一次函数专题复习

合集下载

一次函数经典复习题

一次函数经典复习题

函数复习题(一)1. 已知一次函数的图象经过点(1,-1)和点(-1,2)。

求这个函数的解析式。

2 一条直线过点A(0,3),B(2,0),求直线的解析式3 已知一次函数y=kx+b中,当x=1时,y=3,当x=-1时,y=7。

求这个函数的解析式。

且求当x=3时,y的值。

4 一次函数的图象经过点(2,1)和(1,5),求出它的解析式5 已知直线y=kx+b经过(9,0)和点(24,20),求这个函数的解析式6 已知直线y=kx+b经过点A(2,5)、(-3,0)。

求这个函数的解析式7 已知一次函数y=kx+b,当x=0时,y=1;当x=1时,y=-1。

求这个函数的解析式8 已知一次函数的图像过点(3,5)与(-4,-9),求这个一次函数的解析式9 某个一次函数的图象分别过点(3,5)和(-4,-9),求这个一次函数的解析式10 已知一次函数y=kx+b ,图像经过点A(2,4),B(0,2)两点,且与x 轴交于点C 。

(1).求这个函数的解析式。

(2).求三角形AOC 的面积11 已知直线L 的图象,能否求出它的解析式?12 如图所示,直线l 是一次函数的图象. (1) 求这个函数的解析式; (2) 当x =4时,y 的值为多少?13 如图,在平面直角坐标系中,已知长方形OABC 的两个顶点坐标为A (3,0),B (3,2),对角线AC 所在的直线为l ,求直线l 的解析式.14 已知一次函数的图象如图所示,求出它的函数关系15 若点A(-4,0)、B(0,5)、C(m,-5)在同一条直线上,求m的值16 若点A(6,-1)、B(1,4)、C(2,m)在一条直线上,则m的值为17 已知点(3,5)、(m,9)、(-4,-9)在同一直线上,(1)求经过以上三点的直线解析式(2)求m的值18 已知一次函数 y=kx+2,当x=5时,y的值为4,求k的值。

19 一次函数y=k x+b的图象过点(1,-1),且与直线y=—2x+5平行,则此一次函数的解析式20 一个一次函数平行于y=2x,且过点(1,5),求其解析式。

(完整版)一次函数知识点复习总结

(完整版)一次函数知识点复习总结
5、函数的解析式:用含有表示自变量的字母的代数式表示因变量的式子叫做函数的解析式
6、函数的图像
一般来说,对于一个函数,如果把自变量与函数的每对对应值分别作为点的横、纵坐标,那么坐标平面内由这些点组成的图形,就是这个函数的图象.
7、描点法画函数图形的一般步骤
第一步:列表(表中给出一些自变量的值及其对应的函数值);
一次函数
(1)函数
1、变量:在一个变化过程中可以取不同数值的量。
常量:在一个变化过程中只能取同一数值的量。
2、函数:一般的,在一个变化过程中,如果有两个变量x和y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么我们就把x称为自变量,把y称为因变量,y是x的函数。
*判断Y是否为X的函数,只要看X取值确定的时候,Y是否有唯一确定的值与之对应
⑶当 , 时,它不是一次函数.
⑷正比例函数是一次函数的特例,一次函数包括正比例函数.
2、正比例函数及性质
一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数.
注:正比例函数一般形式y=kx (k不为零) k不为零 x指数为1 b取零
当k>0时,直线y=kx经过三、一象限,从左向右上升,即随x的增大y也增大;当k<0时, 直线y=kx经过二、四象限,从左向右下降,即随x增大y反而减小.
k<0,y随x的增大而减小。(从左向右下降)
倾斜度
|k|越大,越接近y轴;|k|越小,越接近x轴
图像的
平 移
b>0时,将直线y=kx的图象向上平移 个单位;
b<0时,将直线y=kx的图象向下平移 个单位.
6、直线 ( )与 ( )的位置关系
(3)走向:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限

一次函数专题复习

一次函数专题复习

一次函数专题复习专题一、函数定义1、判断下列变化过程存在函数关系的是( )A.y x ,是变量,x y 2±=B.人的身高与年龄C.三角形的底边长与面积D.速度一定的汽车所行驶的路程与时间2、已知函数12+=x x y ,当a x =时,y = 1,则a 的值为( ) A.1 B.-1 C.3 D.21 3、下列各曲线中不能表示y 是x 的函数是( )。

专题二、正比例函数1、下列各函数中,y 与x 成正比例函数关系的是(其中k 为常数)( )A 、y=3x -2B 、y=(k+1)xC 、y=(|k|+1)xD 、y= x 22、如果y=kx+b ,当 时,y 叫做x 的正比例函数3、一次函数y=kx+k+1,当k= 时,y 叫做x 正比例函数专题三、一次函数的定义1、下列函数关系中,是一次函数的个数是( )①y=1x ②y=x 3 ③y=210-x ④y=x 2-2 ⑤ y=13x +1 A 、1 B 、2 C 、3 D 、42、若函数y=(3-m)x m -9是正比例函数,则m= 。

3、当m 、n 为何值时,函数y=(5m -3)x 2-n +(m+n)(1)是一次函数 (2)是正比例函数专题四、函数的增加性1.已知点A(x 1,y 1)和点B(x 2,y 2)在同一条直线y=kx+b 上,且k <0.若x 1>x 2,则y 1与y 2的关系是( )A.y 1>y 2B.y 1=y 2C.y 1<y 2D.y 1与y 2的大小不确定2、下列函数中,y 随x 的增大而减小的有( )①12+-=x y ②x y -=6③31x y +-=④x y )21(-= A.1个 B.2个 C.3个 D.4个O x y O x y O x y O x y专题五、一次函数与坐标系1.对于一次函数y=-2x+4,y 的值随x 的值增大而 (增大或减少)图象与x 轴交点坐标是 ,与y 轴的交点坐标是 .2. 已知y+4与x 成正比例,且当x=2时,y=1,则当x=-3时,y= .3、若函数y=-x+m 与y=4x -1的图象交于y 轴上一点,则m 的值是( )A. 1-B. 1C. 41- D. 41 4.直线y=x-1与坐标轴交于A 、B 两点,点C 在坐标轴上,△ABC 为等腰三角形,则满足条件的点C 最多有( )个 A .4 B .5 C .7 D .85、已知一次函数y=ax+4与y=bx -2的图象在x 轴上相交于同一点,求的值?6、已知一次函数y=(a -2)x +2a 2-8求:(1)a 为何值时,一次函数的图象经过原点.(2)a 为何值时,一次函数的图象与y 轴交于点(0,10).专题六、待定系数法求一次函数解析式1. 若一次函数的图象经过点A(-3,0),B(0,1),则这个函数的解析式为 .2.如图,一次函数y=kx+b 的图象经过A 、B 两点,与x 轴相交于C 点.求: (1)直线AC 的函数解析式; (2)设点(a ,-2)在这个函数图象上,求a 的值;3、(2007甘肃陇南) 如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:(1)求整齐摆放在桌面上饭碗的高度y (cm )与饭碗数x (个)之间的一次函数解析式;(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?4、(2007福建晋江)东从A 地出发以某一速度向B 地走去,同时小明从B 地出发以另一速度向A 地而行,如图所示,图中的线段1y 、2y 分别表示小东、小明离B 地的距离(千米)与所用时间(小时)的关系。

一次函数总复习

一次函数总复习

第二十一章 一次函数总复习【基础知识汇总】1、正比例函数:一般表达式y=kx (k 为常数且k ≠0);图像为过(0,0)与(1,k )的一条直线2、一次函数:一般表达式y=kx+b (k 、b 为常数,且k ≠0);图像是一条经过(0,k b -)与(0,b )的直线。

其中(0,kb -)为直线与x 轴交点,(0,b )为直线与y 轴交点。

对一次函数(包括正比例函数)的基本要求:必须为整式函数,自变量项的系数k 不为0,自变量的最高指数为1。

3、一次函数图像与坐标轴围成的三角形的面积:如右图所示: S △AOB=2OBOA ⋅=2b kb ⋅- 4、k 、b 与图像所在象限及增减性:k>0,图象经过第一、三象限;k<0,图象经过第二、四象限 b>0,图象经过第一、二象限;b<0,图象经过第三、四象限⇔⎩⎨⎧>>00b k 直线经过第一、二、三象限 ⇔⎩⎨⎧<>00b k 直线经过第一、三、四象限⇔⎩⎨⎧><0b k 直线经过第一、二、四象限 ⇔⎩⎨⎧<<0b k 直线经过第二、三、四象限增减性: k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小.b>0 b<0 b=0k>0经过第一、二、三象限经过第一、三、四象限 经过第一、三象限图象从左到右上升,y 随x 的增大而增大k<0经过第一、二、四象限经过第二、三、四象限 经过第二、四象限图象从左到右下降,y 随x 的增大而减小5、倾斜度:|k|越大,图象越接近于y 轴;|k|越小,图象越接近于x 轴.若两直线k 值相同,则两直线平行。

6、图像的平移: 当b>0时,将直线y=kx 的图象向上平移b 个单位;当b<0时,将直线y=kx 的图象向下平移b 个单位 7、用待定系数法确定函数解析式的一般步骤:(1)根据已知条件写出含有待定系数的函数关系式;(2)将x 、y 的几对值或图象上的几个点的坐标代入函数关系式中得到以待定系数为未知数的方程; (3)解方程得出未知系数的值;(4)将求出的待定系数代回所求的函数关系式中得出所求函数的解析式。

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

2024年中考数学一轮复习考点精讲课件—一次函数的图象与性质

的.由此可知直线y=kx+b(k≠0,b≠0)与直线y=kx(k≠0)平行.
4)一次函数与正比例函数有着共同的性质:
①当k>0时,y的值随x值的增大而增大;②当k<0时,y的值随x值的增大而减小.
考点二 一次函数的图象与性质
1. 正比例函数y= kx中,|k|越大,直线y= kx越靠近y轴;反之,|y|越小,直线y= kx越靠近x轴.
C.3
D.−3或3
∴9 = 2 ,∴ = ±3,又∵正比例函数 = 的图象经过第二、
∴ < 0,∴ = −3,故选:B.
【对点训练1】(2023·浙江杭州·统考一模)已知 − 与 − 1成正比例,且当 = −2时, = 3.若关
于的函数图象经过二、三、四象限,则m的取值范围为(
用待定系数法求一次函数表达式的一般步骤:
1)设出函数的一般形式y=kx(k≠0)或y=kx+b(k≠0);
2)根据已知条件(自变量与函数的对应值)代入表达式得到关于待定系数的方程或方程组;
3)解方程或方程组求出k,b的值;
4)将所求得的k,b的值代入到函数的一般形式中,从而得到一次函数解析式.
考点二 一次函数的图象与性质
两点即可,
图象确定
b
k
1)画一次函数的图象,只需过图象上两点作直线即可,一般取(0,b),(− ,0)两点;
2)画正比例函数的图象,只要取一个不同于原点的点即可.
考点二 一次函数的图象与性质
三、k,b的符号与直线y=kx+b(k≠0)的关系


