高中数学函数值域求法总结

合集下载

求函数值域的几种方法

求函数值域的几种方法

解:由于 x 2 - 2x = (x -1) 2 –1 -1 . 1 1 2 y 2 x 2 x , 1 1 . y y x 2x
y 1 1 1 0 , 即 0. y y
解得 y -1 或 y > 0 .
函数的值域为 { y | y -1 或 y > 0 } .
1 1 应有 y 1 . 2 2 1 y x 1 2x 的值域应为 ( , ] , 这 说 明 2 “ 方 法1” 中 所 说 的 “ ( x) 0有 实 根 ” 是 必 要 的 . 1 1 (t 1)2 , 2 2
• •
3. 利用 (x) 的值域求 f [ (x) ] 的值域 如果函数 y = f (x) 是关于 (x) 的复合函数, 而 (x) 的值域是易求的,则可由原函数中先解 出 (x) ,而后由 (x) 的值域确定 f (x) 的值域 .
2 x 4 例3 求 函 数 y 的值域 . x 3
解:由原函数, 得
x y 3y 2 x 4,
3y 4 解得 x . y2 3y 4 4 由于 x 0, 0. y 2 . y2 3
4 函数的值域为[ , 2 ) . 3
1 例 4 求函数 y 2 的值域 . x 2x
又因 f (1) 2 , 函数定义域为 2 , .


6. 利用一元二次方程的根的判别式求一类函数 的值域
例8
x2 2 求函数 y 的 值 域 . 2x2 2 3 x 1
解:去分母得2 y x 2 2 3 y x y x 2 2 ,
(2 y 1) x 2 2 3 y x ( y 2) 0

求函数值域的方法

求函数值域的方法

求函数值域的十种方法前言:求函数是高中数学的一项基本技能,而且在解高中数学题中是常用到的工具之一,由于求函数值域的方法很多,有时技巧要求很高,致使学生产生畏难情绪.我们试图介绍在求函数值域的十种方法,每一种方法各举了若干个典型例子并配以相应练习,以使学生能举一反三,掌握求函数值域这一高中数学的基本技能.这十种方法是1. 部分分式法;2. 配方法;3. 判别式法; 4. 反函数;5. 函数有界性法;6. 函数单调性法;7. 换元法;8. 数形结合法;9. 不等式法;10. 多种方法综合运用一. 部分分式法(分离常数法)(分式且分子、分母中有相似的项,通过该方法可将原函数转化为为)(x f k y ±=(为k 常数)的形式) 例1、求函数12++=x x y 的值域 解:利用恒等变形,得到:111++=x y ,容易观察知x ≠-1,y ≠1,得函数的值域为y ∈(-∞,1)∪(1, +∞)。

注意到分数的分子、分母的结构特点,分离出一个常数后,再通过观察或配方等其他方法易得函数值域。

例2、求函数122+--=x x xx y 的值域。

观察分子、分母中均含有x x -2项,可利用部分分式法;则有43)21(11111122222+--=+--+-=+--=x x x x x x x x x y 不妨令:)0)(()(1)(,43)21()(2≠=+-=x f x f x g x x f 从而)∞+⎢⎣⎡∈,43)(x f 注意:在本题中应排除0)(=x f ,因为)(x f 作为分母。

所以 ⎝⎛⎥⎦⎤∈43,0)(x g 故)1,31⎢⎣⎡-∈y练习.求下列函数的值域:(1) 231--=x x y (2) 1122+-=x x y .答案:(1)值域),(),(3131+∞⋃-∞∈y (2)值域y ∈[-1,1] 例3、求函数])1,1[,,0,0(-∈>>>-+=x b a b a bxa bxa y 的值域。

函数值域的常见求法8大题型(解析版)

函数值域的常见求法8大题型(解析版)

函数值域的求法8大题型命题趋势函数的值域是函数概念中三要素之一,是高考中的必考内容,具有较强的综合性,贯穿整个高中数学的始终。

在高考试卷中的形式千变万化,但万变不离其宗,真正实现了常考常新的考试要求,考生在复习过程中首先要掌握一些简单函数的值域求解的基本方法,其次要多看多练在其他板块中涉及值域类型的内容。

