乘方 ,乘方的结果叫做 幂 .注意:乘方和幂的区别2.负数的奇次幂是 负 数,负数的偶次幂是 正 数;正数的任何次幂都是 正 数,0的任何正整数次幂都是 0 .活动4 典例赏析及练习例1 将下列各式写成乘方(即幂)的形式:(1)(-5)×(-5)×(-5)×(-5)×(-5)= (-5)5 ;(2)(-14)×(-14)×(-14)×(-14)= (14)4. 例2 (-3)4表示( B )A .-3个4相乘B .4个-3相乘C .3个4相乘D .4个3相乘例3 计算:(1)(-2)5;(2)(-0.4)4;(-75)3. 【答案】(-2)5=(-2)×(-2)×(-2)×(-2)×(-2)=-32.(2)(-0.4)4=(-0.4)×(-0.4)×(-0.4)×(-0.4)=0.025 6.(3)(-75)3=(-75)×(-75)×(-75)=-343125. 例4 用计算器计算下列各式:(1)(-11)5= -161 051 ;(2)(-9)6= 531 441 .练习:1.下列运算正确的是( B )A .-24=16B .-(-2)2=-4C .(-31)2=-91D .-(-21)2=-41 2.下列各组数:-52和(-5)2;(-3)3和-33;-(-2)3和-23;323和(32)3;02 022和 02 021;(-1)2n 和(-1)2 020,其中相等的有( B )A .2组B .3组C .4组D .5组3.35 cm 比较接近于( D )A .珠穆朗玛峰的高度B .三层楼的高度C .姚明的身高(2.26 m )D .一张纸的厚度活动5 课堂小结1.求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n 中,a 叫做底数,n 叫做指数.当把a n 看作a 的n 次方的结果时,也可读作“a 的n 次幂”.2.负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数;0的任何正整数次幂都是0.四、作业布置与教学反思第2课时 有理数的混合运算一、教学目标1.确定有理数混合运算的顺序.2.熟练地进行有理数的混合运算.二、教学重难点重点有理数的混合运算顺序的确定和符号的处理.难点利用运算律进行有理数的混合运算.重难点解读1.进行有理数的混合运算,应注意运算顺序:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.括号内的运算同样按上述运算顺序进行.算式中有带分数,一般把带分数化为假分数,算式中有小数的,把小数化为分数.2.在进行有理数的混合运算时,若能利用运算律,就利用运算律计算.三、教学过程活动1 旧知回顾1.回顾有理数的加减乘除混合运算的顺序和乘方的相关概念.2.计算:(1)|-512|÷(13-12)×(-111);(2)(-2)3,(-12)3,(-13)3. 活动2 探究新知 观察3+50÷22×(15)-1. 提出问题:(1)式子中有哪几种运算?(2)如何计算这个式子?它的运算顺序是什么?(3)计算过程中,可以运用运算律吗?活动3 知识归纳有理数的混合运算顺序:(1)先 乘方 ,再 乘除 ,最后 加减 ;(2)同级运算,从 左 到 右 进行;(3)如有括号,先做括号内的运算,按 小 括号、 中 括号、 大 括号依次进行.活动4 典例赏析及练习例1 (1)-14-61×[2-(-3)2];(2)(-3)2-(211)3×92-6÷|-32|. 【答案】解:(1)原式=-1-61×(2-9)=-1-61×(-7)=-1+67=61. (2)原式=9-827×92-6÷32=9-43-6×23=9-43-9=-43.例2观察下列等式:1×5+4=32,2×6+4=42,3×7+4=52,4×8+4=62.请你在观察后用你得出的规律填空:(1)48×52+4= 502;(2)n×(n+4)+4= (n+2)2(n为正整数).练习:1.下列计算中:①74-22÷70=70÷70=1;②2×32=(2×3)2=62=36;③-6÷(2×3)=-6÷2×3=-3×3=-9;④223-(-2)×(14-12)=49-(12-1)=49+12=1718.错误的有( D )A.1个B.2个C.3个D.4个2.按一定规律排列的一列数依次为:2,3,10,15,26,35,…,按此规律排列下去,则这列数中第100个数是( A )A.9 999 B.10 000 C.10 001 D.10 002 3.x,y是有理数,且满足|x-1|=0,|y+3|=0,求x2-3xy+2y2的值.解:因为x,y是有理数,且满足|x-1|=0,|y+3|=0,所以x=1,y=-3.x2-3xy+2y2=12-3×1×(-3)+2×(-3)2=1+9+18=28.活动5 课堂小结1.有理数混合运算的顺序.2.有理数的混合运算.四、作业布置与教学反思。
人教版七年级数学上册教案《1.5.1乘方》第二课时(人教)
《1.5.1乘方》第二课时有理数的乘方是初一年级上学期第一章第五节的教学内容,是有理数的一种基本运算,从教材编排的结构上看,共需要4个课时,此课为第二课时,是在学生学习了有理数的加、减、乘、除以及乘方运算的基础上来学习的,。
在这一课的教学过程中,可以培养学生观察问题、分析问题和解决问题的能力,以及转化的数学思想,通过这一课的学习,对培养学生的这些能力和转化的数学思想起到很重要的作用。
【知识与能力目标】掌握有理数混合运算的顺序,能正确地进行有理数的加、减、乘、除、乘方的混合运算。
【过程与方法目标】通过例题学习,发展学生观察、归纳、猜想、推理等能力。
【情感态度价值观目标】体验获得成功的感受、增加学习自信心。
【教学重点】能正确地进行有理数的加、减、乘、除、乘方的混合运算。
【教学难点】灵活应用运算律,使计算简单、准确,明确题目中各个符号的意义,正确运用运算法则。
收集相关文本资料,相关图片,相关动画等碎片化资源。
一、复习引入1、我们已经学习了哪几种有理数的运算?2、有理数的乘方法则是什么?(朗读)3、练习:(1)23中底数是 ,指数是 ,幂是 。
(2) 中底数是 ,指数是 ,幂是 。
(3)(-5)4中底数是 ,指数是 ,幂是___。
2、计算:(-5)4 -54 43 -(-2)3 2)54( 二、探索新知在2 +32×6这个式子中,包含 种运算,它可以读作2加上这个算式里,按怎样的顺序进行运算?有理数的混合运算,应按以下运算顺序进行:1、先乘方,再乘除,最后加减;2、同级运算,从左往右进行;3、如果有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。