在直线y=kx+b(k≠0)中,令y=0,则x=− ,即直线y=kx+b与x轴交于(− ,0)
综上所述,0 > 1 > 2

一次函数知识点总复习含答案解析

一次函数知识点总复习含答案解析

一次函数知识点总复习含答案解析一、选择题1.如图,矩形ABOC 的顶点坐标为()4,5-,D 是OB 的中点,E 为OC 上的一点,当ADE ∆的周长最小时,点E 的坐标是( )A .40,3⎛⎫ ⎪⎝⎭B .50,3⎛⎫ ⎪⎝⎭C .()0,2D .100,3⎛⎫ ⎪⎝⎭【答案】B【解析】【分析】 作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;E 点坐标即为直线A'D 与y 轴的交点.【详解】解:作点A 关于y 轴的对称点A',连接A'D ,此时△ADE 的周长最小值为AD+DA'的长;∵A 的坐标为(-4,5),D 是OB 的中点,∴D (-2,0),由对称可知A'(4,5),设A'D 的直线解析式为y=kx+b ,5402k b k b =+⎧∴⎨=-+⎩5653k b ⎧=⎪⎪∴⎨⎪=⎪⎩5563y x ∴=+ 当x=0时,y=53 50,3E ⎛⎫∴ ⎪⎝⎭故选:B【点睛】本题考查矩形的性质,线段的最短距离;能够利用轴对称求线段的最短距离,将AE+DE 的最短距离转化为线段A'D 的长是解题的关键.2.已知过点()2?3,-的直线()0y ax b a =+≠不经过第一象限.设s a 2b =+,则s 的取值范围是( )A .352s -≤≤-B .362s -<≤-C .362s -≤≤-D .372s -<≤- 【答案】B【解析】 试题分析:∵过点()2?3,-的直线()0y ax b a =+≠不经过第一象限, ∴0{023a b a b <≤+=-.∴23b a =--. ∵s a 2b =+,∴4636s a a a =--=--.由230b a =--≤得399333662222a a a ≥-⇒-≤⇒--≤-=-,即32s ≤-. 由0a <得3036066a a ->⇒-->-=-,即6s >-. ∴s 的取值范围是362s -<≤-. 故选B.考点:1.一次函数图象与系数的关系;2.直线上点的坐标与方程的关系;3.不等式的性质.3.正比例函数y =kx 与一次函数y =x ﹣k 在同一坐标系中的图象大致应为( ) A . B . C . D .【答案】B【解析】【分析】根据图象分别确定k 的取值范围,若有公共部分,则有可能;否则不可能.【详解】根据图象知:A 、k <0,﹣k <0.解集没有公共部分,所以不可能;B 、k <0,﹣k >0.解集有公共部分,所以有可能;C 、k >0,﹣k >0.解集没有公共部分,所以不可能;D 、正比例函数的图象不对,所以不可能.故选:B .【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b 的图象的四种情况是解题的关键.4.已知点M (1,a )和点N (3,b )是一次函数y =﹣2x+1图象上的两点,则a 与b 的大小关系是( )A .a >bB .a =bC .a <bD .无法确定【答案】A【解析】【分析】根据一次函数的图像和性质,k <0,y 随x 的增大而减小解答.【详解】解:∵k =﹣2<0,∴y 随x 的增大而减小,∵1<3,∴a >b .故选A .【点睛】考查了一次函数图象上点的坐标特征,利用一次函数的增减性求解更简便.5.下列函数中,y 随x 的增大而增大的函数是( )A .2y x =-B .21y x =-+C .2y x =-D .2y x =--【答案】C【解析】【分析】根据一次函数的性质对各选项进行逐一分析即可.【详解】∵y=-2x 中k=-2<0,∴y 随x 的增大而减小,故A 选项错误;∵y=-2x+1中k=-2<0,∴y 随x 的增大而减小,故B 选项错误;∵y=x-2中k=1>0,∴y 随x 的增大而增大,故C 选项正确;∵y=-x-2中k=-1<0,∴y 随x 的增大而减小,故D 选项错误.故选C .【点睛】本题考查的是一次函数的性质,一次函数y=kx+b (k≠0)中,当k >0时y 随x 的增大而增大;k<0时y 随x 的增大而减小;熟练掌握一次函数的性质是解答此题的关键.6.下列关于一次函数()0,0y kx b k b =+<>的说法,错误的是( )A .图象经过第一、二、四象限B .y 随x 的增大而减小C .图象与y 轴交于点()0,bD .当b x k >-时,0y > 【答案】D【解析】【分析】由k 0<,0b >可知图象经过第一、二、四象限;由k 0<,可得y 随x 的增大而减小;图象与y 轴的交点为()0,b ;当b x k >-时,0y <; 【详解】∵()0,0y kx b k b =+<>,∴图象经过第一、二、四象限,A 正确;∵k 0<,∴y 随x 的增大而减小,B 正确;令0x =时,y b =,∴图象与y 轴的交点为()0,b ,∴C 正确;令0y =时,b x k =-, 当b x k>-时,0y <; D 不正确;故选:D .【点睛】本题考查一次函数的图象及性质;熟练掌握一次函数解析式y kx b =+中,k 与b 对函数图象的影响是解题的关键.7.如图,在矩形ABCD 中,2AB =,3BC =,动点P 沿折线BCD 从点B 开始运动到点D .设运动的路程为x ,ADP ∆的面积为y ,那么y 与x 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+,由此即可判断.【详解】由题意当03x ≤≤时,3y =,当35x <<时,()131535222y x x =⨯⨯-=-+, 故选D .【点睛】本题考查动点问题的函数图象,解题的关键是理解题意,学会用分类讨论是扇形思考问题.8.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )A .4个B .3个C .2个D .1个 【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y =x 是一次函数,符合题意;(2)y =2x ﹣1是一次函数,符合题意;(3)y =1x是反比例函数,不符合题意; (4)y =2﹣3x 是一次函数,符合题意;(5)y =x 2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B .【点睛】 此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.9.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】 解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; 故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键. 10.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3),∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.11.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )A .x <﹣2B .﹣2<x <﹣1C .x <﹣1D .x >﹣1【答案】B【解析】【分析】 由图象得到直线y=kx+b 与直线y=4x+2的交点A 的坐标(-1,-2)及直线y=kx+b 与x 轴的交点坐标,观察直线y=4x+2落在直线y=kx+b 的下方且直线y=kx+b 落在x 轴下方的部分对应的x的取值即为所求.【详解】∵经过点B(﹣2,0)的直线y=kx+b与直线y=4x+2相交于点A(﹣1,﹣2),∴直线y=kx+b与直线y=4x+2的交点A的坐标为(﹣1,﹣2),直线y=kx+b与x轴的交点坐标为B(﹣2,0),又∵当x<﹣1时,4x+2<kx+b,当x>﹣2时,kx+b<0,∴不等式4x+2<kx+b<0的解集为﹣2<x<﹣1.故选B.【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.12.某生物小组观察一植物生长,得到的植物高度y(单位:厘米)与观察时间x(单位:天)的关系,并画出如图所示的图象(AC是线段,直线CD平行于x轴).下列说法正确的是().①从开始观察时起,50天后该植物停止长高;②直线AC的函数表达式为165y x=+;③第40天,该植物的高度为14厘米;④该植物最高为15厘米.A.①②③B.②④C.②③D.①②③④【答案】A【解析】【分析】①根据平行线间的距离相等可知50天后植物的高度不变,也就是停止长高;②设直线AC的解析式为y=kx+b(k≠0),然后利用待定系数法求出直线AC线段的解析式,③把x=40代入②的结论进行计算即可得解;④把x=50代入②的结论进行计算即可得解.【详解】解:∵CD∥x轴,∴从第50天开始植物的高度不变,故①的说法正确;设直线AC 的解析式为y=kx+b (k≠0),∵经过点A (0,6),B (30,12),∴30126k b b +=⎧⎨=⎩, 解得:156k b ⎧=⎪⎨⎪=⎩,∴直线AC 的解析式为165y x =+(0≤x≤50), 故②的结论正确;当x=40时,1406145y =⨯+=, 即第40天,该植物的高度为14厘米;故③的说法正确;当x=50时,1506165y =⨯+=, 即第50天,该植物的高度为16厘米;故④的说法错误.综上所述,正确的是①②③.故选:A.【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.13.在一条笔直的公路上有A 、B 两地,甲乙两人同时出发,甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,到达A 地后立即按原路返回B 地.如图是甲、乙两人离B 地的距离(km)y 与行驶时间(h)x 之间的函数图象,下列说法中①A 、B 两地相距30千米;②甲的速度为15千米/时;③点M 的坐标为(23,20);④当甲、乙两人相距10千米时,他们的行驶时间是49小时或89小时. 正确的个数为( )A.1个B.2个C.3个D.4个【答案】C【解析】【分析】根据题意,确定①-③正确,当两人相距10千米时,应有3种可能性.【详解】解:根据题意可以列出甲、乙两人离B地的距离y(km)与行驶时间x(h)之间的函数关系得:y甲=-15x+30y乙=()() 3001306012x xx x⎧≤≤⎪⎨-+≤≤⎪⎩由此可知,①②正确.当15x+30=30x时,解得x=2 , 3则M坐标为(23,20),故③正确.当两人相遇前相距10km时,30x+15x=30-10x=49,当两人相遇后,相距10km时,30x+15x=30+10,解得x=8 915x-(30x-30)=10得x=4 3∴④错误.选C.【点睛】本题为一次函数应用问题,考查学生对于图象分析能力,解答时要注意根据两人运动状态分析图象得到相应的数据,从而解答问题.14.若正比例函数y =kx 的图象经过第二、四象限,且过点A (2m ,1)和B (2,m ),则k 的值为( ) A .﹣12B .﹣2C .﹣1D .1【答案】A 【解析】 【分析】根据函数图象经过第二、四象限,可得k <0,再根据待定系数法求出k 的值即可. 【详解】解:∵正比例函数y =kx 的图象经过第二、四象限, ∴k <0.∵正比例函数y =kx 的图象过点A (2m ,1)和B (2,m ), ∴2km 12k m =⎧⎨=⎩,解得:m 11k 2=-⎧⎪⎨=-⎪⎩或m 11k 2=⎧⎪⎨=⎪⎩(舍去).故选:A . 【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.15.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫-⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元【答案】C【分析】设购买A型瓶x个,B(253x-)个,由题意列出算式解出个选项即可判断.【详解】设购买A型瓶x个,∵买瓶子用来分装15升油,瓶子都装满,且无剩油,∴购买B型瓶的个数是1522533xx -=-,∵瓶子的个数为自然数,∴x=0时,253x-=5; x=3时,253x-=3; x=6时,253x-=1;∴购买B型瓶的个数是(253x-)为正整数时的值,故A成立;由上可知,购买A型瓶的个数为0个或3个或6个,所以购买A型瓶的个数最多为6,故B成立;设购买A型瓶x个,所需总费用为y元,则购买B型瓶的个数是(253x-)个,④当0≤x<3时,y=5x+6×(253x-)=x+30,∴k=1>0,∴y随x的增大而增大,∴当x=0时,y有最小值,最小值为30元;②当x≥3时,y=5x+6×(253x-)-5=x+25,∵.k=1>0随x的增大而增大,∴当x=3时,y有最小值,最小值为28元;综合①②可得,购买盒子所需要最少费用为28元.故C不成立,D成立故选:C.【点睛】本题考查一次函数的应用,关键在于读懂题意找出关系式.16.一次函数 y = mx +1m-的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为()A.-1 B.3 C.1 D.- 1 或 3【答案】B【解析】【分析】先根据函数的增减性判断出m的符号,再把点(0,2)代入求出m的值即可.∵一次函数y=mx+|m-1|中y 随x 的增大而增大, ∴m >0.∵一次函数y=mx+|m-1|的图象过点(0,2), ∴当x=0时,|m-1|=2,解得m 1=3,m 2=-1<0(舍去). 故选B . 【点睛】本题考查的是一次函数图象上点的坐标特点及一次函数的性质,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17.如图,一次函数y kx b =+的图象经过点03()4)3(A B -,,,,则关于x 的不等式3 0kx b ++<的解集为( )A .4x >B .4x <C .3x >D .3x <【答案】A 【解析】 【分析】由30kx b ++<即y<-3,根据图象即可得到答案. 【详解】∵y kx b =+,30kx b ++<, ∴kx+b<-3即y<-3,∵一次函数y kx b =+的图象经过点B(4,-3), ∴当x=4时y=-3,由图象得y 随x 的增大而减小,当4x >时,y<-3, 故选:A. 【点睛】此题考查一次函数的性质,一次函数与不等式,正确理解函数的性质、会观察图象是解题的关键.18.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤D .112b -≤≤【答案】B 【解析】 【分析】将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围. 【详解】 解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1.故选B . 【点睛】考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.19.若实数a 、b 、c 满足a+b+c=0,且a <b <c ,则函数y=ax+c 的图象可能是( )A .B .C .D .【答案】A【解析】【分析】∵a+b+c=0,且a<b<c,∴a<0,c>0,(b的正负情况不能确定也无需确定).a<0,则函数y=ax+c图象经过第二四象限,c>0,则函数y=ax+c的图象与y轴正半轴相交,观察各选项,只有A选项符合.故选A.【详解】请在此输入详解!20.某班同学从学校出发去太阳岛春游,大部分同学乘坐大客车先出发,余下的同学乘坐小轿车20分钟后出发,沿同一路线行驶.大客车中途停车等候5分钟,小轿车赶上来之后,大客车以原速度的107继续行驶,小轿车保持速度不变.两车距学校的路程S(单位:km)和大客车行驶的时间t(单位:min)之间的函数关系如图所示.下列说法中正确的个数是()①学校到景点的路程为40km;②小轿车的速度是1km/min;③a=15;④当小轿车驶到景点入口时,大客车还需要10分钟才能到达景点入口.A.1个B.2个C.3个D.4个【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可知,学校到景点的路程为40km,故①正确,小轿车的速度是:40÷(60﹣20)=1km/min,故②正确,a=1×(35﹣20)=15,故③正确,大客车的速度为:15÷30=0.5km/min,当小轿车驶到景点入口时,大客车还需要:(40﹣15)÷10(0.5)7﹣(40﹣15)÷1=10分钟才能达到景点入口,故④正确,故选D.【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.。

