第五章 多原子分子结构和性质

合集下载

第五章多原子分子的结构和性质

第五章多原子分子的结构和性质
(-1,-1,1) (1,1,1) (-1,1,-1) (1,-1,-1)
甲烷分子中四个成键轨道定域在C-H之间,每个 定域轨道中有两个成键电子,电子分布分别对C-H键 轴对称,为四个等性单键。几何构型为正四面体。 四个H的1s轨道分别对键轴对称。
C的2s,2px,2py和2pz除2s轨道外,与键轴是不
平面型有机共轭分子中,σ 键定域,构成分子骨架,每个 C 余下的 一个垂直于平面的 p 轨道往往以肩并肩的型式形成多原子离域π 键。 用 HMO法处理共轭分子结构时,假定: (1) 假定π电子是在核和σ 键所形成的整个骨架中运动,可将σ 键和π 键 分开处理; (2) 假定共轭分子的σ 键骨架不变,分子的性质由π电子状态决定; (3) 假定每个π 电子k 的运动状态用k 描述,其Schrö dinger方程为: ˆ H k Ek k HMO法还假定: •各C原子的α积分相同,各相邻C原子的β积分也相同; •不相邻C原子的β 积分和重叠积分S均为0。
A
四个杂化轨道分别与四个氢原子1s 轨道组合成四个分子轨道
A C1 A C21SA B C1B C21SB C C1C C21SC D C1D C21SD
1sA——氢原子A的1S轨道,以此类推。 A——由两个原子轨道线性组合而成的分子轨道,称为定域分子轨道
a1 C1S C2 1SA 1SB 1SC 1SD t2 x C3Px C4 1SA 1SB 1SC 1SD t2 z C3Pz C4 1SA 1SB 1SC 1SD t2 y C3Py C4 1SA 1SB 1SC 1SD
成键能力: F 3 ; 键角: cos

结构化学习题解答5(北大)

结构化学习题解答5(北大)
[5.24] 试分析下列分子中的成键情况,比较其碱性的强弱,并 说明理由。
NH3 N(CH3)3 C6H5NH2 CH3CONH2
[解]: 碱性的强弱和提供电子对能力大小有关,当N原子提供孤
对电子的能力大,碱性强。分子的几何够习惯内和有关性质主 要决定于分子中骨干原子的成键情况。下面将分析4个分子中的 骨干原子特别是N原子的成键轨道以及所形成的化学键的类型, 并结合有关原子或基团的电学性质,比较N原子上电荷密度的大 小,从而推断出4个分子碱性强弱的次序。
=-152.2 KJ•mol-1 [5.20] 试分析下列分子中的成键情况,指出C—Cl键键长大小
次序,并说明理由。
(a)H3CCl (b)H2C=CHCl (c)HC≡CCl [解]: (a)H3CCl:该分子为CH4分子的衍生物。同时CH4分子一样, C原子也采用sp3杂化轨道成键。4个sp3杂化轨道分别与3个H原 子的1s轨道及Cl原子的3p轨道重叠共形成4个σ键。分子呈四面 体构型,属C3v点群。 (b) H2C=CHCl:该分子为H2C=C H2分子的衍生物,其成键情况 与C2H4分子的成键情况即有相同之处又有差别。在C2H3Cl分子 中,C原子(1)的3个sp2杂化轨道分别与两个H原子的1s轨道
H
H
βc1+(α-E) c2+βc3=0
βc1+βc2+(α-E)c3=0 用β除各式并令x = (α-E)/β,则得:
xc1+c2+c3=0 c1+xc2+c3=0
c1+c2+xc3=0
欲使ci为非0解,则必须师其系数行列式为零,即:x 1 1
解此行列式,得:
1 x 10
x1=-2,x2=1,x3=1 将x值代入x=(α-E)/β,得: E1=α+2β,E2=α-β,E3=α-β 能级及电子分布简图如下:

第五章 多原子分子结构与性质习题解答

第五章   多原子分子结构与性质习题解答

第五章 多原子分子结构与性质习题解答070601306 何梅华 070601307游梅芳 070601308 陈风芳 070601309黄丽娜 070601310 郑海霞 070601311 黄秀娟 070601312 尤丽君1.以CH 4为例,讨论定域分子轨道和离域分子轨道间的区别和联系。

答:杂化轨道理论将CH 4分子中的C 原子进行了sp 杂化,每个杂化轨道和1个H 原子的1s 杂化形成一个定域分子轨道,在此成键轨道中的一对电子形成定域键C-H ,四个C-H 键轨道能量等同。

离域分子轨道处理CH 4分子所得的能级图说明4个轨道能量高低不同。

定域分子和离域分子两种模型是等价的,只是反应的物理图像有所区别。

2.试讨论杂化轨道构成三原则。

解:若以{i φ}表示某原子参加杂化的原子轨道集合,k Φ为杂化轨道,则:∑=Φni i k cki φ i =1,2,3,…,n (1)(1) 杂化轨道要满足归一化条件 杂化轨道是一种原子轨道,它描述了处于价态原子中单电子的可能状态。

