2011-2013高考等差等比数列练习题
高考数学《等差与等比数列》练习题
等差与等比数列一、单项选择题1.已知等差数列{}a n 的前n 项和为S n ,2S 8=S 7+S 10,则S 21=( )A .21B .11C .-21D .02.在等比数列{}a n 中,若a 2 019=4,a 2 021=9,则a 2 020=( )A .6B .-6C .±6D .1323.在等差数列{}a n 中,a 1+a 8+a 6=15,则此等差数列的前9项之和为( )A .5B .27C .45D .904.等比数列{}a n 的公比为q ,前n 项和为S n ,设甲:q >0,乙:{}S n 是递增数列,则( )A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件5.已知等差数列{}a n 的项数为奇数,其中所有奇数项之和为319,所有偶数项之和为290,则该数列的中间项为( )A .28B .29C .30D .316.设{}a n 为等比数列,{}b n 为等差数列,且S n 为数列{}b n 的前n 项和,若a 2=1,a 10=16,且a 6=b 6,则S 11=( )A .20B .30C .44D .887.已知等差数列{}a n 的前n 项和为S n ,等差数列{}b n 的前n 项和为T n .若S n T n =2n -1n +1 ,则a 5b 5=( ) A .1911 B .1710 C .32 D .758.在等差数列{}a n 中,已知a 5>0,a 3+a 8<0,则使数列{}a n 的前n 项和S n <0成立时n 的最小值为( )A .6B .7C .9D .10二、多项选择题9.已知等比数列{}a n 的公比为q ,且a 5=1,则下列选项正确的是( )A .a 3+a 7≥2B .a 4+a 6≥2C .a 7-2a 6+1≥0D .a 3-2a 4-1≥010.已知无穷等差数列{}a n 的公差d ∈N *,且5,17,23是{}a n 中的三项,则下列结论正确的是( )A .d 的最大值是6B .2a 2≤a 8C .a n 一定是奇数D .137一定是数列{}a n 中的项11.已知数列{}a n 的前n 项和为S n ,则下列说法正确的是( )A .若S n =n 2-1,则{}a n 是等差数列B .若S n =2n -1,则{}a n 是等比数列C .若{}a n 是等差数列,则S 99=99a 50D .若{}a n 是等比数列,且a 1>0,q >0,则S 2n -1·S 2n +1>S 22n12.已知数列{}a n 是等比数列,下列结论正确的为( )A .若a 1a 2>0,则a 2a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若a 2>a 1>0,则a 1+a 3>2a 2D .若a 1a 2<0,则()a 2-a 1 ()a 2-a 3 <0三、填空题13.设等差数列{}a n 的前n 项和为S n ,若S 7=28,则a 2+a 3+a 7的值为________.14.已知等比数列{}a n 的前n 项和为S n ,a 3=7,S 3=21,则公比q =________.15.已知公差不为0的等差数列{a n }的前n 项和为S n ,若a 3,a 5,a 10成等比数列,则S 7a 7=________. 16.已知等差数列{}a n 的公差为d ()d >1 ,前n 项和为S n ,若a 7=a 5+3a 1,且a 2是S 4-1和a 1-1的等比中项,则d =________,S n =________.。
等差等比数列练习题(含答案)
<一、选择题1、如果一个数列既是等差数列,又是等比数列,则此数列 ( )(A )为常数数列 (B )为非零的常数数列 (C )存在且唯一 (D )不存在 2.、在等差数列{}n a 中,41=a ,且1a ,5a ,13a 成等比数列,则{}n a 的通项公式为 ( )(A )13+=n a n(B )3+=n a n (C )13+=n a n 或4=n a (D )3+=n a n 或4=n a3、已知c b a ,,成等比数列,且y x ,分别为a 与b 、b 与c 的等差中项,则ycx a +的值为 ( ) (A )21(B )2- (C )2 (D ) 不确定 4、互不相等的三个正数c b a ,,成等差数列,x 是a ,b 的等比中项,y 是b ,c 的等比中项,那么2x ,2b ,2y 三个数( ),(A )成等差数列不成等比数列 (B )成等比数列不成等差数列(C )既成等差数列又成等比数列 (D )既不成等差数列,又不成等比数列5、已知数列{}n a 的前n 项和为n S ,n n S n 24212+=+,则此数列的通项公式为 ( )(A )22-=n a n(B )28-=n a n (C )12-=n n a(D )n n a n-=26、已知))((4)(2z y y x x z--=-,则 ( )(A )z y x ,,成等差数列 (B )z y x ,,成等比数列 (C )z y x 1,1,1成等差数列 (D )zy x 1,1,1成等比数列 7、数列{}n a 的前n 项和1-=n n a S ,则关于数列{}n a 的下列说法中,正确的个数有 ( )①一定是等比数列,但不可能是等差数列 ②一定是等差数列,但不可能是等比数列 ③可能是等比数列,也可能是等差数列 ④可能既不是等差数列,又不是等比数列 ⑤可能既是等差数列,又是等比数列】(A )4 (B )3 (C )2 (D )18、数列1⋯,1617,815,413,21,前n 项和为 ( ) (A )1212+-n n (B )212112+-+n n (C )1212+--n n n (D )212112+--+n n n9、若两个等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且满足5524-+=n n B A n n ,则135135b b a a ++的值为 ( )(A )97 (B )78(C )2019 (D )8710、已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( )(A )56 (B )58 (C )62 (D )6011、已知数列{}n a 的通项公式5+=n a n为, 从{}n a 中依次取出第3,9,27,…3n , …项,按原来的顺序排成一个新的数列,则此数列的前n 项和为 ( )、(A )2)133(+n n (B )53+n(C )23103-+n n (D )231031-++n n12、下列命题中是真命题的是 ( )A .数列{}n a 是等差数列的充要条件是q pn a n+=(0≠p )B .已知一个数列{}n a 的前n 项和为a bn an S n++=2,如果此数列是等差数列,那么此数列也是等比数列 C .数列{}n a 是等比数列的充要条件1-=n nab aD .如果一个数列{}n a 的前n 项和c ab S n n+=)1,0,0(≠≠≠b b a ,则此数列是等比数列的充要条件是0=+c a二、填空题13、各项都是正数的等比数列{}n a ,公比1≠q 875,,a a a ,成等差数列,则公比q =@14、已知等差数列{}n a ,公差0≠d ,1751,,a a a 成等比数列,则18621751a a a a a a ++++=15、已知数列{}n a 满足n na S 411+=,则n a =16、在2和30之间插入两个正数,使前三个数成等比数列,后三个数成等差数列,则插入的这两个数的等比中项为 三、解答题 17、已知数列{}n a 是公差d 不为零的等差数列,数列{}nb a 是公比为q 的等比数列,46,10,1321===b b b ,求公比q 及n b 。
高考备考数学等差等比数列专题练习
高考数学等差等比数列专题练习一.选择题1.{}n a 为等差数列,且7421a a -=-,30a =,则公差d =( ) A .2-B .12-C .12D .22.在等比数列{}n a 中,若37a =,前3项和321S =,则公比q 的值为( ) A .1B .12-C .1或12-D .1-或12-3.已知等比数列{}n a 中有31174a a a =,数列{}n b 是等差数列,且77a b =,则59b b +=( ) A .2B .4C .8D .164.已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值为( ) A .4B .2C .2-D .4-5.已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值是( )A .29B .30C .31D .326.朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升”.其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升”,在该问题中第3天共分发大米( ) A .192升B .213升C .234升D .255升7.在等差数列{}n a 中,满足4737a a =,且10a >,n S 是{}n a 前n 项的和,若n S 取得最大值,则n =( ) A .7B .8C .9D .108.已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S =( ) A .3B .9C .10D .139.等差数列{}n a 的前n 项和是n S ,公差d 不等于零,若2a ,3a ,6a 成等比,则( ) A .10a d >,30dS > B .10a d >,30dS < C .10a d <,30dS >D .10a d <,30dS <10.设等差数列{}n a 的前n 项和n S ,44a =,515S =,若数列11n n a a +⎧⎫⎨⎬⎩⎭的前m 项和为1011,则m =( )A .8B .9C .10D .1111.已知n S 是等差数列{}n a 的前n 项和,则“n n S na <对2n ≥恒成立”是“数列{}n a 为递增数列”的( ) A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必条件12.已知数列{}n a 是各项为正数的等比数列,点()222,log M a 、()255,log N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( ) A .22n - B .122n +- C .21n - D .121n +-13.各项均为正数的等比数列{}n a 的前n 项和为n S ,已知630S =,970S =,则3S =_____. 14.等比数列{}n a 的各项均为正数,且154a a =,则2122232425log log log log log a a a a a ++++=_____. 15.设有四个数的数列1a ,2a ,3a ,4a 前三个数构成一个等比数列,其和为k ,后三个数构成一个等差数列,其和为15,且公差非零.对于任意固定的实数k ,若满足条件的数列个数大于1,则k 的取值范围为________. 16.数列{}n a 满足1111,231,n n n n n a a a a a ----⎧⎪=⎨⎪+⎩是偶数是奇数,若134a =,则数列{}n a 的前100项的和是__________.二、填空题。
高考数学等比数列习题及答案doc
一、等比数列选择题1.已知等比数列{}n a 中,n S 是其前n 项和,且5312a a a +=,则42S S =( ) A .76B .32C .2132D .142.中国古代数学名著《九章算术》中有这样一个问题:今有牛、马、羊食人苗,苗主责之粟五斗,羊主曰:“我羊食半马.”马主曰:“我马食半牛.”今欲衰偿之,问各出几何?此问题的译文是:今有牛、马、羊吃了别人的禾苗,禾苗主人要求赔偿5斗粟.羊主人说:“我羊所吃的禾苗只有马的一半.”马主人说:“我马所吃的禾苗只有牛的一半.”打算按此比例偿还,他们各应偿还多少?此问题中1斗为10升,则牛主人应偿还多少升粟?( ) A .503B .507C .1007D .20073.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭4.等比数列{}n a 中11a =,且14a ,22a ,3a 成等差数列,则()*na n N n∈的最小值为( ) A .1625B .49C .12D .15.已知数列{}n a 的前n 项和为n S 且满足11130(2),3n n n a S S n a -+=≥=,下列命题中错误的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列 B .13n S n =C .13(1)n a n n =--D .{}3n S 是等比数列6.已知等比数列{}n a 满足12234,12a a a a +=+=,则5S 等于( )A .40B .81C .121D .2427.设a ,0b ≠,数列{}n a 的前n 项和(21)[(2)22]n nn S a b n =---⨯+,*n N ∈,则存在数列{}n b 和{}n c 使得( )A .n n n a b c =+,其中{}n b 和{}n c 都为等比数列B .n n n a b c =+,其中{}n b 为等差数列,{}n c 为等比数列C .·n n n a b c =,其中{}n b 和{}n c 都为等比数列 D .·n n n a b c =,其中{}n b 为等差数列,{}n c 为等比数列 8.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180B .160C .210D .2509.在等比数列{}n a 中,24a =,532a =,则4a =( ) A .8B .8-C .16D .16-10.设数列{}n a 的前n 项和为n S ,且()*2n n S a n n N =+∈,则3a=( )A .7-B .3-C .3D .711.题目文件丢失!12.已知q 为等比数列{}n a 的公比,且1212a a =-,314a =,则q =( ) A .1- B .4C .12-D .12±13.等比数列{}n a 中,1234a a a ++=,4568a a a ++=,则789a a a ++等于( ) A .16B .32C .64D .12814..在等比数列{}n a 中,若11a =,54a =,则3a =( )A .2B .2或2-C .2-D15.已知等比数列{}n a 的n 项和2n n S a =-,则22212n a a a +++=( )A .()221n -B .()1213n- C .41n -D .()1413n- 16.已知{}n a 为等比数列.下面结论中正确的是( ) A .1322a a a +≥B .若13a a =,则12a a =C .2221322a a a +≥D .若31a a >,则42a a >17.已知数列{}n a 是等比数列,n S 为其前n 项和,若364,12S S ==,则12S =( ) A .50B .60C .70D .8018.已知等比数列{}n a 中,11a =,132185k a a a ++++=,24242k a a a +++=,则k =( ) A .2B .3C .4D .519.等比数列{}n a 中各项均为正数,n S 是其前n 项和,且满足312283S a a =+,416a =,则6S =( )A .32B .63C .123D .12620.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n nb b +,则b 2020=( )A .22017B .22018C .22019D .22020二、多选题21.题目文件丢失!22.一个弹性小球从100m 高处自由落下,每次着地后又跳回原来高度的23再落下.设它第n 次着地时,经过的总路程记为n S ,则当2n ≥时,下面说法正确的是( ) A .500n S < B .500n S ≤C .n S 的最小值为7003D .n S 的最大值为40023.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )A .{}n a 为单调递增数列B .639S S = C .3S ,6S ,9S 成等比数列D .12n n S a a =-24.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1425.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25B .26C .27D .2826.已知等比数列{}n a 的公比0q <,等差数列{}n b 的首项10b >,若99a b >,且1010a b >,则下列结论一定正确的是( )A .9100a a <B .910a a >C .100b >D .910b b >27.已知数列{a n },11a =,25a =,在平面四边形ABCD 中,对角线AC 与BD 交于点E ,且2AE EC =,当n ≥2时,恒有()()1123n n n n BD a a BA a a BC -+=-+-,则( ) A .数列{a n }为等差数列 B .1233BE BA BC =+ C .数列{a n }为等比数列D .14nn n a a +-=28.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =,则( )A .112n n n S S ++-= B .12n naC .21nn S =- D .121n n S -=-29.已知数列{}n a 的前n 项和为S n ,22n n S a =-,若存在两项m a ,n a ,使得64m n a a =,则( )A .数列{}n a 为等差数列B .数列{}n a 为等比数列C .22212413n na a a -+++= D .m n +为定值30.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,781a a >,87101a a -<-.则下列结论正确的是( ) A .01q <<B .791a a <C .n T 的最大值为7TD .n S 的最大值为7S31.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xfx =C .()f x =D .()ln f x x =32.关于等差数列和等比数列,下列四个选项中不正确的有( )A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等差数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;33.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 和13n n S r -=+,则1r =-34.等比数列{}n a 中,公比为q ,其前n 项积为n T ,并且满足11a >.99100·10a a ->,99100101a a -<-,下列选项中,正确的结论有( ) A .01q << B .9910110a a -<C .100T 的值是n T 中最大的D .使1n T >成立的最大自然数n 等于19835.