中考数学总复习《一次函数》专项测试卷带答案

中考数学总复习《一次函数》专项测试卷带答案

中考数学总复习《一次函数》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为( )A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为( )A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是( )A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( )A.x=2B.x=0C.x=-1D.x=-35.(2024·北海模拟)直线y=kx+3经过点A(2,1),则不等式kx+3≥0的解集是( )A.x≤3B.x≥3C.x≥-3D.x≤06.(2024·青海)如图,一次函数y=2x-3的图象与x轴相交于点A,则点A关于y轴的对称点是( )A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是( )A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为( )A.y =12-0.5xB.y =12+0.5xC.y =10+0.5xD.y =0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式 .10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为( )A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为.13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.参考答案A层·基础过关1.(2024·南宁模拟)若直线y=kx(k是常数,k≠0)经过第一、第三象限,则k的值可为(D)A.-2B.-1C.-1D.222.(2024·玉林模拟)将直线y=5x+1向下平移2个单位长度,所得直线的解析式为(B)A.y=5x-2B.y=5x-1C.y=5x+3D.y=5(x-1)3.(2024·崇左模拟)已知一次函数y=(m+1)x+5,y随x的增大而减小,则m的取值范围是(D)A.m≤-1B.m>-1C.m≥-1D.m<-14.(2024·桂林模拟)如图,直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是(D)A .x =2B .x =0C .x =-1D .x =-35.(2024·北海模拟)直线y =kx +3经过点A (2,1),则不等式kx +3≥0的解集是(A) A .x ≤3 B .x ≥3 C .x ≥-3 D .x ≤06.(2024·青海)如图,一次函数y =2x -3的图象与x 轴相交于点A ,则点A 关于y 轴的对称点是(A)A .(-32,0) B .(32,0) C .(0,3) D .(0,-3)7.对于某个一次函数y =kx +b (k ≠0),根据两位同学的对话得出的结论,错误的是(C)A .k >0B .kb <0C .k +b >0D .k =-12b8.一种弹簧秤最大能称不超过10 kg 的物体,不挂物体时弹簧的长为12 cm,每挂重1 kg 物体,弹簧伸长0.5 cm,在弹性限度内,挂重后弹簧的长度y (cm)与所挂物体的质量x (kg)之间的函数关系式为(B)A.y=12-0.5xB.y=12+0.5xC.y=10+0.5xD.y=0.5x9.(2024·包头)在平面直角坐标系中,若一次函数的图象经过第一、二、三象限,请写出一个符合该条件的一次函数的解析式y=x+1(答案不唯一).10.(2024·包头)如图是1个碗和4个整齐叠放成一摞的碗的示意图,碗的规格都是相同的.小亮尝试结合学习函数的经验,探究整齐叠放成一摞的这种规格的碗的总高度y(单位: cm)随着碗的数量x(单位:个)的变化规律.下表是小亮经过测量得到的y与x之间的对应数据:x/个1234y/cm68.410.813.2(1)依据小亮测量的数据,写出y与x之间的函数解析式,并说明理由;【解析】(1)由表中的数据,x的增加量不变∴y是x的一次函数设y=kx+b由题意得:{k+b=62k+b=8.4,解得:{k=2.4 b=3.6∴y与x之间的函数解析式为y=2.4x+3.6;(2)若整齐叠放成一摞的这种规格的碗的总高度不超过28.8 cm,求此时碗的数量最多为多少个?【解析】(2)设碗的数量有x个,则:2.4x+3.6≤28.8,解得:x≤10.5,∴x的最大整数解为10答:碗的数量最多为10个.B层·能力提升x+3分别与x轴,y轴交于点A,B,将△OAB绕着11.(2024·桂林模拟)如图,直线y=-32点A顺时针旋转90°得到△CAD,则点B的对应点D的坐标为(C)A.(2,5)B.(3,5)C.(5,2)D.(√13,2)12.(2024·柳州模拟)在平面直角坐标系中,点A1,A2,A3,A4…在x轴的正半轴上,点B1,B2,B3…在直线y=√3x(x≥0)上,若点A1的坐标为(2,0),且3△A1B1A2,△A2B2A3,△A3B3A4…均为等边三角形,则点B2 025的坐标为(3×22 024,√3×22 024).13.在“探索一次函数y=kx+b的系数k,b与图象的关系”活动中,老师给出了直角坐标系中的三个点:A(0,2),B(2,3),C(3,1).同学们画出了经过这三个点中每两个点的一次函数的图象,并得到对应的函数解析式y1=k1x+b1,y2=k2x+b2,y3=k3x+b3.分别计算k1+b1,k2+b2,k3+b3的值,其中最大的值等于5.C层·挑战冲A+14.(2024·广州)一个人的脚印信息往往对应着这个人某些方面的基本特征.某数学兴趣小组收集了大量不同人群的身高和脚长数据,通过对数据的整理和分析,发现身高y和脚长x之间近似存在一个函数关系,部分数据如表:脚长x(cm)…232425262728…身高y(cm)…156163170177184191…(1)在图1中描出表中数据对应的点(x,y);【解析】(1)描点如图所示:(2)根据表中数据,从y=ax+b(a≠0)和y=k(k≠0)中选择一个函数模型,使它能近似地x反映身高和脚长的函数关系,并求出这个函数的解析式(不要求写出x的取值范围);【解析】(2)∵y=kx(k≠0)转化为k=xy=23×156≠24×163≠25×170≠…∴y与x的函数不可能是y=kx故选一次函数y=ax+b(a≠0),将点(23,156),(24,163)代入解析式得:{23a+b=15624a+b=163,解得{a=7 b=−5∴一次函数解析式为y=7x-5.(3)如图2,某场所发现了一个人的脚印,脚长约为25.8 cm,请根据(2)中求出的函数解析式,估计这个人的身高.【解析】(3)当x=25.8时,y=7×25.8-5=175.6.答:脚长约为25.8 cm时,估计这个人的身高为175.6 cm.。

一次函数复习与练习题(专题练习)

一次函数复习与练习题(专题练习)

一次函数专题复习一、一次函数解析式问题1.已知一次函数y=kx+b(k≠0)在x=1时,y=5,且它的图象与x 轴交点的横坐标是6,求这个一次函数的解析式。

2.已知2y -3与3x +1成正比例,且x=2时,y=5,(1)求y 与x 之间的函数关系式,并指出它是什么函数;(2)若点(a ,2)在这个函数的图象上,求a .3.若一次函数y=kx+b 的自变量x 的取值范围是-2≤x≤6,相应的函数值的范围是-11≤y≤9, 求此函数的解析式。