例如式子: 3+50÷22×(-15)-1 =3+50÷4×(-15)-1 =3+50×14×(-15)-1 =3-52-1 =-12 例3:计算:(1)2×(-3)3-4×(-3)+15; 243((2)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2)。
1.5.2有理数的乘方(教案)-人教版七年级数学上册
举例:计算一个正方体的体积,V = a^3(a为正方体的边长)。
2.教学难点
(1)负整数乘方的计算:学生容易混淆负整数乘方的计算方法,需要重点讲解和练习。
难点举例:(-2)^2 = 4,而(-2)^3 = -8。
我尝试用生活中的实例来引导学生理解乘方的实际意义,比如通过折叠纸张来体验指数增长的速度。这个方法似乎很有效,学生们对这些直观的例子表现出浓厚的兴趣,这有助于他们更好地理解乘方的概念。
在小组讨论环节,我注意到学生们积极参与,相互交流想法。他们能够在讨论中提出一些很有见地的问题和观点,这说明学生们已经开始了主动探索和思考的过程。然而,我也观察到有些小组在讨论时可能会偏题,这时我及时介入,引导他们回到主题上来。
(2)乘方性质的掌握:学生难以理解负数乘方的性质,如负数的偶数次方为正数,奇数次方为负数。
难点举例:解释为什么(-2)^2 = 4,而(-2)^3 = -8。
(3)乘方在实际问题中的应用:学生可能不知道如何在实际问题中运用乘方知识,需要通过实例讲解。
难点举例:计算一个边长为2米的正方体的体积,V = 2^3 = 8立方米。
1.5.2有理数的乘方(教案)-人教版七年级数学上册
一、教学内容
本节课选自人教版七年级数学上册第1章《有理数》的1.5.2节,主要内容包括有理数的乘方概念、乘方运算的法则以及乘方在实际问题中的应用。具体教学内容如下:
1.理解有理数的乘方,掌握正整数、零、负整数的乘方运算;
2.掌握乘方的性质,如:负数的偶数次方为正数,负数的奇数次方为负数;
实践活动是课堂中的一个亮点,通过动手操作和实际计算,学生们对乘方的应用有了更深刻的体会。但是,我也发现一些学生在操作过程中遇到了困难,这提示我在未来的课堂中应该提供更多的一对一帮助,确保每个学生都能跟上进度。
1.5 有理数的混合运算2(加减乘除乘方)学案2022-2023学年七年级数学人教版上册
1.5 有理数的混合运算2(加减乘除乘方)学案学案背景本学案是为了帮助七年级学生巩固和提高有理数的混合运算能力而设计的。
通过加减乘除和乘方的混合运算练习,学生将能够更好地理解和应用有理数的概念和运算规则。
学习目标1.能够熟练进行有理数的加减乘除和乘方运算;2.能够正确应用运算法则解决实际问题;3.能够灵活运用有理数的混合运算进行解题。
学习重点1.有理数的混合运算法则及应用;2.复杂问题的变量分析和求解过程。
学习内容本学案内容主要包括以下几个部分:一、复习与导入(10分钟)通过简单的问题复习上节课所学的有理数加减乘除运算,引出本节课的学习内容。
二、知识点讲解(20分钟)1.有理数的乘方运算法则;2.有理数的混合运算规则;3.实际问题的建模和解决。
三、例题演练(30分钟)通过几个例题的演练,帮助学生掌握有理数的混合运算方法。
四、综合应用(30分钟)设计一些综合应用题,让学生灵活运用有理数的混合运算求解实际问题。
五、小结与作业布置(10分钟)对本节课所学内容进行小结,并布置相应的作业,巩固所学知识。
学习方法与策略1.理解运算规则:掌握有理数的各种运算法则,注重操作过程的理解和记忆。
2.进行变量分析:对于复杂问题,先进行变量的定义和分析,再根据情境和条件构建数学模型。
学习延伸1.阅读教材相关章节,对比书本上的例题和练习题,加深理解;2.利用在线学习资源,进行相关的习题练习和巩固训练;3.创设实际情境,设计有理数混合运算的问题,培养学生应用所学知识解决实际问题的能力。
学习评价1.参与课堂讨论和演练的积极性;2.完成课堂练习的准确性;3.解决实际问题的能力。
学习过程中,老师将通过观察学生的学习情况、听取学生的回答、检查学生的练习结果等方式来进行评价。
同时,鼓励学生互相讨论和合作,相互学习,共同进步。
以上是本学案的设计内容,希望能帮助学生们更好地掌握有理数的混合运算方法。
学生们在学习过程中,应该充分发挥自己的主动性和创造性,积极思考和探索,提高数学思维和解决问题的能力。
最新人教版初中七年级上册数学《有理数的乘方》教案
1.5 有理数的乘方1.5.1 乘方第1课时有理数的乘方【知识与技能】正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【过程与方法】1.通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.2.已知一个数,会求出它的正整数指数幂,渗透转化思想.【情感态度】培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.【教学重点】正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.【教学难点】准确建立底数、指数和幂三个概念,并能求幂的运算.一、情境导入,初步认识提问并引导学生回答:在小学里我们学过一个数的平方和立方是如何定义的?怎样表示?a·a记作a2,读作a的平方(或a的2次方),即a2=a·a;a·a·a记作a3,读作a 的立方(或a的3次方),即a3=a·a·a.(分别是边长为a的正方形的面积与棱长为a 的正方体的体积)(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1个小时后分裂成2×2个,1.5小时后分裂成2×2×2个,……,5小时后要分裂10次,分裂成1024个.为了简便可将记作210.二、思考探究,获取新知一般地,n个相同的因数a相乘,即a·a·……·a,记作a n,读作a的n次方.求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫做底数,n叫做指数,当a n看作a的n次方的结果时,也可读作a的n次幂.【教学说明】(1)举例56说明概念及读法;(2)一个数可以看作这个数本身的一次方,通常省略指数1不写;(3)因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算;(4)乘方是一种运算,幂是乘方运算的结果.