将n 2个数排成n 行n 列的一个数阵,如图:该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A .m =3B .767173a =⨯C .()1313j ij a i -=-⨯D .()()131314n S n n =+-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.B 【分析】由5312a a a +=,解得q ,然后由414242212(1)111(1)11a q S q q q a q S qq---===+---求解. 【详解】在等比数列{}n a 中,5312a a a +=, 所以421112a q a q a +=,即42210q q +-=, 解得212q =所以414242212(1)1311(1)121a q S q q q a q S q q---===+=---, 故选:B【点睛】本题主要考查等比数列通项公式和前n 项和公式的基本运算,属于基础题, 2.D 【分析】设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,利用等比数列的前n 项和公式即可求解. 【详解】5斗50=升,设羊、马、牛的主人应偿还粟的量分别为a 1,a 2,a 3,由题意可知a 1,a 2,a 3构成公比为2的等比数列,且S 3=50,则()311212a --=50,解得a 1=507,所以牛主人应偿还粟的量为23120027a a ==故选:D 3.D 【分析】由2n n S a =-利用11,1,2n nn S n a S S n -=⎧=⎨-≥⎩,得到数列{}na 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列,所以1112211212n n n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-, 由2(1)0n n n S T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以221131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n n nλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 4.D 【分析】首先设等比数列{}n a 的公比为(0)q q ≠,根据14a ,22a ,3a 成等差数列,列出等量关系式,求得2q ,比较()*na n N n∈相邻两项的大小,求得其最小值. 【详解】在等比数列{}n a 中,设公比(0)q q ≠, 当11a =时,有14a ,22a ,3a 成等差数列,所以21344a a a =+,即244q q =+,解得2q,所以12n na ,所以12n n a n n-=, 12111n n a n n a n n++=≥+,当且仅当1n =时取等号, 所以当1n =或2n =时,()*n a n N n∈取得最小值1,故选:D. 【点睛】该题考查的是有关数列的问题,涉及到的知识点有等比数列的通项公式,三个数成等差数列的条件,求数列的最小项,属于简单题目. 5.C 【分析】由1(2)n n n a S S n -=-≥代入得出{}n S 的递推关系,得证1n S ⎧⎫⎨⎬⎩⎭是等差数列,可判断A ,求出n S 后,可判断B ,由1a 的值可判断C ,求出3n S 后可判断D . 【详解】2n ≥时,因为130n n n a S S -+=,所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是等差数列,A 正确;1113S a ==,113S =,公差3d =,所以133(1)3nn n S =+-=,所以13n S n=,B 正确; 113a =不适合13(1)n a n n =--,C 错误;1313n n S +=,数列113n +⎧⎫⎨⎬⎩⎭是等比数列,D 正确. 故选:C . 【点睛】易错点睛:本题考查由数列的前n 项和求数列的通项公式,考查等差数列与等比数列的判断,在公式1n n n a S S -=-中2n ≥,不包含1a ,因此由n S 求出的n a 不包含1a ,需要特别求解检验,否则易出错. 6.C 【分析】根据已知条件先计算出等比数列的首项和公比,然后根据等比数列的前n 项和公式求解出5S 的结果.【详解】因为12234,12a a a a +=+=,所以23123a a q a a +==+,所以1134a a +=,所以11a =, 所以()5515113121113a q S q--===--, 故选:C. 7.D 【分析】由题设求出数列{}n a 的通项公式,再根据等差数列与等比数列的通项公式的特征,逐项判断,即可得出正确选项. 【详解】 解:(21)[(2)22](2)2(2)n n n n S a b n a b bn a b =---⨯+=+-⋅-+,∴当1n =时,有110S a a ==≠;当2n ≥时,有11()2n n n n a S S a bn b --=-=-+⋅, 又当1n =时,01()2a a b b a =-+⋅=也适合上式,1()2n n a a bn b -∴=-+⋅,令n b a b bn =+-,12n n c -=,则数列{}n b 为等差数列,{}n c 为等比数列,故n n n a b c =,其中数列{}n b 为等差数列,{}n c 为等比数列;故C 错,D 正确;因为11()22n n n a a b bn --+=-⋅⋅,0b ≠,所以{}12n bn -⋅即不是等差数列,也不是等比数列,故AB 错. 故选:D. 【点睛】 方法点睛:由数列前n 项和求通项公式时,一般根据11,2,1n n n S S n a a n --≥⎧=⎨=⎩求解,考查学生的计算能力. 8.C 【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =. 故选:C 9.C 【分析】根据条件计算出等比数列的公比,再根据等比数列通项公式的变形求解出4a 的值. 【详解】因为254,32a a ==,所以3528a q a ==,所以2q ,所以2424416a a q ==⨯=,故选:C. 10.A 【分析】先求出1a ,再当2n ≥时,由()*2n n S a n n N=+∈得1121n n Sa n --=+-,两式相减后化简得,121n n a a -=-,则112(1)n n a a --=-,从而得数列{}1n a -为等比数列,进而求出n a ,可求得3a 的值【详解】解:当1n =时,1121S a =+,得11a =-, 当2n ≥时,由()*2n n S a n n N=+∈得1121n n Sa n --=+-,两式相减得1221n n n a a a -=-+,即121n n a a -=-,所以112(1)n n a a --=-,所以数列{}1n a -是以2-为首项,2为公比的等比数列,所以1122n n a --=-⨯,所以1221n n a -=-⨯+,所以232217a =-⨯+=-,故选:A11.无12.C【分析】利用等比通项公式直接代入计算,即可得答案;【详解】()211142211111122211121644a a q a qqqqa q a q⎧⎧=-=--⎪⎪⎪⎪⇒⇒=⇒=-⎨⎨⎪⎪=⋅=⎪⎪⎩⎩,故选:C.13.A【分析】由()4633512a aa a a a q+++=+,求得3q,再由()37s94s6a a a a a a q++=++求解.【详解】1234a a a++=,4568a a a++=.∴32q=,∴()378945616a a a a a a q++=++=.故选:A14.A【分析】由等比数列的性质可得2315a a a=⋅,且1a与3a同号,从而可求出3a的值【详解】解:因为等比数列{}n a中,11a=,54a=,所以23154a a a=⋅=,因为110a=>,所以3a>,所以32a=,故选:A15.D【分析】由n a与n S的关系可求得12nna,进而可判断出数列{}2n a也为等比数列,确定该数列的首项和公比,利用等比数列的求和公式可求得所化简所求代数式.【详解】已知等比数列{}n a的n项和2nnS a=-.当1n=时,112a S a==-;当2n≥时,()()111222n n nn n na S S a a---=-=---=.由于数列{}n a 为等比数列,则12a a =-满足12n na ,所以,022a -=,解得1a =,()12n n a n N -*∴=∈,则()221124n n na --==,2121444n n n n a a +-∴==,且211a =,所以,数列{}2n a 为等比数列,且首项为1,公比为4, 因此,222121441143n n na a a --+++==-. 故选:D. 【点睛】方法点睛:求数列通项公式常用的七种方法:(1)公式法:根据等差数列或等比数列的通项公式()11n a a n d +-=或11n n a a q -=进行求解;(2)前n 项和法:根据11,1,2n nn S n a S S n -=⎧=⎨-≥⎩进行求解;(3)n S 与n a 的关系式法:由n S 与n a 的关系式,类比出1n S -与1n a -的关系式,然后两式作差,最后检验出1a 是否满足用上面的方法求出的通项;(4)累加法:当数列{}n a 中有()1n n a a f n --=,即第n 项与第1n -项的差是个有规律的数列,就可以利用这种方法;(5)累乘法:当数列{}n a 中有()1nn a f n a -=,即第n 项与第1n -项的商是个有规律的数列,就可以利用这种方法;(6)构造法:①一次函数法:在数列{}n a 中,1n n a ka b -=+(k 、b 均为常数,且1k ≠,0k ≠).一般化方法:设()1n n a m k a m -+=+,得到()1b k m =-,1bm k =-,可得出数列1n b a k ⎧⎫+⎨⎬-⎩⎭是以k 的等比数列,可求出n a ;②取倒数法:这种方法适用于()112,n n n ka a n n N ma p*--=≥∈+(k 、m 、p 为常数,0m ≠),两边取倒数后,得到一个新的特殊(等差或等比)数列或类似于1n n a ka b-=+的式子;⑦1nn n a ba c +=+(b 、c 为常数且不为零,n *∈N )型的数列求通项n a ,方法是在等式的两边同时除以1n c +,得到一个1n n a ka b +=+型的数列,再利用⑥中的方法求解即可. 16.C 【分析】取特殊值可排除A ,根据等比数列性质与基本不等式即可得C 正确,B ,D 错误.【详解】解:设等比数列的公比为q ,对于A 选项,设1231,2,4a a a =-==-,不满足1322a a a +≥,故错误;对于B 选项,若13a a =,则211a a q =,则1q =±,所以12a a =或12a a =-,故错误; 对于C 选项,由均值不等式可得2221313222a a a a a +≥⋅=,故正确;对于D 选项,若31a a >,则()2110a q ->,所以()14221a a a q q -=-,其正负由q 的符号确定,故D 不确定. 故选:C. 17.B 【分析】由等比数列前n 项和的性质即可求得12S . 【详解】 解:数列{}n a 是等比数列,3S ∴,63S S -,96S S -,129S S -也成等比数列,即4,8,96S S -,129S S -也成等比数列, 易知公比2q,9616S S ∴-=,12932S S -=,121299663332168460S S S S S S S S =-+-+-+=+++=.故选:B. 18.B 【分析】本题首先可设公比为q ,然后根据132185k a a a ++++=得出()2284k q a a ++=,再然后根据24242k a a a +++=求出2q,最后根据等比数列前n 项和公式即可得出结果. 【详解】设等比数列{}n a 的公比为q , 则132112285k k a a a a a a q q +++++++==,即()2285184k q a a ++=-=,因为24242k a a a +++=,所以2q,则()21123221112854212712k k k a a a a a ++⨯-+++++=+==-,即211282k +=,解得3k =, 故选:B. 【点睛】关键点点睛:本题考查根据等比数列前n 项和求参数,能否根据等比数列项与项之间的关系求出公比是解决本题的关键,考查计算能力,是中档题. 19.D 【分析】根据等比数列的通项公式建立方程,求得数列的公比和首项,代入等比数列的求和公式可得选项. 【详解】设等比数列{}n a 的公比为(0)q q >.∵312283S a a =+, ∴123122()83a a a a a ++=+,即321260a a a --=. ∴2260q q --=,∴2q 或32q =-(舍去),∵416a =,∴4132a a q ==, ∴6616(1)2(12)126112a q S q --===--, 故选:D. 20.A 【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.二、多选题21.无22.AC 【分析】由运动轨迹分析列出总路程n S 关于n 的表达式,再由表达式分析数值特征即可 【详解】由题可知,第一次着地时,1100S =;第二次着地时,221002003S =+⨯;第三次着地时,232210020020033S ⎛⎫=+⨯+⨯ ⎪⎝⎭;……第n 次着地后,21222100200200200333n n S -⎛⎫⎛⎫=+⨯+⨯++⨯ ⎪ ⎪⎝⎭⎝⎭则211222210020010040013333n n n S --⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++=+- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭,显然500n S <,又n S 是关于n 的增函数,2n ≥,故当2n =时,n S 的最小值为40070010033+=; 综上所述,AC 正确 故选:AC 23.BD 【分析】根据638a a =利用等比数列的性质建立关系求出2q ,然后结合等比数列的求和公式,逐项判断选项可得答案. 【详解】由638a a =,可得3338q a a =,则2q,当首项10a <时,可得{}n a 为单调递减数列,故A 错误; 由663312912S S -==-,故B 正确; 假设3S ,6S ,9S 成等比数列,可得2693S S S =⨯, 即6239(12)(12)(12)-=--不成立,显然3S ,6S ,9S 不成等比数列,故C 错误; 由{}n a 公比为q 的等比数列,可得11122121n n n n a a q a a S a a q --===--- 12n n S a a ∴=-,故D 正确;故选:BD . 【点睛】关键点睛:解答本题的关键是利用638a a =求得2q ,同时需要熟练掌握等比数列的求和公式. 24.BD 【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列;当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 25.CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 26.AD 【分析】根据等差、等比数列的性质依次判断选项即可. 【详解】对选项A ,因为0q <,所以29109990a a a a q a q =⋅=<,故A 正确; 对选项B ,因为9100a a <,所以91000a a >⎧⎨<⎩或9100a a <⎧⎨>⎩,即910a a >或910a a <,故B 错误; 对选项C ,D ,因为910,a a 异号,99a b >,且1010a b >,所以910,b b 中至少有一个负数, 又因为10b >,所以0d <,910b b >,故C 错误,D 正确. 故选:AD 【点睛】本题主要考查等差、等比数列的综合应用,考查学生分析问题的能力,属于中档题.【分析】证明1233 BE BABC=+,所以选项B 正确;设BD tBE=(0t>),易得()114n n n na a a a+--=-,显然1n na a--不是同一常数,所以选项A 错误;数列{1n na a--}是以4为首项,4为公比的等比数列,所以14nn na a+-=,所以选项D正确,易得321a=,选项C不正确.【详解】因为2AE EC=,所以23AE AC=,所以2()3AB BE AB BC+=+,所以1233BE BA BC=+,所以选项B正确;设BD tBE=(0t>),则当n≥2时,由()()1123n n n nBD tBE a a BA a a BC-+==-+-,所以()()111123n n n nBE a a BA a a BCt t-+=-+-,所以()11123n na at--=,()11233n na at+-=,所以()11322n n n na a a a+--=-,易得()114n n n na a a a+--=-,显然1n na a--不是同一常数,所以选项A错误;因为2a-1a=4,114n nn na aa a+--=-,所以数列{1n na a--}是以4为首项,4为公比的等比数列,所以14nn na a+-=,所以选项D正确,易得321a=,显然选项C不正确.【点睛】本题主要考查平面向量的线性运算,考查等比数列等差数列的判定,考查等比数列通项的求法,意在考查学生对这些知识的理解掌握水平. 28.BC 【分析】先求得3a ,然后求得q ,进而求得1a ,由此求得1,,n n n n a S S S +-,进而判断出正确选项. 【详解】由23464a a a =得3334a =,则34a =.设等比数列{}n a 的公比为()0q q ≠,由2410a a +=,得4410q q+=,即22520q q -+=,解得2q或12q =.又因为数列{}n a 单调递增,所以2q,所以112810a a +=,解得11a =.所以12n na ,()1122112n n n S ⨯-==--,所以()1121212n n nn n S S ++-=---=.故选:BC 【点睛】本题考查等比数列的通项公式、等比数列的性质及前n 项和,属于中档题.29.BD 【分析】由n S 和n a 的关系求出数列{}n a 为等比数列,所以选项A 错误,选项B 正确;利用等比数列前n 项和公式,求出 122212443n na a a +-+++=,故选项C 错误,由等比数列的通项公式得到62642m n +==,所以选项D 正确. 【详解】由题意,当1n =时,1122S a =-,解得12a =, 当2n ≥时,1122n n S a --=-,所以()111222222n n n n n n n a S S a a a a ----=-=---=,所以12nn a a -=,数列{}n a 是以首项12a =,公比2q 的等比数列,2n n a =,故选项A 错误,选项B 正确; 数列{}2na 是以首项214a=,公比14q =的等比数列,所以()()21112221211414441143n n n n a q a a a q +-⨯--+++===--,故选项C 错误;6222642m n m n m n a a +====,所以6m n +=为定值,故选项D 正确.