4.某一次函数的图象与直线y=6-x 交于点A (5,k ),且与直线y=2x-3无交点,求此函数的关系式.5.如图,直线的解析表达式为,且与轴交于点,直线经过点,直线、交于点.(1)求点的坐标;(2)求直线的解析表达式;(3)求的面积;(4)在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.6.如图,折线ABC 是在某市乘出租车所付车费y (元)与行车里程x (km )之间的函数关系图象. ①根据图象,写出该图象的函数关系式;②某人乘坐2.5km ,应付多少钱?③某人乘坐13km ,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?二、次函数平移问题1. 直线y=2x+1向上平移4个单位得到直线 ;直线y=-3x+5向下平移6个单位得到直线 .1l 33y x =-+1l x D 2l AB ,1l 2lCD 2l ADC △2l C P ADP △ADC △P2. 直线y=5x-3向左平移2个单位得到直线 ; 直线y=-x-2向右平移3个单位得到直线 .3.把函数y=3x+1的图像向右平移2个单位再向上平移3个单位,可得函数是____________; 规律总结:“上加下减在末梢,左加右减在括号”.4. 过点(2,-3)且平行于直线y=-3x+1的直线是___________.5.已知直线y=kx+b 与直线y= -3x+7关于y 轴对称,求k 、b 的值。

八年级数学下册《一次函数》期末专题复习

八年级数学下册《一次函数》期末专题复习

八年级数学下册《一次函数》期末专题复习【基础知识回顾】一、 一次函数的定义: 一般的:如果y= ( )即y 叫x 的一次函数特别的:当b=时,一次函数就变为y=kx(k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】 二、一次函数的图象及性质:1、一次函数y=kx+b 的图象是经过点(0,b )(-,0)的一条正比例函数y= kx 的图象是经过点 和 的一条直线 【名师提醒:图为一次函数的图象是一条直线,所以画函数图象只取 个特殊的点,过这两个点画一条直线即可】 2、正比例函数y= kx(k ≠0当k >0时,其图象过 、 象限,时y 随x 的增大而 当k<0时,其图象过 、 象限,时y 随x 的增大而3、 一次函数y= kx+b ,图象及函数性质 ①、k >0 b >0过 象限k >0 b<0过 象限 k<0 b >0过 象限 k<0 b >0过 象限4、若直线y= k 1x+ b 1与l1y= k 2x+ b 2平行,则k 1 k 2,若k 1≠k 2,则l 1与l 2【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移,只改变 的值 的值不变】 三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b 中的字母 与 的值 步骤:1、设一次函数表达式2、将x ,y 的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的系数代入等设函数表达式中四、一次函数与一元一次方程,一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 解一元一次方程求直线与坐标轴的交点坐标,代入y= kx+ b 中。

2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x 的取值范围,反之也成立。

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。

专题 一次函数-2023年中考数学第一轮总复习课件(全国通用)

专题 一次函数-2023年中考数学第一轮总复习课件(全国通用)

一次函数
知识梳理
强化 训练
当堂训练
一次函数的图象与性质
查漏补缺
1.直线y=kx+b满足kb>0,且y随x的增大而减小,则此函数的图象不经过( C )
A.第四象限 B.第三象限 C.第一象限 D.第二象限
2.一次函数y=kx-1的图象经过点P,且y的值随x值的增大而增大,则点P的坐
标可以为( C ) A.(-5,3)
①k1x+b1=0 ②k2x+b2=1 ③k1x+b1=k2x+b2
x=2 x=3 x=3
y D(0,4) y1=k1x+b1
A(3,1)
④k1x+b1≤-2 ⑤k2x+b2<4 ⑥k1x+b1>k2x+b2
x≤0 x>0 x>3
E(4,0)
O B(2,0)
x
C(0,-2) y2=k2x+b2
典例精讲 一次函数与方程(不等式) 知识点三
【例3】(1)如图,一次函数y=ax+b的图象与x轴交于点(2,0),与y轴相交于
点(0,4),结合图象可知,关于x的方程ax+b=0的解是_x_=_2__.
y
解:∵一次函数y=ax+b的图象与x轴相交于点(2,0), ∴关于x的方程ax+b=0的解是x=2.
4 y=ax+b
O2 x
01 一次函数的图象及性质
把两组对应值(自变量与函数的对应值)代入解析式,得到关 于系数k,b的二元一次方程组;
步骤 解 解二元一次方程组,求出系数k,b的值;
还原 将求得的待定系数的值代入y=kx+b.
已知两点坐标确定函数解析式 常见 已知两组函数对应值确定函数解析式 类型 经过直线与平移规律确定函数解析式.

中考专题复习:一次函数

中考专题复习:一次函数

中考专题复习:一次函数一.选择题(共10小题)1.若函数y=kx+b的图象经过第二、三、四象限,则函数y=bx+k的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限2.如果一次函数y=kx+b的图象平行于直线y=﹣2x﹣4,并且与y=x+1在y轴上有相同的交点,那么这个一次函数的关系式为()A.y=﹣2x+1B.y=﹣2x﹣1C.D.3.在平面直角坐标系中,O为原点,直线y=kx+b交x轴于A(﹣2,0),交y轴于B,且三角形AOB的面积为8,则k=()A.1B.2C.﹣2或4D.﹣4或44.如图,一次函数y=k1x+b1的图象l1与一次函数y=k2x+b2的图象l2相交于点P,则不等式组的解集为()A.x>﹣2B.﹣2<x<1.5C.x>﹣1D.x>25.如图,已知A点坐标为(5,0),直线y=x+b(b>0)与y轴交于点B,连接AB,∠α=75°,则b的值为()A.3B.C.4D.6.如图,已知Rt△ABC,∠A=90°,P,Q分别为AC,BC上的点,且PQ∥AB,记AP =x,PQ=y,且y=2﹣x,则BC的长为()A.2B.4C.D.7.如图,在平面直角坐标系中有两点A(1,4),B(2,2),点M是y轴上一点,使MA+MB 最小,则点M的坐标为()A.(0,)B.(0,)C.(0,)D.(0,)8.如图,直线y=﹣x+5交坐标轴于点A、B,与坐标原点构成的△AOB向x轴正方向平移4个单位长度得△A′O′B′,边O′B′与直线AB交于点E,则图中阴影部分面积为()A.B.15C.10D.149.如图,在平面直角坐标系中,直线y=kx+1分别交x轴、y轴于点A、B,过点B作BC ⊥AB交x轴于点C,过点C作CD⊥BC交y轴于点D,过点D作DE⊥CD交轴于点xE,过点E作EF⊥DE交y轴于点F.已知点A恰好是线段EC的中点,那么线段EF的长是()A.B.C.D.410.如图,在x轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作x轴的垂线与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a>0.则图中阴影部分的面积是()A.12.5B.25C.12.5a D.25a二.填空题(共6小题)11.张大妈购进一批柚子,在集贸市场零售,已知销售额y(元)与卖出的柚子质量x(kg)之间的关系如下表:质量/kg123…销售额/元 1.8+0.3 3.6+0.3 5.4+0.3…根据表中数据可知,销售额y(元)与柚子质量x(kg)之间的关系式为.12.如图,在平面直角坐标系xOy中,正方形OABC的边长为1.写出一个函数y=kx﹣2k (k≠0),使它的图象与正方形OABC有公共点,这个函数的表达式可以为.13.如图,在平面直角坐标系中,直线y=﹣x+4与x轴、y轴分别交于点A、B,直线CD与y轴交于点C(0,﹣8),与直线AB交于点D,若△AOB∽△CDB,则点D的坐标为.14.如图,在直角坐标系中有一个缺失了右上格的九宫格,每个小正方形的边长为1,点A 的坐标为(2,3).要过点A画一条直线AB,将此封闭图形分割成面积相等的两部分,则直线AB解析式是.15.如图,直线MN的解析式为y=﹣+5交x轴于点N,交y轴于点M,正方形的顶点A1,A2,A3,A4,…从左至右依次在x轴的正半轴上,顶点B1,B2,B3,B4,…在直线MN上,顶点C1,C2,C3,C4,…依次在y轴A1B1、A2B2、A3B3…上,则点B2022的纵坐标为.16.我们把一个半圆与抛物线的一部分合成的封闭图形称为“蛋圆”,如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,点A、B、C、D分别是“蛋圆”与坐标轴的交点,点D的坐标为(0,﹣3)AB为半圆直径,半圆圆心M(1,0),半径为2,则“蛋圆”的抛物线部分的解析式为.经过点C的“蛋圆”的切线的解析式为.三.解答题(共5小题)17.如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将△ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:(1)点B′的坐标;(2)直线AM所对应的函数关系式.18.某个周末,智小慧从家出发去大雁塔参观,同时妈妈参观结束从大雁塔回家,智小慧刚到大雁塔就发现要下雨,于是立即按原路返回,追上妈妈后,两人一同回家(智小慧和妈妈始终在同一条笔直的公路上行走)如图是两人离家的距离y(米)与智小慧出发的时间x(分)之间的图象,请根据图象信息回答下列问题:(1)智小慧的家与大雁塔的距离为米;妈妈从大雁塔回家在遇到智小慧之前的速度为米/分;(2)求智小慧与妈妈何时相距600米.19.某合作社2019年春季种植了“丰香”草莓和“红颜”草莓共8亩,请你根据表格提供的信息,解答下列问题:“丰香”“红颜”种植品种亩产(价格)年亩产(单位:千克)10001200采摘价格(单位:元/千克)4030(1)若2019年该合作社种植的草莓,全部被采摘的总收入为300000元,那么,“丰香”和“红颜”两种草莓各种植了多少亩?(2)设合作社每年草莓全部被采摘的收入为y元,种植“红颜”草莓m亩,求y关于m 的函数关系式,并写出m的取值范围;(3)在(2)的条件下,若要求种植“红颜”草莓的亩数不少于种植“丰香”草莓亩数的,那么种植“红颜”草莓多少亩时,可使得该合作社这一年的草莓全部被采摘的总收入最多?并求出最多收入.20.已知直线y=x+4与x轴、y轴相交于A、B两点.(1)求A、B两点的坐标;(2)将直线AB进行平移,平移后的函数解析式为y=kx+b,并与x轴、y轴相交于C、D两点,当S△OCD=24时,求直线CD的解析式;(3)在x轴上有一点P,使得△ABP是等腰三角形.请你直接写出所有满足条件的点P的坐标.21.如图①,在平面直角坐标系中,直线l1:y=x﹣1与x轴交于点A,与y轴交于点B,直线l2:y=x+2与x轴交于点C,与y轴交于点D,l1与l2交于点E.点F是点A右侧x 轴上一动点,过点F作FN∥y轴,交l1于点M,交l2于点N,设点F的横坐标为a.(1)求点E的坐标;(2)当=时,求a的值;(3)如图②,点P在线段MN上,点Q在线段AF上,NP=FQ,点G在线段CN上,连接PQ、PG,且∠NGP=∠FPQ.①直接写出点G的坐标(用含a的代数式表示);②若点E关于x轴的对称点为点K,连接KQ、GM,当KQ∥GM,且=时,直接写出点M的坐标.。