试一试(1)(-4)3;(2)(-2)4;(3)-24.【教学说明】教师教学时应强调:(1)计算时仍然是要先确定符号,再确定绝对值;(2)注意(-2)4与-24的区别.【归纳结论】根据有理数的乘法法则得出有理数乘方的符号规律:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何次幂都是正数,0的任何次幂都是0.三、典例精析,掌握新知例1 计算:【教学说明】注意观察,分清符号、底数以及指数.试一试教材第42~43页练习第1、2题.例2用计算器计算.(-8)5和(-3)6(教材第42页例2)【教学说明】教师让学生用计算器计算上面的题,注意让学生知道算乘方时的按键为∧.试一试教材第42~43页练习第3题.四、运用新知,深化理解1.在(-2)6中,指数为______,底数为______.2.在-26中,指数为______,底数为_______.3.若a 2=16,则a=______.4.平方等于本身的数为______,立方等于本身的数为______.5.计算(-151)×461=________. 6.在(-2)5,(-3)5,(-21)5,(-31)5中,最大的数是_______. 7.下列说法正确的是( )A.平方得9的数是3B.平方得-9的数是-3C.一个数的平方只能是正数D.一个数的平方不能是负数8.下列运算正确的是( )A.-24=16B.-(-2)+=-4C. (-31)2=-91 D.(- 21)2=-41 9.下列各组数中,不相等的是( )A.(-3)2与-32B.(-3)2与32C.(-2)3与-23D.丨-23丨与丨-23丨10.下列各式计算不正确的是( )A.(-1)2013=-1B.-12012=1C.(-1)2n =1(n 为正整数)D.(-1)2n+1=-1(n 为正整数)【教学说明】以上题目均较简单,可由学生独立完成后再由教师评讲,边评讲边点学生口答.【答案】1.6 -22.6 23.±44.1、0 -1、0、15.-56.(-31) 5 7.D8.B9.A10.B五、师生互动,课堂小结1.引导学生作知识小结:理解有理数乘方的意义,运用有理数乘方运算法则进行有理数乘方的运算,熟知底数、指数和幂三个基本概念.2.教师扩展:首先,有理数的乘方就是几个相同因数的积的运算,可以运用有理数乘法法则进行符号的确定和幂的求值.乘方的含义:①表示一种运算;②表示运算的结果.乘方的读法:①当a n 表示运算时,读作a 的n 次方;②当a n 表示运算结果时,读作a 的n 次幂.乘方的符号法则:①正数的任何次幂都是正数;②零的任何次幂都是零;③负数的偶次幂是正数,奇次幂是负数.注意(-a )n 与-a n 及(a b )n 与a nb 的区别和联系.1.布置作业::从教材习题1.5中选取.2.完成练习册中本课时的练习.3.选做题.本课时宜从现实生活里的具体事例出发,引导学生探究理解乘方的意义,在教学过程中采用“自主——合作——讨论——探究——交流”的教学方法,教师始终起着引领学生探寻方向的作用,即遵循“引导——帮助——点拨”的原则,真正做到数学教师由单纯的知识传递者转变为学生学习的组织者、引导者和合作者.这种方式可使学生在动手实践、自主探索、合作交流中主动发展知识,在合作学习及相互交流中形成协作意识.后序亲爱的朋友,你好!非常荣幸和你相遇,很乐意为您服务。
人教版七年级数学上册:1.5.1 《乘方》教案
人教版七年级数学上册:1.5.1 《乘方》教案一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,主要介绍有理数的乘方。
教材通过简单的实例让学生感受乘方的意义,理解乘方的运算规则,为后续学习指数幂、对数等概念打下基础。
本节课的内容在数学体系中起到承前启后的作用,既巩固了有理数的基本运算,又为高中阶段更深入的数学学习奠定基础。
二. 学情分析七年级的学生已经掌握了有理数的基本运算,对数学符号和概念有一定的理解。
但乘方作为一个新的概念,需要学生从新的角度去理解。
学生在学习乘方时,可能会对乘方的意义和运算规则产生困惑,因此需要通过实例和练习来帮助学生理解和掌握。
三. 教学目标1.让学生理解乘方的意义,掌握有理数的乘方运算规则。
2.培养学生的逻辑思维能力,提高学生解决实际问题的能力。
3.激发学生对数学的兴趣,培养学生的自主学习能力。
四. 教学重难点1.乘方的意义和运算规则。
2.乘方在实际问题中的应用。
五. 教学方法采用问题驱动法、实例教学法和小组合作学习法。
通过问题引导学生的思考,实例让学生理解乘方的意义,小组合作学习法培养学生的团队协作能力。
六. 教学准备1.教学PPT。
2.实例和练习题。
3.小组合作学习的相关材料。
七. 教学过程1.导入(5分钟)通过一个实际问题引出乘方的概念:某商品打八折出售,即按原价的80%出售,问原价为100元的商品现价是多少?让学生思考如何用数学方法表示这个问题。
2.呈现(15分钟)讲解乘方的意义和运算规则,通过PPT展示实例,让学生理解乘方的概念。
例如,2的3次方表示2乘以自己3次,即2×2×2=8。
3.操练(15分钟)让学生进行乘方运算的练习,教师巡回指导,解答学生的疑问。
可以设置一些有趣的题目,让学生在练习中感受乘方的魅力。
4.巩固(10分钟)通过一些实际问题,让学生运用乘方解决实际问题。
例如,一个班级有30人,每次活动参加的人数是上一次的90%,问第三次活动参加的人数是多少?5.拓展(5分钟)讲解乘方在实际生活中的应用,如科学计算、金融理财等。
人教版七年级数学上册:1.5.1 《乘方》教学设计
人教版七年级数学上册:1.5.1 《乘方》教学设计一. 教材分析《乘方》是人教版七年级数学上册第一章第五节的第一课时,本节课主要让学生了解乘方的概念,掌握有理数的乘方规则,并能够运用乘方解决一些实际问题。
教材通过引入“幂”的概念,让学生理解乘方的意义,并通过大量的例子让学生掌握有理数的乘方规则。
二. 学情分析七年级的学生已经掌握了有理数的乘法,对数的概念有一定的了解,这为学习乘方打下了基础。
但学生在学习乘方时,可能会对乘方的概念和乘方的规则感到困惑,因此需要通过大量的例子让学生理解和掌握。
三. 教学目标1.了解乘方的概念,理解乘方的意义。
2.掌握有理数的乘方规则,能够运用乘方解决一些实际问题。
