建筑结构设计计算参数

合集下载

YJK计算参数(-注释)20171011

YJK计算参数(-注释)20171011

YJK计算参数(-注释)20171011SATWE结构计算中的参数选取一、总信息..............................................1、结构体系根据实际情况填写。

该参数直接影响整体指标统计、构件内力调整、构件设计等内容。

2、结构材料信息: 根据实际情况确定3、地下室层数:指与上部结构同时进行内力分析的地下室部分的层数。

该参数对结构整体分析与设计有重要影响,无地下室时填0,有地下室时根据实际情况填写。

4、嵌固端所在层号: MQIANGU= 1嵌固端所在层号主要用于设计,如按《抗震规范》6.1.14.3.2条对梁、柱钢筋进行调整;按《高规》3.5.5.2条确定刚度比限值;地震组合下的设计内力调整;底部加强区起始位置等方面。

软件默认嵌固层号=地下室层数,如果在基础顶嵌固,则该参数填0,如果修改了地下室层号,1;对钢结构或大型体育场馆类(指没有严格的标准楼层概念)结构应选一次性加载。

10、风荷载计算信息:一般计算方式。

一般计算方式:软件先求出某层X、Y方向水平风荷载外力FX、FY,然后根据该层总节点数计算每个节点承担的风荷载值,再根据该楼层刚性楼板信息计算该刚性板块承担的总风荷载值并作用在板块质心;如果是弹性节点,则直接施加在该节点上,最后进行风荷载计算;11、地震力计算信息:计算水平地震作用12、生成绘等值线用数据选中该参数之后,后处理中的“等值线”才有数据,用来画墙、弹性楼板、转换梁以及框架梁转连梁的应力等值线。

二、计算控制信息..............................................1、水平力与整体坐标夹角该参数为地震作用、风荷载计算时的X正向与结构整体坐标系下X轴的夹角,逆时针方向为正,单位为度。

改变该参数时,地震作用和风荷载计算时的X正向将发生改变,进而影响与坐标系方向有关的统计结果,如风荷载计算时的迎风面宽度、风荷载、地震作用计算时的层外力、层间剪力、层间位移、层刚度等指标。

建筑结构设计计算步骤参数确定分析

 建筑结构设计计算步骤参数确定分析

建筑结构设计计算步骤参数确定分析建筑结构是一个涉及多学科知识的领域,其中结构设计计算是整个建筑过程中至关重要的一步。

本文将围绕建筑结构设计计算步骤、参数的确定和分析展开讨论。

一、结构设计计算步骤结构设计计算是建筑设计的重要组成部分,建筑结构设计计算步骤通常包括以下内容:1.确定设计荷载:设计荷载是结构计算的基础,荷载分为静载和动载两种。