中考数学专题复习5一次函数及其运用(原卷版)

中考数学专题复习5一次函数及其运用(原卷版)

一次函数及其运用复习考点攻略考点01 一次函数相关概念1.正比例函数:一般地.形如y=kx(k是常数.k≠0)的函数.叫做正比例函数.其中k叫做正比例系数.2. 一次函数:一般地.形如y=kx+b(k.b为常数.且k≠0)的函数叫做x的一次函数。

特别地.当一次函数y=kx+b中的b=0时.y=kx(k是常数.k≠0).这时.y叫做x的正比例函数.3. 一次函数的一般形式:一次函数的一般形式为y=kx+b.其中k.b为常数.k≠0.一次函数的一般形式的结构特征:(1)k≠0.(2)x的次数是1;(3)常数b可以为任意实数.【注意】(1)正比例函数是一次函数.但一次函数不一定是正比例函数.(2)一般情况下.一次函数的自变量的取值范围是全体实数.(3)判断一个函数是不是一次函数.就是判断它是否能化成y=kx+b(k≠0)的形式. 【例1】下列函数中.正比例函数是A.y=23xB.y=213xC.y=34x D.y=12(x-1)【例2】下列函数关系式:(1)y=﹣x;(2)y=x﹣1;(3)y=1x;(4)y=x2.其中一次函数的个数是()A.1B.2C.3D.4考点2 一次函数的图像和性质1.正比例函数的图象特征与性质正比例函数y=kx(k≠0)的图象是经过原点(0.0)的一条直线.k的符号函数图象图象的位置性质k >0图象经过第一、三象限y随x的增大而增大k <0 图象经过第二、四象限 y 随x 的增大而减小2.一次函数的图象特征与性质(1)一次函数的图象一次函数的图象 一次函数y =kx +b (k ≠0)的图象是经过点(0.b )和(-bk.0)的一条直线 图象关系一次函数y =kx +b (k ≠0)的图象可由正比例函数y =kx (k ≠0)的图象平移得到;b >0.向上平移b 个单位长度;b <0.向下平移|b |个单位长度图象确定因为一次函数的图象是一条直线.由两点确定一条直线可知画一次函数图象时.只要取两点即可(2)一次函数的性质 函数字母取值图象经过的象限函数性质y =kx +b (k ≠0)k >0.b >0一、二、三y 随x 的增大而增大k >0.b <0一、三、四y =kx +b (k ≠0)k <0.b >0一、二、四y 随x 的增大而减小k <0.b <0二、三、四(3)两直线y =k 1x +b 1(k 1≠0)与y =k 2x +b 2(k 2≠0)的位置关系:①当k 1=k 2.b 1≠b 2.两直线平行; ②当k 1=k 2.b 1=b 2.两直线重合; ③当k 1≠k 2.b 1=b 2.两直线交于y 轴上一点; ④当k 1·k 2=–1时.两直线垂直.【例3】已知正比例函数y =x 的图象如图所示.则一次函数y =mx +n 图象大致是mnA .B .C .D .【例4】已知一次函数3y kx =+的图象经过点A .且y 随x 的增大而减小.则点A 的坐标可以是( ) A .()1,2- B .()1,2-C .()2,3D .()3,4考点3 待定系数法求一次函数解析式(1)待定系数法:先设出函数解析式.再根据条件确定解析式中未知数的系数.从而得出函数解析式的方法叫做待定系数法.(2)待定系数法求正比例函数解析式的一般步骤: ①设含有待定系数的函数解析式为y =kx (k ≠0).②把已知条件(自变量与函数的对应值)代入解析式.得到关于系数k 的一元一次方程. ③解方程.求出待定系数k .④将求得的待定系数k 的值代入解析式. (3)待定系数法求一次函数解析式的一般步骤: ①设出含有待定系数k 、b 的函数解析式y =kx +b .②把两个已知条件(自变量与函数的对应值)代入解析式.得到关于系数k .b 的二元一次方程组.③解二元一次方程组.求出k .b . ④将求得的k .b 的值代入解析式.【例5】一次函数图象经过(3.1).(2.0)两点. (1)求这个一次函数的解析式; (2)求当x =6时.y 的值.考点4 一次函数与正比例函数的区别与联系正比例函数一次函数区别一般形式y=kx+b(k是常数.且k≠0)y=kx+b(k.b是常数.且k≠0)图象经过原点的一条直线一条直线k.b符号的作用k的符号决定其增减性.同时决定直线所经过的象限k的符号决定其增减性;b的符号决定直线与y轴的交点位置;k.b的符号共同决定直线经过的象限求解析式的条件只需要一对x.y的对应值或一个点的坐标需要两对x.y的对应值或两个点的坐标联系比例函数是特殊的一次函数.②正比例函数图象与一次函数图象的画法一样.都是过两点画直线.但画一次函数的图象需取两个不同的点.而画正比例函数的图象只要取一个不同于原点的点即可.③一次函数y=kx+b(k≠0)的图象可以看作是正比例函数y=kx(k≠0)的图象沿y 轴向上(b>0)或向下(b<0)平移|b|个单位长度得到的.由此可知直线y=kx+b (k≠0.b≠0)与直线y=kx(k≠0)平行.④一次函数与正比例函数有着共同的性质:a.当k>0时.y的值随x值的增大而增大;b.当k<0时.y的值随x值的增大而减小.A.y=2x+3B.y=2x﹣3C.y=2(x+3)D.y=2(x﹣3)考点5.一次函数与方程(组)、不等式(1)一次函数与一元一次方程任何一个一元一次方程都可以转化为kx+b=0(k.b为常数.且k≠0)的形式.从函数的角度来看.解这个方程就是寻求自变量为何值时函数值为0;从函数图象的角度考虑.解这个方程就是确定直线y=kx+b与x轴的交点的横坐标.(2)一次函数与一元一次不等式任何一个一元一次不等式都能写成ax+b>0(或ax+b<0)(a.b为常数.且a≠0)的形式.从函数的角度看.解一元一次不等式就是寻求使一次函数y=ax+b(a≠0)的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看.就是确定直线y=ax+b(a≠0)在x轴上(或下)方部分的点的横坐标满足的条件.(3)一次函数与二元一次方程组一般地.二元一次方程mx+ny=p(m.n.p是常数.且m≠0.n≠0)都能写成y=ax+b(a.b为常数.且a ≠0)的形式.因此.一个二元一次方程对应一个一次函数.又因为一个一次函数对应一条直线.所以一个二元一次方程也对应一条直线.进一步可知.一个二元一次方程对应两个一次函数.因而也对应两条直线.从数的角度看.解二元一次方程组相当于考虑自变量为何值时.两个函数的值相等.以及这两个函数值是何值;从形的角度看.解二元一次方程组相当于确定两条直线的交点坐标.一般地.如果一个二元一次方程组有唯一解.那么这个解就是方程组对应的两条直线的交点坐标. 【例7】已知直线y =mx +n (m .n 为常数)经过点(0.–2)和(3.0).则关于x 的方程mx +n =0的解为 A .x =0 B .x =1C .x =–2D .x =3【例8】如图为y =kx +b 的图象.则kx +b =0的解为x = ( )A .2B .–2C .0D .–1【例9】如图.正比例函数y =2x 的图象与一次函数y =kx +b 的图象交于点A (m.2).一次函数的图象经过点B (−2.−1). (1)求一次函数的解析式;(2)请直接写出不等式组−1<kx +b <2x 的解集.【例10】如图.函数y =kx +b 与y =mx +n 的图象交于点P (1.2).那么关于x .y 的方程组的解是 y kx by mx n=+=+⎧⎨⎩A .B .C .D .考点6.一次函数图象与图形面积解决这类问题的关键是根据一次函数解析式求出一次函数图象与坐标轴的交点的坐标.或两条直线的交点坐标.进而将点的坐标转化成三角形的边长.或者三角形的高.如果围成的三角形没有边在坐标轴上或者与坐标轴平行.可以采用“割”或“补”的方法.【例11】在平面直角坐标系中.O 为坐标原点.若直线y =x +3分别与x 轴、直线y =﹣2x 交于点A 、B .则△AOB 的面积为( ) A .2B .3C .4D .6考点7.一次函数的实际应用(1)主要题型:①求相应的一次函数表达式;②结合一次函数图象求相关量、求实际问题的最值等. (2)用一次函数解决实际问题的一般步骤为: ①设定实际问题中的自变量与因变量;②通过列方程(组)与待定系数法求一次函数关系式; ③确定自变量的取值范围; ④利用函数性质解决问题; ⑤检验所求解是否符合实际意义; ⑥答.(3)方案最值问题:对于求方案问题.通常涉及两个相关量.解题方法为根据题中所要满足的关系式.通过列不等式.求解出某一个事物的取值范围.再根据另一个事物所要满足的条件.即可确定出有多12x y ==⎧⎨⎩21x y ==⎧⎨⎩23x y ==⎧⎨⎩13x y ==⎧⎨⎩少种方案.(4)方法技巧求最值的本质为求最优方案.解法有两种:①可将所有求得的方案的值计算出来.再进行比较;②直接利用所求值与其变量之间满足的一次函数关系式求解.由一次函数的增减性可直接确定最优方案及最值;若为分段函数.则应分类讨论.先计算出每个分段函数的取值.再进行比较.【例12】某县组织20辆汽车装运食品、药品、生活用品三种扶贫物资共100吨到某乡实施扶贫工作.按计划20辆汽车都要装运.每辆汽车只能装运同一种救灾物资且必须装满.根据表中提供的信息.解答下列问题:物资种类食品药品生活用品每辆汽车运载量(吨) 6 5 4每吨所需运费(元/吨)120 160 100 (1)设装运食品的车辆数为x.装运药品的车辆数为y.求y与x的函数关系式;(2)如果装运食品的车辆数不少于5辆.装运药品的车辆数不少于4辆.那么车辆的安排有几种方案?并写出每种安排方案;(3)在(2)的条件下.若要求总运费最少.应如何安排车辆?并求出最少总运费.第一部分选择题一、选择题(本题有10小题.每题4分.共40分)1.下列函数①y=﹣2x+1.②y=ax﹣b.③y=﹣6x.④y=x2+2中.是一次函数的有A.①②B.①C.②③D.①④2.一次函数y=–2x+b.b<0.则其大致图象正确的是A.B.C .D .3.一次函数y =kx +b 的图象如图所示.则关于x 的方程kx +b =–1的解为A .x =0B .x =1C .x =12D .x =–24. 如图.一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1.3).则关于x 的不等式x +b >kx +4的解集是A .x >﹣2B .x >0C .x >1D .x <15. 如图.直线(0)y kx b k =+<经过点(1,1)P .当kx b x +≥时.则x 的取值范围为( )A .1x ≤B .1x ≥C .1x <D .1x >6.新龟兔赛跑的故事:龟兔从同一地点同时出发后.兔子很快把乌龟远远甩在后头.骄傲自满的兔子觉得自己遥遥领先.就躺在路边呼呼大睡起来.当它一觉醒来.发现乌龟已经超过它.于是奋力直追.最后同时到达终点.用S 1、S 2分别表示乌龟和兔子赛跑的路程.t 为赛跑时间.则下列图象中与故事情节相吻合的是( )A .B .C .D .7.若一次函数y =ax +b 的图象经过一、二、四象限.则下列不等式中能成立的是( ) A .a >0B .b <0C .a +b >0D .a ﹣b <08.如图.直线y =kx +b 交直线y =mx +n 于点P (1.2).则关于x 的不等式kx +b >mx +n 的解集为( )A .x >1B .x >2C .x <1D .x <29.如图.一束光线从点()4,4A 出发.经y 轴上的点C 反射后经过点()10B ,.则点C 的坐标是( )A .10,2⎛⎫ ⎪⎝⎭B .40,5⎛⎫ ⎪⎝⎭C .()0,1D .()0,210.如图1.点F 从菱形ABCD 的顶点A 出发.沿A →D →B 以1cm/s 的速度匀速运动到点B .图2是点F 运动时.△FBC 的面积y (cm 2)随时间x (s )变化的关系图象.则a 的值为A 5B .2C .52D .5第二部分 填空题二、填空题(本题有6小题.每题4分.共24分)11.已知函数y =(m +2)是正比例函数.则m 的值是__________.12.把直线y =2x ﹣1向左平移1个单位长度.再向上平移2个单位长度.则平移后所得直线的解析式为_____. 13.如图.直线542y x =+与x 轴、y 轴分别交于A 、B 两点.把AOB 绕点B 逆时针旋转90°后得到11AO B .则点1A 的坐标是_____.14.如图.直线y =kx +b (k 、b 是常数k ≠0)与直线y =2交于点A (4.2).则关于x 的不等式kx +b <2的解集为_____.15.直线2y x =+经过()11,M y .()23,N y 两点.则1y ______2y (填“>”“<”或“=”). 16.如图.直线AM 的解析式为1y x =+与x 轴交于点M .与y 轴交于点A .以OA 为边作正方形ABCO .点B 坐标为()1,1.过点B 作1EO MA ⊥交MA 于点E .交x 轴于点1O .过点1O 作x 轴的垂线交MA 于点1A 以11O A 为边作正方形1111O A B C .点1B 的坐标为()5,3.过点1B 作12E O MA ⊥交MA 于1E .交x 轴于点2O .过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C..则点2020B 的坐标______.23mx-第三部分 解答题三、解答题(本题有6小题.共56分)17. 已知一次函数y =kx +b.当x =3时.y =14.当x =–1时.y =–6.(1)求k 与b 的值;(2)当y 与x 相等时.求x 的值.18. 已知y –3与3x +1成正比例.且x =2时.y =6.5.(1)求y 与x 之间的函数关系式.并指出它是什么函数;(2)若点(a .2)在这个函数的图象上.求a 的值. 19. 如图.直线l 1的函数解析式为y =2x–2.直线l 1与x 轴交于点D .直线l 2:y =kx+b 与x 轴交于点A .且经过点B (3.1).如图所示.直线l 1、l 2交于点C (m .2).(1)求点D 、点C 的坐标;(2)求直线l 2的函数解析式;(3)利用函数图象写出关于x 、y 的二元一次方程组的解.20.某文化用品商店出售书包和文具盒.书包每个定价40元.文具盒每个定价10元.该店制定了两种优惠方案:方案一.买一个书包赠送一个文具盒;方案二:按总价的九折付款.购买时.顾客只能选用其中的一种方案.某学校为给学生发奖品.需购买5个书包.文具盒若干(不少于5个).设文具盒个数为x (个).付款金额为y (元). 22y x y kx b =-=+⎧⎨⎩(1)分别写出两种优惠方案中y与x之间的关系式;方案一:y1=_________;方案二:y2=__________.(2)若购买20个文具盒.通过计算比较以上两种方案中哪种更省钱?(3)学校计划用540元钱购买这两种奖品.最多可以买到__________个文具盒(直接回答即可).21.张师傅开车到某地送货.汽车出发前油箱中有油50升.行驶一段时间.张师傅在加油站加油.然后继续向目的地行驶.已知加油前、后汽车都匀速行驶.汽车行驶时每小时的耗油量一定.油箱中剩余油量Q(升)与汽车行驶时间t(时)之间的函数图象如图所示.(1)张师傅开车行驶小时后开始加油.本次加油升.(2)求加油前Q与t之间的函数关系式.(3)如果加油站距目的地210千米.汽车行驶速度为70千米/时.张师傅要想到达目的地.油箱中的油是否够用?请通过计算说明理由.22.某乡A.B两村盛产大蒜.A村有大蒜200吨.B村有大蒜300吨.现将这些大蒜运到C.D两个冷藏仓库.已知C仓库可储存240吨.D仓库可储存260吨.从A村运往C.D两处的费用分别为每吨40元和45元;从B村运往C.D两处的费用分别为每吨25元和32元.设从A村运往C仓库的大蒜为x吨.A.B两村运大蒜往两仓库的运输费用分别为y A元.y B元.(1)请填写下表.并求出y A.y B与x之间的函数关系式;C D总计A x吨200吨B300吨总计240吨260吨500吨(2)当x为何值时.A村的运费较少?(3)请问怎样调运.才能使两村的运费之和最小?求出最小值.。

