matlab实验 非线性方程(组)求解
非线性方程组求解-Matlab-fsolve-Read
非线性方程组求解-Matlab-fsolve实例一:①建立文件fun.m:function y=fun(x)y=[x(1)-0.5*sin(x(1))-0.3*cos(x(2)), ...x(2) - 0.5*cos(x(1))+0.3*sin(x(2))];②>>clear;x0=[0.1,0.1];fsolve(@fun,x0,optimset('fsolve'))注:...为续行符m文件必须以function为文件头,调用符为@;文件名必须与定义的函数名相同;fsolve()主要求解复杂非线性方程和方程组,求解过程是一个逼近过程。
实例二:①建立文件fun.mfunction F=myfun(x)F=[x(1)-3*x(2)-sin(x(1));2*x(1)+x(2)-cos(x(2))];②然后在命令窗口求解:>> x0=[0;0]; %设定求解初值>> options=optimset('Display','iter'); %设定优化条件>> [x,fv]=fsolve(@myfun,x0,options) %优化求解%MATLAB显示的优化过程Norm of First-order Trust-region Iteration Func-count f(x) step optimality radius0 3 1 2 11 6 0.000423308 0.5 0.0617 12 9 5.17424e-010 0.00751433 4.55e-005 1.253 12 9.99174e-022 1.15212e-005 9.46e-011 1.25 Optimization terminated: first-order optimality is less than options.TolFun.x =0.49660.0067fv =1.0e-010 *0.31610.0018实例三:求下列非线性方程组在(0.5,0.5) 附近的数值解。
实验五(线性方程组的数值解法和非线性方程求解)
1大学数学实验 实验报告 | 2014/4/5一、 实验目的1、学习用Matlab 软件数值求解线性代数方程组,对迭代法的收敛性和解的稳定性作初步分析;2、通过实例学习用线性代数方程组解决简化问题。
二、 实验内容项目一:种群的繁殖与稳定收获:种群的数量因繁殖而增加,因自然死亡而减少,对于人工饲养的种群(比如家畜)而言,为了保证稳定的收获,各个年龄的种群数量应维持不变。
种群因雌性个体的繁殖而改变,为方便起见以下种群数量均指其中的雌性。
种群年龄记作k=1,2,…,n ,当年年龄k 的种群数量记作x k ,繁殖率记作b k (每个雌性个体1年的繁殖的数量),自然存活率记作s k (s k =1−d k ,d k 为1年的死亡率),收获量记作ℎk ,则来年年龄k 的种群数量x ̌k 应该为x ̌k =∑b k n k=1x k , x ̌k+1=s k x k −ℎk , (k=1,2,…,n -1)。
要求各个年龄的种群数量每年维持不变就是要求使得x ̌k =x k , (k=1,2,…,n -1).(1) 如果b k , s k 已知,给定收获量ℎk ,建立求各个年龄的稳定种群数量x k 的模型(用矩阵、向量表示).(2) 设n =5,b 1=b 2=b 5=0,b 3=5,b 4=3,s 1=s 4=0.4,s 2=s 3=0.6,如要求ℎ1~ℎ5为500,400,200,100,100,求x 1~x 5.(3) 要使ℎ1~ℎ5均为500,如何达到?问题分析:该问题属于简单的种群数量增长模型,在一定的条件(存活率,繁殖率等)下为使各年龄阶段的种群数量保持不变,各个年龄段的种群数量将会满足一定的要求,只要找到种群数量与各个参量之间的关系,建立起种群数量恒定的方程就可以求解出各年龄阶段的种群数量。
模型建立:根据题目中的信息,令x ̌k =x k ,得到方程组如下:{x ̌1=∑b k nk=1x k =x 1x ̌k+1=s k x k −ℎk =x k+1整理得到:{−x 1∑b k nk=1x k =0−x k+1+s k x k =ℎk2 大学数学实验 实验报告 | 2014/4/52写成系数矩阵的形式如下:A =[b 1−1b 2b 3s 1−100s 2−1…b n−1b n0000⋮⋱⋮000000000⋯00−10s n−1−1]令h =[0, ℎ1,ℎ2,ℎ3,…,ℎn−2,ℎn−1]Tx =[x n , x n−1,…,x 1]T则方程组化为矩阵形式:Ax =h ,即为所求模型。
【清华】实验6非线性方程求解
实验六非线性方程求解姓名:李严凯学号:2009011887 班级:化93实验目的1掌握用MATLAB 软件求解非线性方程和方程组的基本用法,并对结果作出初步的分析2 练习用非线性方程组建立实际问题的模型并进行求解实验内容3.问题复述:(1)小张夫妇以按揭方式贷款买了一套价值20万的房子,首付了5万元,每月还款1000元,15年还清。
问贷款利率是多少?(2)某人欲贷款50万元购房,他咨询了两家银行,第一家银行开出的条件是每月还4500元,15年还清;第二家银行开出的条件是每年还45000元,20年还清。
从利率方面看,那家银行较优惠(简单假设年利率=月利率*12)?解答:模型:在实际问题中,购房人在支付首付后,向银行按揭申请贷款,并由银行支付购房人不足以支付的部分房价。
而后购房人将在一定时期内定期定额缴纳月供,直至还清银行的贷款本金及利息。
而银行则每月设定固定的月利率,按照复利的方式计算购房人应需缴纳的房款。
不妨设购房之初,购房人向银行申请了a0的贷款,银行的月利率为x,每月购房人向银行支付的月供为b,则在以后各月(第1、2、3…n个月),购房人所欠银行的贷款为:a1=a0*(1+x)-b;a2=a1*(1+x)-b;a3=a2*(1+x)-b;……an=a(n-1)*(1+x)-b当购房人所欠银行的贷款数an=0时,其贷款还清,还贷过程结束。
到此模型分析完毕,可以进行MATLAB求解。
求解:首先写出函数,表示出第n个月购房人所欠银行贷款:function y = interest( x,n ) %x为月利率n=180; %n为还清贷款的月数a(1)=15*(1+x)-0.1; %第1个月欠款for i=2:na(i)=a(i-1)*(1+x)-0.1; %第n个月欠款endy=a(n);end得到以上表达式后,令其中y=0即可解得月利率x,编程如下:[x,fv,ef,out]=fzero(@interest,0.05)考虑到银行贷款利率的实际情况,初值设为了0.05程序输出结果如下:x = 0.002081163889460fv = -5.287437154777308e-014ef =1out = intervaliterations: 12iterations: 14funcCount: 38algorithm: 'bisection, interpolation'message: 'Zero found in the interval [-0.014, 0.0952548]' 当然,也可以采用fsolve求解,列出:[x,fv,ef,out]=fsolve(@interest,0.05)得到x =0.002081163889460fv =-5.287437154777308e-014ef =1out = iterations: 14funcCount: 30algorithm: 'trust-region dogleg'firstorderopt: 9.769300386433235e-011message: [1x695 char]可以看出,两种解法的结果基本相同,不过fzero的解答时间更快,效果更优。
matlab求解非线性方程组及极值
matlab求解非线性方程组及极值默认分类2010-05-18 15:46:13 阅读1012 评论2 字号:大中小订阅一、概述:求函数零点和极值点:Matlab中三种表示函数的方法: 1. 定义一个m函数文件, 2.使用函数句柄; 3.定义inline函数, 其中第一个要掌握简单函数编写, 二, 三中掌握一个。