3.培养学生的逻辑思维能力,提高学生的数学素养。
四. 教学重难点1.乘方的概念。
2.有理数的乘方规则。
五. 教学方法采用问题驱动法、案例教学法、小组合作学习法等,通过引导学生思考、讨论、实践,让学生主动探究乘方的意义和规则。
六. 教学准备1.PPT课件。
2.教学案例和习题。
3.小组合作学习的小组划分和任务分配。
七. 教学过程1.导入(5分钟)通过PPT展示一个实际问题:某商品打八折后的价格是120元,问原价是多少?让学生思考如何解决这个问题,从而引出乘方的概念。
2.呈现(15分钟)PPT展示乘方的定义和有理数的乘方规则,通过讲解和示例让学生理解乘方的意义和掌握乘方的规则。
3.操练(15分钟)让学生进行一些乘方的练习,巩固乘方的概念和规则。
教师可以通过PPT展示练习题,让学生在课堂上完成,并对学生的答案进行讲解和指导。
4.巩固(10分钟)通过PPT展示一些巩固乘方知识的习题,让学生独立完成,教师对学生的答案进行讲解和指导。
5.拓展(10分钟)让学生运用乘方解决一些实际问题,如计算利息、折扣等。
教师可以通过PPT 展示实际问题,让学生在课堂上解决,并对学生的答案进行讲解和指导。
6.小结(5分钟)让学生总结本节课所学的内容,教师对学生的总结进行点评和补充。
人教版数学七年级上册 1.5有理数的乘方 教案
《有理数的乘方》第一课时(教案设计)一、教学目标知识技能目标:1让学生理解并掌握有理数的乘方、幂、底数、指数的概念及意义;2掌握有理数乘方的符号法则及相关性质,能够正确进行有理数的乘方运算;素质能力目标:1让学生经历知识的发生与发展过程,从中感受转化的数学思想;2培养学生观察、比较、分析、归纳、概括与动手操作的能力。
二、教学重难点重点:理解有理数乘方的意义;会进行有理数乘方的运算。
难点:透彻理解乘方、幂、底数、指数这几个概念的意义及相互关系。
三、教学方法本节课学法指导上着重引导学生通过观察、比较、分析、归纳、概括来研究规律性问题,同时,鼓励学生自主探索,解决问题。
教学中借助多媒体辅助教学,投影例题和练习,采取如下教法:(1)用情景导入法让学生感受引入概念的必要性。
(2)用讲授法讲清概念的形成过程,剖析概念的实质。
(3)用讨论法激起学生对知识更为深刻的正面思考,使获得的概念更加精确、稳定和易于迁移。
(4)用练习法使学生对概念的理解更深刻、更透彻。
四、课时安排1课时五、教学过程(一)创设情境,导入新课珠穆朗玛峰是世界的最高峰,它的海拔高度是8844.43米。
把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。
你信吗?带着这个疑问开启本节课的学习合作探究要求:把一张纸进行对折、再对折……并回答下面的问题,并把答案填写在报告单上(1)对折一次有几层? 2(2)对折二次有几层?2×2(3)对折三次有几层?2×2 ×2(4)对折四次有几层?2×2 ×2 ×220个……(5)对折二十次有几层?2×2 ×2 ……×2×2 ×2(6)对折三十次呢? 2×2 ×2 ……×2×2 ×2问题:像这样的式子表示起来很复杂,那么有没有一种简单的记法呢?(二)新知探究1、通过实例,引出乘方的概念边长为2的正方形的面积是2×2, 简记作22,读作2的二次方(或2的平方); 棱长为2的正方体的体积是2×2×2,简记作23,读作2的三次方(或2的立方). 那么:类似地,2×2×2×2×2 简记作25,读作2的五次方2×2 ×2 ……×2×2 ×2 简记作230,读作2的三十次方2×2 ×2 ……×2×2 ×2 简记作2n ,读作2的n 次方若把2换成有理数aa ×a ×… ×a ×a 简记作 a n 读作a 的n 次方归纳:(1)n 个相同的因数a 相乘,即×a ×… ×a =n a ,读作a 的n 次方求几个相同因数的积的运算,叫做乘方。
人教版数学七年级上册1.5.1《乘方》教学设计2
人教版数学七年级上册1.5.1《乘方》教学设计2一. 教材分析《乘方》是人教版数学七年级上册的教学内容,主要让学生理解乘方的概念,掌握有理数的乘方运算方法。
通过学习乘方,为学生进一步学习代数和函数打下基础。
二. 学情分析七年级的学生已经掌握了有理数的基本运算,但对乘方的概念和运算方法可能存在理解上的困难。
因此,在教学过程中,要注重引导学生从实际问题中抽象出乘方的概念,通过实例让学生感受乘方的意义。
三. 教学目标1.理解乘方的概念,掌握有理数的乘方运算方法。
2.能够运用乘方解决实际问题,提高解决问题的能力。
3.培养学生的抽象思维能力,提高学生的数学素养。
四. 教学重难点1.乘方的概念。
2.有理数的乘方运算方法。
3.乘方在实际问题中的应用。
五. 教学方法1.情境教学法:通过实例引入乘方的概念,让学生在实际问题中感受乘方的意义。
2.讲授法:讲解乘方的定义、运算方法和应用。
3.互动教学法:引导学生参与课堂讨论,解答学生的疑问。
4.练习法:布置适量的练习题,让学生巩固所学知识。
六. 教学准备1.教学课件:制作课件,展示乘方的概念、运算方法和应用。
2.练习题:准备适量的练习题,包括基础题和拓展题。
3.教学素材:收集与乘方相关的实际问题,用于课堂讨论。
七. 教学过程1.导入(5分钟)利用生活实例引入乘方的概念,如:“有两只兔子,每只兔子生两只小兔子,问一年后,一共有多少只兔子?”引导学生思考,引出乘方的定义。
2.呈现(10分钟)讲解乘方的定义、运算方法和应用。
通过PPT展示乘方的例子,让学生理解乘方的意义。
3.操练(10分钟)让学生进行乘方运算练习,巩固所学知识。
布置基础题和拓展题,让学生独立完成,并及时给予解答和反馈。
4.巩固(5分钟)通过课堂讨论,让学生解答彼此的疑问,加深对乘方的理解。
可以采用小组合作的形式,让学生相互讲解、讨论。
5.拓展(5分钟)引导学生运用乘方解决实际问题,如:“一个细菌分裂成两个,每分裂一次的时间为1小时,问10小时后,细菌的数量是多少?”让学生体会乘方在实际问题中的应用。
人教版七年级数学上第一章1.5《有理数的乘方》第二课时探索乘方的规律教学课件 (共30张PPT)
你认为国王的国库 里有这么多米吗?
第1格: 1粒米 第2格: 2粒米 第3格: 4=2×2=22粒米 第4格: 8=2 ×2 ×2=23粒米 第5格: 16= 2 ×2 ×2 ×2=24粒米 …… 第64格:2×2×· · · · · · ×2=263 粒米。
事实上,按照这个 大臣的要求——
放满一个棋盘上的64个格子需要
:
(1)本节课你有什么收获?