故选:BD 【点睛】本题主要考查由n S 和n a 的关系求数列的通项公式,等比数列通项公式和前n 项和公式的应用,考查学生转化能力和计算能力,属于中档题. 30.ABC 【分析】由11a >,781a a >,87101a a -<-,可得71a >,81a <.由等比数列的定义即可判断A ;运用等比数列的性质可判断B ;由正数相乘,若乘以大于1的数变大,乘以小于1的数变小,可判断C; 因为71a >,801a <<,可以判断D. 【详解】11a >,781a a >,87101a a -<-, 71a ∴>,801a <<,∴A.01q <<,故正确;B.27981a a a =<,故正确; C.7T 是数列{}n T 中的最大项,故正确.D. 因为71a >,801a <<,n S 的最大值不是7S ,故不正确. 故选:ABC . 【点睛】本题考查了等比数列的通项公式及其性质、递推关系、不等式的性质,考查了推理能力与计算能力,属于中档题. 31.AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可. 【详解】设等比数列{}n a 的公比为q . 对于A ,则2221112()()n n n n nn f a aa q f a aa +++⎛⎫=== ⎪⎝⎭,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n n a a a n a n f a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C,则1()()n n f a f a +===,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n na a q a qq f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”. 故选:AC.【点睛】本题考查等比数列的定义,考查推理能力,属于基础题.32.ABD【分析】根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案.【详解】根据题意,依次分析选项:对于A ,若数列{}n a 的前n 项和2n S an bn c =++,若0c =,由等差数列的性质可得数列{}n a 为等差数列,若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,即为22322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,故C 正确;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故D 不正确.故选:ABD .【点睛】本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 33.AC【分析】在A 中,数列{}2n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,数列{}n a 是递增数列;在D 中,13r =-. 【详解】由数列{}n a 是等比数列,知:在A 中,22221n n a a q -=,22221122221nn n n a a q q a a q+-∴==是常数,∴数列{}2n a 是等比数列,故A 正确; 在B 中,若32a =,732a =,则58a =,故B 错误;在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则01q <<,数列{}n a 是递增数列,故C 正确;在D 中,若数列{}n a 的前n 和13n n S r -=+,则111a S r ==+,()()221312a S S r r =-=+-+=,()()332936a S S r r =-=+-+=,1a ,2a ,3a 成等比数列,2213a a a ∴=,()461r ∴=+, 解得13r =-,故D 错误. 故选:AC .【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.34.ABD【分析】由已知9910010a a ->,得0q >,再由99100101a a -<-得到1q <说明A 正确;再由等比数列的性质结合1001a <说明B 正确;由10099100·T T a =,而10001a <<,求得10099T T <,说明C 错误;分别求得1981T >,1991T <说明D 正确.【详解】对于A ,9910010a a ->,21971·1a q ∴>,()2981··1a q q ∴>. 11a >,0q ∴>. 又99100101a a -<-,991a ∴>,且1001a <. 01q ∴<<,故A 正确;对于B ,299101100100·01a a a a ⎧=⎨<<⎩,991010?1a a ∴<<,即99101·10a a -<,故B 正确; 对于C ,由于10099100·T T a =,而10001a <<,故有10099T T <,故C 错误; 对于D ,()()()()19812198119821979910099100·····991T a a a a a a a a a a a =⋯=⋯=⨯>,()()()199121991199219899101100·····1T a a a a a a a a a a =⋯=⋯<,故D 正确.∴不正确的是C .故选:ABD .【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.ACD【分析】根据第一列成等差,第一行成等比可求出1361,a a ,列式即可求出m ,从而求出通项ij a , 再按照分组求和法,每一行求和可得S ,由此可以判断各选项的真假.【详解】∵a 11=2,a 13=a 61+1,∴2m 2=2+5m +1,解得m =3或m 12=-(舍去), ∴a ij =a i 1•3j ﹣1=[2+(i ﹣1)×m ]•3j ﹣1=(3i ﹣1)•3j ﹣1,∴a 67=17×36,∴S =(a 11+a 12+a 13+……+a 1n )+(a 21+a 22+a 23+……+a 2n )+……+(a n 1+a n2+a n 3+……+a nn ) 11121131313131313n n n n a a a ---=+++---()()() 12=(3n ﹣1)•2312n n +-() 14=n (3n +1)(3n ﹣1) 故选:ACD.【点睛】本题主要考查等差数列,等比数列的通项公式的求法,分组求和法,等差数列,等比数列前n 项和公式的应用,属于中档题.。
(完整版)等差等比数列综合练习题.doc
等差数列等比数列综合练习题一.选择题1. 已知 a n 1 a n 3 0 ,则数列 a n 是 ( ) A. 递增数列B.递减数列C.常数列D.摆动数列2. 等比数列 { a n } 中,首项 a 1 8 ,公比 q 1,那么它的前 5 项的和 S 5 的值是( )A . 31. 33 2 . 35 . 37 C22223. 设 S n 是等差数列 { a n } 的前 n 项和,若 S 7=35,则 a 4=( )A. 8B.7C.6D.54. 等差数列 { a n } 中, a 1 3a 8 a15120,则 2a 9a10()A .24B .22C .20D .-85. 数列 a n 的通项公式为 a n 3n 228n ,则数列 a n 各项中最小项是 ( )A. 第 4 项B.第 5 项C.第 6 项 D. 第 7 项6. 已知 a , b , c , d 是公比为 2 的等比数列,则 2a b等于( )2cdA .1B . 1. 1 . 12C 4D 87.在等比数列 a n 中, a 7 ? a 11 6, a 4 a 14 5, 则a 20()a 10A. 2B.3C. 2 或3 D.2 或3323 2328.已知等比数列 a n 中, a n >0, a 2a 4 2a 3a 5 a 4 a 6 25 ,那么 a 3 a 5 =( )A.5B .10C.15D .209.各项不为零的等差数列a n 中 ,有 2a 3 a 722a 110 ,数列 b n 是等比数列 ,且b7 a7 , 则 b6b8( )A.2B. 4C.8 D .1610.已知等差数列a n中,a n 0, 若 m 1且 a m 1 a m1 a m2 0, S2 m 1 38, 则m等于A. 38B. 20C.10D. 911.已知s n是等差数列a n(n N * ) 的前n项和,且 s6 s7 s5,下列结论中不正确的是 ( )A. d<0B. s11 0C. s12 0D. s13 012.等差数列{ a n}中,a1,a2 , a4恰好成等比数列,则a4 的值是()a1A .1 B.2 C.3 D.4二.填空题13.已知 { a n} 为等差数列, a15=8,a60=20,则 a75=________14. 在等比数列{ a n}中,a2?a816 ,则 a5=__________15.在等差数列 { a n} 中,若 a7=m,a14=n,则 a21=__________16. 若数列x n满足lg x n 1 1 lg x n n N,且x1x2L x100100 ,则lg x101x102L x200________17.等差数列 {a n} 的前 n 项和为 S n,若 a3+a17=10,则 S19的值_________18.已知等比数列 {a n} 中, a1+a2+a3=40,a4+a5+a6=20,则前 9 项之和等于_________三.解答题19.设三个数 a ,b, c 成等差数列,其和为6,又 a ,b,c 1成等比数列,求此三个数 .20. 已知数列a n中,a11,a n2a n 13,求此数列的通项公式.21. 设等差数列an的前n项和公式是sn5n23n ,求它的前3项,并求它的通项公式 .22. 已知等比数列a n的前n项和记为S n,,S10=10,S30=70,求S40。
等差等比数列专题题目+答案
高三二轮复习讲义 等差、等比数列1.(2015·江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.2.(2014·江苏卷)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是________.3.(2010·江苏卷)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴交点的横坐标为a k +1,k 为正整数,a 1=16,则a 1+a 3+a 5=________.4.(2013·江苏卷)在正项等比数列{a n }中,a 5=12,a 6+a 7=3.则满足a 1+a 2+…+a n >a 1a 2…a n 的最大正整数n 的值为________.5、等差数列{a n }的前n 项和为S n ,已知S 10=0,S 15=25,则S n 的最小值为________.6、 (2015·郑州模拟)设等比数列{a n }的前n 项和为S n ,若S m -1=5,S m =-11,S m +1=21,则m 等于________.7、 (2015·苏北四市模拟)在等差数列{a n }中,a 1=-2 015,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 015的值为________.8、在等比数列{a n }中,公比q =2,前87项和S 87=140,则a 3+a 6+a 9+…+a 87=________.9、(2015·苏州期中)在等差数列{a n }中,a 5=3,a 6=-2,则a 3+a 4+…+a 8=________.10、设S n 为等比数列{a n }的前n 项和,若a 1=1,且3S 1,2S 2,S 3成等差数列,则a n =________.11、 数列{a n }的前n 项和为S n ,a 1=1,且对任意正整数n ,点(a n +1,S n )在直线2x +y -2=0上. (1)求数列{a n }的通项公式;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫S n +λn +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.12、 已知数列{a n }是各项均不为0的等差数列,S n 为其前n 项和,且满足a 2n =S 2n -1,令b n=1a n ·a n +1,数列{b n }的前n 项和为T n .(1)求数列{a n }的通项公式及数列{b n }的前n 项和T n ;(2)是否存在正整数m ,n (1<m <n ),使得T 1,T m ,T n 成等比数列?若存在,求出所有的m ,n 的值;若不存在,请说明理由.13.(2015·广州模拟)等比数列{a n }的前n 项和为S n ,若2S 4=S 5+S 6,则数列{a n }的公比q 的值为________.14.(2015·南师附中调研)设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 7=________.15.(2015·南通检测)已知等比数列{a n }为递增数列,且a 3+a 7=3,a 2a 8=2,则a 13a 11=________.16.在等比数列{a n }中,已知a 1+a 3=8,a 5+a 7=4,则a 9+a 11+a 13+a 15=________.17.(2015·阳泉模拟)若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.18.(2015·安徽卷)已知数列{a n}是递增的等比数列,a1+a4=9,a2a3=8,则数列{a n}的前n项和等于________.19.(2015·福建卷改编)若a,b是函数f(x)=x2-px+q(p>0,q>0)的两个不同的零点,且a,b,-2这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p+q的值等于________.20.已知{a n}是等差数列,满足a1=3,a4=12,数列{b n}满足b1=4,b4=20,且{b n-a n}为等比数列.(1)求数列{a n}和{b n}的通项公式;(2)求数列{b n}的前n项和.21.(2015·洛阳模拟)成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5. (1)求数列{b n }的通项公式; (2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.22.(2015·苏、锡、常、镇调研)已知数列{a n }是首项为133,公比为133的等比数列,设b n +15log 3a n =t ,常数t ∈N *.(1)求证:{b n }为等差数列;(2)设数列{c n }满足c n =a n b n ,是否存在正整数k ,使c k ,c k +1,c k +2按某种次序排列后成等比数列?若存在,求k ,t 的值;若不存在,请说明理由.数列的综合应用1、(2015·江苏卷)设a 1,a 2,a 3,a 4是各项为正数且公差为d (d ≠0)的等差数列. (1)证明:2a 1,2a 2,2a 3,2a 4依次构成等比数列;(2)是否存在a 1,d ,使得a 1,a 22,a 33,a 44依次构成等比数列?并说明理由;(3)是否存在a 1,d 及正整数n ,k ,使得a n 1,a n +k 2,a n +2k 3,a n +3k 4依次构成等比数列?并说明理由.2、(2011·江苏卷)设M 为部分正整数组成的集合,数列{a n }的首项a 1=1,前n 项的和为S n ,已知对任意的整数k ∈M ,当整数n >k 时,S n +k +S n -k =2(S n +S k )都成立. (1)设M ={1},a 2=2,求a 5的值; (2)设M ={3,4},求数列{a n }的通项公式.3、(2012·江苏卷)已知各项均为正数的两个数列{a n }和{b n }满足:a n +1=a n +b na 2n +b 2n,n ∈N *. (1)设b n +1=1+b n a n ,n ∈N *,求证:数列2n n b a ⎧⎫⎛⎫⎪⎪⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是等差数列;(2)设b n +1=2·b na n ,n ∈N *,且{a n }是等比数列,求a 1和b 1的值.4、如果无穷数列{a n}满足下列条件:①a n+a n+22≤a n+1;②存在实数M,使得a n≤M,其中n∈N*,那么我们称数列{a n}为Ω数列.(1)设数列{b n}的通项为b n=5n-2n,且是Ω数列,求M的取值范围;(2)设{c n}是各项为正数的等比数列,S n是其前n项和,c3=14,S3=74,证明:数列{S n}是Ω数列;(3)设数列{d n}是各项均为正整数的Ω数列,求证:d n≤d n+1.5、(2014·江苏卷)设数列{a n}的前n项和为S n.若对任意的正整数n,总存在正整数m,使得S n=a m,则称{a n}是“H数列”.(1)若数列{a n}的前n项和S n=2n(n∈N*),证明:{a n}是“H数列”;(2)设{a n}是等差数列,其首项a1=1,公差d<0.若{a n}是“H数列”,求d的值;(3)证明:对任意的等差数列{a n},总存在两个“H数列”{b n}和{c n},使得a n=b n+c n(n∈N*)成立.6、(2014·泰州期末)设数列{a n}的前n项积为T n,已知对∀n,m∈N*,当n>m时,总有T nT m=T n-m·q(n-m)m(q>0是常数).(1)求证:数列{a n}是等比数列;(2)设正整数k,m,n(k<m<n)成等差数列,试比较T n·T k和(T m)2的大小,并说明理由;(3)探究:命题p:“对∀n,m∈N*,当n>m时,总有T nT m=T n-m·q(n-m)m(q>0是常数)”是命题t:“数列{a n}是公比为q(q>0)的等比数列”的充要条件吗?若是,请给出证明;若不是,请说明理由.7、 (2015·徐州质检)已知数列{a n },{b n }满足a 1=3,a n b n =2,b n +1=a n ⎝⎛⎭⎪⎫b n -21+a n ,n ∈N *.(1)求证:数列⎩⎨⎧⎭⎬⎫1b n 是等差数列,并求数列{b n }的通项公式;(2)设数列{c n }满足c n =2a n -5,对于给定的正整数p ,是否存在正整数q ,r (p <q <r ),使得1c p,1c q,1cr成等差数列?若存在,试用p 表示q ,r ;若不存在,请说明理由.18.(2015·全国Ⅱ卷)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =____________.19.数列{a n }的通项公式a n =1 n +n +1,若{a n }的前n 项和为24,则n 为________.20.(2012·江苏卷改编)各项均为正数的等比数列{a n }满足a 1a 7=4,a 6=8,若函数f (x )=a 1x +a 2x 2+a 3x 3+…+a 10x 10的导数为f ′(x ),则f ′⎝ ⎛⎭⎪⎫12=________.21.在等差数列{a n }中,a 1=142,d =-2,从第一项起,每隔两项取出一项,构成新的数列{b n },则此数列的前n 项和S n 取得最大值时n 的值是________.22.在正项数列{a n }中,a 1=2,a n +1=2a n +3×5n ,则数列{a n }的通项公式为________.23.(2015·苏、锡、常、镇模拟)已知各项都为正的等比数列{a n }满足a 7=a 6+2a 5,存在两项a m ,a n 使得 a m ·a n =4a 1,则1m +4n 的最小值为________.24.(2015·南通调研)设S n 为数列{a n }的前n 项之和,若不等式a 2n +S 2n n2≥λa 21对任何等差数列{a n }及任何正整数n 恒成立,则λ的最大值为________.25.(2015·南京、盐城模拟)已知等比数列{a n }的首项为43,公比为-13,其前n 项和为S n ,若A ≤S n -1S n≤B 对n ∈N *恒成立,则B -A 的最小值为________.26.数列{a n}满足a n=2a n-1+2n+1(n∈N*,n≥2),a3=27.(1)求a1,a2的值;(2)是否存在一个实数t,使得b n=12n(a n+t)(n∈N*),且数列{b n}为等差数列?若存在,求出实数t;若不存在,请说明理由;(3)求数列{a n}的前n项和S n.27.(2013·江苏卷)设{a n}是首项为a,公差为d的等差数列(d≠0),S n是其前n项的和.记b n=nS nn2+c,n∈N*,其中c为实数.(1)若c=0,且b1,b2,b4成等比数列,证明:S nk=n2S k(k,n∈N*);(2)若{b n}是等差数列,证明:c=0.28.(2014·南京、盐城模拟)已知数列{a n}满足a1=a(a>0,a∈N*),a1+a2+…+a n-pa n+1=0(p≠0,p≠-1,n∈N*).(1)求数列{a n}的通项公式a n;(2)若对每一个正整数k,若将a k+1,a k+2,a k+3按从小到大的顺序排列后,此三项均能构成等差数列,且公差为d k.①求p的值及对应的数列{d k}.②记S k为数列{d k}的前k项和,问是否存在a,使得S k<30对任意正整数k恒成立?若存在,求出a 的最大值;若不存在,请说明理由.。