满分技巧一、求函数值域的常见方法1.直接法:对于简单函数的值域问题,可通过基本初等函数的图象、性质直接求解;2.逐层法:求f 1(f 2⋯f n (x ))型复合函数的值域,利用一些基本初等函数的值域,从内向外逐层求函数的值域;3.配方法:配方法是二次型函数值域的基本方法,即形如“y =ax x +bx +c (a ≠0)”或“y =a [f (x )]2+bf (x )+c (a ≠0)”的函数均可用配方法求值域;4.换元法:利用换元法将函数转化为易求值域的函数,常用的换元有(1)y =ax +b cx +d或y =cx +dax +b 的结构,可用“cx +d =t ”换元;(2)y =ax +b ±cx +d (a ,b ,c ,d 均为常数,a ≠0,c ≠0),可用“cx +d =t ”换元;(3)y =bx ±a 2-x 2型的函数,可用“x =a cos θ(θ∈[0,π])”或“x =a sin θθ∈-π2,π2”换元;5.分离常数法:形如y =ax +b cx +d (ac ≠0)的函数,应用分离常数法求值域,即y =ax +b cx +d=ac +bc -adc 2x +d c ,然后求值域;6.基本不等式法:形如y =ax +bx(ab >0)的函数,可用基本不等式法求值域,利用基本不等式法求函数的值域时,要注意条件“一正、二定、三相等”,即利用a +b ≥2ab 求函数的值域(或最值)时,应满足三个条件:①a >0,b >0;②a +b (或ab )为定值;③取等号的条件为a =b ,三个条件缺一不可;7.函数单调性法:确定函数在定义域上的单调性,根据函数单调性求出函数值域(或最值)(1)形如y =ax +b -cx +d (ac <0)的函数可用函数单调性求值域;(2)形如y =ax +bx的函数,当ab >0时,若利用基本不等式等号不能成立时,可考虑利用对勾函数求解;公众号:高中数学最新试题当ab <0时,y =ax +bx在(-∞,0)和(0,+∞)上为单调函数,可直接利用单调性求解。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)
解:由题意知,此框架围成的面积是由一个矩形和一个半圆组成的图形的面积,如图。
文档大全
实用标准
因为CD=AB=2x,所以CDx,所以
2
L2xxx
y2x

22
LABCDL2xx
AD,
22
(2
)
2
2
x
Lx
根据实际问题的意义知
2x
L
0
2x
2
x
0
0x
L
2
2
故函数的解析式为y(2)xLx
2
五、参数型
,定义域(0,
即为所求的定义域。
2
例3已知f(x)的定义域为[-2,2],求f(x1)
的定义域。
2
解:令2x12
2
,得1x3
2
,即0x3
,因此0|x|3,从而
3x3,故函数的定义域是{x|3x3}。
(2)已知f[g(x)]的定义域,求f(x)的定义域。
其解法是:已知f[g(x)]的定义域是[a,b],求f(x)定义域的方法是:由axb,求
恒成立,解得
3
0k;
4
②当k=0时,方程左边=3≠0恒成立。
综上k的取值范围是
四、实际问题型
3
0k。
4
这里函数的定义域除满足解析式外,还要注意问题的实际意义对自变量的限制,这点要
加倍注意,并形成意识。
例7将长为a的铁丝折成矩形,求矩形面积y关于一边长x的函数的解析式,并求函
数的定义域。
1
解:设矩形一边为x,则另一边长为(a2x)
含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之
一,在求函数的值域中同样发挥作用。

高中数学函数定义域值域求法总结

高中数学函数定义域值域求法总结

函数定义域、值域求法总结一。

求函数得定义域需要从这几个方面入手:(1)分母不为零(2)偶次根式得被开方数非负。

(3)对数中得真数部分大于0。

(4)指数、对数得底数大于0,且不等于1(5)y=tanx中x≠kπ+π/2;y=cotx中x≠kπ等等。

( 6 )中x二、值域就是函数y=f(x)中y得取值范围。

常用得求值域得方法: (1)直接法(2)图象法(数形结合)(3)函数单调性法 (4)配方法(5)换元法 (包括三角换元)(6)反函数法(逆求法)(7)分离常数法 (8)判别式法(9)复合函数法 (10)不等式法(11)平方法等等这些解题思想与方法贯穿了高中数学得始终。

定义域得求法1、直接定义域问题例1 求下列函数得定义域:①;②;③解:①∵x—2=0,即x=2时,分式无意义,而时,分式有意义,∴这个函数得定义域就是、②∵3x+2〈0,即x<-时,根式无意义,而,即时,根式才有意义,∴这个函数得定义域就是{|}.③∵当,即且时,根式与分式同时有意义,∴这个函数得定义域就是{|且}另解:要使函数有意义,必须:例2 求下列函数得定义域:①②③④⑤解:①要使函数有意义,必须: 即:∴函数得定义域为: []②要使函数有意义,必须:∴定义域为:{ x|}③要使函数有意义,必须: ⇒∴函数得定义域为:④要使函数有意义,必须:∴定义域为:⑤要使函数有意义,必须:即 x< 或 x〉∴定义域为:2定义域得逆向问题例3若函数得定义域就是R,求实数a得取值范围(定义域得逆向问题)解:∵定义域就是R,∴∴练习: 定义域就是一切实数,则m得取值范围;3复合函数定义域得求法例4 若函数得定义域为[-1,1],求函数得定义域解:要使函数有意义,必须:∴函数得定义域为:例5 已知f(x)得定义域为[—1,1],求f(2x—1)得定义域。