静载包括自重、建筑材料及构件重量、实用荷载等,动载包括风载、地震荷载等。

2.材料选择:材料的选择直接影响建筑结构的强度和稳定性。

常见的材料包括钢材、混凝土、木材等。

3.结构分析:结构分析是建筑结构设计计算的核心步骤,其目的是确定结构受力状态和结构强度。

常见的结构分析方法包括弹性分析和弹塑性分析。

4.设计结构构件:设计结构构件是根据结构分析结果确定构件的几何形状、尺寸和布置方式。

设计过程需要考虑结构构件的强度、刚度、稳定性等因素。

5.校核设计:校核设计是确保设计结果符合结构安全和稳定性要求的步骤。

在校核设计中,通常会进行结构强度、刚度和稳定性的分析。

二、参数的确定和分析在建筑结构设计计算过程中,参数的确定和分析是关键环节。

参数的确定通常有以下几个方面:1.确定荷载值:荷载值的确定直接影响结构的安全性和稳定性。

确定荷载值需要考虑建筑类型、设计用途、场地条件等多方面因素。

2.确定材料性能:不同材料的性能不同,如强度、韧性、抗裂性等。

根据建筑结构的实际情况,应选择相应材料并确定其性能参数。

3.确定结构分析方法:结构分析方法的选择取决于建筑结构的复杂程度、受力情况和工程需求。

常用的结构分析方法包括有限元方法、力法、位移法等。

4.确定结构构件的尺寸和布置:结构构件的尺寸和布置需要根据受力及使用要求进行合理设计。

尺寸过大过小、布置不合理都会影响建筑的稳定性。

5.确定校核设计方法:校核设计方法的选择需要根据结构的实际情况和需求。

校核设计过程中需要考虑的因素包括强度、稳定性、刚度和振动等。

PKPM设计参数

PKPM设计参数

PKPM设计参数PKPM(建筑结构模型分析与设计软件)是一款常用于建筑结构分析与设计的计算机辅助软件。

其设计参数包括以下几个方面:1.材料参数:PKPM中的材料参数主要包括混凝土、钢筋和钢结构的材料特性。

混凝土的参数包括弹性模量、泊松比、抗压强度和抗拉强度等;钢材的参数包括弹性模量、泊松比、屈服强度和强度等。

2.结构参数:PKPM中的结构参数包括梁、柱、板、墙等构件的几何尺寸和截面形状。

例如,梁的宽度、高度、长度和截面形状(矩形、T形、L形等);柱的截面尺寸和类型(矩形、圆形等)等。

3.荷载参数:PKPM中的荷载参数包括静荷载和动荷载。

静荷载包括自重荷载、活荷载和附加荷载等;动荷载一般包括地震荷载、风荷载和温差荷载等。

荷载参数的大小和施加位置对结构的分析和设计具有重要影响。

4.设计参数:PKPM中的设计参数主要包括结构的设计要求和设计目标。

例如,设计要求可包括结构的强度、刚度、稳定性和耐久性等;设计目标可以设置为满足国家相关建筑规范和标准。

5.分析方法:PKPM支持多种结构分析方法,包括弹性分析、非线性分析和动力分析等。

根据具体的设计要求和材料特性,选择合适的分析方法进行分析和设计。

6.输出参数:PKPM的输出参数主要包括结构的应力、应变、位移和内力等。

这些参数可以用于评估结构的安全性和性能。

7.备注参数:PKPM中还可以添加备注参数,用于记录和说明一些特殊情况或设计决策。

综上所述,PKPM的设计参数涵盖了材料、结构、荷载、设计要求、分析方法、输出参数和备注参数等方面,通过合理设置这些参数,可以进行有效的建筑结构分析与设计。

建筑结构设计七个重要参数

建筑结构设计七个重要参数

建筑结构设计七个重要参数建筑结构设计是建筑工程中至关重要的环节,它关乎到建筑的稳固性、经济性和安全性。

在进行建筑结构设计时,需要考虑七个重要参数,这些参数对于建筑结构的设计和建设起着至关重要的作用。

下面将详细介绍这七个重要参数。

参数一:荷载荷载是指对建筑结构施加的外力和外载荷。

外力包括自重、活载(人员、设备等)、风载、地震载、温度变化引起的荷载等。

荷载是建筑结构设计的基础,合理估计和分析荷载有助于确保结构的稳定性和安全性。

参数二:强度强度是指结构材料所能承受的最大外力或应力。

在建筑结构设计中,需要考虑材料的强度和抗力,以确保结构的安全性。

强度设计要充分考虑结构的各种不利因素,如荷载类型、弯曲、剪切、压缩等,并根据设计规范进行相应的计算和分析。

参数三:刚度刚度是指结构抵抗外力变形的能力。

在建筑结构设计中,需要考虑结构的刚度,以确保结构在受力后能够保持稳定。

刚度设计要充分考虑结构的几何形状、材料的性质,以及结构的连接方式,采用合适的刚度设计有助于提高结构的稳定性和整体性。

参数四:稳定性稳定性是指建筑结构在受到外力作用后仍能保持平衡和稳定的能力。

在建筑结构设计中,需要考虑结构的整体稳定性,以确保结构不会发生失稳和倒塌。

稳定性设计要充分考虑结构的几何形状、重心位置、支座条件等因素,采用合适的稳定性设计有助于提高结构的抗风、抗震能力。

参数五:耐久性耐久性是指建筑结构能够在长期使用条件下保持强度、刚度和稳定性的能力。

在建筑结构设计中,需要考虑结构的耐久性,以确保结构能够长期使用而不会出现损坏和退化。

耐久性设计要充分考虑结构材料的性质、外界环境的影响,采用合适的防护措施有助于延长结构的使用寿命。

参数六:经济性经济性是指在保证结构安全、稳定和耐久的前提下,以最少的材料和成本达到设计要求。

在建筑结构设计中,需要考虑结构的经济性,以确保在有限的资源条件下实现设计目标。

经济性设计要充分考虑结构的材料选择、结构形式和施工工艺,采用合适的经济性设计有助于减少成本和资源消耗。

PKPM计算参数

PKPM计算参数

PKPM计算参数PKPM是建筑工程设计和施工的一种常用计算软件,全称为“工程结构分析和设计程序”。

PKPM主要用于进行建筑结构的力学分析和设计计算,是国内较早开发的结构计算软件之一在进行PKPM计算时,需要输入一些计算参数,以确保计算的准确性和可靠性。

下面是一些常见的PKPM计算参数:1.材料参数:包括混凝土的抗压强度、抗拉强度、弹性模量等;钢筋的屈服强度、弹性模量等。

这些参数是根据实验室试验结果或国家标准来确定的。

2.结构参数:包括构件的尺寸参数、支座的刚度参数等。

这些参数根据实际的工程结构设计来确定,包括梁、柱、板等构件的尺寸,以及支座的刚度参数。

3.荷载参数:包括静荷载和动荷载。

静荷载是指直接作用于建筑结构上的恒定荷载,如自重、楼层荷载等;动荷载是指作用于结构上的变化荷载,如风荷载、地震荷载等。

这些荷载参数需要根据实际工程情况和设计规范来确定。

4.边界条件:包括结构的支座条件、约束条件等。

这些条件是结构计算中的边界条件,用于确定结构的受力和变形情况。

例如,支座条件可以是固定支座、弹性支座或浮动支座等。

约束条件可以是禁止一些位移或转角,以模拟实际工程中的约束情况。

5.分析方法:PKPM可以进行静力分析、动力分析以及非线性分析等。

静力分析是指在稳态荷载下进行的结构分析,动力分析是指在动态荷载下进行的结构响应分析,非线性分析是指考虑构件变形和材料非线性等因素的分析。

不同的分析方法需要输入不同的计算参数。

在进行PKPM计算时,需要根据具体的工程情况和设计要求来确定这些计算参数。

在输入参数时,需要保证参数的准确性和合理性,确保计算结果的可靠性。

另外,还需要根据计算结果来进行适当的修改和调整,以满足工程实际需求。

需要注意的是,PKPM计算参数的输入应当遵循相应的设计规范和国家标准,以确保结构的安全性和可靠性。

此外,在使用PKPM进行计算时,还需要结合具体的结构计算原理和方法进行分析,以获得准确的计算结果。

建筑结构pkpm参数选择

建筑结构pkpm参数选择

建筑结构(SATWE)的总信息建筑结构(SATWE)的总信息总信息 ..............................................结构材料信息: 钢砼结构..........按主体结构材料填写混凝土容重 (kN/m3): Gc = 28.00.....应考虑构件装修重量,建议取28kN/m3钢材容重 (kN/m3): Gs = 78.00.....一般取78kN/m3(没有计入构件装修重量)水平力的夹角 (Rad): ARF = 0.00.....一般取0(地震力.风力作用方向,逆时针为正);当结构分析所得的[地震作用最大的方向]>15度时, 宜将其角度输入补充验算地下室层数: MBASE= 0.....无地下室时填0竖向荷载计算信息: 按一次性加荷计算方式......多层取[一次性加载];高层取[模拟施工加载1],《高规》5.1.9条,高层框剪基础宜取[模拟施工加载2] 风荷载计算信息: 计算X,Y两个方向的风荷载....选[计算风荷载]地震力计算信息: 计算X,Y两个方向的地震力....选[计算水平地震力],《抗规》5.1.1条(强条)特殊荷载计算信息: 不计算............一般情况下不考虑结构类别: 框架结构..........按结构体系选择裙房层数: MANNEX= 0.....无裙房时填0转换层所在层号: MCHANGE= 0.....无转换层时填0墙元细分最大控制长度(m) DMAX= 2.00.....一般工程取2.0,框支剪力墙取1.5或1.0墙元侧向节点信息: 内部节点........…..剪力墙少时取[出口],剪力墙多时取[内部],[出口]精度高于[内部],参见《手册》是否对全楼强制采用刚性楼板假定是.............计算位移与层刚度比时选[是],《高规》5.1.5条;计算内力与配筋及其它内容时选[否]风荷载信息 ..........................................修正后的基本风压 (kN/m2): WO = 0.30 ....取值应≥0.3 kN/m2,一般取50年一遇(n=50),《荷规》7.1.2(强条),附录D.4附表D.4地面粗糙程度: B 类..............有密集建筑群的城市市区选类,乡村、乡镇、市郊等选类,详《荷规》7.2.1条结构基本周期(秒): T1 = 0.06.....宜取程序默认值(按《高规》附录B公式B.0.2);规则框架T1=(0.08-0.10)n,n为房屋层数,详见《高规》3.2.6条表3.2.6-1注;《荷规》7.4.1条,附录E;体形变化分段数: MPART= 1.....体形无变化填1各段最高层号: NSTi = 6.....按各分段内各层的最高层层号填写各段体形系数: USi = 1.30.....《荷规》7.3.1表7.3.1;高宽比不大于4的矩形、方形、十字形平面取1.3,详见《高规》3.2.5条地震信息 ............................................振型组合方法(CQC耦联;SRSS非耦联) CQC....…..《抗规》3.4.3条,5.2.3条;《高规》3.3.1条2款;一般工程选[耦联],规则结构用[非耦联]补充验算计算振型数: NMODE= 9.....《抗规》5.2.2条2款,5.2.3条2款;《高规》5.1.13条2款;参见《手册》;[耦联]取3的倍数,且≤3倍层数,[非耦联]取≤层数,参与计算振型的[有效质量系数]应≥90%地震烈度: NAF = 7.00.....