高考数学等比数列习题及答案百度文库
一、等比数列选择题1.已知1a ,2a ,3a ,4a 成等比数列,且()21234123a a a a a a a +++=++,若11a >,则( )A .13a a <,24a a <B .13a a >,24a a <C .13a a <,24a a >D .13a a >,24a a >2.已知正项等比数列{}n a 满足112a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( )A .312或112B .312C .15D .63.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}2n a 的前n 项和为n T ,若2(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )A .()3,+∞B .()1,3-C .93,5⎛⎫ ⎪⎝⎭D .91,5⎛⎫- ⎪⎝⎭4.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=( ) A .3B .505C .1010D .20205.记等比数列{}n a 的前n 项和为n S ,已知5=10S ,1050S =,则15=S ( ) A .180B .160C .210D .2506.各项为正数的等比数列{}n a ,478a a ⋅=,则2122210log log log a a a +++=( )A .15B .10C .5D .37.已知等比数列{a n }中a 1010=2,若数列{b n }满足b 1=14,且a n =1n nb b +,则b 2020=( )A .22017B .22018C .22019D .220208.已知等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,则n n S =a ( )A .14n -B .41n -C .12n -D .21n -9.已知公差不为0的等差数列{a n }的前n 项和为S n ,a 1=2,且a 1,a 3,a 4成等比数列,则S n 取最大值时n 的值为( ) A .4B .5C .4或5D .5或610.在数列{}n a 中,32a =,12n n a a +=,则5a =( ) A .32B .16C .8D .411.已知等比数列{}n a ,7a =8,11a =32,则9a =( ) A .16B .16-C .20D .16或16-12.公差不为0的等差数列{}n a 中,23711220a a a -+=,数列{}n b 是等比数列,且77b a =,则68b b =( )A .2B .4C .8D .1613.已知等比数列{}n a 的前n 项和的乘积记为n T ,若29512T T ==,则n T 的最大值为( ) A .152B .142C .132D .12214.在流行病学中,基本传染数R 0是指在没有外力介入,同时所有人都没有免疫力的情况下,一个感染者平均传染的人数.初始感染者传染R 0个人,为第一轮传染,这R 0个人中每人再传染R 0个人,为第二轮传染,…….R 0一般由疾病的感染周期、感染者与其他人的接触频率、每次接触过程中传染的概率决定.假设新冠肺炎的基本传染数0 3.8R =,平均感染周期为7天,设某一轮新增加的感染人数为M ,则当M >1000时需要的天数至少为( )参考数据:lg38≈1.58 A .34B .35C .36D .3715.若数列{}n a 是等比数列,且17138a a a =,则311a a =( ) A .1 B .2 C .4 D .8 16.已知1,a ,x ,b ,16这五个实数成等比数列,则x 的值为( )A .4B .-4C .±4D .不确定17.正项等比数列{}n a 的公比是13,且241a a =,则其前3项的和3S =( ) A .14B .13C .12D .1118.设b R ∈,数列{}n a 的前n 项和3nn S b =+,则( ) A .{}n a 是等比数列B .{}n a 是等差数列C .当1b ≠-时,{}n a 是等比数列D .当1b =-时,{}n a 是等比数列19.数列{}n a 满足:点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上,则{}n a 的前10项和为( ) A .4092B .2047C .2046D .102320.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件11a >,667711,01a a a a -><-,则下列结论正确的是( ) A .681a a >B .01q <<C .n S 的最大值为7SD .n T 的最大值为7T二、多选题21.已知正项等比数列{}n a 的前n 项和为n S ,若31a =,135111214a a a ++=,则( ) A .{}n a 必是递减数列 B .5314S =C .公比4q =或14D .14a =或1422.计算机病毒危害很大,一直是计算机学家研究的对象.当计算机内某文件被病毒感染后,该病毒文件就不断地感染其他未被感染文件.计算机学家们研究的一个数字为计算机病毒传染指数0,C 即一个病毒文件在一分钟内平均所传染的文件数,某计算机病毒的传染指数02,C =若一台计算机有510个可能被感染的文件,如果该台计算机有一半以上文件被感染,则该计算机将处于瘫疾状态.该计算机现只有一个病毒文件,如果未经防毒和杀毒处理,则下列说法中正确的是( )A .在第3分钟内,该计算机新感染了18个文件B .经过5分钟,该计算机共有243个病毒文件C .10分钟后,该计算机处于瘫痪状态D .该计算机瘫痪前,每分钟内新被感染的文件数成公比为2的等比数列 23.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列 B .若4123,27,a a ==则89a =± C .若123,a a a <<则数列{}n a 是递增数列 D .若数列{}n a 的前n 和13,n n S r -=+则r =-124.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列D .3a ,6a ,9a 成等比数列25.已知集合{}*21,A x x n n N==-∈,{}*2,nB x x n N ==∈将AB 的所有元素从小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25 B .26C .27D .2826.在等比数列{a n }中,a 5=4,a 7=16,则a 6可以为( )A .8B .12C .-8D .-1227.已知数列是{}n a是正项等比数列,且3723a a +=,则5a 的值可能是( ) A .2B .4C .85D .8328.已知等比数列{}n a 中,满足11a =,2q ,n S 是{}n a 的前n 项和,则下列说法正确的是( )A .数列{}2n a 是等比数列B .数列1n a ⎧⎫⎨⎬⎩⎭是递增数列C .数列{}2log n a 是等差数列D .数列{}n a 中,10S ,20S ,30S 仍成等比数列29.已知数列{}n a 是等比数列,那么下列数列一定是等比数列的是( )A .1{}na B .22log ()n aC .1{}n n a a ++D .12{}n n n a a a ++++30.已知数列{}n a 的首项为4,且满足()*12(1)0n n n a na n N ++-=∈,则( )A .n a n ⎧⎫⎨⎬⎩⎭为等差数列 B .{}n a 为递增数列C .{}n a 的前n 项和1(1)24n n S n +=-⋅+D .12n n a +⎧⎫⎨⎬⎩⎭的前n 项和22n n n T +=31.将2n 个数排成n 行n 列的一个数阵,如下图:111213212223231323331312n n n n n n nna a a a a a a a a a a a a a a a ⋯⋯⋯⋯⋯⋯⋯⋯⋯⋯ 该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中0m >).已知112a =,13611a a =+,记这2n 个数的和为S .下列结论正确的有( )A .3m =B .767173a =⨯C .1(31)3j ij a i -=-⨯D .()1(31)314n S n n =+- 32.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若 1418a a +=, 2312a a +=,则下列说法正确的是( )A .2qB .数列{}2n S +是等比数列C .8510S =D .数列{}lg n a 是公差为2的等差数列33.定义在()(),00,-∞⋃+∞上的函数()f x ,如果对于任意给定的等比数列{}n a ,数列(){}nf a 仍是等比数列,则称()f x 为“保等比数列函数”.现有定义在()(),00,-∞⋃+∞上的四个函数中,是“保等比数列函数”的为( )A .()2f x x =B .()2xf x =C .()f x =D .()ln f x x =34.关于等差数列和等比数列,下列四个选项中不正确的有( )A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列B .若数列{}n a 的前n 项和122n n S +=-,则数列{}n a 为等差数列C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等差数列D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯仍为等比数列;35.已知数列{}n a 是等比数列,则下列结论中正确的是( ) A .数列2{}n a 是等比数列B .若32a =,732a =,则58a =±C .若123a a a <<,则数列{}n a 是递增数列D .若数列{}n a 的前n 和13n n S r -=+,则1r =-【参考答案】***试卷处理标记,请不要删除一、等比数列选择题 1.B 【分析】由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】设等比数列的公比为q , 则()()()2321234111+++1+1+0a a a a a q q qa q q +++==≥,可得1q ≥-,当1q =-时,12340a a a a +++=,()21230a a a ++≠,1q ∴>-,()21234123a a a a a a a +++=++,即()223211+++1++q q q a q q =,()231221+++11++q q q a q q ∴=>,整理得432++2+0q q q q <,显然0q <,()1,0q ∴∈-,()20,1q ∈,()213110a a a q ∴-=->,即13a a >,()()32241110a a a q q a q q ∴-=-=-<,即24a a <.故选:B. 【点睛】关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小. 2.B 【分析】由等比中项的性质可求出3a ,即可求出公比,代入等比数列求和公式即可求解. 【详解】正项等比数列{}n a 中,2432a a a =+,2332a a ∴=+,解得32a =或31a =-(舍去) 又112a =, 2314a q a ∴==, 解得2q,5151(132)(1)312112a q S q --∴===--,故选:B 3.D 【分析】由2n n S a =-利用11,1,2nn n S n a S S n -=⎧=⎨-≥⎩,得到数列{}n a 是以1为首项,12为公比的等比数列,进而得到{}2n a 是以1为首项,14为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0nn n S T λ-->恒成立,转化为()()321(1)210nnnλ---+>对*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.【详解】当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,两式相减得112n n a a -=, 所以数列{}n a 是以1为首项,12为公比的等比数列. 因为112n n a a -=, 所以22114n n a a -=.又211a =,所以{}2n a 是以1为首项,14为公比的等比数列, 所以1112211212nn n S ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,11414113414nnn T ⎛⎫- ⎪⎡⎤⎛⎫⎝⎭==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-,由2(1)0n n nS T λ-->,得214141(1)10234n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---⨯->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 所以221131(1)1022n nn λ⎡⎤⎡⎤⎛⎫⎛⎫---->⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦, 所以211131(1)110222n n n nλ⎡⎤⎡⎤⎡⎤⎛⎫⎛⎫⎛⎫----+>⎢⎥⎢⎥⎢⎥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦.又*n N ∈,所以1102n⎛⎫-> ⎪⎝⎭,所以1131(1)1022n nnλ⎡⎤⎡⎤⎛⎫⎛⎫---+>⎢⎥⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎢⎥⎣⎦⎣⎦,即()()321(1)210nnnλ---+>对*n N ∈恒成立,当n 为偶数时,()()321210nnλ--+>,所以()()321321663212121nnn n n λ-+-<==-+++, 令6321n n b =-+,则数列{}n b 是递增数列,所以22693215λb <=-=+; 当n 为奇数时,()()321210nnλ-++>,所以()()321321663212121nnn n n λ-+--<==-+++,所以16332121λb -<=-=-=+, 所以1λ>-.综上,实数λ的取值范围是91,5⎛⎫- ⎪⎝⎭.故选:D. 【点睛】方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 4.C 【分析】利用等比数列的性质以及对数的运算即可求解. 【详解】由120202201932018101010113a a a a a a a a =====,所以313232020log log log a a a +++()10103101010113log log 31010a a ===.故选:C 5.C 【分析】首先根据题意得到5S ,105S S -,1510S S -构成等比数列,再利用等比中项的性质即可得到答案. 【详解】因为{}n a 为等比数列,所以5S ,105S S -,1510S S -构成等比数列. 所以()()2155010=1050S --,解得15210S =. 故选:C 6.A 【分析】根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ⋅=,则()()52212221021210110log log log log ...log a a a a a a a a ⋅⋅⋅=+⋅++=()2475log 15a a =⋅=.故选:A. 7.A 【分析】根据已知条件计算12320182019a a a a a ⋅⋅⋅⋅的结果为20201b b ,再根据等比数列下标和性质求解出2020b 的结果. 【详解】 因为1n n nb a b +=,所以32019202020202412320182019123201820191b b b b b b a a a a a b b b b b b ⋅⋅⋅⋅=⋅⋅⋅⋅⋅=, 因为数列{}n a 为等比数列,且10102a =, 所以()()()123201820191201922018100910111010a a a a a a a a a a a a ⋅⋅⋅=⋅⋅⋅⋅⋅⋅22220192019101010101010101010102a a a a a =⋅⋅⋅==所以2019202012b b =,又114b =,所以201720202b =, 故选:A. 【点睛】结论点睛:等差、等比数列的下标和性质:若()*2,,,,m n p q t m n p q t N +=+=∈,(1)当{}n a 为等差数列,则有2m n p q t a a a a a +=+=; (2)当{}n a 为等比数列,则有2m n p q t a a a a a ⋅=⋅=.8.D 【分析】根据题中条件,先求出等比数列的公比,再由等比数列的求和公式与通项公式,即可求出结果. 【详解】因为等比数列{}n a 的前n 项和为n S ,且1352a a +=,2454a a +=,所以2413514522q a a a a =++==, 因此()()111111111221112n nnn n n n n na q S q q a a q q q ---⎛⎫- ⎪--⎝⎭====--⎛⎫ ⎪⎝⎭.