分析:法则f要求自变量在[-1,1]内取值,则法则作用在2x-1上必也要求2x-1在[-1,1]内取值,即-1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域;或者从位置上思考f(2x-1)中2x-1与f(x)中得x位置相同,范围也应一样,∴—1≤2x-1≤1,解出x得取值范围就就是复合函数得定义域。

高中数学:求函数值域的方法十三种(二)

高中数学:求函数值域的方法十三种(二)

高中数学:求函数值域的方法十三种(二)五、判别式法:把函数转化成关于x 的二次方程(,)0F x y =;通过方程有实数根,判别式0∆≥,从而求得原函数的值域,形如21112222a xb xc y a x b x c ++=++(1a 、2a 不同时为零)的函数的值域,常用此方法求解。

(解析式中含有分式和根式。

)【例1】求函数2211x x y x ++=+的值域。

【解析】原函数化为关于x 的一元二次方程,由于x 取一切实数,故有(1)当时,解得:(2)当y=1时,,而故函数的值域为【例2】求函数y x =+的值域。

【解析】两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y 的实际范围大,故不能确定此函数的值域为。

可以采取如下方法进一步确定原函数的值域。

∵代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。

解法二:2(2)1(x 1)y x x x x =+-=+--]2,2[sin 1ππθθ-∈=-x )4sin(21cos sin 1πθθθ++=++=y 4344ππθπ≤+≤-14sin(22≤+≤-πθ原函数的值域为:【例3】已知函数222()1x ax b f x x ++=+的值域为[1,3],求,a b 的值。

【解析】2221x ax by x ++=+22(2)04(y 2)(y b)0y x ax y b a ⇒--+-=⇒∆=---≥2244(2b)y 8b a 0y -++-≤。

由于222()1x ax bf x x ++=+的值域为[1,3],故上式不等式的解集为{y|1≤y≤3}1221221328234y y b a b ab y y +=+=+⎧=±⎧⎪⇒⇒⎨⎨-===⎩⎪⎩【例4】求函数2212+++=x x x y 的值域。

高中数学求值域的若干种方法总结

高中数学求值域的若干种方法总结

值域值域指的是函数因变量(y )的取值范围。

求函数值域在高中学习、考试中算是有一定难度的,而很多初学或者基础相对薄弱的学生往往很爱提到一个词——“带入”。

求值域之所以较难,是因为做题时首先要根据题目判断所需方法、选好方法后又得按照所选方法的步骤一步步进行,远不是一个“带入”能解决的,而且求值域的方法算是比较多的,因此需要大家先要把各个方法对应的题型特征、各个方法的步骤、注意事项、技巧等记清楚。

一、分离常数法——适应于分数形式的函数求值域问题 例1:(1)21()3x f x x +=- (2) 34()56x f x x +=+ (3)3sin 1()sin 2x f x x +=+ 解:]34,2[)(]3,1[2sin 53)(2)(]1,1[sin 065032sin 536552533722sin 56sin 36552518337622sin 1sin 3)()3(6543)()2(312)()1(-∈∴∈+∴≠∴≠∴-∈≠+≠-+-=++=-+=+-+=+++=-+-=++=++=-+=x f x x f x f x x x x x x x x x x x x x x x f x x x f x x x f ΘΘΘ 二、反函数法——适应于分数形式的函数求值域问题例2:(1)312-+=x x y (2) 6543++=x x y (3)11+-=x x e e y解:110115320035021135462131)1(46)35(13)2(1)1(43)65(12)3(11)3(6543)2(312)1(<<-∴>---∴≠∴≠∴>≠-≠----=∴-+-=∴-+=∴--=-∴+-=-∴+=-∴-=+∴+=+∴+=-∴+-=++=-+=y y y y y e y y y y e y y x y y x y e y y x y y x y e e y x x y x x y e e y x x y x x y x x x x x xx ΘΘΘΘΘΘ三、换元法求值域——适用于d cx b ax y +++=或者其他类二次函数形式的问题例3:x x x f x x x f -+=-+=1)(221)(1)()(]45,(]1,(45)21(211)1(1),,0[21),,0[1)0(1)()0(21)(1210,1)2(0,21)1(2222-∞∴-∞∴====+∞∈=+∞∈=≥+-=∴≥+-=∴-=∴-=∴≥∴=-≥∴=-原函数值域为原函数值域为时,当时,当且开口向下对称轴且开口向下对称轴令令解:f t f t t t t t t t f t t t t f t x t x t t x t t x 例4:x x x f xx x f 2cos sin ()2(cos sin )()1(2-=-=)]2,89[]1,45[2)1(11)1(189)41(4145)21(21,]1,1[41,]1,1[21]1,1[12)(]1,1[1)(]1,1[,sin ]1,1[,sin 1sin sin 21sin sin )sin 21(sin )()2()sin 1(sin )()1(222222-∴-∴====-=--=-=--=-∈-=-∈-=-∈-+=∴-∈-+=∴-∈∴=-∈∴=-+=-+=--=--=原函数值域为原函数值域为时,函数取得最大值当时,函数取得最大值当时,函数取得最小值当时,函数取得最小值当且开口向上对称轴且开口向上对称轴令令解:f t f t f t f t t t t t t t f t t t t f t t x t t x x x x x x x x f x x x f 注:三角函数中同幂不同角、同角不同幂时求值域,是不能用辅助角公式的,此时可以用换元法。