(2)你有哪些困惑?
A层
一、选择题
1.下列每对数中,不相等的一对(
A.(-2)3和-23
3
)
B.22和(-2)2
C.(-2)4和-24
3 2 D. 2 和
二、计算 B层 三、解答题 一个面积为1米2的长方形纸片,第1次截去一半,第 2次截去剩下的一半,如此下去,第8次后剩下的纸 片面积是多少?
220=1048576 220× 0.1(毫米)=104857.6(毫米) =104.8576(米) 30层楼
≈105 (米) 105÷3=35 (层)
对折20次后的纸的 厚度比30层楼还要 高!!!
拉面中的乘方
你见过拉面师傅 拉面条吗? 手工拉面是我国的传统面 食。制作时,拉面师傅将一 团和好的面,揉搓成1根长 条后,手握两端用力拉长, 然后将长条对折,再拉长, 再对折,每次对折称为一扣, 如此反复操作,连续扣六七 次后便成了许多细细的面 条。
16 =2×2×2×2=24 … 2×2×2· · · ×2=220
到底要拉多少次 面条才能拉出209 万根面条? 210=1024 220=1024 ×1024=1048576 ,约为105万, 所以221约为210万。
因此拉面师傅可以拉21次能够拉出209万根面条。
【人教版】七年级数学上册1.5.1有理数的乘方(第二课时)教案及练习(含答案)
有理数的乘方乘方( 2)知识与技术 能确立有理数加、 减、乘、除、乘方混淆运算的次序;能够娴熟地进行有理数的加、减、乘、除、乘方的运 过程与方法教课目的算,并在运算过程中合理使用运算律;培育学生对数的感觉, 提升学生正确运算的能力,培感情态度价养 学生思想的逻辑性和灵巧性,进一步发展学生的值观思想能力.教课要点有理数的混淆运算法例教课难点运算次序确实定和性质符号的办理教课过程(师生活动)设计理念教师提出问题:在 2+ 32×(- 6)这个式子中,存在着哪几种运算?给学生充足议论学生回答后,教师可持续发问:这道题应按什么顺的时间,鼓舞他提出问题序运算?前方我们已经学习加减乘除四则运算,知道们多发布自己的小组议论以为在做有理数混淆运算时,应注意哪些运算次序?请看法。
分 4 人小组议论。
小组议论后,请小组代表报告、沟通议论结果,其他同学增补,教师在学生回答的基础上做适合的总结与增补:( 1) 先算乘方,再算乘除,最后算加减;( 2) 同级运算,从左到右进行;( 3) 若有括号, 先做括号内的运算, 按小括号、 中括号、大括号挨次进行。
培育学生擅长归例 1 计算:纳、总结的能力,( 1)(- 2)3+(- 3)× [ (- 4) 2+2] -(- 3)2÷(-五种代数运算可分为三级;加减 沟通反应是一级,乘除是2);( 2) 1- 1× [3 ×(- 2)2-(- 1)41÷(- 1二级,乘方与开 ]+)方(此后会学)2 342是二级。
值.3、师生共同探请教科书44页的例 4.3.重申:按有理数混淆运算的次序进行运算,在每一步运 算中,仍旧是要先确立结果的符号,再确立符号的绝对要先算乘除,再算加减,此刻又多一种乘方运算,你们例 2 察下边三行数:-2, 4,- 8, 16,- 32, 64,⋯;① 0, 6,- 6, 18,- 30, 66,⋯;②-1, 2,- 4, 8 ,- 16, 32,⋯.③( 1)第①行数按什么律摆列?( 2)第②③行数与第①行数分有什么关系?( 3)取每行数的第 10 个数,算三个数的和.225 ] ,1.算3[39建学生采纳多种方法行算。
七年级数学上册1_5_1乘方(第二课时)教案(新版)新人教版
交流反馈
小组讨论后,请小组代表汇报、交流讨论结果,其他同学补充,教师在学生回答的基础上做适当的总结与补充:
(1)先算乘方,再算乘除,最后算加减;
(2)同级运算,从左到右实行;
(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次实行。
例1计算:
0,6,-6,18,-30,66,…;②
-1,2,-4,8,-16,32,….③
(1)第①行数按什么规律排列?
(2)第②③行数与第①行数分别有什么关系?
(3)取每行数的第10个数,计算这三个数的和.
培养学生擅长归纳、总结的水平,五种代数运算可分为三级;加减是一级,乘除是二级,乘方与开方(以后会学)是二级。
(1)(-2)3+(-3)×[(-4)2+2]-(-3)2÷(-2);
(2)1- ×[3×(- )2-(-1)4]+ ÷(- )3.
强调:按有理数混合运算的顺序实行运算,在每一步运算中,仍然是要先确定结果的符号,再确定符号的绝对值.
3、师ห้องสมุดไป่ตู้共同探讨教科书44页的例4 .
例2观察下面三行数:
-2,4,-8,16,-32,64,…;①
1.5.2
教学目标
知识与技能
能确定有理数加、减、乘、除、乘方混合运算的顺序;
能够熟练地实行有理数的加、减、乘、除、乘方的运算,并在运算过程中合理使用运算律;
情感态度价值观
培养学生对数的感觉,提升学生准确运算的水平,培养学生思维的逻辑性和灵活性,进一步发展学生的思维水平.