归一化的数学表达式为:1)(222===Φ∑⎰∑⎰ki c d cki d ninii kτφτ (2) 上面的计算用到了同一原子中原子轨道间满足正交、归一的条件。

ki c 为i φ在第k个杂化轨道中的组合系数,而2ki c 表示i φ在k Φ中的成分。

当把k Φ轨道中s 轨道的成分记为k α、p 轨道的成分记为k β时,就有2ks k c =α (3)222kzky kx k c c c ++=β (4) (2)参加杂化的轨道贡献之和为1参加杂化的i φ轨道是归一化的,杂化后的在新形成的所有杂化轨道里的成分之和——即i φ电子“分散”到各杂化轨道中的概率之和应为1。

故有12=∑kkic(5)由(2)式和(5)式可知,有n 个i φ轨道参与杂化应得n 个杂化轨道。

(2) 同一原子中杂化轨道间正交正交的杂化轨道间排斥作用能最小,使原子体系稳定。

多原子分子的结构与性质

多原子分子的结构与性质

多原子分子的结构与性质一、分子结构:1.长链结构:一些多原子分子如碳酸盐(CO3^2-)、多聚芳醚等,它们的分子结构呈线性长链状。

这种结构使得分子具有较高的分子量和高度的拉伸强度,使得这些物质适用于制备高强度的材料、纤维和聚合物。

2.环状结构:多原子分子还可以形成环状结构,如环氧烷、苯等。

这种结构使得分子呈现闭合环状,具有较高的稳定性和刚性。

环状结构还可以影响分子的化学性质,如苯环结构使得苯具有共轭平面结构,从而赋予苯具有稳定的芳香性和较高的反应活性。

3.分支结构:一些多原子分子如维生素C等呈现分支结构。

分支结构可以增加分子的立体构型和表面积,增强物质的活性和溶解性。

这使得分支结构的多原子分子在生物体内能够更好地发挥作用,如维生素C具有较高的抗氧化性和溶解性。

二、分子性质:1.分子极性:多原子分子中,如果原子之间存在较大的电负性差异,化学键就会呈极性,导致分子整体带有一个正负极。

这种极性会使分子在外电场的作用下发生取向和形状改变,具有静电相互作用和氢键相互作用等,从而影响分子的化学和物理性质,如溶解度、沸点、熔点等。

2.分子对称性:分子内部原子的排列方式对分子的性质具有重要影响。

分子对称性常常决定着分子的振动、旋转和反应方式等。

对称性分子具有如以下特性:属于同一个对称元素的原子之间的键长和键角相等;对称元素平分分子;中心对称元素过属于同一个原子的键。

对称性分子具有较低的能量和较高的稳定性。

3.分子的化学反应活性:多原子分子在化学反应中通常会通过化学键的形成和断裂来改变分子的结构和性质。

多原子分子通过与其他分子的化学反应,可以进一步转化为其他更复杂的化合物。

例如,脂肪酸分子中含有多个碳碳双键,通过加氢反应可以将双键还原为饱和脂肪酸。

4.分子的热学性质:多原子分子具有比较复杂的热学性质。

其热容常常取决于分子内部的振动、旋转等模式的能级。

例如,多原子分子的热容常常会出现阶梯状的变化,且热容的变化幅度较大。

多原子分子的结构和性质

多原子分子的结构和性质
第五章 多原子分子的 结构和性质
5.1 价电子对互斥理论
价电子对包括成键电子对(bp)和孤电子对(lp)。 原子周围各个价电子对之间由于互相排斥,在键长一 定的条件下,互相间距越远越稳定。
价电子对之间斥力的来源:静电排斥;Pauli斥力。
为使价电子对间互相远离,可将价电子对看作等距排 布在一个球面上,形成多面体。
于sp1,sp2,sp3杂化来说,上式等价于:
cosij pip jd (i j ) / (i j )
其中pi是杂化轨道i中的归一化的p轨道组合。
等性杂化轨道:以sp3杂化为例
每个杂化轨道中,有1/4是s轨道,3/4是p轨道
i
1s 2
3 2 pi;
i 1, 2, 3, 4
pi aipx px aipy p y aipz pz
由于是不等性杂化,杂化轨道的成分与等性杂化不 同,轨道间的夹角也不同,一般情况下,要么已知 轨道间夹角,求出轨道成分,要么已知轨道成分, 求出轨道夹角。以前一种情况为例。
水分子中,两根H-O键间的夹角为104.5°
首先建立坐标系,将其中一根H-O键的杂化轨道放 在x轴上,另一个在x-y平面,则
1 1s 1p1
1 1
cos104.5
0
11
0.2002 0.7998
不妨取 1 2 0.4474; 1 2 0.8943
夹角公式 cos104.5 p1p2d a2 px 0.2504
a2 py 1 a22px 0.9681(任意取其中一个)
结果: 每个H-O键中s轨道成分占20.02%,p轨道占79.98% 每对孤对电子中s轨道占(1-2×20.02%)/2=29.98%, p轨道占(3-2×79.98%)/2=70.02%

