一次函数期末专题复习

合集下载

2022-2023学年浙教版数学八上期末复习专题 一次函数的图象与性质(教师版)

2022-2023学年浙教版数学八上期末复习专题 一次函数的图象与性质(教师版)

2022-2023学年浙教版数学八上期末复习专题一次函数的图象与性质一、单选题(每题3分,共30分)1.下列各点在一次函数y=3x−2的图象上的是()A.(2,3)B.(0,2)C.(−2,0)D.(3,7)【答案】D【知识点】一次函数的图象【解析】【解答】解:把x=2代入y=3x−2得y=4,(2,3)不在y=3x−2图象上,A选项不符合题意;把x=0代入y=3x−2得y=−2,(0,2)不在y=3x−2图象上,B选项不符合题意;把x=−2代入y=3x−2得y=−8,(−2,0)不在y=3x−2图象上,C选项不符合题意;把x=3代入y=3x−2得y=7,(3,7)在y=3x−2图象上,D选项符合题意;故答案为:D.【分析】将各选项的点坐标分别代入y=3x−2判断即可。

2.(2021八上·诸暨期末)已知实数m<1,则一次函数y=(m﹣1)x+3﹣m图象经过的象限是()A.一、二、三B.二、三、四C.一、三、四D.一、二、四【答案】D【知识点】一次函数的图象【解析】【解答】解:∵m<1,∴m-1<0,3-m>0,∴一次函数y=(m﹣1)x+3﹣m图象经过第一、二、四象限.故答案为:D.【分析】根据题意得出m-1<0,3-m>0,再根据一次函数的图象和性质即可得出答案.3.(2021八上·扶风期末)把直线y=3x向下平移2个单位,得到的直线是()A.y=3x﹣2B.y=3(x﹣2)C.y=3x+2D.y=3(x+2)【答案】A【知识点】一次函数图象与几何变换【解析】【解答】解:把直线y=3x向下平移2个单位,可得y=3x﹣2.【分析】将一次函数y=kx+b向下平移m个单位,可得y=kx+b-m,据此解答.4.(2021八上·海曙期末)一次函数y=mx+n与正比例函数y=mnx(m,n为常数、且mn≠0)在同一平面直角坐标系中的图可能是()A.B.C.D.【答案】C【知识点】两一次函数图象相交或平行问题;一次函数图象、性质与系数的关系【解析】【解答】解:A、∵直线y=mx+n经过第一,二,三象限∴m>0,n>0,∴mn>0,∴直线y=mnx经过第一,三象限,故A不符合题意;B、∵直线y=mx+n经过第一,四,三象限∴m>0,n<0,∴mn<0,∴直线y=mnx经过第二,四象限,故B不符合题意;C、∵直线y=mx+n经过第一,四,三象限∴m>0,n<0,∴mn<0,∴直线y=mnx经过第二,四象限,故C符合题意;D、∵直线y=mx+n经过第一,四,二象限∴m<0,n>0,∴mn<0,∴直线y=mnx经过第二,四象限,故D不符合题意;【分析】利用直线y=kx+b (k≠0):当k>0,图象必过一三象限;k<0,图象必过二四象限,当b >0时,图像必过第一二象限,当b <0时,图像必过第三四象限;再观察各选项中的直线y=mx+n 所经过的象限,可判断出m ,n 的取值范围,由此可得到mn 的取值范围,可分别得到直线y=mnx 所经过的象限,由此可得正确结论的象限.5.(2021八上·桐城期末)一次函数y =−2x +4的图象与y 轴交于点P ,将一次函数图象绕着点P 转动,转动后得到的一次函数图象与两坐标轴所围成的面积比原来增加2,则转动后得到的一次函数图象与x 轴交点横坐标为( ) A .-3B .3C .3或-3D .6或-6【答案】C【知识点】一次函数图象与几何变换;一次函数图象与坐标轴交点问题 【解析】【解答】解:在y =−2x +4中,令x=0,则y=4,令y=0,则x=2,∴一次函数y =−2x +4的图象与x ,y 轴的交点分别是(2,0),(0,4), ∴一次函数y =−2x +4的图象与坐标轴形成的面积为12×4×2=4,将一次函数图象绕着点P 转动,转动后得到的一次函数图象与两坐标轴所围成的面积比原来增加2, 则转动后得到的一次函数图象与两坐标轴所围成的面积为4+2=6, 设绕着点P 转动后直线与x 轴的交点横坐标为x ,则12×4×|x|=6, 解得:x=±3, 故答案为:C .【分析】令x=0,则y=4,令y=0,则x=2,得出一次函数y =−2x +4的图象与x ,y 轴的交点,得出一次函数y =−2x +4的图象与坐标轴形成的面积,将一次函数图象绕着点P 转动,转动后得到的一次函数图象与两坐标轴所围成的面积比原来增加2,则得出转动后得到的一次函数图象与两坐标轴所围成的面积,设绕着点P 转动后直线与x 轴的交点横坐标为x ,即可得解。