高中数学函数值域的求法(9种)

高中数学函数值域的求法(9种)

函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。

常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。

(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。

如函数211xy +=的值域{}10|≤<y y 。

(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。

例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。

(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。

如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。

(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。

(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。

例如:12--+=x x y 。

(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。

如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。

高中数学:求函数值域的10种常见方法

高中数学:求函数值域的10种常见方法

求函数的值域(常用)一、用非负数的性质例1:求下列函数的值域:(1)y=-3x 2+2;(2)≥-1).练1:函数2()1f x x x =+-的最小值是_________________.练2:求函数y =练3:求函数的值域。

练4:(1)232+-=x x y (2)]8,5[,452∈+-=x x x y(3)2234x x y -+-=]2,1[x ,5x 2x y 2-∈+-=二、分离常数法对某些分式函数,可通过分离常数法,化成部分分式来求值域.例1:求下列函数的值域:(1)y=21x x ++(2)y=2211x x -+.练1:求下列函数的值域:(1)13222++=x x y (2)3214222++++=x x x x y三、利用函数单调性已知函数在某区间上具有单调性,那么利用单调性求值域是一种简单的方法. 例1:求函数y=3x+x 3的值域.练1:求函数122+-=xx y ()0>x 的值域.练2:求函数x x y 213--=的值域.四、利用判别式特殊地,对于可以化为关于x 的二次方程a(y)x 2+b(y)x+c(y)=0的函数y=f(x),可利用0()0,a y y x ∆≥≠且求出的最值后,要检验这个最值在定义域是否具有相应的值. 例1:求函数y =234x x +的最值.练1:利用判别式方法求函数222231x x y x x -+=-+的值域.五、利用换元法求值域有时直接求函数值域有困难,我们可通过换元法转化为容易求值域的问题考虑. 例1:求函数的值域。

练1:求()6log 62log 2222++=x x y 的值域.1x x y -+=练2:设02x ≤≤,求函数1()4321x x f x +=-+的值域.练3:求函数的值域.练4:求函数x x y 213--=的值域.六:判别式法例1:求函数的值域。

七、利用数形结合数形结合是解数学问题的重要思想方法之一,求函数值域时其运用也不例外. 例1:若62--=x x y ,求y 的最大、最小值.练1:求函数342+-=x x y 的值域.22x 1x x 1y +++=练2:求函数186122+-++=x x x y 的值域.练3:若(求x-y 的最大、最小值.八、利用已知函数的有界性. 例1:求函数y=25243x x -+的值域.练1:求函数的值域。

高中数学函数值域的种求法总结

高中数学函数值域的种求法总结

高中数学函数值域的种求法总结高中数学中,函数值域是指函数在定义域内所有可能的取值的集合。

求函数值域是解决各类函数问题的重要方法之一、下面将总结高中数学中常用的求函数值域的11种方法。

1.利用定义法:根据函数的定义,直接求解函数的取值范围。

例如,对于函数f(x)=x^2,由于平方永远非负,所以其值域为[0,+∞)。

2. 利用图像法:通过绘制函数的图像,观察图像的上下界即可求得函数的值域。

例如,对于函数 f(x) = sin(x),由于正弦函数的取值范围在[-1, 1]之间,故其值域为[-1, 1]。

3.利用对称性:对于一些具有对称性的函数,可以利用函数的对称性来快速求解其值域。

例如,对于奇函数f(x)=x^3,由于x^3关于原点对称,故其值域为整个实数轴。

4.利用函数的性质:通过函数的特点和性质来求解其值域。

例如,对于指数函数f(x)=a^x,由于指数函数永远大于0,所以其值域为(0,+∞)。

5. 利用最值的求解方法:对于具有最值的函数,可以通过求解最值来确定函数的值域。

例如,对于二次函数 f(x) = ax^2 + bx + c,其中a > 0,由于 a > 0,故二次函数的开口向上,函数的最小值为顶点的 y坐标,可以通过求解顶点坐标来确定函数的值域。