教学重点
有理数的混合运算法则
教学难点
采用游戏的形式,提升学生的学习兴趣,训练学生的思维,寓教于乐。
【有理数的乘方教案(精选多篇)】
【有理数的乘方教案(精选多篇)】第一篇:七年级数学上册有理数的乘方教案人教版有理数的乘方教学目的:知识与才能:在现实背景中,理解有理数乘方的意义,掌握有理数乘方的运算;过程与方法:培养学生观察、分析^p 、比拟、归纳、概括的才能,浸透转化的思想;情感态度与价值观:培养学生勤思,认真,勇于探究的精神,并联络实际,加强理解,体会数学给我们的生活带来的便利。
教学重点:正确理解乘方的意义,掌握乘方的运算法那么,进展有理数乘方运算。
教学难点:正确理解乘方、底数、指数的概念并合理运算。
教材分析^p :本节内容从小学所学过的一个数的平方与立方出发,介绍了乘方的概念,容有关联的是后面“科学计数法”、“有理数的混合运算”等局部内容。
教学方法:教法:引导探究法、尝试指导法,充分表达学生主体地位;学法:学生观察考虑,自主探究,合作交流。
教学用具:电脑多媒体。
课时安排:一课时板书设计:有理数的乘方底数a幂规律:正数的任何次幂都是正数负数的奇数次幂是负数负数的偶数次幂是正数n教学反思:本节课的教学设计采用:“先学后教,当堂训练”的教学形式。
整个教学过程从考虑问题到问题解决,学生自主学习贯穿始终,中间围绕“自学-交流、更正-点拨、归纳”三个环节组织教学,注重培养学生观察、考虑、交流归纳的才能。
缺乏之处:在练习的讲评上,应给学生一个较为自由的空间,让学生互相启发,互相交流。
第二篇:第一章有理数乘方(2)教案第周第节§1.5.1有理数乘方〔2〕教案备课人:李冶学习目的:1、掌握有理数混合运算的顺序,能正确的进展有理数的加,减,乘除,乘方的混合运算。
2、培养学生观察,归纳,猜测,推理的才能。
重点:能正确的进展有理数的混合运算。
难点:灵敏的运用运算律,使计算简单。
教学过程:一课前提问:1、我们已经学习了哪几种有理数的运算?2、有理数的乘方的意义是什么?3、以下的算式里有哪些运算?应按照怎样的顺序运算?3+50÷22×〔-15〕-1二、新课探究:有理数混合运算的顺序:1、先乘方,再乘除,最后加减;2、同级运算,从左到右进展;3、如有括号,先做括号内的运算,按小括号、中括号,大括号依次进展;三、例题精析:例1 、计算:〔1〕2?(?3)34(3)15〔2〕(?2)3(3)[(?4)22]?(?3)2(2)例2、观察下面三行数:-2 ,4 ,-8,16,-32,64,…;0,6,-6,18,-30,66,…;-1 ,2,-4, 8,-16,32,…。
1.5有理数的乘方——有理数的混合运算 教学设计 2021-2022学年人教版七年级数学上册
《1.5有理数的乘方——有理数的混合运算》教学设计一、内容和内容解析1.内容有理数的混合运算.2.内容解析本节课涉及有理数的加、减、乘、除以及乘方的混合运算,既是对本章内容的一个小概括,也是培养学生的运算技能的载体.在加、减、乘、除、乘方的混合运算中,关键是运算顺序的问题.通常把六种基本的代数运算分成三级:加与减是第一级运算,乘与除是第二级运算,乘方与开方是第三级运算.运算顺序的规定是:先算高级运算,再算低一级的运算;同级运算在一起,按从左到右的顺序运算;如果有括号,先做小括号内的运算,再做中括号内的运算,最后做大括号内的运算.让学生掌握运算顺序是本节课的重点.二、目标和目标解析1.目标掌握有理数加、减、乘、除、乘方混合运算的运算顺序,能正确地进行混合运算.2.目标解析达到目标的标志是能说出运算顺序,对于给定的含有加、减、乘、除、乘方的算式,能按运算顺序正确求出结果.三、教学问题诊断分析在混合运算中,主要的困难是运算顺序问题.这个难点的解决需要一定量的混合运算训练,也需要一定的时间,让学生能养成习惯.为了突破这一难点,教学中要注意结合学生练习中出现的问题,及时纠正学生在运算顺序上出现的错误.另外也可以适当地让学生采取多种算法来检验自己的运算结果的正确性.对于比较复杂的运算,也可以让学生用计算器进行验证.本章承担培养学生运算技能的任务,要达到正确迅速地进行有理数运算,需要在后续教学中加强练习.四、教学过程设计(一)复习乘方的知识计算:23(-)= 23-= 32=- 33=(-) 410(-)= 24=(-) 师生活动:学生回答、相互补充修正.设计意图:复习乘方的内容,为学习有理数的混合运算打下基础. (二)有理数混合运算的顺序有理数混合运算要注意运算顺序:(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次运算.下面我们通过练习来熟练上述运算顺序.例1 计算:(1)2×(-3)3-4×(-3)+15;(2)(-2)3+(-3)×[(-4)2+2]-(-3)2 ÷ (-2).师生活动:由学生独立作答.选学生分组板书.出现计算错误时进行纠正.例2 议一议,说一说:(1)2÷(2×3)与2÷2×3有什么不同?(2)1222⎛⎫÷- ⎪⎝⎭与1222÷-有什么不同? (3)26(3)÷-与26(3)÷-有什么不同?设计意图:通过复习已学过的运算,引出运算顺序,学生交流讨论,得出有理数的混合运算的运算顺序.培养学生善于归纳、总结的能力.例3 辨析运算的正误: ()2214633⎛⎫⎛⎫--÷-⨯- ⎪ ⎪⎝⎭⎝⎭. 解法1:原式 解法2:原式 设计意图:通过对比和辨析,明确有理数的混合运算的运算顺序,培养学生善于归纳、总结的能力.练习: ⎪⎭⎫ ⎝⎛-⨯⎪⎭⎫ ⎝⎛--=3132949294-=92=2494÷-=429=-914-=三)小结(1)请你归纳一下本节课学习的内容.(2)请你说说有理数混合运算的顺序.你想过为什么要按照这样的顺序进行运算吗?可以自己举一些例子看看.(四)布置作业教科书第47页第3题.五、板书设计有理数的混合运算二、例题三、注意的问题一、有理数混合运算的运算顺序(1)先乘方,再乘除,最后加减;(2)同级运算,从左到右进行;(3)如有括号,先做括号内的运算,按小括号、中括号、大括号依次运算.。
1.5.1有理数的乘方(第二课时)(教学设计)七年级数学上册(人教版)
有理数的乘方(第二课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第二课时),内容包括:有理数加、减、乘、除、乘方混合运算.2.内容解析有理数的混合运算是在学生学习并掌握了有理数的加、减、乘、除、乘方运算的基础上提出的,它涵盖了有理数一章的主要内容,是对前面所学的运算的小结.教材在前面学习有理数加、减、乘、除法运算时,就已经适时介绍过加减法混合、乘除法混合和加减乘除混合运算的内容在此加入乘方与前面四种运算的混合,构成了三级混合运算(加减法是第一级运算;乘除法是第二级运算;乘方以及以后将学习的开方是第三级运算)以期进一步培养学生的运算能力进行有理数的混合运算的关键是熟练地掌握有理数的加、减、乘、除、乘方的运算法则、运算律和运算顺序.基于以上分析,确定本节课的教学重点为:有理数的混合运算顺序、运算法则和运算律的应用.二、目标和目标解析1.目标(1)知道有理数加、减、乘、除、乘方混合运算的运算顺序.(2)会进行有理数的混合运算.(运算能力)2.目标解析在有理数的加、减、乘、除和乘方混合运算中,加减法叫做第一级运算;乘除法叫做第二级运算;乘方和开方(以后再学)叫做第三级运算.一个式子里如果含有几级运算,应先算高级运算,再算低一级运算,即先乘方,再乘除,后加减;同一级运算按从左到右的顺序进行;如果有括号,先算小括号,再算中括号,最后算大括号里的运算;如果有绝对值,就先算绝对值.进行有理数的混合运算,首先要看清算式的层次如括号、运算层级等,确定运算顺序,再根据各种运算法则,先确定每一种运算结果的符号,再计算其结果的绝对值.