多原子分子的结构和性质习题解答

多原子分子的结构和性质习题解答
∑ (3)自由价: Fi = Fmax − Pij j
五、离域 π
键的表示:
π
n m
,其中
m
表示形成离域 π
键的
p
轨道数,n
表示填充
在离域π 键的电子数(要求会写)。
2
乐山师范学院 化学学院
六、前线轨道理论: 分子的最高占据轨道(HOMO)和最低空轨道(LUMO)统称为前线轨道。 两个分子要发生化学反应,首先要相互接近,在两个分子相互接近时,一个
四方锥
C4v
IF5
d2sp3 或 sp3d2 dz2 , dx2 −y2 , s, px, py, pz 正八面体
Oh
SF6
三、离域分子轨道理论:
用分子轨道理论处理多原子分子时,最一般的方法是用非杂化的原子轨道进
行线性组合,构成分子轨道,它们是离域化的,即这些分子轨道的电子并不定域
于多原子分子的两个原子之间,而是在几个原子间离域运动。
7+3=10 5
三角双锥
3
2
O H
H H 三角锥型
F
Br F
F T型
NF3
5+3=8
4
四面体
3
1
N F
F F 三角锥型
ICl4− 7+4+1=12 6
八面体
4
2
IF4+
7+4-1=10 5
三角双锥
4
1
SbF4− 5+4+1=10 5
三角双锥
4
1
Cl
Cl
I Cl
Cl
正方形
F F
I F
F
跷跷板型
F F

周公度第四版结构化学第五章_多原子分子的结构和性质总结

周公度第四版结构化学第五章_多原子分子的结构和性质总结
例如: CaF2, SrF2,BaF2是弯曲形,而 不是直线型。
·价电子对互斥理论不能应用的化合物
·过渡金属化合物(具有全充满、半充满或全空的 d轨道除外)。
§5.2 杂化轨道理论
一、杂化概念的提出 1931年和Slater提出杂化概念,为了解
释键角的变化。
为了解释甲烷的正四面体结构,说明碳原子四个 键的等价性,鲍林在1928一1931年,提出了杂化轨道 的理论。
例:如右图:
A(1,2,3) 124.1 A(1,2,4) 124.1 A(3,2,4) 111.9
3. 成键电子对和孤对电子对的分布情况不同,前者受 到2个成键原子核的吸引,比较集中在键轴的位置, 而孤对电子对没有这种限制,显得比较肥大(空间 分布范围广),所以孤对电子对对相邻电子对的排 斥较大。
目录
1 价电子对互斥理论(VSEPR) 2 杂化轨道理论 3 离域分子轨道理论 4 休克尔分子轨道法(HMO法) 5 离域π键和共轭效应 6 分子轨道对称性和反应机理
5.1 价层电子对互斥理论(VSEPR)
VSEPR: (Valence Shell Electron Pair Repulsion) 判断多原子分子几何构型的近代学说。
三、判断分子几何构型的原则:
ALmEn
当中心原子A周围存在m个配位体L及n个孤 对电子对E(ALmEn)时,提出判断分子几何构型 的原则如下:
1.为使价电子对间斥力最小,可将价电子对看作等距 离地排布在同一个球面上,形成规则的多面体形式。
★ 当m+n=2 时,直线形; ★ 当m+n=3 时,三角形; ★ 当m+n=4 时,四面体形;★ 当m+n=5 时,三方双锥形; ★ 当m+n=6 时,八面体形。

结构化学复习-资料

结构化学复习-资料
本章要求: ①会写原子的哈密顿算符(原子单位)
②会解F方程,了解主量子n,角量子数l,磁量子数m的物理
含义及取值范围;单电子原子的能级公式。 ③屏蔽常数的计算,电离能的计算; ④掌握角动量耦合规则,会推求原子光谱项,会推求基谱项。
第二章 原子的结构和性质
2.1 单电子原子的Schrödinger 方程及其解
ns态 D(r)4r2n2s
径向分布图的讨论
0.6
0.3
☆1s态:核附近D为0;r=a0时,D极大。表
0 0.24
明在r=a0附近,厚度为dr的球壳夹层内找
0.16 0.08
到电子的几率要比任何其它地方同样厚度 0
的球壳夹层内找到电子的几率大。
0.24 0.16
0.08
D1,0(r)4r2 1s24(aZ0)3r2e2aZ 0r
的轨道在核附近有较大的几率。可以证
0
0.12
明,核附近几率对降低能量的贡献显著。 0.08
Pb2+ 比 Pb4+, Bi3+ 比 Bi5+的稳定的原因
0.04 0
就是6s电子比6p电子钻得更深可以更好
0.12 0.08
的避免其它电子的屏蔽效应, 6s电子不 0.04
易电离,只电离6p电子。
0 0
1s 2s 2p 3s 3p 3d
径向分布图的讨论
0.6
0.3
0
☆每一n和l确定的状态,有n-l个
0.24 0.16
极大值和n-l-1个D值为0的点。
0.08 0
0.24
Dn.l (r) r2R2n.l (r)
0.16 0.08
2zr
r2(blrl bl1rl1 bn1rn1)2e na0