期末复习6(一次函数1)

期末复习6(一次函数1)

八(上)期末复习(6)(一次函数1)基础训练:1、函数11y x =-的自变量的取值范围是_______ ,函数的自变量x 的取值范围是 。

2、下列不是一次函数的是( )。

A .x x y +=1B .)1(21-=x yC .1-=πxy D .2π+=x y3、已知自变量为x 的函数y=mx+2-m 是正比例函数,则m=________,•该函数的解析式为_________.4、直线y=2-3x 不经过第______________象限,y 随x 的增大而___________.5、一次函数22-=x y 与x 轴的交点坐标 ,与y 轴的交点坐标 ,直线与两坐标轴所围成的三角形面积为 。

6、已知一次函数y=-3x+1的图象经过点(a ,1)和点(-2,b ),则a=________,b=______.7、如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .8、直线y=kx+b 和直线y=-3x+8平行,且过点(0,-2)•则此直线的解析式为________.9、已知y 与4x-1成正比例,且当x=3时,y=6,写出y 与x 的函数关系式 。

10、若点(-4,y 1),(2,y 2)都在直线y=1x t 3-+上,则y 1与y 2的大小关系是 ( ) A .y 1>y 2 B .y 1=y 2 C .y 1<y 2 D .无法确定11、一次函数y kx b =+的图象如图所示,当0y <时,x 的取值范围是_________.12、如图,直线l 1、l 2的交点P 的坐标可以看作方程组 的解。

13、直线y =x -1与两坐标轴分别交于A 、B 两点,点C 在坐标轴上,若△ABC 为等腰三角形,则满足条件的点C 最多有( )。

A 、4个B 、5个C 、7个D 、8个例题探究:例1、已知点A (2,m )在直线82+-=x y 上.(1)点A (2,m )向左平移3个单位后的坐标是 ;直线82+-=x y 向左平移3个单位后的直线解析式是 ;(2)点A (2,m )绕原点顺时针旋转90°后的坐标是(3)求直线82+-=x y 绕点P (-1,0)顺时针旋转90°后的直线解析式.例2、已知直线1l :33y x =-和直线2l :362y x =-+相交于点A 。