一次函数的全章复习课件

一次函数的全章复习课件

例如,速度、加速度和时间的关系,重力 等。
一次函数在工程学中的应用
例如,机械运动、流体力学等。
一次函数在日常生活中的应用
例如,时间与速度的关系、距离与速度的 关系等。
一次函数在数学问题中的应用
一次函数在代数问题中的应用
例如,解一元一次方程、一元一次不等式等。
一次函数在几何问题中的应用
例如,求直线方程、求两点之间的距离等。
解得 k = 3, b = -2。所以解析式 为 y = 3x - 2。
THANKS
感谢观看

对于一次函数,解析式可以用来 表示 $k$ 和 $b$ 的值,进而确
定函数的图像和性质。
通过解析式可以计算出任意自变 量 $x$ 对应的函数值 $y$。
解析式与函数图像的关系
解析式是绘制函数图像的基础。 通过解析式可以确定函数的开口方向、顶点坐标和对称轴等特性。
解析式与函数图像的对应关系是一一对应的,即一个解析式对应一个确定的图像。
y = 3x - 2
答案
解答题
题目
已知一次函数 y = kx + b,当 x = 1 时,y = -2;当 x = -1 时,y = 4。 求 k 和 b 的值。
答案
k = -3, b = 1
选择题解析
01
02
03
04
对于选项A,y = 2x,是一次 函数也是正比例函数,不符合
题意。
对于选项B,y = 3 - 5x,是 一次函数但不是正比例函数,
虽然一次函数在微积分中不是主要研 究对象,但其在导数和积分中的应用 仍不可忽视。
一次函数与三角函数
三角函数可以看作是周期性的一次函 数,两者在图像和性质上有许多相似 之处。

中考数学总复习《一次函数与一元一次方程》专题训练(附答案)

中考数学总复习《一次函数与一元一次方程》专题训练(附答案)

中考数学总复习《一次函数与一元一次方程》专题训练(附答案)学校:___________班级:___________姓名:___________考号:___________一、单选题 1.一次函数图象如图所示,下列说法错误的是( )A .解析式为223y x =-+ B .()3,3-是图象上的点 C .该图象y 随x 的增大而减小 D .3x >时0y <2.如图,直线1y k x =与2y k x b =+交于点(1,2)A --,则不等式21k x b k x +>的解集是( ).A .1x <-B .1x >-C .<2x -D .2x >-3.一次函数6y kx =+的图象与x 轴的交点坐标为()0,0x ,且013,101x p k <≤=+,则p 的取值范围是( )A .6121p -<≤-B .6121p -≤<-C .5919p -<≤-D .5919p -≤<- 4.一次函数1y ax b 与2y cx d =+的图象如图所示,下列结论:①当0x >时10y >,20y >;①函数y ax d =+的图象不经过第一象限;①3d b a c --=;①d a b c <++.其中正确的个数是( )6.直线()0y kx b k =+≠的图象如图所示, 由图象可知当10y -<<时x 的取值范围是( )1798.一次函数1y ax b 与2y cx d =+的图象如图所示,下列说法:①对于函数1y ax b 来说,y 随x 的增大而减小;①函数y ax d =+的图象不经过第一象限;①不等式ax b cx d +>+的解集是3x >;①()23a b a c -=-.其中正确的有( )A .①①B .①①①C .①①①D .①①二、填空题9.如图,一次函数1y x b =+的图象与一次函数21y kx =-的图象相交于点P ,则关于x 的不等式(1)10k x b ---<的解集为 .10.一次函数y kx b =+(k ,b 为常数且0k ≠),若函数经过点()2,0-和()0,1,则关于x 的不等式1kx b +>的解集为11.如图,一次函数()0y kx b k =+>的图象过点()1,0-,则不等式()20k x b -+<的解集是 .1ax b与2y=1ax b来说,的增大而增大;①函数的解集是x≥)4b其中正确的是三、解答题 17.若直线21y x =--与直线于3y x m =+相交于第三象限内一点,求m 得取值范围.18.如图,已知函数12y x b =+和23y ax =-的图象交于点()2,5P --,这两个函数的图象与x 轴分别交于点A 、B .(1)=a ______,b = ______;(2)求ABP 的面积;(3)根据图象,不等式23x b ax +<-的解集为 _______.19.根据一次函数y kx b =+的图象,写出下列问题的答案:(1)关于x 的方程0kx b +=的解是 ; (2)关于x 的方程3kx b +=-的解是 ;(3)当0x ≥时y 的取值范围是 .20.如图,直线()1111:0l y k x k =≠与直线()2222:0l y k x b k =+≠交于点()2,3C -,直线2l 与x 轴、y 轴分别交于点A ()0,4B .(1)求1k 和2k ,b 的值;(2)直接写出不等式组210k x b k x +≥≥的解集:_____________;(3)点P 是直线2l 上一点,且满足2AOP BOC S S =,求点P 的坐标.参考答案:1.B2.A3.C 4.C 5.C 6.A 7.C 8.A 9.1x >- 10.0x > 11.1x < 12.0> 13.2<<1x -- 14.①①① 15.2或3-/3-或2 16.2k >- 17.312m -<<18.(1)1,1-(2)254(3)<2x -19.(1)2x =(2)=1x -(3)2y ≥-20.(1)32- 12 4(2)20x -≤≤(3)()4,2-或()12,2--。

一次函数中考总复习原创课件

一次函数中考总复习原创课件

【考点3】求直线与坐标轴的交点,分类思想
【例3】过点A(2,0)的两条直线l1,l2分别交y轴于 点B,C,其中点B在原点上方,已知AB= (1)求点B的坐标; (2)若△ABC的面积为4,求直线l2的解析式.
解:(1)(3,0) (2)
【变式3】直线 与x轴、y轴分别交于A,B两点,C是OB的中点,D是直线AB上一动点,若BD=BC,求△OAD的面积.
2.直线y=ax+b过点A(0,2)和点B(-3,0),则方程ax+b=0的解是( ) A.x=2 B.x=0 C.x=-1 D. x=-3
4.如图,一次函数y=-x-2与y=2x+m的图象 相交于点P(n,-4),则关于x的不等 式2x+m>-x-2的解集为______________.
解:(1)(4,3) (2) 28
第三章 函数第11课 一次函数
1.一次函数y=kx+b(k≠0)的图象是经过(0,______)和(______,0)的一条直线,特别地,当b=0时,一次函数y=kx也叫正比例函数,它的图象是经过______的一条直线.