多原子分子的结构与性质

多原子分子的结构与性质

(3)缺电子原子与缺电子原子形成的的硼氢化合物都是缺电子分子, 乙硼烷是有代表性 的分子. 对其结构曾有过长期争论:
(1)乙烷式还是桥式?
乙烷式结构 (2)它的化学键如何形成?
桥式结构
大量研究证实了乙硼烷具有桥式结构,桥H–B键比端H – B键长:
2. 球烯包合物
C60直径为0.7 nm,内腔可能容纳直径达 0.5 nm的金属离子, 形成球烯包合物. 1991年 制备出第一个球烯包合物La@C82 .目前得到 的多为稀土、碱土和碱金属的包合物,以及 惰性气体和非金属包合物. 多数只包入一个 原子,少数包入两个或三个原子.
单原子包合物中,金属原子M偏离笼中心 而靠近某六元环. 多原子包合物中的2个或3 个原子也彼此分开,偏离中心.
两个BH3聚合,生成两个香蕉状B – H – B桥键,都是3中心2电子键:
硼的较高氢化物中有3种基本形式的键:
(1)正常的双电子键,如B – H、B – B键;
(2)B – H – B桥键;
(3)将多个B结合起来的多中心离域键: 3中心2电子硼 桥键(开放式三中心键)、 3中心2电子硼键(关闭式或向 心式三中心键)、 5中心6电子硼键。下面图示多中心离域 键:
科学研究领域的一个新的突破,它又称巴基管 (Buckytube),属富勒(Fullerene)碳系,是伴随着C60的研 究不断深入而出现的。碳纳米管是处于纳米级范围内, 具有完整分子结构的新型材料。典型的碳纳米管直径小 于100nm,长度为几μm。(注:lnm=10-9m,1μm=106m)CNTs 的基本结构主要由六边形碳环组成,此外还
Al(CH3)3的二聚体Al2 (CH3)6
一些新型多原子分子
固体碳的新形态——球烯
1. 球烯

结构化学课后答案第5章 多原子分子的结构和性质

结构化学课后答案第5章 多原子分子的结构和性质

第五章多原子分子的结构和性质习题答案1.分子或离子AsH3ClF3SO3SO32-CH3+CH3-m+n 4 5 3 4 3 4价电子空间分布四面体三角双锥平面三角形四面体平面三角形四面体几何构型三角锥T形平面三角形三角锥平面三角形三角锥2.分子或离子AlF63-TaI4-CaBr4NO3-NCO-ClNO几何构型正八面体跷跷板形四面体形平面三角形直线形V形3.分子或离子CS2NO2+SO3BF3CBr4SiH4杂化类型sp杂化sp杂化sp2杂化sp2杂化sp3杂化sp3杂化几何构型直线形直线形平面三角形平面三角形正四面体正四面体分子或离子MnO4-SeF6AlF63-PF4+IF6+(CH3)2SnF2杂化类型sd3杂化sp3d2杂化sp3d2杂化sp3杂化sp3d2杂化sp3杂化几何构型正四面体正八面体正八面体正四面体正八面体准四面体4.222222222122232411()2211()2211()2211()22xxyys p d x ys p d x ys p d x ys p d x ydspdspdspdspφφφφφφφφφφφφ----=+=-+=-=--5.010000001100000011000100110000001100000011000000110010001=xx x x x x x x 0110110111001=xx x x 6.1234567. 010111=xx x 展开:023=-x x 202321==-=x x x βααβα22321-==+=E E E烯丙基:33∏212E E E D +=π=βα223+ 212E E E L +=π=βα23+βπππ)12(2-=-=L D E E DE烯丙基正离子:23∏12E E D =π=βα222+12E E L =π=βα22+βπππ)12(2-=-=L D E E DE烯丙基负离子:43∏2122E E E D +=π=βα224+2122E E E L +=π=βα24+βπππ)12(2-=-=L D E E DE8. 环丙烯基33∏0111111=x x x 展开:0)2()1(02323=+-=+-x x x x 解得:βαβα-====+==323211,12,2E E x x E x 把21=x 代入久期方程:⎪⎩⎪⎨⎧=++=++=++000321321321x c c c c x c c c c x c 归一化条件:1232221=++c c c解得:)(313211φφφψ++=把132==x x 代入久期方程,再环丙烯的三个分子轨道,其中两个简并轨道是关于σ面对称或反对称的。

第5章多原子分子的结构与性质-2012年兰州大学李炳瑞最新结构化学课件

第5章多原子分子的结构与性质-2012年兰州大学李炳瑞最新结构化学课件

第5章目录5.1 非金属元素的结构化学:8-N法则5.2 非共轭分子几何构型与VSEPR规则5.3 分子几何构型与Walsh规则5.4 共轭分子与SHMO法5.4.1 丁二烯离域大π键的SHMO处理5.4.2 简并轨道的求解与等贡献规则5.4.3 直链和单环共轭体系本征值的图解法5.4.4 分子图:π电子密度、π键级、自由价5.4.5 共轭效应5.4.6 共轭分子在现代科技中的应用5.4.7 超共轭效应5.5 饱和分子的正则轨道与定域轨道5.6 缺电子分子的结构5.6.1 缺电子原子化合物的三种类型5.6.2 硼烷中的多中心键5.6.3 金属烷基化合物中的多中心键5.7 等瓣类似性关系5.7.1 等瓣类似性概念5.7.2 八面体构型金属-配体碎片与有机碎片的等瓣类似性5.7.3 其他构型的金属-配体碎片与有机碎片的等瓣类似性5.7.4 各种配位的分子碎片的等瓣类似关系小结5.7.5 等瓣类似性原理的应用实例5.8 多原子分子的谱项5.8.1 电子组态与分子谱项5.8.2 荧光与磷光5.9 配位场理论5.9.1 晶体场理论(CFT)5.9.2 配位场理论(LFT)5.9.3 T-S图与电子光谱5.10 分子轨道对称性守恒原理5.10.1 前线轨道理论5.10.2 相关图理论与金属相比, 非金属的数量要少得多。