6.利用函数的递增性或递减性:对于递增函数或递减函数,可以根据函数递增性或递减性来求解其值域。

例如,对于递增函数f(x)=2x+1,由于斜率大于零,函数单调递增,故值域为(-∞,+∞)。

7. 利用函数的周期性:对于具有周期性的函数,可以利用函数的周期性来求解其值域。

例如,对于正弦函数 f(x) = sin(x),由于正弦函数的值在一个周期内是重复的,故其值域为 [-1, 1]。

8. 利用函数的复合性:对于复合函数,可以将函数拆解成多个简单的函数,然后求解每个简单函数的值域,最后将值域组合起来得到复合函数的值域。

例如,对于函数 f(x) = sqrt(x^2 + 1),可以拆解成 f(x) = g(h(x)), 其中 g(x) = sqrt(x) 和 h(x) = x^2 + 1,然后求解 g(x) 和h(x) 的值域,最后得到 f(x) 的值域。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式 或不等式组,解此不等式(或组)即得原函数的定义域。

2x2x 15例 1 求函数 y的定义域。

| x 3| 8解:要使函数有意义,则必须满足2x 2x 15 0① | x 3 | 8 0②由①解得 x 3或 x 5。

③由②解得x5或 x 11 ④ ③和④求交集得 x 3且 x 11或 x>5。

故所求函数的定义域为 {x | x 3且x 11} {x | x 5} 。

例 2 求函数1ysin x的定义域。

216 x解:要使函数有意义,则必须满足sin x0 ① 216 x② 由①解得 2kx2k ,kZ③ 由②解得 4 x 4 ④由③和④求公共部分,得4 x 或0 x 故函数的定义域为 ( 4, ] (0, ]评注:③和④怎样求公共部分?你会吗? 二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函 数的定义域求另一个抽象函数的解析式,一般有两种情况。

(1)已知 f (x) 的定义域,求 f[g(x )] 的定义域。

(2)其解法是:已知 f (x) 的定义域是[a ,b ]求 f [g(x)] 的定义域是解 a g(x) b ,即为所求的定义域。

2 例3 已知 f (x) 的定义域为[-2,2],求 f ( x 1)的定义域。

2 解:令 2 x 1 2 2 ,得 1 x 32,即 0x3,因此 0 | x |3 ,从而3 x 3 ,故函数的定义域是 { x | 3 x 3} 。

(2)已知 f [g( x)] 的定义域,求 f(x) 的定义域。

其解法是:已知 f [g(x )] 的定义域是[a , b ],求 f(x) 定义域的方法是:由 a x b ,求g(x)的值域,即所求 f(x) 的定义域。

例 4 已知 f (2x 1) 的定义域为[1,2],求 f(x) 的定义域。

高中数学求函数值域解题方法大全

高中数学求函数值域解题方法大全

高中数学求函数值域解题方法大全高中数学求函数值域解题方法大全一、观察法:从自变量x的范围出发,推出y=f(x)的取值范围。

例1:求函数y=x+1的值域。

解析:由于x≥-1,所以x+1≥0,因此函数y=x+1的值域为[1,+∞)。

例2:求函数y=1/x的值域。

解析:显然函数的定义域为(-∞,0)∪(0,+∞),当x>0时,y>0;当x<0时,y<0.因此函数的值域是:例3:已知函数y=(x-1)-1,x∈{-1,1,2},求函数的值域。

解析:因为x∈{-1,1,2},而f(-1)=f(3)=3,f(2)=-1,f(1)=-∞,所以:y∈{-1,3}。

注意:求函数的值域时,不能忽视定义域,如果该题的定义域为x∈R,则函数的值域为{y|y≥-1}。

二、配方法:配方法式求“二次函数类”值域的基本方法。

形如F(x)=af2(x)+bf(x)+c的函数的值域问题,均可使用配方法。

例1:求函数y=x2-2x+5,x∈[-1,2]的值域。

解析:将函数配方得:y=(x-1)2+4,当x=1∈[-1,2]时,y取得最小值4,当x=-1或x=2时,y取得最大值8,因此函数的值域是:[4,8]。

变式:已知f(x)=ax2+bx+c,其中a>0,且在区间[-1,1]内的最小值为1,求函数在[-2,2]上的最值。

解析:由已知,可得a>0,且f(x)在x=0处取得最小值1,即b=0.又因为在区间[-1,1]内的最小值为1,所以a≤4.将f(x)配方得:f(x)=a(x-1)2+1,当x=-2或x=2时,f(x)取得最大值5a+1;当x=1时,f(x)取得最小值1.因此,当a=4时,函数在[-2,2]上的最值分别为9和17.当a<4时,函数在[-2,2]上的最值分别为1和5a+1.三、其他方法:对于一些特殊的函数,可以采用其他方法求解。