2.一次函数y=kx+b(k≠0)的图象、性质如下表:
b
原点
经典例题
【例1】已知一次函数的图象经过(0,6),(-1,4)两点.(1)求一次函数的解析式;(2)当-2<x<1时,求y的取值范围;(3)当-3≤x≤2时,求 y的最大值与最小值.
【考点1】待定系数法,一次函数的性质
解:(1)y=2x+6 (2)2<y<8 (3)最大值为10,最小值为0.
【变式1】已知一次函数的图象与正比例函数y=3x 的图象平行且经过点(1,-3). (1)求一次函数的解析式; (2)若这个一次函数的图象与两坐标轴分别交于A,B 两点,求线段AB的长度.

一次函数复习 课件(共30张PPT)

一次函数复习 课件(共30张PPT)

当k<0时,图象过二、四象限;y随x的增大而减少。
y=kx
5、有下列函数:①y=2x+1, ②y=-3x+4,③y=0.5x,④y=x-6; 其中过原点的直线是___③_____; 函数y随x的增大而增大的是___①___④____; 函数y随x的增大而减小的是____②_______; 图象在第一、二、三象限的是___①_____ 。
x 50 y 250
60 70 80 … 200 150 100 …
《一次函数》复习
三、正比例函数
1、形如 y=kx (k是常数,k≠0)的函数,叫做正比例函数, 其中k叫比例函数。 2、(1)正比例函数y=kx( k是常数,k≠0)的图象是一条经 过 原点的直线,也称它为 直线y=kx ;
(2)画y=kx的图象时,一般选 原 点和_(__1_,__k)
往往需要复杂的计算才能得出。
《一次函数》复习 巩固练习
1、甲车速度为20米/秒,乙车速度为25米/ 秒.现甲车在乙车前面500米,设x秒后两车之间的 距离为y米.求y随x(0≤x≤100)变化的函数解析 式,并画出函数图象.
解:由题意可知: y=500-5x 0≤x≤100 用描点法画图:
x … 10 20 30 40 y … 450 400 350 300
9、若函数y=(2m+6)x2+(1-m)x是正比例函数,则其解
析式是 y=4x ,该图象经过第一、三象限,y随x
的增大而 增大 ,当x1<x2时,则y1与y2的关
是 y1<y2

解:∵函数y=(2m+6)x2+(1-m)x是正比例函数
∴2m+6=0,1-m≠0 ∴m=-3
y

中考数学专题《一次函数》复习课件(共20张PPT)

中考数学专题《一次函数》复习课件(共20张PPT)