目前在元素周期表中有110多种元素,非金属元素只占20余种, 分布在p 区(除H 的位置有不同看法外)。

在p 区中,整个一列稀有气体都是非金属元素,其余非金属元素很有规律地占据了右上角区域。

非金属元素数量虽少,但成键规律、结构特征都与金属元素有所不同。

非金属单质中定域共价键占主导地位,与金属单质中金属键占主导地位形成鲜明的对照。

金属键没有饱和性和方向性。

对于金属单质结构,几何因素起重要作用, 大多数金属单质晶体采取简单的密堆积结构。

共价键有饱和性和方向性。

非金属原子以共价单键结合时,周围通常配置8-N个原子,非金属间化合物配位也如此。

周公度第三版结构化学第五章 多原子分子的结构和性质

周公度第三版结构化学第五章 多原子分子的结构和性质
★图5.2 可见: 杂化轨道角度部分 相对最大值有所增 加,意味着相对成 键强度增大。
R/a0
图5.2 碳原子的 sp3 杂化轨道等值线图
•杂化轨道最大值之间的夹角θ
根据杂化轨道的正交、归一条件
★两个等性杂化轨道的最大值之间的夹角θ满足:
cos 3 cos2 1 5 cos3 3 cos 0
例:VP( SO 24)=12 (6+4×0+2)=4
(2) 确定电子对的空间构型:
VP=2 直线形
:A:
:
: :: :
VP=3 VP=4 VP=5 VP=6
平面三:
:A :
:: :A:
::
(3) 确定中心原子的孤电子对数,推断分子的 空间构型:
① LP=0:分子的空间构型=电子对的空间构型
D∞h D3h Td
D4h D3h C4v Oh
CO2 , N3BF3 , SO3
CH4
Ni(CN)42PF5 IF5 SF6
• 杂化轨道满足正交性、归一性
例: i ais bi p
由归一性可得: i * id 1
ai2 bi2 1
由正交性可得: i * jd 0
i j
★根据这一基本性质,考虑杂化轨道的空间分布及 杂化前原子轨道的取向,就能写出杂化轨道中原子轨道的 组合系数。
b 0.55px 0.70py 0.45s
若不需区分 px 和 py ,只需了解杂化轨道中 s成分和 p 成分,
可按
cos 计算夹角。
对于 H2O 中的 O 原子只有 s 轨道和 p 轨道参加杂化。 设 s 成分为 α, p 成分β=1- α
则:
1cos 0
1cos104.5o 0

第五章:多原子分子的结构11使用 (2)

第五章:多原子分子的结构11使用 (2)
共轭分子不论键长、键能、参加反应的位置都不同
于一般定域π键的分子。共轭分子所含的原子数增多
了,导致求解的困难。
1930年休克尔应用了LCAO-MO近似,采用简化 手续处理了大量的有机共轭分子,形成了休克尔分子 轨道法,称 HMO 法。
5.2.1 HMO法概述 5.2.1.1σ-π分离近似
如:丁二烯
5.2.1.2 休克尔近似
分子中每个π电子的运动状态可以用波函数 来描述,称为π轨道。它是由具有相同对称性
的所有相邻碳原子的2pz 轨道线性组合而成:
n
c i i c11 c 2 2 c 33 c n n
i 1
可以得到久期行列式:
H 11 ES11 H 12 ES12 H ES H ES 21 21 22 22 ... ... H n1 ES n1 H n 2 ES n 2 ... H 1n ES1n ... H 2 n ES 2 n 0 ... ... ... H nn ES nn
四个离域的成键轨道:
1
2
1 1sa 1sb 1sc 1sd s 2 1 p x 1sa 1sb 1sc 1sd 2 1 p y 1sa 1sb 1sc 1sd 2


3
4
1 p z 1sa 1sb 1sc 1sd 2
1.等性杂化 对于s-p型杂化轨道,φk可以写成:
k Ckss Ckxpx Ckypy Ckzpz
下面通过一个例子说明如何求轨道波函数。
例:由s, px , py 组成的 sp2 杂化轨道ψ1,ψ2,ψ3 ,当ψ1极大值方向
和 X 轴平行,由等性杂化概念可知每一轨道 s 成分占 1/3 (1个 s 分 在3 个 sp2中 ),故组合系数为