故选:D. 9.C 【分析】由等比数列的性质及等差数列的通项公式可得公差12d =-,再由等差数列的前n 项和公式即可得解. 【详解】设等差数列{}n a 的公差为,0d d ≠,134,,a a a 成等比数列,2314a a a ∴=即2(22)2(23)d d +=+,则12d =-,()()211119812244216n n n n n S a n d n n --⎛⎫∴=+=-=--+ ⎪⎝⎭,所以当4n =或5时,n S 取得最大值. 故选:C. 10.C 【分析】根据12n n a a +=,得到数列{}n a 是公比为2的等比数列求解. 【详解】 因为12n n a a +=, 所以12n na a +=, 所以数列{}n a 是公比为2的等比数列. 因为32a =,所以235328a a q ===. 故选:C 11.A 【分析】根据等比数列的通项公式得出618a q =,10132a q=且10a >,再由819a a q ==.【详解】设等比数列{}n a 的公比为q ,则618a q =,10132a q=且10a >则81916a q a ====故选:A 12.D 【分析】根据等差数列的性质得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.【详解】等差数列{}n a 中,31172a a a +=,故原式等价于27a -740a =解得70a =或74,a =各项不为0的等差数列{}n a ,故得到774a b ==,数列{}n b 是等比数列,故2687b b b ==16.故选:D. 13.A 【分析】根据29T T =得到761a =,再由2121512a a a q ==,求得1,a q 即可.【详解】设等比数列{}n a 的公比为q ,由29T T =得:761a =, 故61a =,即511a q =. 又2121512a a a q ==,所以91512q =, 故12q =, 所以()()211122123411...2n n n n n n n T a a a a a a q--⎛⎫=== ⎪⎝⎭,所以n T 的最大值为15652T T ==.故选:A. 14.D 【分析】假设第n 轮感染人数为n a ,根据条件构造等比数列{}n a 并写出其通项公式,根据题意列出关于n 的不等式,求解出结果,从而可确定出所需要的天数. 【详解】设第n 轮感染人数为n a ,则数列{}n a 为等比数列,其中1 3.8a =,公比为0 3.8R =,所以 3.81000nn a =>,解得 3.8333log 1000 5.17lg3.8lg3810.58n >==≈≈-, 而每轮感染周期为7天,所以需要的天数至少为5.17736.19⨯=. 故选:D . 【点睛】关键点点睛:解答本题的关键点有两个:(1)理解题意构造合适的等比数列;(2)对数的计算.15.C 【分析】根据等比数列的性质,由题中条件,求出72a =,即可得出结果. 【详解】因为数列{}n a 是等比数列,由17138a a a =,得378a =,所以72a =,因此231174a a a ==.故选:C. 16.A 【分析】根据等比中项的性质有216x =,而由等比通项公式知2x q =,即可求得x 的值. 【详解】由题意知:216x =,且若令公比为q 时有20x q =>,∴4x =, 故选:A 17.B 【分析】根据等比中项的性质求出3a ,从而求出1a ,最后根据公式求出3S ; 【详解】解:因为正项等比数列{}n a 满足241a a =,由于2243a a a =,所以231a =. 所以31a =,211a q ∴=,因为13q =,所以19a =. 因此()3131131a q S q-==-.故选:B 18.D 【分析】根据n S 与n a 的关系求出n a ,然后判断各选项. 【详解】由题意2n ≥时,111(3)(3)23n n n n n n a S S b b ---=-=+-+=⨯,13n na a +=(2)n ≥, 113a Sb ==+,若212333a a b⨯==+,即1b =-,则{}n a 是等比数列,否则不是等比数列,也不是等差数列, 故选:D . 【点睛】关键点点睛:本题考查等比数列的定义.在由1n n n a S S -=-求通项时,2n ≥必须牢记,11a S =它与(2)n a n ≥的求法不相同,因此会影响{}n a 的性质.对等比数列来讲,不仅要求3423a a a a ==,还必须满足3212a a a a =. 19.A 【分析】根据题中条件,先得数列的通项,再由等比数列的求和公式,即可得出结果. 【详解】因为点()1,n n a -(n N ∈,2n ≥)在函数()2x f x =的图像上, 所以()12,2nn a n N n -=∈≥,因此()12n n a n N ++=∈,即数列{}n a 是以4为首项,以2为公比的等比数列, 所以{}n a 的前10项和为()10412409212-=-.故选:A. 20.B 【分析】根据11a >,667711,01a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】若0q <,因为11a >,所以670,0a a <>,则670a a ⋅<与671a a ⋅>矛盾, 若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与67101a a -<-矛盾, 所以01q <<,故B 正确; 因为67101a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以111n n a q a S q q=---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】关键点点睛:本题的关键是通过穷举法确定01q <<.二、多选题21.BD【分析】设设等比数列{}n a 的公比为q ,则0q >,由已知得1112114a a ++=,解方程计算即可得答案. 【详解】解:设等比数列{}n a 的公比为q ,则0q >,因为21531a a a ==,2311a a q == , 所以51115135151511111112111114a a a a a a a a a a a a a ++=++=++=+=+++=, 解得1412a q =⎧⎪⎨=⎪⎩或1142.a q ⎧=⎪⎨⎪=⎩, 当14a =,12q =时,551413121412S ⎛⎫- ⎪⎝⎭==-,数列{}n a 是递减数列;当114a =,2q 时,5314S =,数列{}n a 是递增数列; 综上,5314S =. 故选:BD. 【点睛】本题考查数列的等比数列的性质,等比数列的基本量计算,考查运算能力.解题的关键在于结合等比数列的性质将已知条件转化为1112114a a ++=,进而解方程计算. 22.ABC 【分析】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,可得123n n a -=⨯,即可判断四个选项的正误.【详解】设第1n +分钟之内新感染的文件数为1n a +,前n 分钟内新感染的病毒文件数之和为n S ,则()121n n a S +=+,且12a =,由()121n n a S +=+可得()121n n a S -=+,两式相减得:12n n n a a a +=-,所以13n n a a +=,所以每分钟内新感染的病毒构成以12a =为首项,3为公比的等比数列,所以123n n a -=⨯,在第3分钟内,该计算机新感染了3132318a -=⨯=个文件,故选项A 正确;经过5分钟,该计算机共有()551234521311324313a a a a a ⨯-+++++=+==-个病毒文件,故选项B 正确;10分钟后,计算机感染病毒的总数为()101051210213111310132a a a ⨯-++++=+=>⨯-,所以计算机处于瘫痪状态,故选项C 正确; 该计算机瘫痪前,每分钟内新被感染的文件数成公比为3的等比数列,故选项D 不正确; 故选:ABC 【点睛】关键点点睛:解决本题的关键是读懂题意,得出第1n +分钟之内新感染的文件数为1n a +与 前n 分钟内新感染的病毒文件数之和为n S 之间的递推关系为()121n n a S +=+,从而求得n a .23.AC 【分析】根据等比数列定义判断A;根据等比数列通项公式判断B,C;根据等比数列求和公式求项判断D. 【详解】设等比数列{}n a 公比为,(0)q q ≠则222112()n n n na a q a a ++==,即数列2{}n a 是等比数列;即A 正确; 因为等比数列{}n a 中4812,,a a a 同号,而40,a > 所以80a >,即B 错误;若123,a a a <<则1211101a a a q a q q >⎧<<∴⎨>⎩或1001a q <⎧⎨<<⎩,即数列{}n a 是递增数列,C 正确;若数列{}n a 的前n 和13,n n S r -=+则111221313231,2,6a S r r a S S a S S -==+=+=-==-= 所以32211323(1),3a a q r r a a ===∴=+=-,即D 错误 故选:AC 【点睛】等比数列的判定方法 (1)定义法:若1(n na q q a +=为非零常数),则{}n a 是等比数列; (2)等比中项法:在数列{}n a 中,0n a ≠且212n n a a a a ++=,则数列{}n a 是等比数列;(3)通项公式法:若数列通项公式可写成(,nn a cq c q =均是不为0的常数),则{}n a 是等比数列;(4)前n 项和公式法:若数列{}n a 的前n 项和(0,1,nn S kq k q q k =-≠≠为非零常数),则{}n a 是等比数列.24.AD 【分析】根据等比数列的定义判断. 【详解】设{}n a 的公比是q ,则11n n a a q -=,A .23513a a q a a ==,1a ,3a ,5a 成等比数列,正确; B ,32a q a =,363a q a =,在1q ≠时,两者不相等,错误; C .242a q a =,484a q a =,在21q ≠时,两者不相等,错误; D .36936a aq a a ==,3a ,6a ,9a 成等比数列,正确. 故选:AD . 【点睛】结论点睛:本题考查等比数列的通项公式.数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,a a a 仍是等比数列,实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,n k k k k a a a a 仍是等比数列. 25.CD 【分析】由题意得到数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,结合等差数列以及等比数列的求和公式,验证即可求解. 【详解】由题意,数列{}n a 的前n 项依次为231,2,3,2,5,7,2,9,利用列举法,可得当25n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,2,4,8,16,32,可得52520(139)2(12)40062462212S ⨯+-=+=+=-,2641a =,所以2612492a =,不满足112n n S a +>; 当26n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,2,4,8,16,32,可得52621(141)2(12)44162503212S ⨯+-=+=+=-,2743a =,所以2612526a =,不满足112n n S a +>; 当27n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,2,4,8,16,32,可得52722(143)2(12)48462546212S ⨯+-=+=+=-,2845a =,所以2712540a =,满足112n n S a +>; 当28n =时,AB 的所有元素从小到大依次排列构成一个数列{}n a ,则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,37,39,41,43,45,2,4,8,16,32,可得52823(145)2(12)52962591212S ⨯+-=+=+=-,2947a =,所以2812564a =,满足112n n S a +>,所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 26.AC 【分析】求出等比数列的公比2q =±,再利用通项公式即可得答案; 【详解】5721624a q q a ==⇒=±, 当2q时,65428a a q ==⨯=,当2q =-时,654(2)8a a q ==⨯-=-, 故选:AC. 【点睛】本题考查等比数列通项公式的运算,考查运算求解能力,属于基础题. 27.ABD 【分析】根据基本不等式的相关知识,结合等比数列中等比中项的性质,求出5a 的范围,即可得到所求. 【详解】解:依题意,数列是{}n a 是正项等比数列,30a ∴>,70a >,50a >,∴2373752323262a a a a a +=, 因为50a >,所以上式可化为52a ,当且仅当3a =,7a = 故选:ABD . 【点睛】本题考查了等比数列的性质,考查了基本不等式,考查分析和解决问题的能力,逻辑思维能力.属于中档题. 28.AC 【分析】 由已知得12n na 可得以2122n n a -=,可判断A ;又1111122n n n a --⎛⎫== ⎪⎝⎭,可判断B ;由122log log 21n n a n -==-,可判断C ;求得10S ,20S ,30S ,可判断D.【详解】等比数列{}n a 中,满足11a =,2q,所以12n n a ,所以2122n n a -=,所以数列{}2n a 是等比数列,故A 正确;又1111122n n n a --⎛⎫== ⎪⎝⎭,所以数列1n a ⎧⎫⎨⎬⎩⎭是递减数列,故B 不正确;因为122log log 21n n a n -==-,所以{}2log n a 是等差数列,故C 正确;数列{}n a 中,101010111222S -==--,202021S =-,303021S =-,10S ,20S ,30S 不成等比数列,故D 不正确; 故选:AC . 【点睛】本题综合考查等差、等比数列的定义、通项公式、前n 项和公式,以及数列的单调性的判定,属于中档题. 29.AD 【分析】主要分析数列中的项是否可能为0,如果可能为0,则不能是等比数列,在不为0时,根据等比数列的定义确定. 【详解】1n a =时,22log ()0n a =,数列22{log ()}n a 不一定是等比数列, 1q =-时,10n n a a ++=,数列1{}n n a a ++不一定是等比数列,由等比数列的定义知1{}na 和12{}n n n a a a ++++都是等比数列. 故选AD . 【点睛】本题考查等比数列的定义,掌握等比数列的定义是解题基础.特别注意只要数列中有一项为0,则数列不可能是等比数列. 30.BD 【分析】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以可知数列n a n ⎧⎫⎨⎬⎩⎭是等比数列,从而可求出12n n a n +=⋅,可得数列{}n a 为递增数列,利用错位相减法可求得{}n a 的前n 项和,由于111222n n n n a n n +++⋅==,从而利用等差数列的求和公式可求出数列12n n a +⎧⎫⎨⎬⎩⎭的前n 项和. 【详解】由12(1)0n n n a na ++-=得121n n a a n n +=⨯+,所以n a n ⎧⎫⎨⎬⎩⎭是以1141a a ==为首项,2为公比的等比数列,故A 错误;因为11422n n na n-+=⨯=,所以12n n a n +=⋅,显然递增,故B 正确;因为23112222n n S n +=⨯+⨯++⋅,342212222n n S n +=⨯+⨯++⋅,所以 231212222n n n S n ++-=⨯+++-⋅()22212212nn n +-=-⋅-,故2(1)24n n S n +=-⨯+,故C 错误;因为111222n n n n a n n +++⋅==,所以12n n a +⎧⎫⎨⎬⎩⎭的前n 项和2(1)22n n n n n T ++==, 故D 正确. 故选:BD 【点晴】本题考查等差数列、等比数列的综合应用,涉及到递推公式求通项,错位相减法求数列的和,等差数列前n 项和等,考查学生的数学运算能力,是一道中档题. 31.ACD 【分析】根据题设中的数阵,结合等比数列的通项公式和等比数列的前n 项和公式,逐项求解,即可得到答案. 【详解】由题意,该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列,且112a =,13611a a =+,可得2213112a a m m ==,6111525a a d m =+=+,所以22251m m =++,解得3m =或12m =-(舍去),所以选项A 是正确的; 又由6666761(253)3173a a m ==+⨯⨯=⨯,所以选项B 不正确;又由1111111(3[((1)][2(1)3]31)3j j j j ij i a ma i m m i i a ----==+-⨯⨯==-⨯+-⨯⨯,所以选项C 是正确的; 又由这2n 个数的和为S , 则111212122212()()()n n n n nn S a a a a a a a a a =++++++++++++11121(13)(13)(13)131313n n n n a a a ---=+++---1(231)(31)22nn n +-=-⋅ 1(31)(31)4n n n =+-,所以选项D 是正确的, 故选ACD. 【点睛】本题主要考查了数表、数阵数列的求解,以及等比数列及其前n 项和公式的应用,其中解答中合理利用等比数列的通项公式和前n 项和公式,准确计算是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题. 32.ABC 【分析】由1418a a +=,2312a a +=,31118a a q +=,21112a q a q +=,公比q 为整数,解得1a ,q ,可得n a ,n S ,进而判断出结论.【详解】∵1418a a +=,2312a a +=且公比q 为整数,∴31118a a q +=,21112a q a q +=,∴12a =,2q或12q =(舍去)故A 正确, ()12122212n n n S +-==--,∴8510S =,故C 正确;∴122n n S ++=,故数列{}2n S +是等比数列,故B 正确;而lg lg 2lg 2nn a n ==,故数列{}lg n a 是公差为lg 2的等差数列,故D 错误.故选:ABC . 【点睛】本题主要考查了等比数列的通项公式和前n 项和公式以及综合运用,属于中档题. 33.AC 【分析】直接利用题目中“保等比数列函数”的性质,代入四个选项一一验证即可.【详解】设等比数列{}n a 的公比为q .