例:已知函数f(x)=sinx+cosx,求函数的值域。

高中数学求值域的10种方法

高中数学求值域的10种方法

求函数值域的十种方法一.直接法(察看法):对于一些比较简单的函数,其值域可经过察看获得。

例 1.求函数y x1的值域。

【分析】∵ x0 ,∴x11,∴函数 y x1的值域为[1,) 。

【练习】1.求以下函数的值域:① y 3x 2( 1 x 1) ;② f ( x)2 4 x ;x;○4y21,0,1,2 。

③ y x 1 1 , xx1【参照答案】① [ 1,5];② [2,);③ (,1)(1,) ;{1,0,3} 。

4二.配方法:合用于二次函数及能经过换元法等转变为二次函数的题型。

形如F (x) af 2 ( x) bf ( x) c 的函数的值域问题,均可使用配方法。

例 2.求函数y x24x 2( x[ 1,1] )的值域。

【分析】y x24x 2( x2)2 6 。

∵ 1 x 1 ,∴ 3 x2 1 ,∴1 (x2)29,∴ 3(x 2)2 6 5 ,∴ 3 y 5。

∴函数 y x24x 2 ( x[ 1,1])的值域为 [3,5]。

例 3 .求函数y2x24x( x0, 4 ) 的值域。

【分析】本题中含有二次函数可利用配方法求解,为便于计算不如设:f (x)x2 4 x( f (x)0) 配方得: f (x)(x2)24(x0, 4 ) 利用二次函数的有关知识得f (x)0, 4,从而得出: y0,2 。

说明:在求解值域 (最值 ) 时,碰到分式、根式、对数式等种类时要注意函数自己定义域的限制,本题为:f ( x)0 。

例 4 .若x 2 y4, x0, y0,试求 lg x lg y 的最大值。

【剖析与解】 本题可当作第一象限内动点P(x, y) 在直线 x 2 y 4 上滑动时函数 lg x lg y lg xy 的最大值。

利用两点(4,0) , (0,2) 确立一条直线,作出图象易得:x (0,4), y (0,2), 而 lg x lg y lg xy lg[ y(4 2y)] lg[ 2( y 1)2 2] ,y=1 时, lg xlg y 取最大值 lg 2 。

高中数学求函数值域的解题方法总结(16种)

高中数学求函数值域的解题方法总结(16种)
构造几何图形,由几何的性质,直观明了、方便简捷。这是数形结合思想的体现。
练习:求函数 y = x2 + 9 + (5 − x)2 + 4 的值域。(答案:{y|y≥ 5 2 })
九、比例法:
对于一类含条件的函数的值域的求法,可将条件转化为比例式,代入目标函 数,进而求出原函数的值域。
例:已知 x,y∈R,且 3x-4y-5=0,求函数 z = x2 + y2 的值域。
例:求函数 y = x - 3 + 2x +1 的值域。 点拨:通过换元将原函数转化为某个变量的二次函数,利用二次函数的最值, 确定原函数的值域。
解:设 t = 2x +1 (t≥0),则
x = t2 -1 。 2
于是 y = t2 -1 - 3 + t = (t +1)2 − 4 ≥ 1 − 4 = − 7 .
( )( ) 例:已知 2x2 - x - 3 3x2 + x +1 ≤ 0 ,且满足 x + y = 1,求函数 z = xy + 3x 的值域。
点拨:根据已知条件求出自变量 x 的取值范围,将目标函数消元、配方,可 求出函数的值域。
解:3x2 + x +1 0 ,上述分式不等式与不等式 2x2 - x - 3 ≤ 0 同解,解之得
3 3 3
3
点评:利用单调性求函数的值域,是在函数给定的区间上,或求出函数隐含的区 间,结合函数的增减性,求出其函数在区间端点的函数值,进而可确定函数的值 域。
练习:求函数 y = 3 + 4 - x 的值域。(答案:{y|y≥3})
七、换元法:
以新变量代替函数式中的某些量,使函数转化为以新变量为自变量的函数形 式,进而求出值域。

函数定义域值域求法(全十一种)

函数定义域值域求法(全十一种)

实用标准高中函数定义域和值域的求法总结一、常规型即给出函数的解析式的定义域求法,其解法是由解析式有意义列出关于自变量的不等式或不等式组,解此不等式(或组)即得原函数的定义域。

例 1求函数 y x 22x15| x 3 |8的定义域。

解:要使函数有意义,则必须满足x 22x150①| x 3 |8 0②由①解得x3或 x 5 。

③由②解得x5或 x11④③和④求交集得x3且 x11或x>5。

故所求函数的定义域为{ x | x 3且x11}{ x | x5} 。

例 2求函数 y sin x1的定义域。

16x 2解:要使函数有意义,则必须满足sin x0①16x 20②由①解得2k x2k,k Z③由②解得 4 x4④由③和④求公共部分,得4x或 0x故函数的定义域为(4, ](0, ]评注:③和④怎样求公共部分?你会吗?二、抽象函数型抽象函数是指没有给出解析式的函数,不能常规方法求解,一般表示为已知一个抽象函数的定义域求另一个抽象函数的解析式,一般有两种情况。