一次函数期末复习测试题

一次函数期末复习测试题

(第13题) (第14题) 《一次函数》单元测试题班级 姓名 得分一、填空题(每题2分,共24分)1.已知一个正比例函数的图象经过点(-1,3),则这个正比例函数的表达式是 .2.函数2y x =-x 的取值范围是_______________.3.已知一次函数y =2x +4的图像经过点(m ,8),则m =________.4.当m = 时,函数y =2(1)2m m xm --+表示一次函数,函数式为 . 5.一次函数113y x =-+的图象与x 轴的交点A 的坐标是_________,与y 轴的交点B 的坐标是__________.△AOB 的面积为 .6.长方形相邻两边长分别为x 、y ,周长为30,则用含x 的式子表示y 为__________,在这个问题中,____________常量;____________是变量.7.为了加强公民的节水意识,某市制定了如下收费标准:每户每月的用水量不超过10t 时,水价为每吨1.2元;超过10t 时,超过部分按每吨1.8元收费.该市某户居民5月份用水x (t )(x >10),应交水费y 元,则y 与x 的关系式为_____________.8.已知等腰三角形的周长为16,底边长为y ,一腰长为x ,若把x 作为自变量,则y 与x 的函数关系式为 ;自变量x的取值范围为 .9.一次函数y =x -3的图象经过第_______________的象限.10.将直线y =2x 向上平移5个单位,得直线y = ;将直线y =-3x +2向下平移2个单位,得到直线y = .11.一次函数y =(3m -1)x -m 中,y 随x 的增大而减小,且其图象不经过第一象限,则m 的取值范围是 .二、选择题(每题3分,共24分)13.如图所示,直线y =kx +b 与x 轴交于点(-4,0),当y >0时,x 的取值范围是( )A .x >-4B .x >0C .x <-4D .x <014.已知一次函数y =kx +b 的图象如图所示,当x <0时,y 的取值范围是( )A .y >0B .y <0C .-2<y <0D .y <-215.如果一次函数y =3x +6与y =2x -4的交点坐标为(a ,b ),则x a y b =⎧⎨=⎩,是下面哪个方程组的解( )A .3624y x x y -=⎧⎨-=-⎩B .360240x y x y ++=⎧⎨--=⎩C .36240x y x y -=-⎧⎨--=⎩D .3624x y x y -=⎧⎨-=⎩16.一次函数y =3-x 与y =3x -5在直角坐标系内的交点坐标为( )A .(1,2)B .(2,1)C .(-1,2)D .(-2,1)三、解答题(共52分)21.(8分)已知一次函数的图象如右图,求它的函数关系式.22.(10分)如图,在靠墙(墙长为18m )的地方围建一个矩形的养鸡场,另三边用竹篱笆围成,如果竹篱笆总长为35m ,求鸡场的长y (m )与宽x (m )的函数关系式,并求自变量的取值范围.23.(12分)如图,反映了小明从家到超市的时间与距离之间关系的一幅图.(1)图中反映了超市离家 米。

八上数学期末专题复习--一次函数(二)

八上数学期末专题复习--一次函数(二)

八上数学期末专题复习--一次函数(二)一次函数的性质例1.(1)点P 1(x 1,y 1),点P 2(x 2,y 2)是一次函数y =﹣4x +3图象上的两个点,且x 1<x 2,则y 1与y 2的大小关系是( )A .y 1>y 2B .y 1>y 2>0C .y 1<y 2D .y 1=y 2(2).函数y =2x +2的图象如图所示,下列说法正确的是( )A .当x >0时,y >2B .当x <0时,y <0C .当x >0时,y >0D .当x >﹣1时,y >2(3).一次函数y =kx +b 的图象经过(﹣1,m )和(m ,1),其中m >1,则k 、b 的取值范围是( )A .k >0且b >0B .k <0且b >0C .k >0且b <0D .k <0且b <0(4).如图,在平面直角坐标系中,线段AB 的端点坐标为A (1,1),B (3,2),一次函数y =kx ﹣2与线段AB 有交点,则k 的值不可能是( )A .34B .35C .3D .4(5)8.已知一次函数y =﹣2x +3,当0≤x ≤5时,函数y 的最大值是( )A .0B .3C .﹣3D .﹣71.如图,直线y ax b =+与x 轴交于点()4,0A ,与直线y mx =交于点B ,则关于x 的不等式组00mx ax b <⎧⎨+<⎩的解集为( )A .0x >B .4x <C .0x <或>4xD .04x <<2.对于一次函数y ax b =+ (a ,b 为常数,且0a ≠),有以下结论:①若32b a =-时,一次函数图象过定点()2,3;②若32b a =-,且一次函数y ax b =+图象过点()1,a ,则32a =; ③当1a b =+,且函数图象过一、三、四象限时,则01a <≤;④若2b a =-,一次函数y ax b =+的图象可由2y ax =+向左平移1个单位得到;正确的说法有( )个.A .1B .2C .3D .43.已知直线y =﹣x +2与直线y =2x +4相交于点A ,与x 轴分别交于B ,C 两点,若点D (m ,﹣2m +1)落在△ABC 内部(不含边界),则m 的取值范围是 _____4.已知点P (a ,b )在直线y =﹣3x ﹣4上,且2a ﹣5b ≤0,则下列不等式一定成立的是( )A .25<b aB .25≥b aC .25≥a bD .52≤a b例2.已知y 是x 的一次函数,且当4-=x 时,9=y ;当6=x 时,1-=y .(1)求这个一次函数的解析式;(2)当21=x 时,求函数y 的值;(3)当23≤<-y 时,求自变量x 的取值范围.定义:对于给定的两个函数,当0x ≥时,它们对应函数值相等;当0x <时,它们对应的函数值互为相反数.我们称这样的两个函数互为相关函数.例如:一次函数2y x =-+,它的相关函数为()()2020x x y x x ⎧-+≥⎪=⎨-<⎪⎩ (1)已知点()1,M m -在一次函数2y x =-+的相关函数的图象上,则m 的值为______;(2)已知一次函数21y x =-.①这个函数的相关函数为______;②若点(),3N n 在这个函数的相关函数的图象上,求n 的值;③当1n x n ≤≤+时,这个函数的相关函数的取值范围是13y -≤≤,直接写出n 的取值范围.例3.如图,直线y =﹣2x 与直线y =kx +b 相交于点A (a ,2),并且直线y =kx +b 经过x 轴上点B (2,0),(1)求直线y =kx +b 的解析式.(2)求两条直线与y 轴围成的三角形面积.(3)直接写出不等式(k +2)x +b ≥0的解集.21.如图一次函数y kx b =+的图象经过点(1,5)A -,与x 轴交于点B ,与正比例函数3y x =的图象交于点C ,点C 的横坐标为1.(1)求AB 的函数表达式.(2)若点D 在y 轴负半轴,且满足13COD BOC S S =△△,求点D 的坐标. (3)若3kx b x +<,请直接写出x 的取值范围.例4.如图,直线l 1:y =﹣2x +6与过点B (﹣3,0)的直线l 2交于点C (1,m ),且直线l 1与x 轴交于点A ,与y 轴交于点D .(1)求直线l 2的解析式;(2)若点M是直线l2上的点,过点M作MN⊥y轴于点N,要使以O、M、N为顶点的三角形与△AOD 全等,求所有满足条件的点M的坐标.如图,直线AB为y=kx+6,D(8,0),点O关于直线AB的对称点C在直线AD上.(1)求直线AD的解析式.(2)求点C的坐标.(3)若OC交AB于点E,在线段AD上是否存在一点F,使△ABC与△AEF的面积相等?若存在求出F 点坐标,若不存在,请说明理由.。