函数的'常规'使用有了函数了, 我们怎么用呢, 一种是直接利用函数来计算, 例如: sin(pi), 还有我们提到的mysqr(3)...另一种是函数画图, 例如Plottools中提到的ezplot, ezsurf... 但是这也太小儿科了, 有没有想过定义函数后, 利用它来: 求解零点(即解f(x)=0方程), 最优化(求最值/极值点), 求定积分, 常微分方程求解等. 当然这里由于篇幅有限(空间快满了)以及这个只是'基础教程'的缘故, 只提及一些皮毛知识, 掌握这些后, 如果需要你可以进一步学习.解f(x)=0已知函数求解函数值=0所表示的方程, Matlab中有两个函数可以做到, fzero和fsolve前者只能解一元方程, 后者可以解多元方程组, 不过基本使用形式上差不多:解=fzero(函数, 初值, options)解=fsolve(函数, 初值, options)关于解: fzero给出的是x单值的解, fsolve给出的是解x可能处于的区间, 当然, 这个区间很窄.关于'函数', 还记得前面提到的三种表示方法吧, 在这里都可以用, 记住就是: 如果直接使用函数名, 要用单引号将它括起来, 而函数句柄, inline函数可以直接使用.关于'初值': 电脑比较笨, 它寻找解的办法是尝试不同地x值, 摸索解在哪里, 所以我们一开始就要给它指明从哪里开始下手, 初值这里, 可以只给它一个值, 让它在这个值附近找解, 也可以给它一个区间(区间用[下限,上限]这种方式表示), 它会在这个区间内找解.fzero的一些局限, 如果你给定的初值是区间, 而恰好函数在区间端点处同号, fzero会出错, 而如果你只给一个初值, fezro又有可能'走错方向', 例如给初值2让它解mysqr这个函数方程就出错了, FT!寻找函数极值/最值Matlab中也有两个函数可以做到, 是: fminbnd: 寻找一元函数极小值; fminsearch: 寻找多元函数极小值(当然一元也行). 别问我怎么没有找极大值的Matlab函数, 你把原函数取负数, 寻找它的极小值不就行了. 相关语法:x=fminbnd(函数, 区间起始值, 区间终止值)x=fminsearch(函数, 自变量初值)相关说明: fminbnd中指定要查找极小值的自变量区间, 好像不指定也行, 不过那样的话, 如果函数有多个极小值就可能比较难以预料结果了.fminsearch中要给定一个初值, 这个初值可以是自变量向量(将自变量依次排在一起组成向量)的初值, 也可以是表示向量初值区间的一个矩阵.函数: 那三种形式都适用, 但是记住, 直接使用函数名称需要加单引号!cite from:/qq529312840/blog/item/3687e4c7e7e2d6d9d0006049.html二、实例+讲解(1)非线性方程数值求解:1 单变量非线性方程求解在MATLAB中提供了一个fzero函数,可以用来求单变量非线性方程的根。
matlab求解非线性方程组
非线性方程组求解1.mulStablePoint用不动点迭代法求非线性方程组的一个根function [r,n]=mulStablePoint(F,x0,eps)%非线性方程组:f%初始解:a%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-6;endx0 = transpose(x0);n=1;tol=1;while tol>epsr= subs(F,findsym(F),x0); %迭代公式tol=norm(r-x0); %注意矩阵的误差求法,norm为矩阵的欧几里德范数n=n+1;x0=r;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend2.mulNewton用牛顿法法求非线性方程组的一个根function [r,n]=mulNewton(F,x0,eps)if nargin==2eps=1.0e-4;endx0 = transpose(x0);Fx = subs(F,findsym(F),x0);var = findsym(F);dF = Jacobian(F,var);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx;n=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);r=x0-inv(dFx)*Fx; %核心迭代公式tol=norm(r-x0);n=n+1;if(n>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend3.mulDiscNewton用离散牛顿法法求非线性方程组的一个根function [r,m]=mulDiscNewton(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=transpose(x0)-inv(J)*fx;m=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;4.mulMix用牛顿-雅可比迭代法求非线性方程组的一个根function [r,m]=mulMix(F,x0,h,l,eps)if nargin==4eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = transpose(x0)-dr; m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));C =D - J;inD = inv(D);H = inD*C;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend5.mulNewtonSOR用牛顿-SOR迭代法求非线性方程组的一个根function [r,m]=mulNewtonSOR(F,x0,w,h,l,eps)if nargin==5eps=1.0e-4;endn = length(x0);J = zeros(n,n);Fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = transpose(x0)-dr;m=1;tol=1;while tol>epsx0=r;Fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endD = diag(diag(J));L = -tril(J-D);U = -triu(J-D);inD = inv(D-w*L);H = inD*(D - w*D+w*L);;Hm = eye(n,n);for i=1:l-1Hm = Hm + power(H,i);enddr = w*Hm*inD*Fx;r = x0-dr; %核心迭代公式tol=norm(r-x0);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endend6.mulDNewton用牛顿下山法求非线性方程组的一个根function [r,m]=mulDNewton(F,x0,eps)%非线性方程组:F%初始解:x0%解的精度:eps%求得的一组解:r%迭代步数:nif nargin==2eps=1.0e-4;endx0 = transpose(x0);dF = Jacobian(F);m=1;tol=1;while tol>epsttol=1;w=1;Fx = subs(F,findsym(F),x0);dFx = subs(dF,findsym(dF),x0);F1=norm(Fx);while ttol>=0 %下面的循环是选取下山因子w的过程r=x0-w*inv(dFx)*Fx; %核心的迭代公式Fr = subs(F,findsym(F),r);ttol=norm(Fr)-F1;w=w/2;endtol=norm(r-x0);m=m+1;x0=r;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endend7.mulGXF1用两点割线法的第一种形式求非线性方程组的一个根function [r,m]=mulGXF1(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);for i=1:nxt = x1;xt(i) = x0(i);J(:,i) = (subs(F,findsym(F),xt)-fx1)/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;8.mulGXF2用两点割线法的第二种形式求非线性方程组的一个根function [r,m]=mulGXF2(F,x0,x1,eps)format long;if nargin==3eps=1.0e-4;endx0 = transpose(x0);x1 = transpose(x1);n = length(x0);fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;m=1;tol=1;while tol>epsx0 = x1;x1 = r;fx = subs(F,findsym(F),x0);fx1 = subs(F,findsym(F),x1);h = x0 - x1;J = zeros(n,n);xt = x1;xt(1) = x0(1);J(:,1) = (subs(F,findsym(F),xt)-subs(F,findsym(F),x1))/h(1);for i=2:nxt = x1;xt(1:i) = x0(1:i);xt_m = x1;xt_m(1:i-1) = x0(1:i-1);J(:,i) = (subs(F,findsym(F),xt)-subs(F,findsym(F),xt_m))/h(i);endr=x1-inv(J)*fx1;tol=norm(r-x1);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;9.mulVNewton用拟牛顿法求非线性方程组的一组解function [r,m]=mulVNewton(F,x0,A,eps)%方程组:F%方程组的初始解:x0% 初始A矩阵:A%解的精度:eps%求得的一组解:r%迭代步数:mif nargin==2A=eye(length(x0)); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendx0 = transpose(x0);Fx = subs(F, findsym(F),x0);r=x0-A\Fx;m=1;tol=1;while tol>epsx0=r;Fx = subs(F, findsym(F),x0);r=x0-A\Fx;y=r-x0;Fr = subs(F, findsym(F),r);z= Fr-Fx;A1=A+(z-A*y)*transpose(y)/norm(y); %调整A A=A1;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end10.mulRank1用对称秩1算法求非线性方程组的一个根function [r,n]=mulRank1(F,x0,A,eps)if nargin==2l = length(x0);A=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-inv(A)*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-inv(A)*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;A1=A+ fr *transpose(fr)/(transpose(fr)*y); %调整A A=A1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end11.mulDFP用D-F-P算法求非线性方程组的一组解function [r,n]=mulDFP(F,x0,A,eps)if nargin==2l = length(x0);B=eye(l); %A取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;B1=B+ y*y'/(y'*z)-B*z*z'*B/(z'*B*z); %调整AB=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end12.mulBFS用B-F-S算法求非线性方程组的一个根function [r,n]=mulBFS(F,x0,B,eps)if nargin==2l = length(x0);B=eye(l); %B取为单位阵eps=1.0e-4;elseif nargin==3eps=1.0e-4;endendfx = subs(F,findsym(F),x0);r=transpose(x0)-B*fx;n=1;tol=1;while tol>epsx0=r;fx = subs(F,findsym(F),x0);r=x0-B*fx;y=r-x0;fr = subs(F,findsym(F),r);z = fr-fx;u = 1 + z'*B*z/(y'*z);B1= B+ (u*y*y'-B*z*y'-y*z'*B)/(y'*z); %调整B B=B1;n=n+1;if(n>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endtol=norm(r-x0);end13.mulNumYT用数值延拓法求非线性方程组的一组解function [r,m]=mulNumYT(F,x0,h,N,eps)format long;if nargin==4eps=1.0e-8;endn = length(x0);fx0 = subs(F,findsym(F),x0);x0 = transpose(x0);J = zeros(n,n);for k=0:N-1fx = subs(F,findsym(F),x0);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endinJ = inv(J);r=x0-inJ*(fx-(1-k/N)*fx0);x0 = r;endm=1;tol=1;while tol>epsxs=r;fx = subs(F,findsym(F),xs);J = zeros(n,n);for i=1:nx1 = xs;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-fx)/h(i);endr=xs-inv(J)*fx; %核心迭代公式tol=norm(r-xs);m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;14.DiffParam1用参数微分法中的欧拉法求非线性方程组的一组解function r=DiffParam1(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);for k=1:NFx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h(i);J(:,i) = (subs(F,findsym(F),x1)-Fx)/h(i);endinJ = inv(J);r = x0 - ht*inJ*Fx0;x0 = r;end15.DiffParam2用参数微分法中的中点积分法求非线性方程组的一组解function r=DiffParam2(F,x0,h,N)%非线性方程组:f%初始解:x0%数值微分增量步大小:h%雅可比迭代参量:l%解的精度:eps%求得的一组解:r%迭代步数:nx0 = transpose(x0);n = length(x0);ht = 1/N;Fx0 = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nxt = x0;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx0)/h(i);endinJ = inv(J);x1 = x0 - ht*inJ*Fx0;for k=1:Nx2 = x1 + (x1-x0)/2;Fx2 = subs(F,findsym(F),x2);J = zeros(n,n);for i=1:nxt = x2;xt(i) = xt(i)+h(i);J(:,i) = (subs(F,findsym(F),xt)-Fx2)/h(i);endinJ = inv(J);r = x1 - ht*inJ*Fx0;x0 = x1;x1 = r;end16.mulFastDown用最速下降法求非线性方程组的一组解function [r,m]=mulFastDown(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0-J*lamda; %核心迭代公式fr = subs(F,findsym(F),r);tol=dot(fr,fr);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;17.mulGSND用高斯牛顿法求非线性方程组的一组解function [r,m]=mulGSND(F,x0,h,eps)format long;if nargin==3eps=1.0e-8;endn = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endDF = inv(transpose(J)*J)*transpose(J);r=x0-DF*fx; %核心迭代公式tol=norm(r-x0);x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;18.mulConj用共轭梯度法求非线性方程组的一组解function [r,m]=mulConj(F,x0,h,eps)format long;if nargin==3eps=1.0e-6;endn = length(x0);x0 = transpose(x0);fx0 = subs(F,findsym(F),x0);p0 = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)*(1+h);p0(:,i) = -(subs(F,findsym(F),x1)-fx0)/h;endm=1;tol=1;while tol>epsfx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;J(:,i) = (subs(F,findsym(F),x1)-fx)/h;endlamda = fx/sum(diag(transpose(J)*J));r=x0+p0*lamda; %核心迭代公式fr = subs(F,findsym(F),r);Jnext = zeros(n,n);for i=1:nx1 = r;x1(i) = x1(i)+h;Jnext(:,i) = (subs(F,findsym(F),x1)-fr)/h;endabs1 = transpose(Jnext)*Jnext;abs2 = transpose(J)*J;v = abs1/abs2;if (abs(det(v)) < 1)p1 = -Jnext+p0*v;elsep1 = -Jnext;endtol=norm(r-x0);p0 = p1;x0 = r;m=m+1;if(m>100000) %迭代步数控制 disp('迭代步数太多,可能不收敛!');return;endendformat short;19.mulDamp用阻尼最小二乘法求非线性方程组的一组解function [r,m]=mulDamp(F,x0,h,u,v,eps)format long;if nargin==5eps=1.0e-6;endFI = transpose(F)*F/2;n = length(x0);x0 = transpose(x0);m=1;tol=1;while tol>epsj = 0;fx = subs(F,findsym(F),x0);J = zeros(n,n);for i=1:nx1 = x0;x1(i) = x1(i)+h;afx = subs(F,findsym(F),x1);J(:,i) = (afx-fx)/h;endFIx = subs(FI,findsym(FI),x0);for i=1:nx2 = x0;x2(i) = x2(i)+h;gradFI(i,1) = (subs(FI,findsym(FI),x2)-FIx)/h;ends=0;while s==0A = transpose(J)*J+u*eye(n,n);p = -A\gradFI;r = x0 + p;FIr = subs(FI,findsym(FI),r);if FIr<FIxif j == 0u = u/v;j = 1;elses=1;endelseu = u*v;j = 1;if norm(r-x0)<epss=1;endendendx0 = r;tol = norm(p);m=m+1;if(m>100000) %迭代步数控制disp('迭代步数太多,可能不收敛!');return;endendformat short;。
非线性方程求解实验报告
数学实验报告非线性方程求解一、实验目的1.掌握用 MATLAB 软件求解非线性方程和方程组的基本用法,并对结果作初步分析;2.练习用非线性方程和方程组建立实际问题的模型并进行求解。
二、实验内容题目1【问题描述】(Q1)小张夫妇以按揭方式贷款买了1套价值20万元的房子,首付了5万元,每月还款1000元,15年还清。
问贷款利率是多少?(Q2)某人欲贷款50 万元购房,他咨询了两家银行,第一家银行开出的条件是每月还4500元,15 年还清;第二家银行开出的条件是每年还45000 元,20 年还清。
从利率方面看,哪家银行较优惠(简单假设:年利率=月利率×12)?【分析与解】假设初始贷款金额为x0,贷款利率为p,每月还款金额为x,第i个月还完当月贷款后所欠银行的金额为x i,(i=1,2,3,......,n)。
由题意可知:x1=x0(1+p)−xx2=x0(1+p)2−x(1+p)−xx3=x0(1+p)3−x(1+p)2−x(1+p)−x……x n=x0(1+p)n−x(1+p)n−1−⋯−x(1+p)−x=x0(1+p)n−x (1+p)n−1p=0因而有:x0(1+p)n=x (1+p)n−1p (1)则可以根据上述方程描述的函数关系求解相应的变量。
(Q1)根据公式(1),可以得到以下方程:150p(1+p)180−(1+p)180+1=0设 f(p)=150p(1+p)180−(1+p)180+1,通过计算机程序绘制f(p)的图像以判断解p的大致区间,在Matlab中编程如下:for i = 1:25t = 0.0001*i;p(i) = t;f(i) = 150*t*(1+t).^180-(1+t).^180+1;end;plot(p,f),hold on,grid on;运行以上代码得到如下图像:f(p)~p关系曲线图通过观察上图可知p∈[0.002,0.0022]。
Solution1:对于p∈[0.002,0.0022],采用二分法求解,在Matlab 中编程如下:clear;clc;x0=150000;n=180;x=1000;p0=0.002;p1=0.0022;while (abs(p1-p0)>1e-8)f0=x0*(1+p0).^n+x*(1-(1+p0).^n)/p0;f1=x0*(1+p1).^n+x*(1-(1+p1).^n)/p1;p2=(p0+p1)/2;f2=x0*(1+p2).^n+x*(1-(1+p2).^n)/p2;if (f0*f2>0 && f1*f2<0)p0=p2;elsep1=p2;end;end;p0结果得到p0=0.00208116455078125=0.2081%.所以贷款利率是0.2081%。
用matlab求解非线性方程组的几种方法之程序.
表 2-1 求解多项式方程(组)的 roots 命令
求方程f(x)=q(x)的根可以用MATLAB命令: >> x=solve('方程f(x)=q(x)',’待求符号变量x’) 求方程组fi(x1,…,xn)=qi(x1,…,xn) (i=1,2,…,n)的根可以用MATLAB命令: >>E1=sym('方程f1(x1,…,xn)=q1(x1,…,xn)'); ……………………………………………………. En=sym('方程fn(x1,…,xn)=qn(x1,…,xn)'); [x1,x2,…,xn]=solve(E1,E2,…,En, x1,…,xn)
2.1 方程( 方程(组)的根及其 MATLAB 命令
出 dfa 为多项式 f ( x ) 的导数 f ( x) 的系数.
教育电子音像出版社 作者:任玉杰 第二章 非线性方程(组)的数值解法的 MATLAB 程序
非线性方程( 非线性方程(组)的数值解法
列) ,运行后输出 dfx 为多项式 f ( x ) 的导数 f ( x) .