对于A ,则2221112()()n n n n n n f a a a q f a a a +++⎛⎫=== ⎪⎝⎭ ,故A 是“保等比数列函数”; 对于B ,则111()22()2n n n n a a a n a n f a f a ++-+==≠ 常数,故B 不是“保等比数列函数”; 对于C,则1()()n n f a f a +===,故C 是“保等比数列函数”;对于D ,则11ln ln ln ln ln ()1()ln ln ln ln n n n n n n n n na a q a q q f a f a a a a a ++⋅+====+≠ 常数,故D 不是“保等比数列函数”.故选:AC.【点睛】本题考查等比数列的定义,考查推理能力,属于基础题.34.ABD【分析】根据题意,结合等差、等比数列的性质依次分析选项,综合即可得的答案.【详解】根据题意,依次分析选项:对于A ,若数列{}n a 的前n 项和2n S an bn c =++,若0c =,由等差数列的性质可得数列{}n a 为等差数列,若0c ≠,则数列{}n a 从第二项起为等差数列,故A 不正确;对于B ,若数列{}n a 的前n 项和122n n S +=-,可得1422a =-=,2218224a S S =-=--=,33216268a S S =-=--=, 则1a ,2a ,3a 成等比数列,则数列{}n a 不为等差数列,故B 不正确;对于C ,数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯,即为12n a a a ++⋯+,12n n a a ++⋯+,213n n a a ++⋯+,⋯,即为22322n n n n n n n S S S S S S S n d --=---=为常数,仍为等差数列,故C 正确;对于D ,数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,⋯不一定为等比数列,比如公比1q =-,n 为偶数,n S ,2n n S S -,32n n S S -,⋯,均为0,不为等比数列.故D 不正确.故选:ABD .【点睛】本题考查等差、等比数列性质的综合应用,考查逻辑思维能力和运算能力,属于常考题. 35.AC【分析】在A 中,数列{}2n a 是等比数列;在B 中,58a =;在C 中,若123a a a <<,则1q >,数列{}n a 是递增数列;在D 中,13r =-. 【详解】由数列{}n a 是等比数列,知:在A 中,22221n n a a q -=,22221122221nn n n a a q q a a q+-∴==是常数, ∴数列{}2n a 是等比数列,故A 正确; 在B 中,若32a =,732a =,则58a =,故B 错误;在C 中,若1230a a a <<<,则1q >,数列{}n a 是递增数列;若1230a a a <<<,则01q <<,数列{}n a 是递增数列,故C 正确;在D 中,若数列{}n a 的前n 和13n n S r -=+,则111a S r ==+,()()221312a S S r r =-=+-+=,()()332936a S S r r =-=+-+=,1a ,2a ,3a 成等比数列,2213a a a ∴=,()461r ∴=+, 解得13r =-,故D 错误. 故选:AC .【点睛】本题考查等比数列的综合应用,考查逻辑思维能力和运算能力,属于常考题.。
4-1等差、等比数列的基本问题
专题4 第1讲等差、等比数列的基本问题一、选择题1.(2011·江西文,5)设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=( )A .18B .20C .22D .24[答案] B[解析] S 11-S 10=a 11=0,a 11=a 1+10d =a 1+10×(-2)=0,所以a 1=20.2.(2011·天津理,4)已知{a n }为等差数列,其公差为-2,且a 7是a 3与a 9的等比中项,S n 为{a n }的前n 项和,n ∈N *,则S 10的值为( )A .-110B .-90C .90D .110[答案] D[解析] 由条件:a 27=a 3·a 9, 即(a 1+6d )2=(a 1+2d )·(a 1+8d )∴a 1=20,S 10=10×20+10×92×(-2)=110.故选D.3.(2011·安徽文,7)若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-15[答案] A[解析] 设a 1+a 2+…+a 10=S ,则S =-1×(3×1-2)+(-1)2×(3×2-2)+…+(-1)10(3×10-2) ① -S =(-1)2×(3×1-2)+…+(-1)10(3×9-2)+(-1)11(3×10-2) ②①-②得2S =-1+(-1)2×3+…+(-1)10×3-(-1)11×28=-1+3×(1-(-1))91+1+28.∴2S =30,∴S =15.4.(2011·辽宁文,5)若等比数列{a n }满足a n a n +1=16n ,则公比为( ) A .2 B .4 C .8 D .16[答案] B[解析] ∵a n ·a n +1=16n ,∴a n -1·a n =16n -1∴a n ·a n +1a n -1·a n =a n +1a n -1=q 2=16n 16n -1=16 ∴q =4.5.(2011·东北四市联考)在数列{a n }中,a 1=2,a n +1=a n +ln(1+1n ,则a n =( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n +ln n[答案] A[解析] 依题意得a n +1-a n =ln n +1n ,则有a 2-a 1=ln 21,a 3-a 2=ln 32,a 4-a 3=ln 43,…,a n -a n -1=lnn n -1,叠加得a n -a 1=ln(21·32·43·…·nn -1)=ln n ,故a n =2+ln n ,选A. 6.(2011·辽宁抚顺)在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是( )A .24B .48C .60D .84[答案] C[解析] 由a 1>0,a 10·a 11<0可知d <0,a 10>0,a 11<0,∴T 18=a 1+…+a 10-a 11-…-a 18=S 10-(S 18-S 10)=60,故选C.7.(2011·安徽安庆)已知等差数列{a n }的前n 项和为S n ,且S 2=10,S 5=55,则过点P (n ,a n )和Q (n +2,a n +2)(n ∈N *)的直线的一个方向向量的坐标是( )A .(2,12)B .(-12,-2)C .(-12,-1)D .(-1,-1) [答案] B[解析] 由S 2=10,S 5=55得a 1=3,d =4,∴a n =4n -1,∴PQ →=(2,8),故选B. 8.(2011·长沙二模)设S n 是各项都是正数的等比数列{a n }的前n 项和,若S n +S n +22S n +1,则公比q 的取值范围是( )A .q >0B .0<q ≤1C .0<q <1D .0<q <1或q >1 [答案] B[解析] 当等比数列{a n }的公比q =1时, ∵S n +S n +22=na 1+(n +2)a 12=(n +1)a 1=S n +1, ∴q =1符合题意.当q ≠1时(q >0),∵S n +S n +2≤2S n +1, ∴a 1(q n-1)q -1+a 1(q n +2-1)q -1-2a 1(q n +1-1)q -1≤0,即a 1q -1(q n+q n +2-2q n +1)≤0, 化简得a 1q n q -1q -1)2≤0,即a 1q n(q -1)≤0,∴q -1<0,∴0<q <1.综上可知0<q ≤1.故选B. 二、填空题9.(文)(2011·北京文,12)在等比数列{a n }中,若a 1=12,a 4=4,则公比q =________;a 1+a 2+…+a n =________.[答案] 2,2n -1-12[解析]a 4a 1=q 3=412=8,所以q =2, 所以 a 1+a 2+……+a n =12(1-2n )1-2=2n -1-12(理)(2011·北京理,11)在等比数列{a n }中,若a 1=12,a 4=-4,则公比q =________;|a 1|+|a 2|+…+|a n |=________.[答案] -2;2n -1-12[解析] 依题意:a 1=12,a 4=-4,则12q 3=-4,∴q 3=-8,∴q =-2. ∴a n =12(-2)n -1,∴|a n |=2n -2.∴|a 1|+|a 2|+…+|a n |=12(1-2n )1-2=2n -1-1210.(2011·重庆理,11)在等差数列{a n }中,a 3+a 7=37,则a 2+a 4+a 6+a 8=________. [答案] 74[解析] a 2+a 4+a 6+a 8=2(a 3+a 7)=2×37=74.11.等比数列{a n }的公比q >0,已知a 2=1,a m +2+a m +1=6a m ,则{a n }的前4项和是______. [答案]152[解析] 由已知条件a m +2+a m +1=6a m 可得a 2q m +a 2q m -1=6a 2q m -2,即得q 2+q -6=0,解得q =2或q =-3(舍去),则数列{a n }的前四项的和为12+1+2+4=152.12.(文)(2011·襄阳一调)等差数列{a n }的首项为a 1,公差为d ,前n 项和为S n ,给出下列四个命题:①数列{(12)a n }为等比数列;②若a 2+a 12=2,则S 13=3;③S n =na n -n (n -1)2d ;④若d >0,则S n 一定有最大值.其中真命题的序号是________(写出所有真命题的序号). [答案] ①②③[解析] 对于①,注意到(12)a n +1(12)a n =(12)a n +1-a n =(12d 是一个非零常数,因此数列{(12)a n }是等比数列,①正确.对于②,S 13=13(a 1+a 13)2=13(a 2+a 12)2=13,因此②正确.对于③,注意到S n =na 1+n (n -1)2d =n [a n -(n -1)d ]+n (n -1)2d =na n -n (n -1)2d ,因此③正确.对于④,当a n >0,d >0时,S n 不存在最大值,因此④不正确.综上所述,其中正确命题的序号是①②③.(理)(2011·湘潭五模)设S n 为数列{a n }的前n 项和,若S 2n S n(n ∈N *)是非零常数,则称该数列为“和等比数列”,若数列{c n }是首项为2,公差为d (d ≠0)的等差数列,且数列{c n }是“和等比数列”,则d =________.[答案] 4[解析] 由题意可知,数列{c n }的前n 项和为S n =n (c 1+c n )2,前2n 项和为S 2n =2n (c 1+c 2n )2,所以S 2n S n =2n (c 1+c 2n )2n (c 1+c n )2=2+2nd 4+nd -d =2+21+4-dnd ,所以当d =4时,S2n S n 为非零常数.三、解答题13.(文)(2011·大纲全国卷理,20)设数列{a n }满足a 1=0且11-a n +1-11-a n =1.(1)求{a n }的通项公式;(2)设b n =1-a n +1n,记S n =∑k =1n b k ,证明:S n <1.[解析] (1)由题设11-a n +1-11-a n=1,即{11-a n是公差为1的等差数列. 又11-a 1=1,故11-a n=n . 所以a n =1-1n.(2)由(1)得b n =1-a n +1n =n +1-nn +1·n=1n -1n +1,S n =∑k =1nb k =∑k =1n(1k -1k +1)=1-1n +1<1. (理)(2011·江西理,18)已知两个等比数列{a n },{b n },满足a 1=a (a >0),b 1-a 1=1,b 2-a 2=2,b 3-a 3=3.(1)若a =1,求数列{a n }的通项公式; (2)若数列{a n }唯一,求a 的值.[解析] (1)设{a n }的公比为q ,则b 1=1+a =2, b 2=2+aq =2+q ,b 3=3+aq 2=3+q 2, 由b 1,b 2,b 3成等比数列得(2+q )2=2(3+q 2) 即q 2-4q +2=0,解得q 1=2+2,q 2=2- 2 所以{a n }的通项公式为a n =(2+2)n -1或a n =(2-2)n -1.(2)设{a n }的公比为q ,则由(2+aq )2=(1+a )(3+aq 2),得aq 2-4aq +3a -1=0(*) 由a >0得Δ=4a 2+4a >0,故方程(*)有两个不同的实根 由{a n }唯一,知方程(*)必有一根为0,代入(*)得a =13.14.(2011·潍坊二模)已知等差数列{a n }和正项等比数列{b n },a 1=b 1=1,a 3+a 5+a 7=9,a 7是b 3和b 7的等比中项.(1)求数列{a n }、{b n }的通项公式;(2)若c n =2a n ·b 2n ,求数列{c n }的前n 项和T n .[解析] 设等差数列{a n }的公差为d ,等比数列的公比为q , 由题设知a 3+a 5+a 7=9,∴3a 5=9,∴a 5=3. 则d =a 5-a 14=12,∴a n =a 1+(n -1)d =n +12. ∴a 7=4.又∵a 27=b 3·b 7=16, ∴b 25=b 3·b 7=16,又b 5>0,∴b 5=4, ∴q 4=b5b 1=4,又q >0.∴q =2,∴b n =b 1·q n -1=2n -12.(2)c n =2a n ·b 2n =(n +1)·2 n -1,∴T n =c 1+c 2+…+c n=2+3·2+4·22+…+(n +1)·2n -1 ① 2T n =2·2+3·22+…+n ·2n -1+(n +1)·2n ② ①-②得-T n =2+2+22+…+2n -1-(n +1)·2n=2+2(1-2n -1)1-2-(n +1)·2n =-n ·2n∴T n =n ·2n.15.(2011·北京石景山区模拟)已知等差数列{a n }中,公差d >0,其前n 项和为S n ,且满足:a 2a 3=45,a 1+a 4=14.(1)求数列{a n }的通项公式;(2)通过公式b n =Sn n +c 构造一个新的数列{b n }.若{b n }也是等差数列,并求非零常数c ;(3)求f (n )=b n(n +25)·b n +1(n ∈N *)的最大值.[解析] (1)∵数列{a n }是等差数列. ∴a 2+a 3=a 1+a 4=14.又a 2a 3=45,∴⎩⎪⎨⎪⎧ a 2=5a 3=9或⎩⎪⎨⎪⎧a 2=9a 3=5. ∵公差d >0,∴a 2=5,a 3=9. ∴d =a 3-a 2=4,a 1=a 2-d =1. ∴a n =a 1+(n -1)d =4n -3.(2)∵S n =na 1+12n (n -1)d =n +2n (n -1)=2n 2-n ,∴b n =S nn +c =2n 2-n n +c .∵数列{b n }是等差数列, ∴2b 2=b 1+b 3, ∴2·6c +2=1c +1+15c +3,解得c =-12(c =0舍去).∴b n =2n 2-n n -12=2n .(3)f (n )=2n (n +25)·2(n +1)=nn 2+26n +25=1n +25n+26≤136.即f (n )的最大值为136.。
等差数列与等比数列练习题
等差数列与等比数列练习题一、等差数列1. 求等差数列2, 5, 8, 11, 14的公差d和第n项的通项公式an。
解:首先,根据等差数列的性质,可知第2项减去第1项等于公差d,即5-2=d,解得d=3。
由此可得等差数列的公差d为3。
其次,我们可以观察到等差数列的公式。
第n项的通项公式可表示为an=a1+(n-1)d,其中a1为首项,d为公差。
将已知数据代入,我们有a1=2,d=3,n为第几项(此处为5),代入公式计算,可得a5=2+(5-1)×3=14。
因此,该等差数列的第5项的通项为14。
2. 如果等差数列的第a项是5,公差是7,求第n项的值an。
解:根据等差数列的通项公式可知,an=a1+(n-1)d。
已知a1=5,d=7,n为第几项(此处为n),代入公式计算,得到an=5+(n-1)×7。
因此,等差数列的第n项的值为an=5+(n-1)×7。
二、等比数列1. 求等比数列3,6,12,24的公比r和第n项的通项公式an。
解:首先,根据等比数列的性质,可知第2项除以第1项等于公比r,即6/3=r,解得r=2。
由此可得等比数列的公比r为2。
其次,观察等比数列的公式。
第n项的通项公式可表示为an=a1×r^(n-1),其中a1为首项,r为公比。
将已知数据代入,我们有a1=3,r=2,n为第几项(此处为4),代入公式计算,可得a4=3×2^(4-1)=3×2^3=24。
因此,该等比数列的第4项的通项为24。
2. 如果等比数列的第a项是4,公比是0.5,求第n项的值an。
解:根据等比数列的通项公式可知,an=a1×r^(n-1)。
已知a1=4,r=0.5,n为第几项(此处为n),代入公式计算,得到an=4×0.5^(n-1)。
因此,等比数列的第n项的值为an=4×0.5^(n-1)。
综上所述,等差数列与等比数列的练习题可以通过给定的已知条件,运用相应的公式来求解。
2013年高考第二轮复习数学安徽理科专题升级训练9等差数列、等比数列专题升级训练卷(附答案).pdf