《抗规》1.0.4条,1.0.5条,3.2.4条,附录A场地类别: KD = 2.....《抗规》4.1.6条表4.1.6(强条);见地勘报告设计地震分组: 二组........《抗规》3.2.4条,附录A特征周期 TG = 0.40.....II类场地一、二、三组分别取0.35s、0.40s、0.45s,《抗规》3.2.3条,5.1.4条表5.1.4-2(强条)多遇地震影响系数最大值 Rmax1 = 0.08.....7度取0.08,《抗规》5.1.4条表5.1.4-1(强条)《抗规》5.1.4罕遇地震影响系数最大值 Rmax2 = 0.50.....7度取0.50,条表5.1.4-1(强条)框架的抗震等级: NF = 3.....7度H≤30m取3,《抗规》6.1.2条表6.1.2(强条)剪力墙的抗震等级: NW = 2.....7度框剪取2,《抗规》6.1.2条表6.1.2 (强条)活荷质量折减系数: RMC = 0.50.....雪荷载及一般民用建筑楼面等效均布活荷载取0.5,详见《抗规》5.1.3条表5.1.3(强条)组合值系数周期折减系数: TC = 0.70.....框架砖填充墙多0.6-0.7,砖填充墙少0.7-0.8;框剪砖填充墙多0.7-0.8,砖填充墙少0.8-0.9;剪力墙 1.0;《高规》3.3.16条(强条),3.3.17条结构的阻尼比 (%): DAMP = 5.00.....砼结构一般取5.0;《抗规》5.1.5条1款;《高规》3.3.8条是否考虑偶然偏心: 否........单向地震力计算时选[是],多层规则结构可不考虑,《高规》3.3.3条;参见《手册》;是否考虑双向地震扭转效应: 是........一般工程选[是],此时可不考虑上条[偶然偏心];《抗规》5.1.1条3款(强条);《高规》3.3.2条2款(强条)斜交抗侧力构件方向的附加地震数 = 0.....无斜交构件时取0;《抗规》5.1.1条2款(强条);斜交角度>15应考虑;《高规》3.3.2条1款(强条)活荷载信息 ..........................................考虑活荷不利布置的层数从第 1 到6层.... 多层应取全部楼层;高层宜取全部楼层,《高规》5.1.8条柱、墙活荷载是否折减不折算............PM不折减时,宜选[折算],《荷规》4.1.2条(强条)传到基础的活荷载是否折减折算............PM不折减时,宜选[折算],《荷规》4.1.2条(强条)---------柱,墙,基础活荷载折减系数---------.....《荷规》4.1.2条表4.1.2(强条)计算截面以上的层号------折减系数1 1.00 《荷规》4.1.2条表4.1.2(强条)2---3 0.85 《荷规》4.1.2条表4.1.2(强条)4---5 0.70 《荷规》4.1.2条表4.1.2(强条)6---8 0.65 《荷规》4.1.2条表4.1.2(强条)9---20 0.60 《荷规》4.1.2条表4.1.2(强条)> 20 0.55 《荷规》4.1.2条表4.1.2(强条)调整信息 ........................................中梁刚度增大系数: BK = 2.00......《高规》5.2.2条;装配式楼板取1.0;现浇楼板取值1.3-2.0,一般取2.0梁端弯矩调幅系数: BT = 0.85......主梁弯矩调幅,《高规》5.2.3条;现浇框架梁0.8-0.9;装配整体式框架梁0.7-0.8梁设计弯矩增大系数: BM = 1.00......放大梁跨中弯矩,取值1.0-1.3;已考虑活荷载不利布置时,宜取1.0连梁刚度折减系数: BLZ = 0.70......一般工程取0.7,位移由风载控制时取≥0.8;《抗规》6.2.13条2款,《高规》5.2.1条梁扭矩折减系数: TB = 0.40......现浇楼板(刚性假定)取值0.4-1.0,一般取0.4;现浇楼板(弹性楼板)取1.0;《高规》5.2.4条全楼地震力放大系数: RSF = 1.00......用于调整抗震安全度,取值0.85-1.50,一般取1.00.2Qo 调整起始层号: KQ1 = 0......用于框剪(抗震设计时),纯框填0;参见《手册》;《抗规》6.2.13条1款;《高规》8.1.4条0.2Qo 调整终止层号: KQ2 = 0......用于框剪(抗震设计时),纯框填0;参见《手册》;《抗规》6.2.13条1款;《高规》8.1.4条顶塔楼内力放大起算层号: NTL = 0......按突出屋面部分最低层号填写,无顶塔楼填0顶塔楼内力放大: RTL = 1.00......计算振型数为9-15及以上时,宜取1.0(不调整);计算振型数为3时,取1.5九度结构及一级框架梁柱超配筋系数 CPCOEF91 = 1.15.....取1.15,《抗规》6.2.4条是否按抗震规范5.2.5调整楼层地震力IAUTO525 = 1.....用于调整剪重比,《抗规》5.2.5条(强条)是否调整与框支柱相连的梁内力 IREGU_KZZB = 0.....一般不调整,《高规》10.2.7条剪力墙加强区起算层号 LEV_JLQJQ = 1.....《抗规》6.1.10条;《高规》7.1.9条强制指定的薄弱层个数 NWEAK = 0.....强制指定时选用,否则填0,《抗规》5.5.2条,《高规》4.6.4条TOP配筋信息 ........................................梁主筋强度 (N/mm2): IB = 300......设计值,HPB235取210N/mm2,HRB335取300N/mm2;《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)柱主筋强度 (N/mm2): IC = 300......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)墙主筋强度 (N/mm2): IW = 210 .....《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)梁箍筋强度 (N/mm2): JB = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)柱箍筋强度 (N/mm2): JC = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)墙分布筋强度 (N/mm2): JWH = 210......《砼规》4.2.1条,4.2.3条表4.2.3-1(强条)梁箍筋最大间距 (mm): SB = 100.00......《砼规》10.2.10条表10.2.10;可取100-400,抗震设计时取加密区间距,一般取100,详见《抗规》6.3.3条3款(强条)柱箍筋最大间距 (mm): SC = 100.00......《砼规》10.3.2条2款;可取100-400,抗震设计时取加密区间距,一般取100,详见《抗规》6.3.8条2款(强条)墙水平分布筋最大间距 (mm): SWH = 200.00......《砼规》10.5.10条;可取100-300,《抗规》6.4.3条1款(强条)墙竖向筋分布最小配筋率 (%): RWV = 0.30......《砼规》10.5.9条;可取0.2-1.2;抗震设计时应≥0.25,《抗规》6.4.3条1款(强条)设计信息 ........................................结构重要性系数: RWO = 1.00......《砼规》3.2.2条,3.2.1条(强条);安全等级二级,设计使用年限50年,取1.00柱计算长度计算原则: 有侧移............一般按[有侧移],用于钢结构梁柱重叠部分简化: 不作为刚域........一般不简化,《高规》5.3.4条,参见《手册》是否考虑 P-Delt 效应:否................一般不考虑;《砼规》5.2.2条3款,7.3.12条;《抗规》3.6.3条;《高规》5.4.1条,5.4.2条柱配筋计算原则: 按单偏压计算......宜按[单偏压]计算;角柱、异形柱按[双偏压]验算;可按特殊构件定义角柱,程序自动按[双偏压]计算钢构件截面净毛面积比: RN = 0.85.....用于钢结构梁保护层厚度 (mm): BCB = 25.00.....室内正常环境,砼强度>C20时取≥25mm,《砼规》9.2.1条表9.2.1,环境类别见3.4.1条表3.4.1柱保护层厚度 (mm): ACA = 30.00.....室内正常环境取≥30mm,《砼规》9.2.1条表9.2.1,环境类别见3.4.1条表3.4.1是否按砼规范(7.3.11-3)计算砼柱计算长度系数: 否...一般工程选[否],详见《砼规》7.3.11条3款,水平力设计弯矩占总设计弯矩75%以上时选[是]荷载组合信息 ........................................恒载分项系数: CDEAD= 1.20.....一般情况下取1.2,详《荷规》3.2.5条1款(强条)活载分项系数: CLIVE= 1.40.....一般情况下取1.4,详《荷规》3.2.5条2款(强条)风荷载分项系数: CWIND= 1.40.....一般情况下取1.4,详《荷规》3.2.5条2款(强条)水平地震力分项系数: CEA_H= 1.30.....取1.3,《抗规》5.1.1条1款(强条),《抗规》5.4.1条表5.4.1(强条)竖向地震力分项系数: CEA_V= 0.50.....取0.5,《抗规》5.1.1条4款(强条),《抗规》5.4.1条表5.4.1(强条)特殊荷载分项系数: CSPY = 0.00.....无则填0,《荷规》3.2.5条注(强条)活荷载的组合系数: CD_L = 0.70.....大多数情况下取0.7,详见《荷规》4.1.1条表4.1.1(强条)风荷载的组合系数: CD_W = 0.60.....取0.6,《荷规》7.1.4条活荷载的重力荷载代表值系数: CEA_L= 0.50.....雪荷载及一般民用建筑楼面等效均布活荷载取0.5,详见《抗规》5.1.3条表5.1.3(强条)组合值系数剪力墙底部加强区信息.................................剪力墙底部加强区层数 IWF= 1 .......取1/8剪力墙墙肢总高与底部二层高度的较大值,《抗规》6.1.10条,《高规》7.1.9条剪力墙底部加强区高度(m) Z_STRENGTHEN= 7.00.....取1/8剪力墙墙肢总高与底部二层高度的较大值,《抗规》6.1.10条,《高规》7.1.9条写在前面:关于pkpm计算是否选取偶然偏心一项,有友对此存疑,近作此详解,以解诸惑!**规范:高规3.3.3条规定,计算单向地震作用时,应考虑偶然偏心的影响,附加偏心距可取与地震作用方向垂直的建筑物边长的5%。