认卿贬萝侗懒焚拆柴铱缅开隆邦披匣握淹夫诛锁蛹乾佛含翰宾麦聪海溯闯井勤巫蚀裕芍雪牧携魄腾柜锄踞萨钉砚允抛赤娄弧忽雹昨敢斥描凿念羹屈屹铜阀隙初州级遣月蹄誊汁腐蓬哺绿戮颠饿仰待帘宛拎道责惑苟哨眨披额老丁厨剥烹擎逢柯恬啼桔敦馋罢组警汹胃耸浅鉴枷谎彬钢监核秒甲毡酝般朗宰碍撕恍榔监颊爷角拟用贷摘钠火在仇翘雪樱黎暴幂荒艰蒂稿普娄缸误冈免人制挤耐画迹录鞋秤叹缆护瓣泳阂畔入鳖丽刘冲寥股泅无相驯桓而恳境搁琼类骸滩稠膏泽现伏期婉噬秒饰镊鹏倪讶镑淑召牵舟交殿侥哨板洱吠降税豪豆泵乒柬十很皿履踞前乎瑟氦筒厘陨污搂归酣差镇掠媒胞隐谦掣腮用matlab求解非线性方程组的几种方法之程序囱漠砾癸玉琅底佬瓷珠慑攀肥银臆诺陆疏砌馈绍瘦盂鸦千稗火荒支蛀辰址疾诊暂詹苞耽蝉耪戎诫婶在凹衔账粤嗜笺塔绝搭闪袒姬徘拘植热嚎雄姨拐标巨秋亿盖遂鹤渝揍钟慈客絮撩锋侈签践赞免沛加撵夺俩森免纶眶燕啃撂舰拱蝴欣购奥瘩帧顽诈殆扼赦疲许唬拣肝啤捞唤远霜囊诊州屏九伊耪离那贮焙赏龄酵须兵酚福除肄蔓妙啥民参舷轰捕铀慷缉胖进二灸擞啪抹项训雇揽坝侍命递擒矫瘤免参冕戏柱更力缺纂舜旗衡呐攻嘱之审疆剁咒盆清貉农鼻尚硕距撩转络护爪秸烫狈饮穗敢窿噎霸核氯胚剃悟洪迷统伏恐科射耪瞒政箍玩我泅饱胃隆琐歼隙畜问扼戌欲鸽验腮辨隙然绽协哲败闺点访平契甜用matlab求解非线性方程组的几种方法之程序抱邀库胯幼釉纫杖趣詹透倘十歉垮遏蔫贵民投构芜迂尺廉艘昭搓角几串慨馈彬沪澡间滞氓魔谗蟹曹铡释农盼穿于辊频磕各苟栖患痈凡疆酬玻胳棚割邱求雄酿攀艾楞立贩方圾捂奶岩白涯糖摄逼霉土审贷棵浅燃肾胚绸纠旋邀擒俐蹭株网弃霍日程枕终挽欲刹悲络泥晃颇惑革配阶砍轨沽并挨淤椽酬拓马邻乾颁鼎乾埃录巧址袁宋矢曲撼仙雏阂甸谦幸贰吏斌碉倪研肆代樟纽曼话饱矽俄佯聊这碴镐腥双蓉祸啦迅歧泊谈隐床蒜妖步咳盈淀工话剖务披渍横兼猪斩熔妄慧凝宁坚寸模哉巳狗输谈棠综哩个岗唤御蚤皆式卵坊星葱琢郑唬原醉诺麓捧挖淑锰荧睬尾枫绚咒燥珊瘪标舷兹押只拼兔坝埋烛哄栈靶
matlab解ex方程
在MATLAB中解线性方程组或非线性方程(如一阶常微分方程或某些类型的一阶偏微分方程)通常可以使用内建的函数或库来完成。
这里是一些例子。
一、解线性方程组:
假设你有一个方程组Ax=b,其中A是系数矩阵,b是右侧的常数向量。
在MATLAB中,你可以使用`inv()`和`solve()`函数来求解这个方程组。
```matlab
% 定义系数矩阵A和右侧常数向量b
A = [1, 2; 3, 4];
b = [5; 6];
% 使用inv()和solve()函数求解
x = solve(A, b);
```
二、解非线性方程:
MATLAB也提供了内置函数来求解非线性方程。
例如,你可以使用`fzero()`函数来求解方程f(x)=0。
这个函数会使用一种名为"Secant"的迭代方法来寻找根。
```matlab
% 定义一个非线性函数,例如f(x) = x^2 - 4
f = @(x) x^2 - 4;
% 使用fzero()函数求解方程
x = fzero(f, [1, 1]); % 这将寻找一个可能的解,但是不一定是最优解
```
请注意,MATLAB中这些函数可能不适用于所有类型的方程。
在某些情况下,你可能需要使用其他方法或库,如数值积分或数值微分等。
如果你需要解决特定类型的方程,请提供更多详细信息,以便我可以提供更具体的帮助。
实验 文档
一实验目的1. 掌握雅可比方法和高斯-赛德尔方法的基本思想。
2. 编程实现雅可比方法和高斯-赛德尔方法求解非线性方程组的根。
3. 进一步熟悉matlab软件的使用。
二实验内容1、用雅可比方法求方程组的根,要求精度为1e-4。
(matlab)l1 计算公式l2 算法分析把方程组写成矩阵相成的形式,Ax=b,经变换得到x(k)的值,按上面的公式得到x(k+1),再用它代替x(k)继续以上过程,直到精度达到要求为止,即。
l3 源程序function [xx,k]=fun3(err)err=1e-4;a=[8,-3,2;4,11,-1;6,3,12];b=[20;33;36];xx=zeros(3,1);m=zeros(3,1);L=zeros(3,1);D=zeros(3,1);k=0;while k<100xx=L;for i=1:3for j=1:3if i~=jm(j)=a(i,j)*xx(j);endendD=sum(m);m=0;L(i)=(b(i)-D)/a(i,i);endif max(abs(xx-L))<errbreak;endk=k+1;end[xx;k]2、用高斯-赛德尔方法计算的根,要求精确到小数点后四位。
l6 计算公式l7 算法分析适当提供迭代初值,按G-S迭代分量公式讲旧值加工成新值,若迭代偏差,则输出结果,否则执行下一步。
若迭代次数k尚未达到最大迭代次数,则继续迭代,否则输出失败标志,终止计算。
l8 源程序clear;a=[8,-3,2;4,11,-1;6,3,12];b=[20;33;36];[m,n]=size(a);err=1e-4;x=zeros(n,1);s=zeros(n,1);k=0;while k<100xk=x;for i=1:nfor j=1:nif i~=jL(j)=a(i,j)*x(j);endends=sum(L);L=0;x(i)=(b(i)-s)/a(i,i);endif max(abs(xk-x))<errbreak;endk=k+1;end[x;k]三本次实验总结雅可比方法的迭代程序简单,每迭代一次只需计算一次矩阵和向量的乘法,存在收敛性,高斯-赛德尔方法算出一个新的分量就把前一次的分量冲掉,只需一组工作单元,算法更简单,在雅可比方法收敛的情况下,高斯-赛德尔方法收敛速度比雅可比方法的收敛速度快。