能够使用加法与乘法运算律的,应使用运算律来提高运算的速度与准确率.三、教学问题诊断分析在第1课时中学生已经学习了乘方的概念,理解了乘方的意义,会进行简单的乘方运算,但对乘方运算结果的变化规律缺乏整体性的认识.由于七年级的学生模仿能力比较强,能够在教师的引导下,通过计算、观察、分析、交流、纳等数学活动,总结发现理数的加、减、乘、除和乘方混合运算规律.基于以上学情分析,确定本节课的教学难点为:应用有理数的混合运算解决规律探究和实际应用问题.四、教学过程设计(一)复习回顾乘方的定义这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.乘方的符号法则:(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(二)自学导航问题:我们学习了有理数的哪些运算?加法,减法,乘法,除法,乘方.一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有理数的混合运算.思考:有理数的混合运算顺序是什么?思考下列问题:(1)2÷(2×3)与2÷2×3有什么不同?(2)2÷(12-2)与2÷12-2有什么不同? (3)6÷(-3)2与6÷(-32)有什么不同?思考:下面的算式含有哪几种运算?先算什么,后算什么?【运算顺序】1.先乘方,再乘除,最后加减;2.同级运算,从左到右进行;3.如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行.(三)考点解析例1.计算:(1)(-1)3-32÷(-4)×13; (2)(-3)2×(1-3)-(3-32); (3)(-4)×[(-3)2+2]-(-3)3÷(-2). 解:(1)原式=-1+32×14×13=-1+18=-78(2)原式=×(-2)-(3-9)=-18-(-6)=-18+6=-12;(3)原式=(-4)×(9+2)-(-27)÷(-2)=(-4)×11-13.5=-44-13.5=-57.5.【迁移应用】计算:(1)-14-(-12)÷3×|-2|; (2)-23÷49×(-23)2; (3)9+5×(-3)-(-2)2÷4; (4)(-4)3-22-|-12|×(-8)2; (5)-32+[1-(-1)3]×2÷12; (6)-53+[(-4)2-(1-62)×3]. 解:(1)原式=-1-(-12)×13×2=-1+13=-23;(2)原式=-8÷49×49=-8×94×49=-8;(3)原式=9+(-15)-4÷4=9-15-1=-7;(4)原式=-64-4-12×64=-64-4-32=-100; (5)原式=-9+(1+1)×2×2=-9+2×2×2=-9+8=-1 ;(6)原式=-125+[16-(1-36)×3]=-125+16+105=-4.例2.计算:(1)-43÷916×(-34)2-(1-32)×2; (2)-14-(2-112)×13×[5+(-2)3];(3)-24÷[1-(-3)2]+(23-35)×(-15); (4)-32-|(-5)3|×(-25)2-18+|-(-3)2|. 解:(1)原式=-64×169×+8×2=-64+16=-48; (2)原式=-1-12×13×(5-8)=-1-12×13×(-3)=-1+12=-12;(3)原式=-16+(1-9)+(-23×15+35×15) =-16÷(-8)+(-10+9)=2-1=1;(4)原式=-9-125×425-18÷9=-9-20-2=-31.【迁移应用】计算:(1)-(-2)2+22-(-1)9×(13-12)+16-8; (2)112×[3×(-23)2-1]-14÷(-4)2;(3)(58-23)×24+14÷(-12)3+|-22|; (4)|-57|×(45-13)÷(-23)2-(12)2; (5)-23÷[214×(-113)2]×(-0.25)2; (6)|-1+89|÷(59-34+112)-32×(-34)3.解:(1)原式=-4+4+1×(-16)-8=-8;(2)原式=32×(3×49-1)-14÷16=32×13-164=3164; (3)原式=58×24-23×24+14×(-8)+22=15-16-2+22=19; (4)原式=57×715÷49-14=13×94-14=12; (5)原式=-8÷(94×169)×116=-8×14×116=-18;(6)原式=19÷(−19)-32×(-2764)=-1+272=1212. 例3.观察下面三行数:-2, 4, -8, 16, -32, 64,…;①0, 6, -6, 18, -30, 66,…; ①-1, 2, -4, 8, -16, 32,…. ①(1)第①行数按什么规律排列?分析:观察①,发现各数均为2的倍数.联系数的乘方,从符号和绝对值两方面考虑,可发现排列的规律.解:(1)第①行数是-2,(-2)2,(-2)3,(-2)4,…(2)第①①行数与第①行数分别有什么关系?(2)第①行数是第①行相应的数加2,即-2+2,(-2)2+2,(-2)3+2,(-2)4+2,…第①行数是第①行相应的数除以2,即-2÷2,(-2)2÷2,(-2)3÷2,(-2)4÷2,…(3)取每行数的第10个数,计算这三个数的和.(3)每行数中的第10个数的和是(-2)10+[(-2)10+2]+(-2)10×0.5=1024+(1024+2)+1024×0.5=1024+024+512=2562.【迁移应用】(1)计算:①2-1=___;①22-2-1=___; ①23-22-2-1=___; ①24-23-22-2-1 =___; ①25-24-23-22-2-1=___.(2)根据上面的计算结果猜想:22020-22019-22018-…-22-2-1的值为____;2n-2n-l-2n-2-.….-22-2-1的值为____.(3)根据上面猜想的结论,求213-212-211-210-29-28-27-26的值.解:由猜想的结论得:213-212-211-210-29-28-27-26-25-24-23-22-2-1=1所以,213-212-211-210-29-28-27-26=1+1+2+22+23+24+25=1+2+4+8+16+32=64例4.小王在电脑上设计了一个有理数的运算程序:输入数a,按“*”键,再输入数b,得到运算:a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b).(1)求(-2)*12;解:(1)(-2)*12=(-2)2-(12)2-{2×[(-2)3-1]-1÷12}÷(-2-12)=-174.(2)小王在运算a*b=a2-b2-[2(a3-1)-1÷b]÷(a-b)中出现无法操作的情况,可能是因为除数或分母中有0的存在.1÷b中如果b=0,那么无意义,无法操作;或者a-b作为除数,如果a-b=0,即a=b,那么无意义,也无法操作.所以有两种可能:输入了b=0或输入了b=a,才使得程序无法操作.【迁移应用】1.如图是计算机程序的计算流程图,若开始输入x=-2,则最后输出的结果是_______.2.如图是一个数值运算程序,当输出的值为-5时,输入的x的值为_______.五、教学反思。
1.5.1 乘方(第2课时有理数的混合运算2023-2024学年七年级数学上册同步备课系列(人教版)
月份 用水量/立方米 水费/元
4
16
33.60
5
25
65.00
(1)请你算一算,这个地区水费的“调节价”为每立方米多少钱? (2)若该用户6月用水量为30立方米,请你算一算,他6月的水费是多 少元?