专题升级训练9 等差数列、等比数列 (时间:60分钟 满分:100分)一、选择题(本大题共6小题,每小题6分,共36分) 1.已知数列{an}满足a1=1,且=,则a2 012=( ). A.2 010 B.2 011C.2 012 D.2 013 2.已知各项均为正数的等比数列{an}中,a1a2a3=5,a7a8a9=10,则a4a5a6=( ). A.5 B.4 C.6 D.7 3.已知实数列-1,x,y,z,-2成等比数列,则xyz=( ). A.-4 B.±4C.-2 D.±2 4.已知等差数列{an}的前n项和为Sn,若=a1+a200,且A,B,C三点共线(该直线不过原点O),则S200=( ). A.100 B.101 C.200 D.201 5.(2012·安徽合肥六中最后一卷,理5)在等差数列{an}中,若a3+a7-a10=2,a11-a4=7,则S13的值是( ). A.54 B.168 C.117 D.218 6.设{an},{bn}分别为等差数列与等比数列,且a1=b1=4,a4=b4=1,则以下结论正确的是( ). A.a2>b2 B.a3b5 D.a6>b6 二、填空题(本大题共3小题,每小题6分,共18分) 7.定义“等积数列”:在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积,已知数列{an}是等积数列,且a1=3,公积为15,那么a21=. 8.在数列{an}中,如果对任意n∈N都有=k(k为常数),则称数列{an}为等差比数列,k称为公差比.现给出下列命题: ①等差比数列的公差比一定不为零; ②等差数列一定是等差比数列; ③若an=-3n+2,则数列{an}是等差比数列; ④若等比数列是等差比数列,则其公比等于公差比. 其中正确命题的序号为. 9.已知a,b,c是递减的等差数列,若将其中两个数的位置互换,得到一个等比数列,则=. 三、解答题(本大题共3小题,共46分.解答应写出必要的文字说明、证明过程或演算步骤) 10.(本小题满分15分)设Sn是等差数列{an}的前n项和,已知S3与S4的等比中项为S5,S3与S4的等差中项为1,求数列{an}的通项. 11.(本小题满分15分)已知数列{an}为公差不为零的等差数列,a1=1,各项均为正数的等比数列{bn}的第1项、第3项、第5项分别是a1,a3,a21. (1)求数列{an}与{bn}的通项公式; (2)求数列{anbn}的前n项和. 12.(本小题满分16分)等差数列{an}的前n项和为Sn,a1=1+,S3=9+3. (1)求数列{an}的通项an与前n项和Sn; (2)设bn=(n∈N*),求证:数列{bn}中任意不同的三项都不可能成为等比数列. 一、选择题 1.C 解析:由=,可得an=n,故a2 012=2 012. 2.A 解析:(a1a2a3)·(a7a8a9)=a56=50,且an>0, ∴a4a5a6=a53=5. 3.C 解析:因为-1,x,y,z,-2成等比数列,由等比数列的性质可知y2=xz=(-1)×(-2)=2. 又y是数列的第三项,与第一项的符号相同, 故y=-,所以xyz=-2. 4.A 解析:∵=a1+a200,且A,B,C三点共线, ∴a1+a200=1,故根据等差数列的前n项和公式得S200==100. 5.C 解析:由{an}是等差数列知a3+a7-a10+a11-a4=a7=2+7=9, ∴S13=13a7=117.故选C. 6.A 解析:设等差数列{an}的公差为d,等比数列{bn}的公比为q,由a1=b1=4,a4=b4=1,得d=-1,q=,∴a2=3,b2=2;a3=2,b3=;a5=0,b5=;a6=-1,b6=.故选A. 二、填空题 7.3 解析:由题意知an·an+1=15,即a2=5,a3=3,a4=5,…观察可得:此数列的奇数项都为3,偶数项都为5.故a21=3. 8.①③④ 解析:若k=0,{an}为常数列,分母无意义,①正确;公差为零的等差数列不是等差比数列,②错误;=3,满足定义,③正确;设an=a1qn-1(q≠0),则==q,④正确. 9.20 解析:依题意得①或者②或者③ 由①得a=b=c,这与a,b,c是递减的等差数列矛盾;由②消去c,整理得(a-b)(a+2b)=0, 又a>b,因此有a=-2b,c=4b,故=20; 由③消去a,整理得(c-b)(c+2b)=0, 又b>c,因此有c=-2b,a=4b,故=20. 三、解答题 10.解:由已知得即 解得或 ∴an=1或an=-n. 经验证an=1或an=-n均满足题意,即为所求. 11.解:(1)设数列{an}的公差为d(d≠0),数列{bn}的公比为q(q>0), 由题意得a32=a1a21, ∴(1+2d)2=1×(1+20d),∴4d2-16d=0. ∵d≠0,∴d=4.∴an=4n-3. 于是b1`=1,b3=9,b5=81,{bn}的各项均为正数, ∴q=3,∴bn=3n-1. (2)anbn=(4n-3)3n-1, ∴Sn=30+5×31+9×32+…+(4n-7)×3n-2+(4n-3)×3n-1, 3Sn=31+5×32+9×33+…+(4n-7)×3n-1+(4n-3)×3n. 两式两边分别相减得 -2Sn=1+4×3+4×32+4×33+…+4×3n-1-(4n-3)×3n =1+4(3+32+33+…+3n-1)-(4n-3)×3n =1+-(4n-3)×3n =(5-4n)×3n-5, ∴Sn=. 12.(1)解:由已知得∴d=2, 故an=2n-1+,Sn=n(n+). (2)证明:由(1)得bn==n+. 假设数列{bn}中存在三项bp,bq,br(p,q,r互不相等)成等比数列, 则b=bpbr,即(q+)2=(p+)(r+), ∴(q2-pr)+(2q-p-r)=0. ∵p,q,r∈N*,∴ ∴2=pr,(p-r)2=0.∴p=r,这与p≠r矛盾. ∴数列{bn}中任意不同的三项都不可能成为等比数列.。
等比数列练习 含答案
课时作业9 等比数列时间:45分钟 满分:100分课堂训练1.已知a 、b 、c 成等比数列,且a =2,c =6,则b 为( ) A .23 B .-2 3 C .±2 3 D .18【答案】 C【解析】 由b 2=ac =2×6=12,得b =±2 3.2.公差不为零的等差数列{a n },a 2,a 3,a 7成等比数列,则它的公比为( )A .-4B .-14 C.14 D .4【答案】 D【解析】 设等差数列{a n }的公差为d ,由题意知d ≠0,且a 23=a 2a 7,即(a 1+2d )2=(a 1+d )(a 1+6d ),化简,得a 1=-23d .∴a 2=a 1+d =-23d +d =13d , a 3=a 2+d =13d +d =43d , ∴a 3a 2=4,故选D.3.已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q =________.【答案】 2【解析】 设{a n }的公比为q ,则a 4=a 2q 2,a 3=a 2q . a 4-a 3=a 2q 2-a 2q =4,又a 2=2, 得q 2-q -2=0,解得q =2或q =-1. 又{a n }为递增数列,则q =2. 4.在等比数列{a n }中, (1)若a 4=27,q =-3,求a 7; (2)若a 2=18,a 4=8,求a 1和q .【分析】 (1)(2)问直接利用等比数列通项公式的变形来求解. 【解析】 (1)a 7=a 4·q 7-4=a 4·q 3=27×(-3)3=-729. (2)由已知得a 4a 2=q 2,即q 2=818=49,∴q =23或q =-23.当q =23时,a 1=a 2q =1823=27.当q =-23时,a 1=a 2q =18-23=-27.综上⎩⎪⎨⎪⎧a 1=27,q =23或⎩⎪⎨⎪⎧a 1=-27,q =-23.【规律方法】 该题易出错的地方在于由q 2=49求q 时误认为q >0而漏掉q =-23的情况,导致错解.课后作业一、选择题(每小题5分,共40分)1.若等比数列的首项为98,末项为13,公比为23,则这个数列的项数为( )A .3B .4C .5D .6【答案】 B【解析】 由a 1=98,a n =13,q =23,即13=98·(23)n -1, ∴n =4.2.已知{a n }是等比数列,a 2=2,a 5=14,则公比q =( ) A .-12 B .-2 C .2 D.12【答案】 D【解析】 由已知得a 5a 2=q 3,故142=q 3,即q 3=18,解得q =12.故选D.3.等比数列{a n }中,a 1=18,q =2,则a 4与a 8的等比中项是( ) A .±4 B .4 C .±14D.14【答案】 A【解析】 由a n =18·2n -1=2n -4知,a 4=1,a 8=24, 其等比中项为±4.4.已知等比数列{a n }中,a 2 008=a 2 010=-1,则a 2 009=( ) A .-1 B .1C .1或-1D .以上都不对【答案】 C【解析】 ∵a 2 008,a 2 009,a 2 010成等比数列,∴a 22 009=a 2 008·a 2 010=1,∴a 2 009=1或-1.5.已知在等比数列{a n }中,a 1+a 3=10,a 4+a 6=54,则等比数列{a n }的公比q =( )A.14B.12 C .2 D .8【答案】 B【解析】 a 4+a 6=a 1q 3+a 3q 3=(a 1+a 3),q 3=10·q 3=54,∴q =12.故选B.6.一种专门占据内存的计算机病毒开始时占据内存2KB ,然后3min 自身复制一次,复制后所占内存是原来的2倍,那么开机后________min ,该病毒占据64MB(1MB =210KB).( )A .45B .48C .51D .42【答案】 A【解析】 设病毒占据64MB 时自身复制了n 次,由题意可得2×2n =64×210=216,解得n =15.从而复制的时间为15×3=45(min).7.(2013·江西理)等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24【答案】 A【解析】 本题考查等比数列的定义. 由等比中项公式(3x +3)2=x (6x +6) 即x 2+4x +3=0. ∴x =-1(舍去)或x =-3.∴数列为-3,-6,-12,-24.故选A.8.已知等比数列{a n }中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8等于( )A .1+ 2B .1- 2C .3+2 2D .3-2 2 【答案】 C【解析】 设等比数列{a n }的公比为q , ∵a 1,12a 3,2a 2成等差数列, ∴a 3=a 1+2a 2. ∴a 1q 2=a 1+2a 1q .∴q 2-2q -1=0. ∴q =1±2.∵各项都是正数,∴q >0.∴q =1+ 2. ∴a 9+a 10a 7+a 8=q 2=(1+2)2=3+2 2. 二、填空题(每小题10分,共20分)9.(2013·广东文)设数列{a n }是首项为1,公比为-2的等比数列,则a 1+|a 2|+a 3+|a 4|=________.【答案】 15【解析】 a 1=1,q =-2,则|a 2|=2,a 3=4,|a 4|=8, ∴a 1+|a 2|+a 3+|a 4|=15.10.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 9成等比数列,则a 1+a 3+a 9a 2+a 4+a 10的值为__________. 【答案】 1316【解析】 a 23=a 1a 9,(a 1+2d )2=a 1(a 1+8d ),∴a 1=d ,a 1+a 3+a 9a 2+a 4+a 10=3a 1+10d 3a 1+13d=1316.三、解答题(每小题20分,共40分.解答应写出必要的文字说明、证明过程或演算步骤)11.在等差数列{a n }中,a 1=3,其前n 项和为S n ,等比数列{b n }的各项均为正数,b 1=1,公比为q ,且b 2+S 2=12,q =S 2b 2.求数列{a n }与{b n }的通项公式.【分析】 设出等差数列的公差,根据已知条件列出关于公差d 与公比q 的方程组求解出公差d 与公比q ,然后代入通项公式即可求得通项公式.【解析】 设{a n }的公差为d .因为⎩⎪⎨⎪⎧ b 2+S 2=12,q =S 2b 2,所以⎩⎪⎨⎪⎧q +6+d =12,q =6+dq ,解得q =3或q =-4(舍),d =3, 故a n =3+3(n -1)=3n ,b n =3n -1.12.已知等比数列{a n }的通项公式为a n =3(12)n -1,若数列{b n }的通项为b n =a 3n +a 3n -1+a 3n -2(n ∈N +),求证数列{b n }为等比数列.【分析】 要证明数列{b n }为等比数列,只需证b n +1b n =常数即可.【解析】 b n +1b n =a 3n +3+a 3n +2+a 3n +1a 3n +a 3n -1+a 3n -2=3(12)3n +2+3(12)3n +1+3(12)3n3(12)3n -1+3(12)3n -2+3(12)3n -3 =3(12)3n [(12)2+12+1]3(12)3n -3[(12)2+12+1] =(12)3=18(常数).所以数列{b n}是等比数列.【规律方法】等比数列是特殊的函数,用指数函数的方法来研究等比数列,一定要抓住指数函数的性质和运算方法,这是解题的关键.。
11 高中数学等差数列与等比数列问题专题训练
专题11高中数学等差数列与等比数列问题专题训练【知识总结】1.等差数列、等比数列的基本运算等差数列、等比数列的基本公式(n ∈N *)(1)等差数列的通项公式:a n =a 1+(n -1)d ;(2)等比数列的通项公式:a n =a 1·q n -1.(3)等差数列的求和公式:S n =n (a 1+a n )2=na 1+n (n -1)2d ; (4)等比数列的求和公式:S n =⎩⎪⎨⎪⎧a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1,na 1,q =1.2.等差数列、等比数列的性质1.通项性质:若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则对于等差数列,有a m +a n =a p +a q =2a k ,对于等比数列有a m a n =a p a q =a 2k .2.前n 项和的性质:对于等差数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等差数列;对于等比数列有S m ,S 2m -S m ,S 3m -S 2m ,…成等比数列(q =-1且m 为偶数情况除外).【高考真题】1.(2022·全国乙理) 已知等比数列{}n a 的前3项和为168,2542a a -=,则6a =( )A .14B .12C .6D .32.(2022·全国乙文) 记n S 为等差数列{}n a 的前n 项和.若32236S S =+,则公差d =_______.【题型突破】题型一 等差数列基本量的计算1.(2017·全国Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .82.(2018·全国Ⅰ)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( )A .-12B .-10C .10D .123.(2014·福建)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( )A .8B .10C .12D .144.(2016·全国Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .975.设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A .259B .269C .3D .2896.设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________.7.(2020·全国Ⅱ)记S n 为等差数列{a n }的前n 项和.若a 1=-2,a 2+a 6=2,则S 10=________.8.(2020·新高考Ⅱ)将数列{2n -1}与{3n -2}的公共项从小到大排列得到数列{a n },则{a n }的前n 项和为 ________.9.(2013·全国Ⅰ)设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m 等于( )A .3B .4C .5D .610.(2019·全国Ⅱ)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则( )A .a n =2n -5B .a n =3n -10C .S n =2n 2-8nD .S n =12n 2-2n 题型二 等差数列性质的应用11.在等差数列{a n }中,a 4+a 5=15,a 7=12,则a 2等于( )A .3B .-3C .32D .-3212.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( )A .a 1+a 101>0B .a 1+a 101<0C .a 3+a 99=0D .a 51=5113.已知数列{a n }是等差数列,若a 1-a 9+a 17=7,则a 3+a 15等于( )A .7B .14C .21D .7(n -1)14.在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( )A .6B .12C .24D .4815.已知等差数列{a n },若a 1+a 2+a 3+…+a 12=21,则a 2+a 5+a 8+a 11=________.16.设数列{a n }是等差数列,若a 3+a 4+a 5=12,则a 1+a 2+…+a 7等于( )A .14B .21C .28D .3517.在等差数列{a n }中,若a 4+a 6+a 8+a 10+a 12=120,则a 9-13a 11的值为( ) A .14 B .15 C .16 D .1718.已知等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对于任意的自然数n ,都有S n T n =2n -34n -3,则a 3+a 152(b 3+b 9)+a 3b 2+b 10=( ) A .1941 B .1737 C .715 D .204119.在等差数列{a n }中,2(a 1+a 3+a 5)+3(a 7+a 9)=54,则此数列前10项的和S 10等于( )A .45B .60C .75D .9020.若一个等差数列前3项的和为34,最后3项的和为146,且所有项的和为390,则这个数列的项数为( )A .13B .12C .11D .10题型三 等比数列基本量的计算21.(2017·全国Ⅲ)设等比数列{a n }满足a 1+a 2=-1,a 1-a 3=-3,则a 4=________.22.(2020·全国Ⅱ)设{a n }是等比数列,且a 1+a 2+a 3=1,a 2+a 3+a 4=2,则a 6+a 7+a 8=( )A .12B .24C .30D .3223.(2019·全国Ⅲ)已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=( )A .16B .8C .4D .224.(2019·全国Ⅰ)设S n 为等比数列{a n }的前n 项和.若a 1=13,a 24=a 6,则S 5=________. 25.已知数列{a n }中,a 1=2,且a 2n +1a n=4(a n +1-a n )(n ∈N *),则其前9项的和S 9=________. 26.(多选题)已知正项等比数列{a n }满足a 1=2,a 4=2a 2+a 3,若设其公比为q ,前n 项和为S n ,则( )A .q =2B .a n =2nC .S 10=2047D .a n +a n +1<a n +227.(2015·全国Ⅰ)在数列{a n }中,a 1=2,a n +1=2a n ,S n 为{a n }的前n 项和.若S n =126,则n =________.28.(2020·全国Ⅱ)记S n 为等比数列{a n }的前n 项和.若a 5-a 3=12,a 6-a 4=24,则S n a n=( ) A .2n -1 B .2-21-n C .2-2n -1 D .21-n -129.设等比数列{}a n 的前n 项和为S n ,若S 1=13a 2-13,S 2=13a 3-13,则公比q =( ) A .1 B .4 C .4或0 D .830.(2020·全国Ⅱ)数列{a n }中,a 1=2,a m +n =a m a n .若a k +1+a k +2+…+a k +10=215-25,则k =( )A .2B .3C .4D .5 题型四 等比数列性质的应用31.在等比数列{a n }中,若a 3,a 7是方程x 2+4x +2=0的两根,则a 5的值是( )A .-2B .-2C .±2D .232.公比不为1的等比数列{a n }满足a 5a 6+a 4a 7=18,若a 1a m =9,则m 的值为( )A .8B .9C .10D .1133.