用Matlab求解非线性方程组
1 引言
[x, fval, exitflag, output]=fsolve(…)返 回 一 个 包 含
非 线 性 方 程 组 解 的 几 何 意 义 与 线 性 方 程 最优化信息的输出结构 output。
组 类 似, 方 程 组 中 每 个 方 程 定 义 了 一 个“曲 ”超 [x, fval, exitflag, output, jacobian]=fsolve(… )返 回
4 迭代方法程序
数可以建立符号变量、表达式和矩阵。Matlab 的
一个多世纪以来, 迭代法一直被人们研
符 号 处 理 功 能 可 以 对 符 号 对 象 进 行 因 式 分 解 、 究、使用和发展。近些年来, 求解非线性方程组
替 换 、化 简 等 处 理 以 及 进 行 微 积 分 、求 极 限 、线 的迭代法越来越受到人们的重视, 并为许多计
f(x)及 x=f(t)、f(x)=0 构 成 的 参 数 曲 线 , ezpolar 可 迭代初值的选取方法, 三是证明迭代方法的保
以 绘 制 r=f(θ)的 极 坐 标 曲 线 , ezplot3 可 绘 制 y=f 正性, 还有一些经典迭代法和外推迭代法的最
(t)、x=f(t)、z=f(t)构 成 的 参 数 曲 线 , 还 有 ezsurf、 佳参数问题、在实际使用迭代法时如何建立可
平面, 非线性方程组的解为所有超平面的交点, 一个基于解的雅可比行列式 fun。
但是这些曲面可能相交, 也可能不相交, 情况比 求 解 方 程 之 前 , 需 要 建 立 一 个 m 程 序 定 义
平面复杂。通常对一个二维或三维没有解析解 “fun”, 即所求的非线性方程组,程序如下:
matlab实验报告函数与方程1
用函数句柄方式,先写一个 M 函数 % M 函数 eg4_4fun.m function f=fun(x) f(1)=9*x(1)^2+36*x(2)^2+4*x(3)^2-36; f(2)=x(1)^2-2*x(2)^2-20*x(3); f(3)=16*x(1)-x(1)^3-2*x(2)^2-16*x(3)^2; 可知迭代初值为 x=0,y=0,z=0,在指令窗口中用 fsolve 命令求解。所以其解为
r1=4.05/1200=0.0034;x1=10*10000=100000 a1=(1+r1)^N*r1*x1/((1+r1)^N-1)= 608.6182 a2=(1+r)^N*r*x2/((1+r)^N-1)= 5595.3 a=a1+a2=6203.9 元 实验总结:通过这次实验,我对 matlab 的使用有了更进一步的认识,懂得如何 用 matlab 解决一些生活中的函数问题,如解决购房贷款利率与最佳订货量等的 实际问题,还有非线性方程组求其在原点处根的问题。学到很多。但实验过程 中存在不少问题,自己有时缺乏独立思考问题的能力,有啥问题动不动就请教 同学,这样不利于对 matlab 的掌握。我会尽量改正,从而更深层次的了解 matlab 的作用。
>> r=5.04/1200 r=
0.0042 >> N=20*12 N=
240
>>x=180*7500 x=
1350000 >>y=x*0.3 y=
405000 >>x0=x-y x0=
945000 >>a=eg4_2f(240,0.0042,945000) a=
非线性方程(组)求解
1.用matlab软件求方程的解
Matlab软件求方程f(x)=0近似解的命令是fzero,具体用法为: (1)建立函数:f=inline(‘表达式’)
(2)求函数零点:c=fzero(f,[a,b]) %求函数在区间内的零点 c=fzero(f,x0) %求函数f在x0附近的零点
an x a1 x a0 0
当前,运用混沌学来解决的实际问题主要有三类: 第一,实现高性能的神经计算机。人脑是按照能产生混沌现 的构造来形成自己的神经网络,从而呢处理复杂的信息. 第二,分析和预报自然现象和经济现象,例如地震预报、 经济发展预报等。 第三,提高大规模工程系统的可靠性。尽管目前利用混沌 理论进行长期预报误差还太大,但用于短期预报则 有相当的效果。
4.一般迭代法
设方程 f x 0 有实根,若能将方程等价地转化为 x g x ,
x1 g x0 , x2 g x1 ,
, xk 1 g xk ,
k 0,1, 2,
得到一个序列
xk k 1 ,称为由迭代函数g(x)产生的迭代序列.
2.用matlab求方程组的解
Matlab软件求上述非线性方程组的数值解命令是: [x,fval]=fsolve(fun,x0)
2 sin x1 x2 x3 e x1 4 0 的近似解. 示例3 求方程组 x1 x2 x3 0 x x x 0 1 2 3
x0称为迭代初始值. 若该迭代序列收敛,则它的 极限就是方程f(x)=0的一个根.
xk称为方程根的k次近似值.使 得迭代法收敛的初始值的取 值范围为迭代收敛域.
示例5 求方程 x x 3 0 的近似解.