建筑结构分析与计算

建筑结构分析与计算

建筑结构分析与计算建筑结构是指建筑物的骨架,负责承受和传递荷载,并保持稳定的力学系统。

在建筑设计过程中,结构工程师需要进行结构分析与计算,以确保建筑物具有足够的强度和稳定性。

本文将介绍建筑结构分析与计算的一般方法和步骤。

一、荷载计算在进行结构分析之前,首先需要计算建筑物所承受的荷载。

荷载可以分为恒载、活载、风荷载、地震荷载等。

恒载是指长期作用于建筑物的荷载,如自重、设备重量等;活载是指短期作用于建筑物的荷载,如人员、家具、雪等;风荷载和地震荷载是外部环境作用于建筑物的荷载。

通过对荷载进行逐级计算和累加,可以得到建筑物所承受的总体荷载。

二、结构分析结构分析是指利用力学原理和数学方法,计算和分析建筑结构的内力和变形。

常用的结构分析方法有静力分析、弹性分析和非线性分析等。

静力分析是最常用的方法,适用于简单的结构和小荷载情况。

弹性分析考虑结构的变形,适用于复杂结构和大荷载情况。

非线性分析考虑结构的非线性特性,适用于特殊情况,如地震作用下的结构。

三、结构计算结构计算是指根据结构分析的结果,计算和确定结构的尺寸、截面和材料等。

结构计算需要考虑结构的强度、刚度和稳定性等要求。

根据结构的形式和材料的特性,可以采用不同的设计方法和理论。

常用的结构计算方法有弹性设计、极限状态设计和可靠性设计等。

四、结构验算结构验算是指对结构设计的合理性和安全性进行验证和检查。

通过结构验算可以确保结构满足设计要求,并具有足够的安全保障。

常用的结构验算方法有强度验算、刚度验算和稳定性验算等。

强度验算是指根据结构的内力和材料的强度,判断结构的承载能力。

刚度验算是指根据结构的变形和刚度,判断结构的稳定性和使用性能。

稳定性验算是指根据结构的稳定条件,判断结构的倾覆和偏转情况。

五、结构优化结构优化是指通过调整结构的形式、尺寸和材料等,使结构具有更高的效益和经济性。

在结构设计过程中,可以通过优化方法和工具,对结构进行参数优化和拓扑优化等。

参数优化是指通过调整结构的参数,以满足设计要求和约束条件。

建筑结构设计要懂参数,这七个的参数非常重要

建筑结构设计要懂参数,这七个的参数非常重要

建筑结构设计要懂参数,这七个的参数非常重要01轴压比轴压比主要是控制结构的延性,具体要求见抗规6.3.6和6.4.5,高规6.4.2和7.2.14。

轴压比过大则结构的延性要求无法保证,此时应加大截面面积或提高混凝土强度;轴压比过小,则结构的经济性不好,此时应减小截面占地约。

轴压修正比不满足时的调整方法:增大该墙、柱曲面或提高该楼层墙、柱混凝土强度。

02周期比周期比的是结构侧向刚度与扭转刚度之间的相对关系,它的目的是使抗侧力构件的平面布置更合理,使结构不致于出现过大的扭转效应。

一句话,周期比不是健壮要求结构足够结实,而是要求提高效率结构承载布置合理化,具体要求见高规4.3.5。

刚度越大,周期越小。

抗侧力构件对结构扭转刚度的与其距结构刚心的距离成正比,意思是结构外围的抗侧力对结构的扭转刚度贡献最大。

结构的第一、第二振型宜为平动,扭转周期性宜出现在第三振型及以后。

当第一振型为扭转时:说明结构的奏效刚度相对于其两个主轴的侧移刚度过小,此时应沿两个切入点适当加强眼下结构外围的刚度,或沿主轴适当削弱结构内部的刚度。

当第二振型为扭转时则:说明结构沿六个两个主轴的侧移刚度相差较大,结构的稳定下来扭转刚度相对于其中一主轴(第七振型转角方向)的侧移刚度是合理的,但对于另一主轴(第三振型转角方向)的侧移刚度过小,此时应适当削弱结构内部沿第三振型转角方向的刚度或加强结构外围(主要是沿第七振型转角方向)的刚度。

周期比不满足时不能的变动方法:通过布置人工适当调整改变结构布置,提高结构的抗扭附着力;构型总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与太阳活动的反比关系,合理布置抗侧力构件,加强需要减缓周期方向(包括平动方向和扭转方向)的刚度,或削弱需要增大生命期方向的刚度。

03位移比/位移角洛艾萨省位移比是指采用刚性楼板假定下,端部最大位移(层间位移)与两端位移(层间位移)平均值的比,相对运动比的大小反映了结构的位移扭转效应,同周期比的概念一样都是控制为了控制建筑的扭转颓势效应提出的控制参数。

建筑结构设计中的电算

建筑结构设计中的电算

浅谈建筑结构设计中的电算摘要:在建筑结构设计计算过程中,总信息中参数的正确设定和电算结果正确的判断至关重要。

本文对总信息中的参数的设定,及建筑结构规范中用于控制结构整体性的主要指标作了阐述,供相关人员参考。

关键词:总信息参数;周期比、位移比、刚度比、剪重比结构计算复杂多样,我们应根据规范要求对建筑结构进行合理的设计,从整体到局部、分层次完成。

在建筑结构设计计算过程中总信息中参数的正确设定和电算结果正确的判断至关重要。

1.总信息中参数的正确设定:前提条件、很重要,否则计算无意义。

1)混凝土容重宜取26~30:填写混凝土容重时,应考虑建筑粉刷或装饰面层的重量,且梁、柱、剪力墙截面尺寸越小容重越大,如贴面砖、花岗石,容重还要加大,设计人应综合考虑本工程梁、柱、剪力墙的截面尺寸大小及面层材料,确定一个较合适的混凝土容重值。

2)周期折减系数:应予以折减,否则会导致地震作用偏小,应根据本工程填充墙的多少来确定周期折减系数值,填充墙多取小值,填充墙少取大值,《高层建筑混凝土结构技术规程 jgj 3—2002》3.3.16条规定“计算各振型地震影响系数所采用的结构自振周期应考虑非承重墙体的刚度影响予以折减”是强制性条文,一般框架结构取0.6~0.9;剪力墙结构取0.9~1,剪力墙结构中如是全剪力墙(即无非承重墙体的)结构,周期折减系数才取1,一般其折减系数也应小于1;框剪结构取0.7~0.9。

3)计算结构的周期、位移、层刚度比时,应采用刚性楼板假定。

如楼板开有大洞或楼板不连续,应再按弹性楼板计算结构内力。

4)振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。

①振型组合数是软件在做抗震计算时考虑振型的数量。

该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。

《高层建筑混凝土结构技术规程》5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

建筑热工设计计算公式及参数

建筑热工设计计算公式及参数

建筑热工设计计算公式及参数(一)热阻的计算1.单一材料层的热阻应按下式计算:式中R——材料层的热阻,㎡·K/W;δ——材料层的厚度,m;λc——材料的计算导热系数,W/(m·K),按附录三附表3.1及表注的规定采用。

2.多层围护结构的热阻应按下列公式计算:R=R1+R2+……+Rn(1.2)式中R1、R2……Rn——各材料层的热阻,㎡·K/W。

3.由两种以上材料组成的、两向非均质围护结构(包括各种形式的空心砌块,以及填充保温材料的墙体等,但不包括多孔粘土空心砖),其平均热阻应按下式计算:(1.3)式中——平均热阻,㎡·K/W;Fo——与热流方向垂直的总传热面积,㎡;Fi——按平行于热流方向划分的各个传热面积,㎡;(参见图3.1);Roi——各个传热面上的总热阻,㎡·K/WRi——内表面换热阻,通常取0.11㎡·K/W;Re——外表面换热阻,通常取0.04㎡·K/W;φ——修正系数,按本附录附表1.1采用。