第12章一次函数期末复习一次函数的交点问题PPT课件(沪科版)

第12章一次函数期末复习一次函数的交点问题PPT课件(沪科版)

则方程组
x-y-3=0 2x-y+2=0
的解是_x_=__-__5 y=-8
.
7.直线y=x+2和直线y=x-3的位置关系是 平行 , 由此可知方程组 x-y=-2解的情况为_无__解___.
x-y=3
8. 如图,在同一平面直角坐标系中,直线
l1:y=
1 4
x+
1 2
与直线l2:
y=kx+3的图象相交
6.把方程x+1=4y+
x 3
化为y=kx+b的情势,
正确的是( C ).
A.
1 3
1 4
B.
1 6
C.
1 6
1 4
D.
1 3
7.已知函数y=-x +m与y= mx-4的图象的交点
在x轴的负半轴上那么m的值为( D ).
A.±2
B.±4 C.2 D.-2
∵图象的交点在x轴上
∴ y=0 ∴ -x +m=0 ∴ x= m
( 2)两个一次函数的图象的交点
3.求一次函数的图象与坐标轴的交点的方法
(1)求一次函数的图象的与x轴交点坐标 设y=0, 变为求方程kx+b=0的解
(2)求一次函数的图象的与y轴交点坐标
设x=0, 变为求代数式kx+b的值
(3)一次函数y=kx+b的图象的与x轴交点
坐标为(

b k
,0
)

与y轴的交点坐标
C.( -1,-1) D.( -1,5)
12.如果直线y =kx+b平行于直线 y=5x-m, y= kx+b
则方程组 y= 5x- m 的解的情况是( B ).
A.有无数解
B.无解
C.一组解
D.两组解
填空题 1.已知关于x的方程ax-5=7的解为x=1,则一次