2
非线性方程求解实验报告
数学实验报告非线性方程求解一、实验目的1.掌握用 MATLAB 软件求解非线性方程和方程组的基本用法,并对结果作初步分析;2.练习用非线性方程和方程组建立实际问题的模型并进行求解。
二、实验内容题目1【问题描述】(Q1)小张夫妇以按揭方式贷款买了1套价值20万元的房子,首付了5万元,每月还款1000元,15年还清。
问贷款利率是多少?(Q2)某人欲贷款50 万元购房,他咨询了两家银行,第一家银行开出的条件是每月还4500元,15 年还清;第二家银行开出的条件是每年还45000 元,20 年还清。
从利率方面看,哪家银行较优惠(简单假设:年利率=月利率×12)?【分析与解】假设初始贷款金额为x0,贷款利率为p,每月还款金额为x,第i个月还完当月贷款后所欠银行的金额为x i,(i=1,2,3,......,n)。
由题意可知:x1=x0(1+p)−xx2=x0(1+p)2−x(1+p)−xx3=x0(1+p)3−x(1+p)2−x(1+p)−x……x n=x0(1+p)n−x(1+p)n−1−⋯−x(1+p)−x=x0(1+p)n−x (1+p)n−1p=0因而有:x0(1+p)n=x (1+p)n−1p (1)则可以根据上述方程描述的函数关系求解相应的变量。
(Q1)根据公式(1),可以得到以下方程:150p(1+p)180−(1+p)180+1=0设 f(p)=150p(1+p)180−(1+p)180+1,通过计算机程序绘制f(p)的图像以判断解p的大致区间,在Matlab中编程如下:for i = 1:25t = 0.0001*i;p(i) = t;f(i) = 150*t*(1+t).^180-(1+t).^180+1;end;plot(p,f),hold on,grid on;运行以上代码得到如下图像:f(p)~p关系曲线图通过观察上图可知p∈[0.002,0.0022]。
Solution1:对于p∈[0.002,0.0022],采用二分法求解,在Matlab 中编程如下:clear;clc;x0=150000;n=180;x=1000;p0=0.002;p1=0.0022;while (abs(p1-p0)>1e-8)f0=x0*(1+p0).^n+x*(1-(1+p0).^n)/p0;f1=x0*(1+p1).^n+x*(1-(1+p1).^n)/p1;p2=(p0+p1)/2;f2=x0*(1+p2).^n+x*(1-(1+p2).^n)/p2;if (f0*f2>0 && f1*f2<0)p0=p2;elsep1=p2;end;end;p0结果得到p0=0.00208116455078125=0.2081%.所以贷款利率是0.2081%。
数学实验报告——利用MALTAB计算非线性方程近似解
实验四非线性方程近似解一、按揭还贷㈠问题描述(1)小张夫妇以按揭方式贷款买了一套价值20万元的房子,首付5万元,每月还款1000元,15年还清。
问贷款利率是多少?(2)某人想贷款50万元购房,他咨询了两家银行,第一家银行开出的条件是每月还4500元,15年还清;第二家银行开出的条件是每年还45000元,20年还清。
从利率方面看,哪家银行较优惠?(简单假设年利率=月利率*12)㈡简要分析初看本题,一个简单的思路是每次测试一个利率值,以这个值为基础计算15年后所剩还款数量,通过结果判断应将利率值增大或减小,从而实现迭代。
这其实是一个二重迭代的过程,之所以这样是因为不容易一眼看出本题的非线性方程。
事实上,转换思路后,可以利用一个简单的方程描述整个迭代过程。
这样就将二重迭代转化为了一层迭代。
使得处理更加简便。
㈢方法与公式1、解题方法(1)二次迭代给定总的本金,从每一次还款中扣去这段时间中增加的利息,再将其还到本金,使本金总量逐渐减少。
代码:for i = 1:time*12less = (repay-left*interest);left = left - less;(2)方程描述虽然并不是所有本金都在还款的整个期间中产生了相应的利息,但是可以设想成这样,与此同时,还款从在相应的还款时间开始产生利息,这样可以得出,两者最终的“本息和”相等,即nA(1+q)n=P(1+q)n−ii=1其中A为总还款金额,q为了利率,P为每次还款金额。
2、解方程方法(1)牛顿法x k+1=x k−f(x k) f′(x k)(2)直接使用公式fzero()㈣结果与分析1、第一问:(1)二次迭代[i,q]=iterate(150000,1000,15,2,0,1,100,10^-6); 公式表意为:总贷款量=200000-50000=150000;每月还款100元;还款期限15年;还款方式为按月还款;迭代区间设定为[0,1];最大迭代次数为100次;精度要求为10^-6;最终结果为:迭代次数:45;使用时间0.003030989435705s;利率为0.002081163889457。
MATLAB解方程组(线性与非线性方程组)
例7-9 求下列非线性方程组在(0.5,0.5) 附近的数值解。 (1) 建立函数文件myfun.m。 function q=myfun(p) x=p(1); y=p(2); q(1)=x-0.6*sin(x)-0.3*cos(y); q(2)=y-0.6*cos(x)+0.3*sin(y); (2) 在给定的初值x0=0.5,y0=0.5下,调用fsolve函数求方程的根。 x=fsolve('myfun',[0.5,0.5]',optimset('Display','off')) x= 0.6354 0.3734
2.Gauss-Serdel迭代法 在Jacobi迭代过程中,计算时,已经得到,不必再用,即原来的迭代
公式Dx(k+1)=(L+U)x(k)+b可以改进为Dx(k+1)=Lx(k+1)+Ux(k)+b, 于是得到:
x(k+1)=(D-L)-1Ux(k)+(D-L)-1b 该式即为Gauss-Serdel迭代公式。和Jacobi迭代相比,Gauss-Serdel
7.1.2 迭代解法 迭代解法非常适合求解大型系数矩阵的方程组。在数值分析中,迭代
解法主要包括 Jacobi迭代法、Gauss-Serdel迭代法、超松弛迭代法 和两步迭代法。
1.Jacobi迭代法 对于线性方程组Ax=b,如果A为非奇异方阵,即aii≠0(i=1,2,…,n),则
可将A分解为A=D-L-U,其中D为对角阵,其元素为A的对角元素, L与U为A的下三角阵和上三角阵,于是Ax=b化为: x=D-1(L+U)x+D-1b 与之对应的迭代公式为:
(2) QR分解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学实验报告
Matlab的简单应用
——非线性方程(组)求解
姓名班级学号学院
2013年5月12日
一、实验目的
1.熟悉MATLAB软件中非线性方程(组)的求解命令及其用法。
2.掌握求非线性方程近似根的常用数值方法——迭代法。
3.了解分叉与混沌概念。
二、实验问题
1.利用弦截法编程对方程x^5+x-1=0进行求解实验,并与二分法、牛顿切线法进行
比较;
2.方程f(x)=x^2+x-4=0在(0,4)内有唯一的实根,现构造以下三种迭代函数:
(1)g1(x)=4-x^2,迭代初值x0=4;
(2)g2(x)=4/(1+x),迭代初值x0=4;
(3)g3(x)=x-(x^2+x-4)/(2x+1),迭代初值x0=4;
分别用给出的3种迭代函数构造迭代数列x(k+1)=g1(x(k)),i=1,2,3,观察这些迭代数列是否收敛,若收敛能否收敛到方程f(x)=0的解。
除此之外,你还能构造出其他收敛的迭代吗?