在各项均为正数的等比数列{a n }中,a 3=2-1,a 5=2+1,则a 23+2a 2a 6+a 3a 7=( )A .4B .6C .8D .8-4234.等比数列{a n }中,a 4=2,a 5=5,则数列{lg a n }的前8项和等于( )A .6B .5C .4D .335.等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A .12B .10C .8D .2+log 3536.已知数列{a n }的各项都为正数,对任意的m ,n ∈N *,a m ·a n =a m +n 恒成立,且a 3·a 5+a 4=72,则log 2a 1+log 2a 2+…+log 2a 7=________.37.在等比数列{a n }中,a n >0,a 1+a 2+…+a 8=4,a 1a 2·…·a 8=16,则1a 1+1a 2+…+1a 8的值为( ) A .2 B .4 C .8 D .1638.已知数列{a n }为等比数列,且a 2a 6+2a 24=π,则tan(a 3·a 5)等于( )A .3B .-3C .-33D .±3 39.已知各项均为正数的等比数列{a n }中,a 4与a 14的等比中项为22,则2a 7+a 11的最小值为( )A .16B .8C .22D .440.已知函数f (x )=21+x 2(x ∈R ),若等比数列{a n }满足a 1a 2020=1,则f (a 1)+f (a 2)+f (a 3)+…+f (a 2 020)等于 ( )A .2 020B .1 010C .2D .12题型五 等差与等比数列的综合计算41.已知数列{a n }是等比数列,数列{b n }是等差数列,若a 1·a 6·a 11=-33,b 1+b 6+b 11=7π,则tan b 3+b 91-a 4·a 8的值为( ) A .-3 B .-1 C .-33D .3 42.各项均为正数的数列{a n }和{b n }满足:a n ,b n ,a n +1成等差数列,b n ,a n +1,b n +1成等比数列,且a 1=1,a 2=3,则数列{a n }的通项公式为________.43.(2020·江苏)设{a n }是公差为d 的等差数列,{b n }是公比为q 的等比数列.已知数列{a n +b n }的前n 项和S n =n 2-n +2n -1(n ∈N *),则d +q 的值是________.44.(2017·全国Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .845.设S n 为公比q ≠1的等比数列{a n }的前n 项和,且3a 1,2a 2,a 3成等差数列,则q =_____,S 4S 2=______. 46.公比不为1的等比数列{a n }的前n 项和为S n ,若a 1,a 3,a 2成等差数列,mS 2,S 3,S 4成等比数列,则m =( )A .78B .85C .1D .9547.在公差d <0的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列,则|a 1|+|a 2|+|a 3|+…+|a n |=________.48.已知等差数列{a n }和等比数列{b n }的各项都是正数,且a 1=b 1,a 11=b 11.那么一定有( )A .a 6≤b 6B .a 6≥b 6C .a 12≤b 12D .a 12≥b 1249.已知正项数列{a n }满足a 2n +1-2a 2n -a n +1a n =0,设b n =log 2a n +1a 1,则数列{b n }的前n 项和为( ) A .n B .n (n -1)2 C .n (n +1)2 D .(n +1)(n +2)250.已知等差数列{a n }的公差d ≠0,且a 1,a 3,a 13成等比数列.若a 1=1,S n 是数列{a n }的前n 项和,则2S n +16a n +3(n ∈N *)的最小值为( )A .4B .3C .23-2D .92。
2013最新高考复习专题限时练习:数学第09讲 等差数列与等比数列
[第9讲 等差数列与等比数列]专题限时集训(九)[第9讲 等差数列与等比数列](时间:10分钟+35分钟)1.在等差数列{an }中,已知a 1=1an =39,则n =( ) A .19 B .20 C .21 D .222.已知等比数列{an }的前三项依次为a -1,a +1,a +4,则an =( )A .4·⎝⎛⎭⎫32nB .4·⎝⎛⎭⎫23nC .4·⎝⎛⎭⎫32n -1D .4·⎝⎛⎭⎫23n -1 3.若{an }为等差数列,Sn 是其前n 项和,且S 11=22π3,则tan a 6的值为( )A. 3 B .- 3C .±3D .-334.已知1,a ,b 成等差数列,3,a +2,b +5成等比数列,则等差数列的公差为( ) A .3或-3 B .3或-1 C .3 D .-34.已知等差数列{an }的前n 项和为Sn ,a 3=32,S 3=9,则a 1=( )A.32B.92C .-3D .65.已知等差数列{an }的前n 项和为Sn ,若a 1OA →+a 2011OB →+2OC →=0,且A 、B 、C 三点共线(该直线不过原点),则S 2011=( )A .2011B .2010C .-2011D .-20106.等比数列的首项为1,项数是偶数,所有的奇数项之和为85,所有的偶数项之和为170,则这个等比数列的项数为( )A .4B .6C .8D .107.若两个等差数列{an }和{bn }的前n 项和分别是Sn 和Tn ,已知Sn Tn =7n n +3,则a 5b 5=( )A .7 B.23C.278D.2148.设等比数列{an }的公比为q =12,前n 项和为Sn ,则S 4a 4=________.9.在等比数列{an }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-981a 7+1a 8+1a 9+1a 10=________.10.定义:我们把满足an +an -1=k (n ≥2,k 是常数)的数列叫做等和数列,常数k 叫做数列的公和.若等和数列{an }的首项为1,公和为3,则该数列前2010项的和S 2010=________.11.已知数列{an }的前n 项和为Sn ,且Sn =4an -3(n ∈N *).(1)证明:数列{an }是等比数列;(2)若数列{bn }满足bn +1=an +bn (n ∈N *),且b 1=2,求数列{bn }的通项公式.12.已知等比数列{an }中,a 1=13,公比q =13.(1)Sn 为{an }的前n 项和,证明:Sn =1-an2;(2)设bn =log3a 1+log3a 2+…+log3an ,求数列{bn }的通项公式.专题限时集训(九)【基础演练】1.B 【解析】 依题意,设公差为d ,则由⎩⎪⎨⎪⎧a 1=1,2a 1+4d =10得d =2,所以1+2(n -1)=39,所以n =20,选择B.2.C 【解析】 依题意,(a +1)2=(a -1)(a +4),所以a =5,等比数列首项a 1=4,公比q =32,所以a n =4·⎝⎛⎭⎫32n -1,选择C. 3.B 【解析】 由a 1+a 11=a 2+a 10=…=a 5+a 7=2a 6,可得S 11=11a 6,∴a 6=2π3.tan a 6=-3,选择B.4.C 【解析】 依题意得1+b =2a ,(a +2)2=3(b +5),联立解得a =-2,b =-5(舍)或a =4,b =7,所以该等差数列的公差为3,选择C.【提升训练】1.A 【解析】 S 8-S 3=10,即a 4+a 5+…+a 8=10,根据等差数列的性质得a 6=2.S 11=a 1+a 112×11=11a 6=22.2.C 【解析】 依题意,设公比为q ,则由a 2=12,a 3=14,得q =12,a k =⎝⎛⎭⎫12k -1=164,解得k =7,选择C.3.C 【解析】 依题意,设{a n }公比为q ,则由a 1=1,a 2·a 8=16得,q 8=16,所以a 17=(q 8)2=256,选择C.4.B 【解析】 依题意,设首项为a 1,公差为d ,则⎩⎪⎨⎪⎧a 1+2d =32,3a 1+3d =9,解得a 1=92d=-32,选择B.5.C 【解析】 依题意得a 1+a 2011+2=0,故a 1+a 2011=-2,得S 2011=a 1+a 20112×2011=-2011.6.C 【解析】 设等比数列项数为2n 项,所有奇数项之和为S 奇,所有偶数项之和为S 偶,则S 奇=85,S 偶=170,所以q =2,因此1-4n1-4=85,解得n =4,故这个等比数列的项数为8,选择C.7.D 【解析】 根据等差数列的性质,把a 5b 5转化为S 9T 9.a 5b 5=2a 52b 5=a 1+a 9b 1+b 9=9(a 1+a 9)29(b 1+b 9)2=S9T 9=214.如果两个等差数列{a n }和{b n }的前n 项和分别是S n 和T n ,仿照本题解析的方法一定有关系式a n b n =S 2n -1T 2n -1.8.15 【解析】 S 4a 4=a 1(1+q +q 2+q 3)a 1q 3=1+q +q 2+q3q 315.11.【解答】 (1)证明:由S n =4a n -3,n =1时,a 1=4a 1-3,解得a 1=1. 因为S n =4a n -3,则S n -1=4a n -1-3(n ≥2),所以当n ≥2时,a n =S n -S n -1=4a n -4a n -1, 整理得a n =43a n -1.又a 1=1≠0,所以{a n }是首项为1,公比为43的等比数列.(2)因为a n =⎝⎛⎭⎫43n -1,由b n +1=a n +b n (n ∈N *),得b n +1-b n =⎝⎛⎭⎫43n -1.可得b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1) =2+1-⎝⎛⎭⎫43n -11-43=3·⎝⎛⎭⎫43n -1-1(n ≥2), 当n =1时也满足,所以数列{b n }的通项公式为b n =3·⎝⎛⎭⎫43n -1-1. 12.【解答】 (1)证明:因为a n =13×⎝⎛⎭⎫13n -1=13n ,S n =13⎝⎛⎭⎫1-13n 1-13=1-13n 2所以S n =1-a n2.(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n ) =-n (n +1)2. 所以{b n }的通项公式为b n =-n (n +1)2.。
近6年来高考数列题分析(以全国卷课标Ⅰ为例)
近5年来高考数列题分析(以全国卷课标Ⅰ为例)单的裂项相消法和错位相减法求解数列求和即可。
纵观全国新课标Ⅰ卷、Ⅱ卷的数列试题,我们却发现,新课标卷的数列题更加注重基础,强调双基,讲究解题的通性通法。
尤其在选择、填空更加突出,常常以“找常数”、“找邻居”、“找配对”、“构函数”作为数列问题一大亮点.从2011年至2015年,全国新课标Ⅰ卷理科试题共考查了8道数列题,其中6道都是标准的等差或等比数列,主要考查等差或等比数列的定义、性质、通项、前n项和、某一项的值或某几项的和以及证明等差或等比数列等基础知识。
而文科试题共考查了9道数列题,其中7道也都是标准的等差或等比数列,主要考查数列的性质、求通项、求和、求数列有关基本量以及证明等差或等比数列等基础知识。
1.从试题命制角度看,重视对基础知识、基本技能和基本数学思想方法的考查。
2.从课程标准角度看,要求学生“探索并掌握等差数列、等比数列的通项公式与前n 项和的公式,能在具体问题情境中,发现数列的等差关系或等比关系,并能用有关知识解决相应的问题”。
3.从文理试卷角度看,尊重差异,文理有别,体现了《普通高中数学课程标准(实验)》的基本理念之一“不同的学生在数学上得到不同的发展”。
以全国新课标Ⅰ卷为例,近五年理科的数列试题难度整体上要比文科的难度大一些。
如2012年文科第12题“数列 满足 ,求的前60项和”是一道选择题,但在理科试卷里这道题就命成了一道填空题,对考生的要求自然提高了。
具体来看,全国新课标卷的数列试题呈现以下特点:●小题主要考查等差、等比数列的基本概念和性质以及它们的交叉运用,突出了“小、巧、活”的特点,难度多属中等偏易。
●大题则以数列为引线,与函数、方程、不等式、几何、导数、向量等知识编织综合性强,内涵丰富的能力型试题,考查综合素质,难度多属中等以上,有时甚至是压轴题,难度较大。
(一)全国新课标卷对数列基本知识的考查侧重点1.考查数列的基本运算,主要涉及等差、等比数列的通项公式与前项和公式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等比数列练习题
①在等差数列{}n a 中,若123430a a a a +++=,则23a a += . ②已知数列{}n a 中,1,273==a a ,又数列{
1
1+n a }是等差数列,则_____________11=a 1.等比数列}{n a 中,已知.16,241==a a
(Ⅰ)求}{n a 的通项公式 (Ⅰ)若53,a a 分别为等差数列}{n b 的第3项和第5项,试求数列}{n b 的通项公式及前n 项和n S .
2.设数列{}n a 满足:11a =,13n n a a +=,n N +∈.
(Ⅰ)求{}n a 的通项公式及前n 项和n S
(Ⅰ)已知{}n b 是等差数列,n T 为前n 项和,且12b a =,3123b a a a =++,求20T .
3.等比数列{}n a 的公比为q ,作数列}{n b 使n
n a b 1=
,求证数列}{n b 也是等比数列.
4.在等比数列{}n a 中,212a a -=,且22a 为13a 和3a 的等差中项,求数列{}n a 的首项、公比及前n 项和.
5.已知在公比为实数的等比数列}{n a 中,6543,4,,4a a a a +=且成等差数列。
求数列}{n a 的通项公式.
6.已知数列}{n a 满足:),(1*N n a S n n ∈-=其中n S 为数列}{n a 的前n 项和。
①试求}{n a 的通项公式 ②若数列}{n b 满足:),(*N n a n b n n ∈=
试求n b 的前n 项和n T
7.已知函数()2||f x x =-.无穷数列{}n a 满足1(),*n n a f a n N +=∈.
(1)若10a =,求2a ,3a ,4a ;
(2)若10a >,且1a ,2a ,3a 成等比数列,求1a 的值;
8.若数列}{n a 满足:),(2,1*11N n a a a n n ∈==+则.________6_____;64==S a 项和前
9.数列}{n a 的前n 项和,3a s n n +=要使}{n a 是等比数列,则a 的值为_________
10.在正项等比数列}{n a 中,991a a 、是方程,016102=+-x x 的两个根,则605040a a a ⋅⋅的值为____________
11.等比数列}{n a 的公比2
1=q ,前n 项和为n S ,则=44a S 12.等比数列}{n a 的公比为,0>q 已知,6,1122n n n a a a a =+=++则}{n a 的前4项和=4S
等差等比练习题
1.设n S 为等比数列{}n a 的前n 项和,2580a a +=,则52
S S = A. 1 B. 5 C. 8- D. 11- 2.如果等差数列{}n a 中,34512a a a ++=,那么=7S
A. 14
B. 21
C. 28
D. 35
3.等比数列{}n a 中,12a =,8a =4,函数()128()()
()f x x x a x a x a =---,则=')0(f A .62 B. 92 C. 122 D. 152
4.设数列{}n a 的前n 项和2n S n =,则8a 的值为
A. 15
B. 16
C. 49
D. 64
5.在等比数列{}n a 中,201020078a a = ,则公比q 的值为
A. 2
B. 3
C. 4
D. 8
6.在等比数列{}n a 中,11a =,公比1q ≠.若12345m a a a a a a =,则=m
A. 9
B. 10
C. 11
D. 12
7.已知各项均为正数的等比数列{n a },123a a a =5,789a a a =10,则456a a a = A.25 B. 7 C. 6 D. 42 8.已知数列{n a }的通项为n a n 226-=,若要使此数列的前n 项之和n S 最大,则n 的值是
A. 12
B. 13
C. 12或13
D. 14
9.在等比数列{}n a 中,,5,6,64821=+=⋅<+a a a a a a n n 则
=75a a A. 65 B. 56 C. 32 D. 2
3 10.已知}{n a 是等比数列,,4
1,252==a a 则=⋯+++13221n n a a a a a a A. )41(16n -- B. )21(16n -- C. )41(332n -- D. )21(3
32n --
11.已知等比数列}{n a 的公比为,q 前n 项之和为n S ,且693S S S 、、成等差数列,则=3q
A. 1
B. 21-
C. 211或-
D. 2
11-或 12.等比数列}{n a 的前n 项和为n S ,若
,336=S S 则=69S S A. 2 B. 37 C. 3
8 D. 3
1.已知数列{}n a 的前n 项和为n S ,且585n n S n a =--,*
n N ∈.证明:{}1n a -是等比数列.
2.已知{}n a 是公差不为零的等差数列,11=a ,且931a a a 、、成等比数列.
(Ⅰ)求数列{}n a 的通项; (Ⅱ)求数列}2{n a
的前n 项和n S
3.等差数列{}n a 中,71994,2,a a a == (I )求{}n a 的通项公式 (II )设{}1,.n n n n
b b n S na =
求数列的前项和
4.已知等差数列}{n a 的公差不为零,251=a 且13111a a a 、、成等比数列。
(Ⅰ)求}{n a 的通项公式. (Ⅱ)求.23741-⋯+++n a a a a
5.在公差为d 的等差数列}{n a 中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (Ⅰ)求n a d , (Ⅱ) 若0<d ,求|a 1|+|a 2|+|a 3|+…+|a n | .
6.}{n a 是等差数列,公差,0>d n S 是}{n a 的前n 项和,已知26,40432==S a a (Ⅰ)求数列}{n a 的通项公式n a .
(Ⅱ) 令11+=
n n n a a b ,求数列}{n b 的所有项之和.n T
7.已知数列}{n a 中,,2
11=a 点)2,(1n n a a n -+在直线x y =上,其中⋯=,3,2,1n (Ⅰ)令,11--=+n n n a a b 求证:数列}{n b 是等比数列.
(Ⅱ) 求数列}{n a 的通项.
8.在数列}{n a 中,.22,111n n n a a a +==+
(Ⅰ)设,2
1-=n n n a b 证明:数列}{n b 是等差数列. (Ⅱ)求数列}{n a 的前n 项和.n S
9.设数列}{n a 的前n 项和为.n S 满足,22-=n n a S 数列}{n b 满足点),(1+n n b b P 在直线02=+-y x 上,且11=b
(Ⅰ)求}{n a ,}{n b 的通项.
(Ⅱ)设数列}{n n b a ⋅的前n 项和.n T 求满足167<n T 的最大整数.n。