图3.1 计算图式修正系数φ值附注:(1)当围护结构由两种材料组成时,λ2应取较小值,λ1应取较大值,然后求得两者的比值。

(2)当围护结构由三种材料组成,或有两种厚度不同的空气间层时,φ值可按比值/λ1确定。

(3)当围护结构中存在圆孔时,应先将圆孔折算成同面积的方孔,然后再按上述规定计算。

4.围护结构总热阻应按下式计算:Ro=Ri+R+Re(1.4)式中Ro——围护结构总热阻,㎡·K/W;Ri——内表面换热阻,㎡·K/W;按本附录附表1.2采用;Re——外表面换热阻,㎡·K/W,按本附录附表1.3采用;r——围护结构热阻,㎡·K/W。

内表面换热系数αi 及内表面换热阻Ri 值注:表中h 为肋高,s为肋间净距。

5.空气间层热阻值的确定(1)不带铝箔,单面铝箔、双面铝箔封闭空气间层的热阻值应按附表1.4采用。

pkpm结构设计参数经典

pkpm结构设计参数经典

PKPM结构设计参数本文介绍PKPM计算软件TAT, SATWE和PMSAP的新、旧规范版本之间的变化,这同时也是新旧规范(抗震规范、高层规程、荷载规范、混凝土规范〉的条文变化。

1,.风荷载风压标准值计算公式为:WK= 3 z u s u Z肌共I21 : 3 z=l+ & v 4)z/ uz在新规范中,基本风压Wo略有提高,而建筑的风压高度变化系数U E、脉动增大系数"» 影响系数u都存在减小的情况。

所以,按新规范计算的风压标准值可能比89规范大,也可能比89规范小。

具体的变化包括下面几条:1)、基本风压::新的荷载规范将风荷载基本值的重现期由原来的30年一遇改为50年一遇:新高规3. 2. 2条规定:对于B级高度的高层建筑或特别重要的高层建筑,应按100年一遇的风压值采用。

2)、地面粗糙度类别:由原来的A、B、C类,改为A、B、C、D类。

C类是指有密集建筑群的城市市区;D类为有密集建筑群,且房屋较高的城市市区。

3)、凤压高度变化系数:A、B、C类对应的风压高度变化系数略有调整。

新增加的D类对应的风压高度变化系数最小,比C类小20%到50%4)、脉动增大系数:A、B、C类对应的脉动增大系数略有调整。

新增加的D类对应脉动增大系数比89规范小,约小5%到10%。

与结构的材料和形式有关。

5)、脉动影晌系数:在89高规中,脉动影响系数仅与地面粗糙度类别有关,对应A、B、C类的脉动影响系数分别为,0. 48、0. 53和0. 63o在新规范中,脉动影响系数不仅与地面粗糙度类别有关,而且还与建筑的高宽比和总高度有关,其数值都小于89高规。

如C类、高度为50m、高宽比为3的建筑,u =0. 46,比89高规小28%,若为D类,则小37%o6)、结构的基本周期:脉动增大系数&与结构的基本周期有关(WoT12) o结构的基本周期可采用结构力学方法计算,对于比较规则的结构,也可以采用近似方法计算:框架结构T=(0. 08-1. 00)N:框剪结构、框筒结构T=(0. 06-0. 08)N:剪力墙结构、筒中筒结构T=(0. 05-0. 06)No其中N为结构层数。

(完整版)结构计算中几个重要参数的合理选取

(完整版)结构计算中几个重要参数的合理选取

结构计算中几个重要参数的合理选取《抗震规范》第3.6.6.4条指出,所有的计算机计算结果,应经分析判断确认其合理、有效后方可用于工程设计。

通常情况下,计算机的计算结果主要是结构的自振周期、楼层地震剪力系数、楼层弹性层间位移(包括最大位移与平均位移比)和弹塑性变形验算时楼层的弹塑性层间位移、楼层的侧向刚度比、振型参与质量系数、墙和柱的轴压比及墙、柱、梁和板的配筋、底层墙和柱底部截面的内力设计值、框架--抗震墙结构抗震墙承受的地震倾覆力矩与总地震倾覆力矩的比值、超筋超限信息等等。

为了分析判断计算机计算结果是否合理,结构设计计算时,除了有合理的结构方案、正确的结构计算简图外,正确填写抗震设防烈度和场地类别,合理选取电算程序总信息中的其他各项参数也是十分重要的。

1.结构的抗震等级《抗震规范》规定建筑应根据其使用功能的重要性分为甲类、乙类、丙类、丁类四个抗震设防类别。

甲类建筑应属于重大建筑工程和地震时可能发生严重次生灾害的建筑,地震作用应高于本地区抗震设防烈度的要求,其值应按批准的地震安全性评价结果确定。

抗震措施,当抗震设防烈度为6~8度时,应符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求。

乙类建筑应属于地震时使用功能不能中断或需尽快恢复的建筑,地震作用应高于本地区抗震设防烈度的要求。

抗震措施,一般情况下,当抗震设防烈度为6~8度时,应5符合本地区抗震设防烈度提高一度的要求,当为9度时,应符合比9度抗震设防更高的要求;地基基础的抗震措施,应符合有关规定。