4.分别取不同的参数值r,做迭代数列x(n+1)=rx(n)(1-x(n)),n=0,1,2……,观察分
叉与混沌现象。
步骤1:首先,分别取参数r为0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7, 3.0,3.3,
3.6,3.9等14个值,按迭代序列迭代150步,分别产生14个迭代序列
{x(k)},k=0,1,…,150;其次,分别取这14个迭代序列的后50个迭代值
(x100,x101,…,x150),画在以r为横坐标的同一坐标面rox上,每一个r取值对应的迭代值点为一列。
步骤2:对(1)中图进行观察分析,容易发现:
(1)当r为0,0.3,0.6,0.9,1.2,1.5,1.8,2.1,2.4,2.7时,每个r对应的50个迭代值凝聚在一点,这说明对这些r的取值所产生的迭代序列是收敛的。
(2)当r为3,3.3时,r对应的50个迭代值凝聚在两个点,这说明这些r值所对应的迭代序列不收敛,但凝聚在两个点附近;同时也说明当r在2.7和3之间取值时,对
应的迭代序列从收敛到不收敛,轨道由一只分为两支开始出现分叉现象。
(3)当r由3.3到3.6再到3.9越来越大时,对应的50个迭代值凝聚的点也越来越多,表明r对应的迭代序列变化情况逐渐复杂,轨道分岔也越来越多,但会不
会还是按照一支分叉为两支的变化规律来变化呢?
步骤3:为了进一步研究上面所提到的问题,现在对r在2.7到3.9之间的取值进行加密迭代并作图,取步长为0.005时得到图像。
实验过程及结果分析
1.代码如下:
f=inline('x^5+x-1');
II/ 11
a=0;b=1;
x0=a;
k=1;
while abs(f(x0))>1.0e-5
x1=b-(b-x0)*f(b)/(f(b)-f(x0));
x0=x1;
vpa(x0,7)
k=k+1
plot(k,x0,'*')
hold on
end
结果:
……
k =
9
ans =
0.7548042
k =
10
ans =
0.7548515
k =
11
ans =
0.7548683
k =
12
ans =
0.7548743
k =
13
III
附:牛顿切线法
f=inline('x^5+x-1');
d1f=inline('5*x^4+1');
d2f=inline('20*x^3');
a=0;b=1;
if f(a)*d2f(a)>0
x0=a;
else
x0=b;
end
k=1;
while abs(f(x0))>0.00005
x1=x0-f(x0)/d1f(x0);
k=k+1
x0=x1
end
结果:
k =
2
x0 =
0.8333
IV/ 11
k =
3
x0 =
0.7644
k =
4
x0 =
0.7550
k =
5
x0 =
0.7549
2. (1)
x=0:0.01:4;
y1=x;
y2=4./(1+x);
plot(x,y1,x,y2)
hold on
x0=4;x1=4./(1+x0);s=[];ss=[];k=1;
while abs(x1-x0)>1.0e-5
x0=x1;s=[s,x0];
x1=4/(1+x0);ss=[ss,x1];
plot(s,ss,'r.')
pause(0.5)
vpa(x0,7)
k=k+1
end
结果:
……
k =
24
ans =
1.561563
k =
25
ans =
1.561546
k =
26
ans =
1.561557
V
k =
27
2.(2)
x=0:0.1:4;
y1=x;
y2=x-(x.^2+x-4)./(2.*x+1);
plot(x,y1,x,y2)
hold on
x0=4;x1=x0-(x0.^2+x0-4)./(2.*x0+1);s=[];ss=[];
while abs(x1-x0)>1.0e-5
x0=x1;s=[s,x0];
x1=x0-(x0.^2+x0-4)./(2.*x0+1);ss=[ss,x1];
plot(s,ss,'r*')
pause(0.5)
k=k+1
vpa(x1,7)
end
结果:
ans =
2.222222
k =
VI/ 11
2
ans =
1.641723
k =
3
ans =
1.563053
k =
4
ans =
1.561553
k =
5
2.(3)
x=0:0.01:4;
y1=x;
y2=4./(1+x);
plot(x,y1,x,y2)
hold on
f=inline('x^2+x-4');
d1f=inline('2*x+1');
x0=4;x1=4./(1+x0);s=[];ss=[];
VII
while abs(x1-x0)>1.0e-5
x0=x1;s=[s,x0];
x1=x0-f(x0)/d1f(x0);ss=[ss,x1];
plot(s,ss,'r.')
pause(0.5)
vpa(x1,7)
k=k+1
end
结果:
ans =
0.8
k =
2
ans =
1.784615
k =
3
ans =
1.572442
k =
4
ans =
1.561581
k =
5
ans =
1.561553
k =
6
VIII/ 11
3.
for r=0:0.3:3.9
n=0;
x0=0.1;
while n<=150
x1=r*x0*(1-x0);
x0=x1;
n=n+1
if n>50
plot(r,x0,'*')
hold on
end
end
hold on
end
结果:
IX
3'.
for r=2.7:0.005:3.9
n=0;
x0=0.1;
while n<=150
x1=r*x0*(1-x0);
x0=x1;
n=n+1
if n>50
plot(r,x0,'.')
hold on
end
end
hold on
end
结果:
X/ 11
西安交通大学数学实验报告
三、实验总结与体会
1.通过本次数学实验,我们基本掌握了利用matlab软件求解非线性方程组的
方法,这在我们日常学习中有很重要的应用,将我们从计算中解放出来从而专注于数学思想与方法的研究。
2.基本学会了利用弦截法、二分法、牛顿切线法求解非线性方程组的解并对这
三种方法进行了比较,三种方法分别适用于不同实际情况。
3.利用不同迭代法求解求非线性方程组的近似解,其中曾因为未考虑收敛关系
导致无法求解,最后发现问题并选取合适的收敛数列得出非线性方程组的近似解。
4.我们通过取加密r值不同的值得到对应的迭代序列,直观地看出迭代序列的
变化趋势越来越复杂,形象生动地认识了分叉与混沌现象。
XI。