( 1)已知f (x )的定义域,求f [ g(x )]的定义域。

( 2)其解法是:已知 f (x) 的定义域是[a,b]求 f [g(x)] 的定义域是解a g(x) b ,即为所求的定义域。

例 3已知 f (x) 的定义域为[-2, 2],求f ( x 21) 的定义域。

解:令 2 x21 2 ,得 1 x2 3 ,即0 x 23,因此0| x | 3 ,从而3 x 3 ,故函数的定义域是{ x | 3 x3} 。

( 2)已知f [g( x)]的定义域,求f(x) 的定义域。

其解法是:已知 f [g(x )] 的定义域是[a,b],求f(x)定义域的方法是:由a x b,求g(x) 的值域,即所求f(x) 的定义域。

例 4已知 f (2x1) 的定义域为[1,2],求f(x)的定义域。

解:因为 1 x2,22x4,32x 1 5 。

即函数 f(x) 的定义域是{ x | 3x5} 。

高中数学求函数值域的10种常见方法

高中数学求函数值域的10种常见方法

高中数学求函数值域的10种常见方法
一、显函数法:
须先将函数写成显函数的形式,然后通过分析函数表达式的特征,确定其值域。

二、图像法:
一般通过函数的图像来确定其值域,可以在纸上绘制函数的图像,或者利用数学软件进行绘图分析。

三、函数增减性:
通过函数的增减性来确定其值域,即分析函数在定义域上的单调性。

四、函数的周期性:
若函数具有周期性,则值域受周期性的限制。

五、函数的有界性:
若函数在定义域上有上下界,则其值域也受到该有界性的限制。

六、反函数法:
通过求函数的反函数,获得原函数的值域。

七、导数法:
通过求函数的导数,分析其在定义域内的极值和拐点,得出值域的上下界。

八、极限法:
通过求函数在定义域两端的极限,确定函数值域的范围。

九、变量替换法:
可将复杂的函数转化为简单的函数,通过分析简单函数的值域,确定复杂函数的值域。

十、函数值的性质:
根据函数的性质和定义,通过推理和证明,确定函数值域。

以上是求函数值域的十种常见方法,根据不同的题目和函数形式,我们可以选择适用的方法来解决问题。

在实际应用中,经常需要综合运用多种方法来确定函数的值域。

十种求初等函数值域的方法

十种求初等函数值域的方法

十种求初等函数值域的方法函数的值域是函数的三要素之一, 掌握好求函数值域的方法, 对理解函数的概念意义重大, 而函数概念是贯穿于整个高中课程的, 因此, 掌握求函数值域的方法对整个高中数学课程而言, 具有至关重要的意义. 而整个高中课程所讨论的函数几乎全部是初等函数, 所以本文试图对常见的求初等函数值域的方法作一简要总结.一 观察法观察法是最简单的求函数值域的方法, 此法适用于那些形式比较简单的函数, 例如对于函数23+=x y , 显然其值域为),0()0,(+∞⋃-∞∈y .此法虽然简单, 而且对于形式稍显复杂的函数, 此法常难奏效, 但是此法却是求函数值域最基本的方法, 对于其他形式稍繁的函数, 也是通过施加变换, 最终化成形式简单的函数, 从而应用此法求得.二 分离常数法此法常适用于那些分式形式且分子与分母同为一次多项式的函数, 或能够化成上述形式的函数, 即形如dcx b ax y ++=形式的函数. 解决的办法是通过添项或减项, 在分子中分解出与分母相同的式子, 约分后应用观察法即可得函数的值域.例如对于函数231--=x x y , 利用恒等变形, 得到:)23(31312331)23(31--=---=x x x y ,容易观察得出此函数的值域为),(),(3131+∞⋃-∞∈y . 三 配方法对于二次函数, 可利用配方法求解其值域, 对于与二次函数复合而成的函数, 可尝试对二次函数进行配方, 进而利用与其复合的函数的性质求其值域.例1 求函数342-+-=x x ey 的值域.解答: 此题可以看作是u e y =和342-+-=x x u 两个函数复合而成的函数, 对u 配方可得: 1)2(2+--=x u , 得到函数u 的最大值1=u , 再根据u e y =得到y 为增函数且0>y , 故函数342-+-=x xey 的值域为: ],0(e y ∈.四 判别式法此法适用于二次分式形式的函数, 尤其适用于分母为二次多项式的函数, 解决的办法是先将函数化成方程, 即隐函数0),(=y x f 的形式, 再利用一元二次方程的理论求解问题.例2 求函数2212+++=x x x y 的值域.解答: 先将此函数化成隐函数的形式得:012)12(2=-+-+y x y yx, (1)这是一个关于x 的一元二次方程, 原函数有定义, 等价于此方程有解, 即方程(1)的判别式0)12(4)12(2≥---=∆y y y ,解得: 2121≤≤-y .故原函数的值域为: ],[2121-∈y . 五 基本不等式法利用基本不等式ab b a 222≥+和)0,(2>≥+b a ab b a 是求函数值域的常用技巧之一, 利用此法求函数的值域, 要合理地添项和拆项, 添项和拆项的原则是要使最终的乘积结果中不含自变量, 同时, 利用此法时应注意取""=成立的条件.