【详解】(1)“基本价”:33.6÷16=2.1(元) “调节价”:[65-(20×2.1)]÷(25-20)=4.6(元) (2)20×2.1+(30-20)×4.6=88(元)
【详解】解∶根据题意得:4个队一共要比场4×(42−1) = 6比赛,每个 队都要进行3场比赛,∵各队的总得分恰好是四个连续奇数,甲、乙、丙、 丁四队的得分情况只能是7,5,3,1 所以,甲队胜2场,平1场,负0场. 乙队胜1场,平2场,负0场. 丙队胜1场,平0场,负2场. 丁队胜0场,平1场,负2场. 战胜丁的球队是甲和丙, 故选D.
在这些数中加上适当的运算符号就能得到100.
1+1+3×4+5×6+7×8+100
问题1 小学的四则混合运算的顺序是怎样的? 先乘除,后加减,同级运算从左至右,有括号先算括号内,再算括号 外,括号计算顺序:先小括号,再中括号,最后大括号.
问题2 我们目前都学习了哪些运算? 加法、减法、乘法、除法、乘方. 一个运算中,含有有理数的加、减、乘、除、乘方等多种运算,称为有 理数的混合运算.
练一练
1.如图是一个运算程序:若第一次输入a的值为8,则2022次輸出的结 果是 . 【详解】解:由题意得:当第一次输入a的值为8时, 则第二次输出的结果为4; ∴第三次输出的结果为2, 第四次输出的结果为1, 第五次输出的结果为4, 第六次输出的结果为2, 第七次输出的结果为1,…..; ∴从第二次开始,按照4、2、1循环输出结果, ∴(2022-1)÷=673······2, ∴第2022次输出的结果为2.故答案为:2.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
有理数的乘方
教学目标
知识技能:在现实背景中,理解有理数乘方的意义.能进行有理数的乘方运算,并会用计算器进行乘方运算.掌握幂的符号法则.
数学思考:培养观察.类比.归纳.知识迁移的能力.通过乘方运算,培养运算能力;
解决问题:了解乘方的意义并能正确的读.写;掌握幂的性质并能进行乘方的运算.
情感态度:在独立思考的基础上,积极参与对数学问题的讨论,能从交流中获益.
教学重点:有理数乘方的意义,幂,底数,指数的概念及其表示.理解有理数乘法运算与乘方间的联系,处理好负数的乘方运算.
教学难点:有理数乘方的意义的理解与运用
教学过程设计
活动一.创设情境,引入新课.
1.教师展示细胞分裂的示意图,引导学生分析某种细胞的分裂过程,学生则回答教师提出来的问题,并说明如何得出结果.
2.结合学生熟悉的边长为a的正方形的面积是a·a,棱长为a的正方体的体积是a·a·a及它们的简单记法,告诉学生几个相同因数a相乘的运算就是这堂课所要学习的内容.
在实际背景中创设情境激发学生的学习兴趣.通过计算正方体面积和正方体体积的实例,引出课题.
活动二.合作交流,得出结论.
1.分小组学习课本41页,要求能结合课本中的示意图,用自己的语言表达下列几个概念的意义及相互关系.底数是相同的因数,可以是任何有理数,指数是相同因数的个数,在现阶段中是正整数,而幂则是乘方的结果.
2.定义:n个相同因数a相乘,即a·a·…·a(个),记作a n,读作a的n次方. 求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,在a n中,a叫做底数,n叫做指数.读作a的n次方或a的n次幂.
3(1)补充例题:把下列各式写成乘方运算的形式,并指出底数,指数各是多少?
①(-2.3)×(-2.3)×(-2.3)×(-2.3).
② (-1
4
)×(-
1
4
)×(-
1
4
)×(-
1
4
).
③x·x·x·......·x(2010个x的积).
1
2 (2)课本例题,教师指导学生阅读分析例题,并规范书写解题过程.
3.此例可由学生口述,教师板述完成.
4.小组讨论: ()4
422--与的区别?
教师要提醒学生注意,相同的分数或相同的负数相乘时,要加括号,例如(-2)×(-
2)×(-2)×(-2)记作(-2)4.通过补充例题和小组讨论:()4
422--与的区别的学习,对有理数的乘方有更进一步的理解.
活动三.应用新知,课堂练习.
1.做一做:课本第42页练习第1题.
2.用计算器算,以及课本42页练习第2题.
3.小组讨论:通过上面练习,你能发现负数的幂的正负有什么规律?正数呢?0呢?学生归纳总结.
4.总结规律:负数的奇数次幂是负数,负数的偶次幂是正数;正数的任何次幂是正数;0的任何次幂是0.
把问题再次交给学生,充分发挥学生的主观能动性,鼓励学生尽可能地发现规律. 活动四.知识梳理,课堂小结.
1.由学生小结本堂课所学的内容.
2.总结五种已学的运算及其结果.
活动五.知识反馈,作业布置.
1.课本47页第1,2题.
2.课外拓展
(1)用乘方的意义计算下列各式:
①4)2(-; ②42-; ③323⎛⎫- ⎪⎝⎭
; ④223-. (2)观察下列各等式:1=21; 1+3=2
2 ; 1+3+5=23;1+3+5+7=24……
①通过上述观察,你能猜想出反映这种规律的一般结论吗?
②你能运用上述规律求1+3+5+7+...+2011的值吗?。