结构化学第五章多原子分子的结构和性质

结构化学第五章多原子分子的结构和性质

结构化学第五章多原子分子的结构和性质多原子分子是由两个或更多个原子通过共价键连接在一起的分子。

在结构化学的研究中,对多原子分子的结构和性质进行分析是非常重要的。

本章主要介绍多原子分子的键角、电荷分布、分子极性以及它们的几何结构等方面的内容。

首先,多原子分子的键角是指由两个原子和它们之间的共价键所形成的夹角。

键角的大小直接影响分子的空间构型和立体化学性质。

结构化学家通过分析分子的键角可以确定分子的几何结构。

一般来说,当原子间的键角接近于109.5°时,分子的几何结构为四面体形;当键角接近120°时,分子的几何结构为三角锥形;当键角接近180°时,分子的几何结构为线性形。

其次,多原子分子的电荷分布对分子的性质起着重要的影响。

分子中的原子会通过共价键共享电子,形成电子云密度的分布。

根据电负性差异,原子会对电子云产生一定程度的吸引或排斥,并形成了分子中的正负电荷分布。

根据这种电荷分布,可以判断分子的极性。

当分子的正负电荷分布不平衡时,就会形成极性分子,如水分子;而电荷分布平衡时,就会形成非极性分子,如二氧化碳分子。

另外,多原子分子的分子极性也与分子的几何结构密切相关。

分子的几何结构会影响分子的偶极矩,从而决定分子的极性。

当一个分子的几何结构对称时,分子的偶极矩为零,分子为非极性分子;而当分子的几何结构不对称时,分子的偶极矩不为零,分子为极性分子。

例如,二氧化碳分子由于O=C=O的线性结构使得分子的偶极矩为零,因此二氧化碳是非极性分子;而水分子由于O-H键的角度小于180°,使得分子的偶极矩不为零,是极性分子。

在多原子分子中,还存在着共振现象。

共振是指在分子中一些共价键的原子成键和非键电子位置可以相互交换的现象。

共振的存在使得分子的键长和键能难以准确确定,同时影响分子的稳定性和反应性质。

共振的存在对于解释一些分子性质,如分子的稳定性和电子云的分布具有重要作用。

总之,多原子分子的结构和性质是结构化学研究中的重要内容。

结构化学讲义

结构化学讲义
第五章 多原子分子结构(一)
5.1 杂化轨道理论 5.2 价电子互斥理论 5.3 离域p键 5.4 HMO法
对双原子分子,无论用MO法,还是用VB法处理, 都是双中心的,在多数情况下,可以得到一致的结 论。当然也有不一致的情况,比如O2。
而对多原子分子,用MO法与VB法处理,则模式 图象完全不一样了,VB法仍是双中心的,而MO 法则是多中心的。即分子轨道(分子中单个电子的 波函数)原则上是遍及分子中所有原子的,这就是 通常所说的正则分子轨道或离域分子轨道。
s, pz s, p x , p y s, p x , p y , p z
s, d xz , d xy , d yz
d x 2 y 2 , s, p x , p y
直线形
平面三角形 四面体形 四面体形 平面四方形
BF3 ,SO3
MnO 4
Ni(CN)24
CH 4
dsp3
dsp3
d z 2 , s, px , p y , pz
2 2 s2d p x d p y d 1
s p
x
d s p y d p x p y d 0
有两组解,代表两种情况: y
2 : a2 p y
2 2 3
1
x
2 : a2 p y
2 2 3
两个解任意取一即可,不妨取 a2 p y
注意:虽然杂化轨道的形式与LCAO-MO一样,也 是由原子轨道线性组合得到,但是意义不同。参与
杂化的原子轨道都来自同一个原子,而组成分子轨
道的原子轨道来自不同的原子,因此杂化轨道也是 原子轨道,属于一个原子,而分子轨道则属于整个 分子。 价键理论有逐渐被分子轨道理论所代替的趋势,但 是在组成分子轨道时,先将每个原子的原子轨道杂

多原子分子的结构和性质

多原子分子的结构和性质
U i (r — i ) 电子i受到的其它n-1个电子的平均库仑作
2018/11/13
• 注意:电子之间存在相关作用,使一个电 子在空间某处出现时,其它电子无论自旋 与之相同还是相反都不能到达此处。(自 旋相同电子由于Feimi(费米)相关,自旋相反 电子由于Coulomb相关)。但在将其它n-1 个电子所有可能的空间坐标进行平均时, 将它们不能到达的空间也包括了进去,带 来了误差。因此对更精确的讨论须考虑电 子的相关作用。
杂,多中心多电子,需要用一组键长
和键角数据来表征其几何构型。同时
也要用一组波函数(分子轨道)来解
释分子的成键情况和性质(键型、能
级和电子排布)。
2018/11/13
多原子分子是大量的,必须用简化的模 型和图象来对描述这些分子的电子行为 和成键规律。如果用定域的分子轨道来 考虑分子中原子与原子之间的成键,所 形成的分子构型就会与事实不符。 1 ) H2 O 2) CH4
2018/1Байду номын сангаас/13
(r1 , r2 ,...rn ) i (ri )
i 1
n
E E1 E 2 E n Ei
Za — 所有原子核与所有电子的相互吸引
m n a 1 i 1
rai
势能
• • •
1 rij —电子ij之间的相互排斥势能
1 —所有电子对电子i的排斥势能 r j i ij
1 所有电子之间的相互排斥势能 — r
i j ij
n
2018/11/13