例3 求函数12++=x x y 的值域.解答: 211112≥++==+++x x x x y , 当且仅当1=x 时""=成立. 故函数的值域为),2[+∞∈y .此法可以灵活运用, 对于分母为一次多项式的二次分式, 当然可以运用判别式法求得其值域, 但是若能变通地运用此法, 可以省去判别式法中介二次不等式的过程.例4 求函数1222+++=x x x y 的值域.解答: 此题可以利用判别式法求解, 这里考虑运用基本不等式法求解此题, 此时关键是在分子中分解出)"1("+x 项来, 可以一般的运用待定系数法完成这一工作, 办法是设:22))(1(2++=+++x x c b x x , (2)将上面等式的左边展开, 有:)()1(2c b x b x ++++,故而21=+b , 2=+c b . 解得1=b , 1=c . 从而原函数1111)1)(1()1(+++++++==x x x x x y ;ⅰ)当1->x 时, 01>+x ,011>+x , 此时2≥y , 等号成立, 当且仅当0=x .ⅱ)当1-<x 时, 0)1(>+-x , 011>-+x , 此时有211)1(11)1(11)1)(1(-≤⎥⎦⎤⎢⎣⎡+-+--=+++=++++=x x x x x x x y , 等号成立, 当且仅当2-=x .综上, 原函数的值域为: ),2[]2,(+∞⋃--∞∈y . 六 换元法利用换元改变了原函数表达式的”面貌”, 使原来性质不明显的函数变得清晰, 从而易于求得原函数的值域. 运用换元法时应注意所引进的参数变量的取值范围.例5 求函数x x y 21-+=的值域. 分析: 若设x t 21-=, 则)1(212t x -=(其中),0[+∞∈t ). 原函数变为1)1(21)1(2122+--=+-=t t t y .由于),0[+∞∈t , 故]1,(-∞∈y . 七 反函数法对于存在反函数且易于求得其反函数的函数, 可以利用”原函数的定义域和值域分别为其反函数的值域和定义域”这一性质, 先求出其反函数, 进而通过求其反函数的定义域的方法求原函数的值域.例 6 求函数11+-=x xe e y 的值域.解答: 对于此题来说,我们尝试用反函数方法求解此题. 先证明11xx e e y -+=有反函数, 为此, 设21x x <且R x x ∈21,,0)1)(1(211112121221121<++-=+--+-=-x x x x x x x x e eee ee ee y y .所以y 为减函数, 存在反函数. 可以求得其反函数为:xx y -+-=111ln. 此函数的定义域为)1,1(-∈x , 故原函数的值域为)1,1(-∈y .其实, 此题也可以用分离常数法来解, 这里就不再冗述了. 八 图像法对于一些能够准确画出函数图像的函数来说, 可以先画出其函数图像, 然后利用函数图像求其值域.例 7 求函数13y x x =-+-的值域.分析: 此题首先是如何去掉绝对值,将其做成一个分段函数. 24,(,1],2,(1,3),24,[3,),x x y x x x -+∈-∞⎧⎪=∈⎨⎪-∈+∞⎩在对应的区间内, 画出此函数的图像, 如图1所示, 易得出函数的值域为),2[+∞.九 利用函数的单调性当函数f 在),(b a 上单调, 譬如f 在),(b a 上递增时, 自然有函数f 在),(b a 上的值域为))0(),0((-+b f a f (其中图1y=-2x+4y=2x-4YX4O231)(lim )0(),(lim )0(x f b f x f a f bx ax -+→→=-=+,当+→a x 时,±∞→)(x f 也称其存在,记为)0(+a f ); 若f 在),(b a 上递减, 函数f 在),(b a 上的值域为))0(),0((+-a f b f . 在闭区间],[b a 上也有相应的结论.例 8 求函数x x y --+=863 的值域.分析: 此题可以看作v u y +=和63+=x u ,x v --=8的复合函数, 显然函数63+=x u 为单调递增函数, 易验证x v --=8亦是单调递增函数, 故函数x x y --+=863也是单调递增函数. 而此函数的定义域为]8,2[-.当2-=x 时, y 取得最小值10-.当8=x 时, y 取得最大值30. 故而原函数的值域为]30,10[-.十 利用导数求函数的值域若函数f 在),(b a 内可导, 可以利用导数求得f 在),(b a 内的极值, 然后再计算f 在a ,b 点的极限值. 从而求得f 的值域.例 9 求函数x x x f 3)(3-=在)1,5(-内的值域.分析:显然f 在)3,5(-可导,且33)(2-='x x f . 由0)(='x f 得f 的极值点为1,1-==x x .,2)1(=-f 2)01(-=-f . 140)05(=+-f .所以, 函数f 的值域为)140,2(-.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档