2D
S△COD=
1 2
OC
OD
C
x
O1
122 2 23 3
考点二:确定一次函数解析式及其相关问题
例2:已知:一次函数图象经过A(1,5), B(-2,-4)两点, 图象与x轴交于点C,与 y轴交于点D.
(5)若直线l:y= x-4与此一次函数图象相交 于点P,试求点P的坐标
【解析】:(5)由题意可得:
例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为常数:
(2)当m为何值时,y随x的增大而减小?
【解析】:
∵y随x的增大而减小
2
∴3m-2<0
∴m<
本题考查一次函数的性质,即:在y3=kx+b(k≠0)中,
当k>0时,y随x的增大而增大;
当k<0时,y随x的增大而减小;
考点一:一次函数定义、图象、性质的相关知识
例1:已知直线解析式为y=(3m-2)x+(1-2m) , 其中m为常数:
(3)当m为何值时,图象经过第二、三、四象 限?
【解析】:∵图象经过第二、、四象限∴ 3m 2 0 1 2m 0
∴ 1m 2
2
3
本题考查一次函数的图象及其性质
例题分析
考点一:一次函数定义、图象、性质的相关知识 例1:已知直线解析式为y=(3m-2)x+(1-2m) ,其中m为
④直线AB上有一点C,
y
且点C的横坐标为1, 求点C的坐标及S△BOC的面积
B
C
解:在y=-2x+4中,
当x=1时,y=2
∴C:(1,2)
S△BOC= 1 OB×|1|=2
2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数专题复习一、选择题1. 已知一次函数经过点,则的值是D.2. 函数中自变量的取值范围是A. B. C. D.3. 下列曲线中表示是的函数的是A. B.C. D.4. 下列函数:①,②,③,④,⑤中,是一次函数的有A. 个B. 个C. 个D. 个5. 如图是某游乐城的平面示意图,如果用表示入口处的位置,用表示球幕电影的位置,那么坐标原点表示的位置是A. 太空秋千B. 梦幻艺馆C. 海底世界D. 激光战车6. 一次函数的图象如图所示,则下列结论正确的是A. B. C. D.7. 将函数的图象沿轴向上平移个单位长度后,所得图象对应的函数解析式为A. B.C. D.8. 直线沿轴向下平移个单位后与轴的交点坐标是A. B. C. D.9. 下图是利用平面直角坐标系画出的故宫博物院的主要建筑分布图.若这个坐标系分别以正东、正北方向为轴、轴的正方向.表示太和门的点坐标为,表示九龙壁的点的坐标为,则表示下列宫殿的点的坐标正确的是A. 景仁宫B. 养心殿C. 保和殿D. 武英殿10. 已知一次函数,当时,,且它的图象与轴交点的纵坐标是那么该函数的解析式为A. B. C. D.11. 下列函数中,是一次函数但不是正比例函数的是A. B. C. D.12. 中国象棋是中华民族的文化瑰宝,它渊远流长,趣味浓厚.如图,在某平面直角坐标系中,所在位置的坐标为,所在位置的坐标为,那么,所在位置的坐标为A. B. D.13. 下列函数中,自变量的取值范围选取错误的是A. 中,取全体实数B. 中,取的实数C. 中,取的实数D. 中,取的实数14. 小刚以米/分的速度匀速骑车分,在原地休息了分,然后以米/分的速度骑回出发地.下列函数图象能表达这一过程的是A. B.C. D.15. 如图,函数和的图象相交于点,则不等式的解集为A. B. C. D.16. 如图,点的坐标为,点在直线上运动,当线段最短时,点的坐标为A.17. 张师傅驾车从甲地到乙地,两地相距千米,汽车出发前油箱有油升,途中加油若干升,加油前、后汽车都以千米/ 时的速度匀速行驶,已知油箱中剩余油量(升)与行驶时间(时)之间的关系如图所示.以下说法错误的是A. 加油前油箱中剩余油量(升)与行驶时间(时)之间的函数解析式是B. 途中加油升C. 汽车加油后还可行驶小时D. 汽车到达乙地时油箱中还余油升18. 如图,函数的图象过点,则不等式的解集是A. B. C. D.19. 如图,点在线段上,,,为线段上一动点,点绕点旋转后与点绕点旋转后重合于点.设,的面积为.则下列图象中,能表示与的函数关系的图象大致是A. B.C. D.20. 如图,在矩形中,,,交于点.点为线段上的一个动点,连接,,过作于,设,图中某条线段的长为,若表示与的函数关系的图象大致如图所示,则这条线段可能是图中的A. 线段B. 线段C. 线段D. 线段二、填空题21. 请你举出一个函数实例(指出自变量的取值范围).22. 函数的自变量的取值范围是.23. 函数和都是形如的一次函数,其中第一个式子中,;第二个式子中,.24. 在函数中,自变量的取值范围是.25. 如图是建筑大师梁思成先生所做的“清代北平西山碧云寺金刚宝座塔”手绘建筑图.1925年孙中山先生在北京病逝后,他的衣帽被封存于此塔内,因此也被称为“孙中山先生衣冠冢”.在图中右侧俯视图的示意图中建立如图所示的平面直角坐标系,其中的小正方形网格的宽度为,那么图中塔的外围左上角处点的坐标是.26. 某一次函数的图象经过点,且函数的值随自变量的增大而减小,请写出一个满足上述条件的函数关系式:.27. 我们解答过一些求代数式的值的题目,请把下面的问题补充完整:当的值分别取,时,的值分别为,根据函数的定义,可以把看做自变量,把看做因变量,那么因变量(填“是”或“不是”)自变量的函数,理由是.28. 若点和点关于轴对称,则的值为.29. 已知函数的图象与轴交点的纵坐标为时,,那么此函数的解析式为.30. 函数的图象向下平移个单位所得到的直线解析式为.31. 如图所示,已知函数和的图象交点为,则不等式的解集为.32. 在平面直角坐标系中,已知一次函数的图象经过,两点,若,则.(填“ ”,“ ”或“ ”)33. 当时,关于的函数是一次函数.34. 已知点,都在函数的图象上,则.35. 已知点在第二象限,则点在第象限.36. 五子棋的比赛规则是一人执黑子,一人执白子,两人轮流出棋,每次放一个棋子在棋盘的格点处,只要有同色的五个棋子先连成一条线(横、竖、斜均可)就获得胜利.如图是两人正在玩的一盘棋,若白棋所在点的坐标是,黑棋所在点的坐标是,现在轮到黑棋走,黑棋放到点的位置就获得胜利,点的坐标是.37. 已知整数满足,,对任意一个,都取、中的最大值,则的最小值是.38. 如图所示,购买一种苹果,所付金额(元)与购买量(千克)之间的函数图象由线段和射线组成,则一次购买千克这种苹果比分三次每次购买千克这种苹果可节省元.39. 一次越野赛中,当小明跑了米时,小刚跑了米,小明、小刚此后所跑的路程(单位:米)与时间(单位:秒)之间的函数关系如图所示,则这次越野跑的全程为米.40. 为了缓解城市拥堵,某市对非居民区的公共停车场制定了不同的收费标准(见下表).如果小王某次停车小时,缴费元,请你判断小王该次停车所在地区的类别是(填“一类、二类、三类”中的一个).三、解答题41. 某单位急需用车,但不准备买车,他们准备和一个体车主或一国营出租车公司中的一家签订合同,设汽车每月行驶,应付给个体车主的月租费是元,应付给国营出租车公司的月租费是元,,分别与之间的函数关系的图象(两条射线)如图所示,观察图象,回答下列问题.(1)分别写出,与之间的函数关系式;(2)每月行驶的路程在什么范围内时,租国营公司的车合算?42. 已知一次函数的图象经过点,.(1)求此函数的解析式;(2)若点为此一次函数图象上一动点,且的面积为,求点的坐标.43. 如图,是学校的平面示意图,已知旗杆的位置是,实验室的位置是.(1)写出食堂、图书馆的位置;(2)已知办公楼的位置是,教学楼的位置是,在图中标出办公楼和教学楼的位置;(3)如果一个单位长度表示米,请求出宿舍楼到教学楼的实际距离.44. 已知水池中有立方米的水,每小时抽立方米.(1)写出剩余水的体积(单位:立方米)与时间(单位:时)之间的函数解析式;(2)写出自变量的取值范围;(3)小时后,池中还有多少水?45. 有这样一个问题:探究函数的图象与性质.小文根据学习函数的经验,对函数的图象与性质进行了探究.下面是小文的探究过程,请补充完整:(1)函数的自变量的取值范围是;(2)表是与的几组对应值;则的值为;(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;(4)结合函数的图象,写出该函数的性质(一条即可):.46. 在一昼夜中正常人的体温是随时间而变化的,如图是某人一昼夜体温变化的图象.根据图象回答下列问题:(1)上图反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)这个人的最高体温和最低体温分别是多少度?在什么时刻达到最高或最低?(3)若用表示时间(),表示体温(),将相应数据填入下表:47. 在平面直角坐标系中,直线:过,,直线:.(1)求直线的表达式;(2)当时,不等式恒成立,请写出一个满足题意的的值.48. 星期天,小明与小刚骑自行车去距家千米的某地旅游,匀速行驶小时的时候,其中一辆自行车出了故障,因此二人在自行车修理点修车,用了半个小时,然后以原速继续前行,行驶小时到达目的地.请在图所示的平面直角坐标系中,画出符合他们行驶的路程(单位:千米)与行驶时间(单位:时)之间的函数关系图象.49. 某区进行课堂教学改革,将学生分成个学习小组,采取团团坐的方式.如图,这是某校七()班教室简图,点,,,,分别代表五个学习小组的位置,已知点的坐标为.(1)请按题意建立平面直角坐标系(横轴和纵轴均为小正方形的边所在直线,每个小正方形边长为个单位长度),写出图中其他几个学习小组的坐标;(2)过点作直线交轴于点,直接写出点的坐标.50. 已知直线.(1)为何值时,该直线经过第二、三、四象限?(2)为何值时,该直线与直线平行?51. 已知关于的函数是一次函数,求的值.52. 如图是某种蜡烛在燃烧过程中高度与时间之间关系的图象,由图象解答下列问题:(1)求蜡烛在燃烧过程中高度与时间之间的函数表达式;(2)经过多少小时蜡烛燃烧完毕?53. 一次函数的图象过点,并且与轴相交于点,直线与轴相交于点,点与点关于轴对称,求这个一次函数的解析式.54. 如图,在平面直角坐标系中,矩形各边都平行于坐标轴,且,.对矩形及其内部的点进行如下操作:把每个点的横坐标乘以,纵坐标乘以,将得到的点再向右平移()个单位,得到矩形及其内部的点(分别与对应).经过上述操作后的对应点记为(1)若,,,则点的坐标为,点的坐标为;(2)若,求点的坐标.55. 某礼堂共有排座位,第一排有个座位,后面每一排比前一排多个座位,写出每排的座位数与这排的排数的函数解析式,并写出自变量的取值范围.在上题其他条件不变的条件下,请探究下列问题:(1)当后面每一排都比前一排多个座位时,每排的座位数与这排的排数的函数解析式是;(,且为正整数)(2)当后面每一排都比前一排多个座位时,则每排的座位数与这排的排数的函数解析式是;(,且为正整数)(3)某剧院共有排座位,第一排有个座位,后面每一排都比前一排多个座位,试写出每排的座位数与这排的排数的函数解析式,并写出自变量的取值范围.56. 有这样一个问题:探究函数的图象与性质.小聪根据学习函数的经验,对函数的图象与性质进行了探究.下面是小聪的探究过程,请补充完整:(1)函数的自变量的取值范围是;(2)下表是与的几组对应值,请直接写出的值,;(3)请在平面直角坐标系中,描出以上表中各组对应值为坐标的点,并画出该函数的图象;(4)结合函数图象,写出该函数的一条性质:.57. 已知直线与直线平行,且与直线交于点,求的值及直线的解析式.58. 对于平面直角坐标系中的任意两点,,我们把叫做,两点间的直角距离,记作.(1)已知为坐标原点,动点满足,请写出与之间满足的关系式,并在所给的直角坐标系中画出所有符合条件的点所组成的图形;(2)设是一定点,是直线上的动点,我们把的最小值叫做到直线的直角距离.试求点到直线的直角距离.59. 有这样一个问题:探究函数的图象与性质.小东根据学习函数的经验,对函数的图象与性质进行了探究.下面是小东的探究过程,请补充完整:(1)函数的自变量的取值范围是;(2)下表是与的几组对应值.求的值;(3)如下图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)进一步探究发现,该函数图象在第一象限内的最低点的坐标是,结合函数的图象,写出该函数的其它性质(一条即可).60. 已知:在平面直角坐标系中,的顶点、分别在轴、轴上,且,.(1)如图1,当,,点在第四象限时,则点的坐标为;(2)如图2,当点在轴正半轴上运动,点在轴正半轴上运动,点在第四象限时,作轴于点,试判断与哪一个是定值,并说明定值是多少?请证明你的结论.答案第一部分1. C2. B3. C4. C5. D6. D7. A8. D9. B10. C11. C12. D13. D14. C15. A【解析】将点代入得,解得,点的坐标为,由图可知,不等式的解集为.16. C 【解析】当垂直于直线时,的长度最短.17. C 【解析】A、设加油前油箱中剩余油量(升)与行驶时间(小时)的函数关系式为.将,代入,得解得所以,故A选项正确;B、由图象可知,途中加油:(升),故B选项正确;C、由图可知汽车每小时用油(升),所以汽车加油后还可行驶:(小时),故C选项错误;D、汽车从甲地到达乙地,所需时间为:(小时),小时耗油量为:(升),汽车出发前油箱有油升,途中加油升,汽车到达乙地时油箱中还余油:(升),故D选项正确.18. B19. B20. B【解析】作,垂足为,,垂足为,,垂足为.由垂线段最短可知:当点与点重合时,即时,有最小值,与函数图象不符,故错误;由垂线段最短可知:当点与点重合时,即时,有最小值,故正确;,随着的增大而减小,故错误;由垂线段最短可知:当点与点重合时,即时,有最小值,与函数图象不符,故错误.第二部分21. (答案不唯一)22.23.24.26. (答案不唯一)27. 代数式的值,是,对于自变量每取一个值,因变量都有唯一确定的值与它对应29.30.31.32.34.35. 一【解析】因为点在第二象限,所以解得所以故点在第一象限.36.37.【解析】联立两方程解之得两直线的交点为:.根据题意:的最小值为.38.【解析】由线段可知,千克苹果的价钱为元 .设射线的解析式为 .把,代入,得解得.当时,.当购买千克这种苹果分三次分别购买千克时,所花钱为:(元),(元).39.【解析】设这次越野跑的全程为米.根据图象,知,, . 直线过点,.可求得解析式为.点在解析式上,可求得 .40. 二类【解析】一类:;二类:;三类:.所以小王该次停车所在地区的类别是二类.第三部分41. (1)设(),(),,在直线上,解得,同理,在直线上,,,.(2)依题意,那么,解得,当行驶的路程时,租国营公司的车合算.42. (1)设解析式为.一次函数的图象经过点,,解得一次函数的解析式为.(2),,.当时,,.当时,,.或.43. (1)食堂的位置是,图书馆的位置是;(2)标出办公楼、教学楼的位置如图所示;(3)宿舍楼的位置是,教学楼的位置是,所以宿舍楼到教学楼的实际距离是(米).44. (1)(2)(3)小时后,池中还有立方米的水.45. (1)(2)(3)利用描点法可画出函数图象,如图:(4)图象有两个分支,关于点中心对称(答案不唯一)46. (1)反映了体温与时间之间的关系;时间是自变量;体温是因变量.(2)时达到最高,最高为,时达到最低,约为.(3)表格中依次为:,,,,,,,.47. (1)因为直线:过,,所以所以所以直线的表达式为.(2)答案不唯一,满足即可.48.49. (1)建立平面直角坐标系,如图所示,则点的坐标为,点的坐标为,点的坐标为,点的坐标为.(2)如图所示,点的坐标为.50. (1)直线经过第二、三、四象限,.(2)与直线平行, ..51. 当时,,是一次函数.当,即时,,是一次函数.当,即时,,不是一次函数.所以的值为或52. (1)由图象可知过,两点,设一次函数表达式为,解得此一次函数表达式为: .(2)令,,解得: .答:经过小时蜡烛燃烧完毕.53. 直线与轴的交点为,.点与点关于轴对称,.一次函数的图象与轴交于点,.一次函数为 .一次函数的图象过点,.解得 .这个函数解析式为.54. (1);(2)依题可列则,,点,.55. (1)(,且为正整数).(2)(3)(,且为正整数).56. (1)(2)(3)函数图象如图所示.(4)当时,随的增大而减小.(答案不唯一)【解析】(答案不唯一,可以写出一部分函数的变化趋势)如,当时,随的增大而减小;图象无限接近于直线,等.57. 依题意,点在直线上,..由直线与直线平行,可设直线的解析式为.点在直线上,..故直线的解析式为.58. (1)由题意得,①,,,.②,,,.③,,,.④,,,.所有符合条件的点组成的图形如图所示:(2)又表示数轴上实数所对应的点到数和所对应的点的距离之和,其最小值为.59. (1).(2)当时,,.(3)该函数的图象如右图所示.(4)该函数的其它性质:当时,随的增大而增大;当时,随的增大而减小;当时,随的增大而增大.函数的图象不经过第二象限.函数的图象与轴无交点,图象由两部分组成.函数的图象关于点成中心对称.60. (1)点的坐标为.【解析】过作于.则.,..在和中().,.,,,,.点的坐标为.(2)结论:.将线段沿轴方向平移到线段.则且,.、、三点共线...,,.在和中,...。

相关文档
最新文档