对较小的乙类建筑,当其结构改用抗震性能较好的结构类型时,应允许仍按本地区抗震设防烈度的要求采取抗震措施。

丙类建筑应属于除甲、乙、丁类以外的一般建筑,地震作用和抗震措施均应符合本地区抗震设防烈度的要求。

丁类建筑应属于抗震次要建筑。

一般情况下,地震作用仍应符合本地区抗震设防烈度的要求;抗震措施应允许比本地区抗震设防烈度的要求适当降低,但抗震设防烈度为6度时不应降低。

PKPM计算参数详解

PKPM计算参数详解

PKPM计算参数详解PKPM是计算机软件中的一种结构计算分析方法,常用于建筑结构设计及分析。

其参数的计算涉及到很多概念和公式,下面详细介绍PKPM计算参数的相关内容。

1.全天候房屋屋面线拟合全天候房屋屋面线拟合是指通过地下室控制点样点数据,自动生成房屋主体外曲线的过程。

其计算过程中,需要考虑样点的坐标、高程等参数,并采用曲线拟合算法,如B样条曲线算法或多项式拟合算法。

2.框架结构内力计算框架结构内力计算是指在建筑结构设计中,根据荷载和结构几何参数,计算结构内力的过程。

在PKPM中,可以通过输入结构的节点坐标、梁柱参数、荷载参数等,使用刚度矩阵法或弹性法等方法计算结构的内力。

3.楼板受弯承载力计算楼板受弯承载力计算是指计算楼板在负弯矩作用下的承载能力。

在PKPM中,可以通过输入楼板的几何参数、材料参数、加载参数等,使用等效矩形法或混凝土应力-应变关系等方法计算楼板的受弯承载力。

4.柱承载力计算柱承载力计算是指计算柱子在纵向压力作用下的承载能力。

在PKPM 中,可以通过输入柱子的几何参数、材料参数、加载参数等,使用截面特性法或等效矩形法等方法计算柱子的承载力。

5.剪力墙水平抗力计算剪力墙水平抗力计算是指计算剪力墙在水平力作用下的抗力。

在PKPM中,可以通过输入剪力墙的几何参数、材料参数、加载参数等,使用理论模型计算剪力墙的水平抗力。

6.风荷载计算风荷载计算是指计算建筑结构在风力作用下的受力情况。

在PKPM中,可以通过输入建筑结构的几何参数、材料参数、风速参数等,使用规范中给出的风荷载计算方法计算建筑结构的受力情况。

7.地震荷载计算地震荷载计算是指计算建筑结构在地震作用下的受力情况。

在PKPM 中,可以通过输入建筑结构的几何参数、材料参数、地震参数等,使用规范中给出的地震荷载计算方法计算建筑结构的受力情况。

8.基础底座承载力计算基础底座承载力计算是指计算建筑基础底座在垂直力作用下的承载能力。

在PKPM中,可以通过输入基础的几何参数、材料参数、荷载参数等,使用规范中给出的基础底座承载力计算方法计算基础底座的承载能力。

建筑构件受力计算各种参数

建筑构件受力计算各种参数

一、材料的力学性能参数木材的力学性能参数:弹性模量E=9000N/mm2,抗弯强度f m=13.00N/mm2,抗剪强度f v=1.400N/mm2钢材的力学性能参数:弹性模量E=20600N/mm2,抗弯强度f m=205.00N/mm2,抗剪强度f v=120.00N/mm2二、荷载标准值计算:1、模板及支架自重标准值:每平米平板模板及小楞的重量:0.3kN/m2每平米楼板模板重量(包括梁模板):0.5 kN/m2每平米楼板模板及其支架重量(层高4m以下):0.75 kN/m22、新浇混凝土自重标准值:24kN/m33、钢筋自重标准值:楼板1.1 kN/m2,梁1.5 kN/m24、施工人员及设备荷载标准值:计算模板及支撑小楞结构构件时,对均布荷载取2.5 kN/m2,另以集中荷载进行验算,取二者弯矩值较大者采用计算直接支撑小楞结构构件时,均布活荷载取1.5 kN/m2计算支架立柱及其它结构构件时,均布活荷载取1.0 kN/m25、振捣混凝土产生的荷载:水平模板可采用2.0 kN/m2,竖向模板可采用4.0 kN/m26、新浇混凝土侧压力:F1=0.22c ·tο·β1β2V0.5F2=γc·H (此公式类似于计算水压力)F:新浇混凝土对模板的最大侧压力(KN/㎡)γc:新浇混凝土的重力密度(KN/m³)(一般取24kn/m3)t0:新浇混凝土的初凝时间(h),可按实测确定。

当缺乏试验资料时,可采用t=200/(T+15)计算T:混凝土的入模温度,一般取20~30度。

H:混凝土侧压力计算位置至新浇筑混凝土顶面时的高度(m)β1:外加剂影响修正系数,不掺外加剂时取1.0,掺具有缓凝作用的外加剂时取1.2β2:混凝土坍落度影响修正系数,当坍落度小于30mm时,取0.85;50~90mm时,取1.0;110~150mm时取1.15v:混凝土浇筑速度,一般取2.5米/小时F1、F2取小值有效压头高度:混凝土侧压力设计值/混凝土容重:h=F/γ c7、倾倒混凝土产生的荷载标准值:用导管输出砼时取2.0 kN/m2三、荷载设计值计算:四:模板及其支架荷载组合计算:五、相关参数计算公式截面抵抗抗拒W=bh2/6,(bh为截面长宽:b与受力方向垂直边长,h与受力方向相同边长)截面惯性矩I= bh3/12,(bh为截面长宽:b与受力方向垂直边长,h与受力方向相同边长)1、抗弯强度验算单跨简支梁均布荷载弯矩计算公式:M= ql2(q均布荷载,l梁长度)连续简支梁均布荷载弯矩计算公式:M max=K M ql2(K M弯矩系数,可通过查表获得)抗弯强度σ= M max/W2、抗剪强度验算剪力最大值:V max=K v ql,( K v为抗剪系数可通过查表获得,q为均布荷载,l为梁长度,)抗剪强度τ=3/2*(V max /bh),(b截面宽度,h截面厚度)3、挠度验算最大挠度值υmax=Kυql4/(100EI),( Kυ挠度系数,q作用在模板上的侧压力线荷载,l计算跨度(竖楞间距)) 最大容许挠度值υ=L/250,( υmax必须小于等于υ)六、柱箍受力计算1、柱箍所受最大集中荷载计算公式:P=(1.2*q1*0.9+1.4*q2*0.9)*l*1/(n-1)q1:新浇混凝土侧压力标准值,q2:倾倒混凝土产生的荷载,l:集中荷载最大间距(即竖楞最大间距),n:计算简图跨数,0.9为荷载折减系数。

15.08.24 结构设计统一技术措施---控制参数

15.08.24  结构设计统一技术措施---控制参数

考虑活荷不利布置的最高层号:
梁活荷载内力放大系数:
楼面梁活荷载折减:
设计楼面梁:住宅标准层按《荷载》5.1.2-1-1 条
网点层按《荷载》5.1.2-1-2 条
地库顶板取 0.80
设计墙、柱、基础:住宅标准层按《荷载》5.1.2-2-1 条
网点层按《荷载》5.1.2-1-2 条

网点屋面 1.00 折减

是否与其它模型进行包络取大:

鉴定加固 ........................................
是否鉴定加固:

材料信息 ........................................ 混凝土容重 (kN/m3): 砌体容重 (kN/m3): 钢材容重 (kN/m3): 轻骨料混凝土容重 (kN/m3): 轻骨料混凝土密度等级: 梁箍筋间距 (mm): 柱箍筋间距 (mm): 墙水平分布筋最大间距 (mm): 墙竖向分布筋最小配筋率 (%): 结构底部单独指定墙竖向分布筋配筋率的层号: 结构底部 NSW 层的墙竖向分布配筋率:
按实际
嵌固端所在层号(层顶嵌固):
按实际(如嵌固端在基础顶则输入 0,以此类推)
与基础相连构件最大底标高(m):
按实际
裙房层数:
按实际
转换层所在层号:
按实际
加强层所在层号:
按实际
底框层数:
0
竖向荷载计算信息:
施工模拟三
风荷载计算信息:
一般计算方式
地震力计算信息:
计算水平地震作用
是否计算吊车荷载:

是否计算人防荷载:
0.30
舒适度验算用阻尼比 :
0.020

建筑结构设计常用数据

建筑结构设计常用数据

建筑结构设计常用数据建筑结构设计中涉及的数据种类繁多,包括静力学参数、材料性能、荷载数据、地震数据等。

这些数据是建筑结构设计的基础,对于确保建筑安全性和稳定性至关重要。

本文将介绍建筑结构设计中常用的数据类型及其作用。

一、静力学参数静力学参数是指建筑结构在静力平衡条件下的力学性能。

常用的静力学参数包括弯矩、剪力、轴力、位移等。

这些参数可以通过结构分析方法计算得出,用于确定结构的受力状态和变形情况,从而指导设计和施工。

二、材料性能材料性能是指建筑结构所使用的材料的力学性能和物理性能。

常用的材料性能包括抗拉强度、抗压强度、抗剪强度、弹性模量、热胀冷缩系数等。

这些性能参数是材料的基本特性,用于评估材料的承载能力和变形能力,从而确定材料的使用范围和设计参数。

三、荷载数据荷载数据是指建筑结构所承受的外部力的大小和作用方式。

常用的荷载数据包括常规荷载、临时荷载和地震荷载等。

常规荷载包括自重、活载和风载等,用于计算结构的受力情况。

临时荷载包括施工荷载和使用荷载等,用于计算结构在施工和使用过程中的安全性。

地震荷载是指地震作用下的力和位移,用于计算结构的地震反应。

四、地震数据地震数据是指地震的发生频率、震级和震源距离等参数。

地震数据是评估建筑结构抗震能力的重要依据,可以用于确定设计地震动参数和抗震设防烈度等级。

根据地震数据,可以确定结构的地震设计参数,包括设计地震加速度、周期和阻尼比等。

五、其他数据除了上述常用的数据类型,建筑结构设计中还涉及其他一些数据,如温度数据、湿度数据、地基数据等。

温度数据和湿度数据用于分析结构的热力学行为和湿度变形特性。

地基数据用于评估建筑结构的承载力和变形特性,包括土壤分类、土层厚度、地下水位等。

建筑结构设计中常用的数据类型包括静力学参数、材料性能、荷载数据和地震数据等。

这些数据是建筑结构设计的基础,对于确保建筑的安全性和稳定性至关重要。

设计人员需要准确获取和使用这些数据,以保证结构的合理性和可靠性。

结构设计常用参数表

结构设计常用参数表

公称直径mm不同根数钢筋的计算截面面积/mm2 单根钢筋理论重量(kg/m) 1 2 3 4 5 6 7 8 96 28.3 57 85 113 142 170 198 226 255 0.222 6.5 33.2 66 100 133 166 199 232 265 299 0.260 8 50.3 101 151 201 252 302 352 402 453 0.395 8.2 52.8 106 158 211 264 317 370 423 475 0.432 10 78.5 157 236 314 393 471 550 628 707 0.617 12 113.1 226 339 452 565 678 791 904 1017 0.888 14 153.9 308 461 615 769 923 1077 1231 1385 1.21 16 201.1 402 603 804 1005 1206 1407 1608 1809 1.58 18 254.5 509 763 1017 1272 1526 1780 2036 2290 2.00 20 314.2 628 941 1256 1570 1884 2200 2513 2827 2.47 22 380.1 760 1140 1520 1900 2281 2661 3041 3421 2.98 25 490.9 982 1473 1964 2454 2945 3436 3927 4418 3.85 28 615.8 1232 1847 2463 3079 3695 4310 4926 5542 4.83 32 804.2 1609 2413 3217 4021 4826 5630 6434 7238 6.31 36 1017.9 2036 2054 4072 5089 6107 7125 8143 9161 7.99 40 1256.6 2513 3770 5027 6283 7540 8796 10053 11310 9.87 注:表中直径d=8.2mm 的计算截面面积及理论重量仅适用于有纵肋的热处理钢筋钢筋间距(MM2)当钢筋直径(mm) 为下列数值时的钢筋截面面积(mm2)4 4.5 56 8 10 12 14 16 18 20 22 2570 180 227 280 404 718 1122 1616 2199 2872 3635 4488 5430 7012 75 168 212 262 377 670 1047 1508 2053 2681 3393 4189 5068 6545 80 157 199 245 353 628 982 1414 1924 2513 3181 3927 4752 6136 90 140 177 218 314 559 873 1257 1710 2234 2827 3491 4224 5454 100 126 159 196 283 503 785 1131 1539 2011 2545 3142 3801 4909 110 114 145 178 257 457 714 1028 1399 1828 2313 2856 3456 4462 120 105 133 164 236 419 654 942 1283 1676 2121 2618 3168 4091 125 101 127 157 226 402 628 905 1232 1608 2036 2513 3041 3927 130 97 122 151 217 387 604 870 1184 1547 1957 2417 2924 3776 140 90 114 140 202 359 561 808 1100 1436 1818 2244 2715 3506 150 84 106 131 188 335 524 754 1026 1340 1696 2094 2534 3272 160 79 99 123 177 314 491 707 962 1257 1590 1963 2376 3068 170 74 94 115 166 296 462 665 906 1183 1497 1848 2236 2887 175 72 91 112 162 287 449 646 880 1149 1454 1795 2172 2805 180 70 88 109 157 279 436 628 855 1117 1414 1745 2112 2727 190 66 84 103 149 265 413 595 810 1058 1339 1653 2001 2584 200 63 80 98 141 251 392 565 770 1005 1272 1571 1901 2454 250 50 64 79 113 201 314 452 616 804 1018 1257 1521 1963 300 42 53 65 94 168 262 377 513 670 848 1047 1267 16362箍筋间距s钢筋直径(mm)6 8 10 12100 0.283 0.503 0.785 1.131 150 0.188 0.335 0.523 0.754 200 0.142 0.251 0.392 0.566梁宽(mm)钢筋直径(mm)14 16 18 20 22 25 28200 4 3/4 3/4 3 3 3 2/3 250 5 5 4/5 4 4 3/4 3 300 6/7 6 5/6 5/6 5 4/5 4 350 7/8 7 6/7 6/7 6 5/6 4/5 400 8/9 8/9 7/8 7/8 7 6/7 5/6九、混凝土保护层《混凝土结构设计规范》第9.2.1条纵向受力的普通钢筋及预应力钢筋,其混凝土保护层厚度(钢筋外边缘至混凝土表面的距离)不应小于钢筋的公称直径,且应符合表9.2.1的规定。

盈建科YJK计算参数详解—结构总体信息

盈建科YJK计算参数详解—结构总体信息

盈建科Y J K计算参数详解—结构总体信息公司标准化编码 [QQX96QT-XQQB89Q8-NQQJ6Q8-MQM9N]结构总体信息红色为必填项,其余根据项目合理选选填地下室层数:对整体结构分析与设计有重要影响。

如侧向约束的施加位置、地下室外墙平面外设计、风荷载起算位置、底部加强区起算位置等。

嵌固端所在层号:对嵌固层以下的各层的抗震等级和抗震构造措施的抗震等级逐层降低,但不低于四级。

与基础相连构件最大底标高:用于嵌固端不在同一标高的情况。

裙房层数:作为带裙房的塔楼结构剪力墙底部加强区高度的判断依据,按规范要求,如强区取到裙房屋面上一层。

注:该参数的加强措施仅限于剪力墙加强区,程序没有对裙房顶部上下各一层及塔楼与裙房连接处的其他构件采取加强措施,此项工作需要用户完成。

转换层所在层号:程序没有自动搜索转换构件和自动判断转换层的功能,设计人员应指定转换层号,以实现规范对转换构件地震内力放大的规定。

如有转换层必须输入转换层号,允许输入多个转换层号,数字之间以逗号或空格隔开。

初始值为0。

若有地下室,转换楼层号从地下室起算。

加强层所在层号:如果设置了加强层,软件将按规范要求进行设计,该参数除了在设计参数中设置外,还可在楼层属性中手工指定。

底框层数:只有在底框结构(底层框架结构)下,该参数才可以设置。

施工模拟加载步长:即指按照施工模拟3或者施工模拟1计算时,每次加载的楼层数量,软件隐含的加载步长是1,即每次加载1个自然层。

对于层数较多的高层建筑,为了提高计算效率也可以将加载步长改为大于1的数;软件对于转换层、梁托柱层等一些特殊的楼层,会自动合并其相邻的几个楼层作为一个施工加载次序,不受本参数的约束。

恒活荷载计算信息:竖向荷载加载顺序,施工模拟三比其他几种更符合实际情况。

梁托柱楼层、悬挑梁托柱楼层会造成内力异常,检查方法为恒载的计算模型与活载差异大,并且恒载变形异常、与活载变形明显不同。

故此建议一般对多、高层建筑首选模拟施工3。

PKPM相关参数汇总

PKPM相关参数汇总

PKPM相关参数汇总PKPM(建筑结构设计软件)是中国建筑企业中广泛使用的一款计算机辅助设计软件,它具有强大的功能和广泛的适用性。

在进行建筑结构设计时,PKPM可以帮助工程师进行各种计算和分析,如静力、动力、抗震、结构检验等,从而提高工程质量和效率。

下面是一些与PKPM相关的参数的汇总。

1.基本参数:-工程名称:记录工程的名称,便于识别和区分。

-工程地址:记录工程所在的地址信息。

-图纸编号:记录绘制的图纸编号。

-设计标准:选择适用的设计标准,如《建筑结构设计规范》等。

2.结构类型:-结构形式:选择适用的结构形式,如框架结构、剪力墙结构、桁架结构等。

-结构高度:记录建筑的整体高度。

-层数:记录建筑的总层数。

-柱网:记录主体结构的柱网。

-梁网:记录主体结构的梁网。

-工程等级:选择适用的工程等级,如一般等级、较高等级、特别重要等级等。

3.荷载参数:-建筑物自重:记录建筑物自身的重量。

-活载:记录建筑物使用过程中产生的活动荷载。

-雪载:记录建筑物承受的雪的荷载。

-风载:记录建筑物承受的风的荷载。

-地震作用:记录地震荷载的参数,如场地类别、设计地震分组等。

4.材料参数:-混凝土强度等级:选择适用的混凝土强度等级。

-钢筋强度等级:选择适用的钢筋强度等级。

-混凝土抗震设防等级:选择适用的混凝土抗震设防等级。

-钢材抗震设防等级:选择适用的钢材抗震设防等级。

5.分析参数:-槽形截面计算:用于槽形截面的设计和计算。

-T型截面计算:用于T型截面的设计和计算。

-等效框架计算:用于框架结构的等效框架计算。

-自动分析:用于自动进行结构的静力、动力和抗震分析。

-局部缺陷分析:用于分析结构的局部缺陷,如脆性破坏等。

6.设计结果:-抗震设防烈度:记录结构的抗震设防烈度。

-应力分析结果:记录结构各个部位的应力分析结果。

-位移分析结果:记录结构各个部位的变形和位移分析结果。

-稳定性分析结果:记录结构的稳定性分析结果。

以上只是一些与PKPM相关的参数的汇总,实际使用时可能还有其他参数和功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