Za Zb Rab— 原子核之间的相互排斥作用
2018/11/13
2018/11/13
• 一、多原子分子的薛定谔方程
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、键对由于受两个原子核的吸引,电子云比较 集中在键轴的位置,而孤对电子不受这种限制。 显得比较肥大。由于孤对电子肥大,对相邻电子 对的排斥作用较大。不同价电子对间的排斥作用 顺序为:孤对-孤对 > 孤对-键对 > 键对-键对 另外,电子对间的斥力还与其夹角有关,斥力大 小顺序是: 90 °> 120°> 180° 4、键对只包括形成σ键的电子对,不包括形成π 键的电子对,即分子中的多重键皆按单键处理。π 键虽然不改变分子的基本构型,但对键角有一定 影响,一般是单键间的键角小,单一双键间及双 -双键间键角较大。 键对电子排斥力的大小次序为:三键-三键> 三键-双键>双键-双键>双键-单键>单键-单键
d2sp3
dx2-y2, s , px , py , pz
四方锥形
C4v
Oh
IF5
SF6
dz2, dx2-y2, s , px , py , pz 正八面体形
• 杂化轨道满足正交性、归一性
例:
i ai s bi p
ai2 bi2 1
i j
由归一性可得: i * i d 1 由正交性可得: i * j d 0
(2) 确定电子对的空间构型:
VP=2 直线形 : A
: : :
A
VP=3
VP=4
平面三角形
: :
:
四面体
:
A
:
VP=5
VP=6
三角双锥
八面体
: A : : A : :
: : :
:
:
:
(3) 确定中心原子的孤电子对数,推断分子的 空间构型:
① LP=0:分子的空间构型=电子对的空间构型 例如:
BeH2
1 2 3 0 1 2
变形四面体 T形 直线形 正八面体形 四方锥 平面四方形
SF4 ClF3 XeF2
SF6、MoF6 [AlF6]3IF5 XeF4
价电子对互斥理论判断几何构型的规则为:
⑴当中心原子A的周围存在着 m 个配位体 L 和 n 个孤电子 对E (A Lm En) 时,为使价电子对斥力最小,将m个成键电子 对和n个孤电子对等距离地排布在同一球面上,形成规则的 多面体形式; ⑵ 键对电子排斥力的大小次序为:三键-三键> 三键-双键>双键-双键>双键-单键>单键-单键; ⑶ 成键电子对受核吸引,比较集中在键轴位置,孤电子对 没有这种限制,显得肥大。价电子对间排斥力大小次序为: lp-lp>>lp-bp>bp-bp,lp和lp必须排列在相互夹角大于90° 的构型中, 夹角也影响价电子对间排斥力大小的次序: 90 °> 120°> 180°; ⑷ 电负性高的配位体吸引价电子的能力强,价电子离中心 原子较远,占据空间角度相对较小。 优点:简单实用、对大多数主族共价分子结构的判断结论准 确。
直线形
正三角形 角形(V形)
正三 角形 正四 面体 三角 双锥 正八 面体
SnCl2
正四面体形 三角锥形 角形 三角双锥
AB3 AB2 AB5
CH4 CCl4 SiH4 PCl4+ 、NH4+ 、SO42NH3、NF3
5
H2O H2S PF5、PCl5 SbCl5 SbCl5 NbCl5
6
AB4 AB3 AB2 AB6 AB5 AB4
第五章 多原子分子的结构和性质
教学目标
对常见多原子分子所包含的化学键(包括定域单、双键,离 域Π 键,缺电子、多电子键,等),能作出正确的判断,从而 可推测其几何结构和化学性质。 学习要点 ⑴ 中心原子spn杂化和dspn、d2spn杂化形成的分子轨道。 ⑵ 用价电子对互斥理论分析主族元素化合物。 ⑶ 离域Π 键化合物的结构与性质的关系。 ⑷ 用HMO方法求解共轭体系分子轨道、能级和分子图。 ⑸ 用轨道对称守恒原理和前线轨道理论分析化学反应。 (6)分析缺电子多中心键和硼烷的结构 (7) 非金属元素的结构特征 (8) 共价键的键长和键能
成分全由p 轨道组成,因与 x 轴平行,与 y 轴垂直,py没有贡献,全部为px 。
1 1 1 / 3,(ai2 , ai ) ;其余2/3 3 3
所以: 1 s 2 p 1 x 3 3 同理:
2 3
300
2 cos300 3
2 3
300