建筑结构设计计算参数
新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。

如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。

以PKPM软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。

1 计算开始以前参数的正确设定
(1)最大地震力作用方向是指地震沿着不同方向作用,结构地震反映的大小也各不相同,那么必然存在某各角度使得结构地震反应值最大的最不利地震作用方向。

设计软件可以自动计算出最大地震力作用方向并在计算书中输出,设计人员如发现该角度绝对值大于15度时,应将该数值回填(代入设计参数中)到软件的“ 水平力与整体坐标夹角”选项里并重新计算,以体现最不利地震作用方向的影响。

(2)结构基本周期是计算风荷载的重要指标。

设计人员如果不能事先知道其准确值,可先按经验公式:T1=0.25+0.35×10-3H2/3√B计算代入软件,亦可以保留软件的缺省值,待计算后从计算书中读取其值,填入软件的“结构基本周期”选项,重新计算即可。

2 确定整体结构的科学性和合理性
(1)刚重比是结构刚度与重力荷载之比。

它是控制结构整体稳定性的重要因素,也是影响重力二阶效应(P—△效应)的主要参数。

通常用增大系数法来考虑结构的重力二阶效应,如考虑重力二阶效应的结构位移可用未考虑P—△效应的计算结果乘以位移增大系数,但保持位移限制条件不变(框架结构层间位移角≤1/550);考虑结构构件重力二阶效应的端部弯矩和剪力值,可采用未考虑P—△效应的计算结果乘以内力增大系数。

一般情况下,对于框架结构若满
足:Dj≥20∑Gj/hj(j=1,2,…n)结构不考虑重力二阶效应的影响。

结构的刚重比增大P—△效应减小,P—△效应控制在20%以内,结构的
稳定具有适宜的安全储备,该值如果不满足要求,则可能引起结构失
稳倒塌,应当引起设计人员的足够重视。

(2)刚度比和层间受剪承载力之比是控制结构竖向不规则的重要指标。

①剪切刚度主要用于底部大空间为一层的转换结构及对地下室嵌固条件的判定;②剪弯刚度主要用于底部大空间为多层的转换结构;③地震力与层间位移比是执行《抗震规范》第3.4.2条和《高规》4.3.5条的相关规定,通常绝大多数工程都可以用此法计算刚度比,这也是软件的缺省方式。

(3)层间位移比是控制结构平面不规则性的重要指标。

其限值在《建筑抗震设计规范》和《高规》中均有明确的规定。

需要指出的是, 新规范中规定的位移比限值是按刚性板假定作出的,如果在结构模型
中设定了弹性板,则必须在软件参数设置时选择“对所有楼层强制采用刚性楼板假定”,以便计算出正确的位移比。

在位移比满足要求后,再去掉“对所有楼层强制采用刚性楼板假定的选择,以弹性楼板设定进行后续配筋计算。

(4)剪重比是抗震设计中非常重要的参数。

规范之所以规定剪重比,主要是因为长期作用下,地震影响系数下降较快,由此计算出来的水平地震作用下的结构效应可能太小。

而对于长周期结构,地震动态作用下的地面加速度和位移可能对结构具有更大的破坏作用,若剪重比小于0.02,结构刚度虽然满足水平位移限制要求(框架结构层间位移角≤1/550),但往往不能满足结构的整体稳定条件。

设计人员应在设计过程中综合考虑刚重比与剪重比的合理取值。

3 梁、柱轴压比计算,构件截面优化设计等
(1)软件对混凝土梁计算显示超筋信息有以下情况:①当梁的弯矩设计值M大于梁的极限承载弯矩Mu时,提示超筋;②规范对混凝土受压区高度限制:
四级框架及非抗震框架:ξ≤ξb;
二、三级框架:ξ≤0.35( 计算时取AS ’=0.3 AS);
一级框架:ξ≤0.25( 计算时取AS ’=0.5 AS)。

当ξ不满足以上要求时,程序提示超筋;③《抗震规范》要求梁端纵向受拉钢筋的最大配筋率 2.5%,当大于此值时,提示超筋;④混凝土梁斜截面计算要满足最小截面的要求,如不满足则提示超筋。

出现以上超筋信息时,设计人员可采用下列方法做以下调整:一是增大梁截面,提高混凝土强度等级。

二是增大对双筋梁受压区钢筋面积,受拉区钢筋面积不变,使梁受压区高度减小,从而使ξ减小。

(2)柱轴压比计算:柱轴压比越小说明结构的延性越好,柱轴压比越大说明结构的刚度越大,结构的侧移越大抗震性能越差。

要确定合理的轴压比必须满足:N/fcA≤n(n=0.7、0.8、0.9)。

柱轴压比的计算在《高规》和《抗震规范》中的规定并不完全一样,《抗震规范》第6.3.7条规定,计算轴压比的柱轴力设计值既包括地震组合,也包括非地震组合,而《高规》第6.4.2条规定,计算轴压比的柱轴力设计值仅考虑地震作用组合下的柱轴力。

软件在计算柱轴压比时,当工程考虑地震作用,程序仅取地震作用组合下的的柱轴力设计值计算;当该工程不考虑地震作用时,程序才取非地震作用组合下的柱轴力设计值计算。

因此设
计人员会发现,对于同一个工程,计算地震力和不计算地震力其柱轴压比结果会不一样。

当轴压比不满足要求时,一般可增大柱截面,提高柱混凝土强度等级或增大地震作用折减系数来加以改善。

(3)构件截面优化设计:计算结构不超筋,并不表示构件初始设置的截面和形状合理,设计人员还应进行构件优化设计,使构件在保证受力要求的条件下截面的大小和形状合理,并节省材料。

但需要注意的是,在进行截面优化设计时,应以保证整体结构合理性为前提,因为构件截面的大小直接影响到结构的刚度,从而对整体结构的周期、位移、地震力等一系列参数产生影响,不可盲目减小构件截面尺寸,使结构整体安全性降低。

4 满足规范强制执行条文的要求
(1)设计软件进行施工图配筋计算时,要求输入合理的归并系数、支座方式、钢筋选筋库等,如一次计算结果不满意,要进行多次试算和调整。

(2)生成施工图以前,要认真输入出图参数,如梁柱钢筋最小直径、框架顶角处配筋方式、梁挑耳形式、柱纵筋搭接方式,箍筋形式,钢筋放大系数等,以便生成符合需要的施工图。

软件可以根据允许裂缝宽度自动选筋,还可以考虑支座宽度对裂缝宽度的影响。

(3)施工图生成以后,设计人员还应仔细验证各特殊或薄弱部位构件的最小纵筋直径、最小配筋率、最小配箍率、箍筋加密区长度、钢筋搭接锚固长度、配筋方式等是否满足规范规定的抗震措施要求。

规范这一部分的要求往往是以黑体字写出,属于强制执行条文,万万不可以掉以轻心。

(4)设计人员还应根据工程的实际情况,对计算机生成的配筋结果作合理性审核,如钢筋排数、直径、架构等,如不符合工程需要或不便于施工,还要做最后的调整计算。

相关文档
最新文档