2
1 1 1 s px py 3 6 2
:
:
:
第二节.杂化轨道理论
杂化轨道:在一个原子中不同原子轨道的线性组合称为原子 的轨道杂化 ,杂化后的原子轨道称为杂化轨道。 杂化的目的:更有利于成键。 杂化的动力:受周围原子的影响。
杂化的规律:
★ 轨道的数目不变,空间取向改变 ; ★ 杂化轨道能与周围原子形成更强的σ键,或安排孤对电
子,而不会以空的杂化轨道存在。
★根据这一基本性质,考虑杂化轨道的空间分布及
杂化前原子轨道的取向,就能写出杂化轨道中原子轨道的 组合系数。
例:由s, px , py 组成的 sp2 杂化轨道ψ1,ψ2,ψ3 ,当ψ1极大值方向
和 X 轴平行,由等性杂化概念可知每一轨道 s 成分占 1/3 (1个 s 分
在3 个 sp2中 ),故组合系数为
学时安排
学时----- 8学时
分子结构的内容有两个方面:组成分子的原子在三维 空间的排布次序、相对位臵;分子的电子结构,包括化学 键型式和相关的能量参数。 分子结构的这两方面内容互相关联并共同决定分子的性质。
第一节 价电子对互斥理论
该理论认为:原子周围各个电子对(包括成键电子对 bp和孤 电子对lp)之间由于相互排斥作用,在键长一定条件下,互相间 距离愈远愈稳定。据此可以定性地判断分子的几何构型。 价电子对间的斥力来源于:各电子对之间的静电排斥作用、自 旋相同的电子互相回避的效应。 当中心原子A的周围存在着 m 个配位体 L 和 n 个孤电子对 E (A Lm En) 时,考虑价电子对间的斥力、多重键中价电子多 和斥力大、孤电子对分布较大以及电负性大小等因素,判断分 子的几何构型。
电子对的 空间构型 分子的 空间构型
例 SnCl2 NH3 H2O IF5
1
1 2
平面三角形 四面体 四面体 八面体
V形 三角锥 V形 四方锥
6
1
2
八面体
平面正方形
XeF4
孤对电子占据的位置: VP = 5,电子对空间构型为三角双锥, LP占据轴向还是水平方向三角形的某个 顶点?原则:斥力最小。 例如:SF4 VP=5 LP=1 F F F S F S F F F F LP-BP(90o) 3 2 结论:LP占据水平方向三角形的某个顶点, 稳定分子构型为变形四面体(跷跷板形)
价层电子对互斥理论
价键理论和杂化轨道理论比较成功地说明了 共价键的方向性和解释了一些分子的空间构型。 然而却不能预测某分子采取何种类型杂化,分子 具体呈现什么形状。例如,H2O、CO2都是AB2型 分子,H2O分子的键角为104°45´,而CO2分子是 直线形。又如NH3和BF3同为AB3型,前者为三角 锥形,后者为平面三角形。为了解决这一问题, 1940年英国化学家西奇威克(Sidgwick)和鲍威尔 (Powell)提出价层电子对互斥理论(Valence-shell electrion-pair repulsion)简称VSEPR理论。后经 吉莱斯(Gillespie)和尼霍姆(Nyholm)于1957年发展 为较简单的又能比较准确地判断分子几何构型的 近代学说。
VP LP
5 5 5
电子对的 空间构型
分子的 空间构型
例 SF4 ClF3 XeF2
1
2 3
三角双锥 三角双锥 三角双锥
变形四方体 T形 直线形
以IF2-为例,用上述步骤预测其空间构型。 (1)中心原子I的价电子数为7,2个配位原子F各提 供1个电子,负离子加一个电子,价电子对数为5。 (2)5对电子以三角双锥方式排布。 (3)因配位原子F只有2个,所以5对电子中,只有2 对为成键电子对,3对为孤电子对。有三种可能的情 况,选择结构中电子对斥力最小的,即IF2-的稳定构 型为直线形结构。
等性杂化轨道和不等性杂化轨道:
在某个原子的几个杂化轨道中,参与杂化的s、p、d 等成分相等(每个杂化后的轨道中含有原轨道的比例 相等),称为等性杂化轨道;如果不相等,称为不等 性杂化轨道。
表 5.1 一些常见的杂化轨道
杂化轨道 sp sp2
参加杂化的原子轨道
s , px s , px , py
构型
3 2 1 2 5 2 3 2 () 1
式中:α,β,γ,δ分别是杂化轨道中s,p,d,f 轨道所占的百分数
★两个不等性杂化轨道ψi和ψj的最大值之间的夹角θij :
i j i j cosij i j cos2 ij
3 5 i j cos3 ij cos ij 0 2 2
价层电子对互斥理论的要点
1、分子的立体构型取决于中心原子的价电子对的 数目。价电子对包括成键电子对和孤电子对。 2、价电子对之间存在斥力,斥力来源于两个方面, 一是各电子对间的静电斥力,而是电子对中自旋方向 相同的电子间产生的斥力。为减小价电子对间的排斥 力,电子对间应尽量相互远离。若按能量最低原理排 布在球面上,其分布方式为:当价电子对数目为2时, 呈直线形;价电子对数目为3时,呈平面三角形;价 电子对数目为4时,呈四面体形;价电子对数目为5时, 呈三角双锥形;价电子对数目为6时,呈八面体形等 等。
进一步讨论影响键角的因素: ①π键的存在,相当于孤对电子排斥成键电 子,使键角变小。例如: Cl H H C=O C=C H Cl H ②中心原子和配位原子的电负性大小也影响 键角。例如: N N H H F F F H 中心原子电负性大者,键角 P 较大;配位原子电负性大者,键 角较小。 HH H
相关文档
最新文档