八年级数学下册《一次函数》期末专题复习

八年级数学下册《一次函数》期末专题复习

八年级数学下册《一次函数》期末专题复习【基础知识回顾】一、 一次函数的定义: 一般的:如果y= ( )即y 叫x 的一次函数特别的:当b=时,一次函数就变为y=kx(k ≠0),这时y 叫x 的 【名师提醒:正比例函数是一次函数,反之不一定成立,是有当b=0时,它才是正比例函数】 二、一次函数的图象及性质:1、一次函数y=kx+b 的图象是经过点(0,b )(-,0)的一条正比例函数y= kx 的图象是经过点 和 的一条直线 【名师提醒:图为一次函数的图象是一条直线,所以画函数图象只取 个特殊的点,过这两个点画一条直线即可】 2、正比例函数y= kx(k ≠0当k >0时,其图象过 、 象限,时y 随x 的增大而 当k<0时,其图象过 、 象限,时y 随x 的增大而3、 一次函数y= kx+b ,图象及函数性质 ①、k >0 b >0过 象限k >0 b<0过 象限 k<0 b >0过 象限 k<0 b >0过 象限4、若直线y= k 1x+ b 1与l1y= k 2x+ b 2平行,则k 1 k 2,若k 1≠k 2,则l 1与l 2【名师提醒:y 随x 的变化情况,只取决于 的符号与 无关,而直线的平移,只改变 的值 的值不变】 三、用待定系数法求一次函数解析式:关键:确定一次函数y= kx+ b 中的字母 与 的值 步骤:1、设一次函数表达式2、将x ,y 的对应值或点的坐标代入表达式3、解关于系数的方程或方程组4、将所求的系数代入等设函数表达式中四、一次函数与一元一次方程,一元一次不等式和二元一次方程组1、一次函数与一元一次方程:一般地将x= 或y 解一元一次方程求直线与坐标轴的交点坐标,代入y= kx+ b 中。

2、一次函数与一元一次不等式:kx+ b>0或kx+ b<0即一次函数图象位于x 轴上方或下方时相应的x 的取值范围,反之也成立。

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习 《一次函数》常考题与易错题精选(50题)(解析版)

期末复习- 《一次函数》常考题与易错题精选(52题)一.常量与变量(共2小题)1.在圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),常量与变量分别是( )A.常量是,变量是V,hB.常量是,变量是h,rC.常量是,变量是V,h,rD.常量是,变量是V,h,π,r【分析】根据圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),即可得常量与变量.【解答】解:由圆锥体积公式中(其中,r表示圆锥底面半径,h表示圆锥的高),可知:常量是,变量是V,h,r.故选:C.【点评】本题考查了常量与变量、认识立体图形,解决本题的关键是掌握常量与变量的概念.2.小李驾车以70km/h的速度行驶时,他所走的路程s(km)与时间t(h)之间可用公式s=70t来表示,则下列说法正确的是( )A.数70和s,t都是变量B.s是常量,数70和t是变量C.数70是常量,s和t是变量D.t是常量,数70和s是变量【分析】根据常量与变量的定义判断.【解答】解:由题意得:70是常数,其值恒定不变,是常量,行驶过程中时间不断增加,t的值不断变化,是变量,路程随时间t的不合而变化,s也是变量,∴A,B,D均不合题意,C合题意.故选:C.【点评】本题考查常量与变量,理解题意,搞清变与不变是求解本题的关键.二.函数的概念(共2小题)3.下列各图象中,不能表示y是x的函数的是( )A.B.C.D.【分析】根据函数的概念:对于自变量x的每一个值,因变量y都有唯一的值与它对应,逐一判断即可解答.【解答】解:A、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故A不符合题意;B、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故B不符合题意;C、对于自变量x的每一个值,因变量y不是都有唯一的值与它对应,所以不能表示y是x的函数,故C符合题意;D、对于自变量x的每一个值,因变量y都有唯一的值与它对应,所以能表示y是x的函数,故D不符合题意;故选:C.【点评】本题考查了函数的概念,熟练掌握函数的概念是解题的关键.4.下列说法正确的是( )A.变量x,y满足,则y是x的函数B.变量x,y满足y2=x,则y是x的函数C.变量x,y满足|y|=x,则y是x的函数D.在中,常量是,r是自变量,V是r的函数【分析】根据函数的概念,对于自变量x的每一个值,y都有唯一的值与它对应,即可解答.【解答】解:A、变量x,y满足,对于自变量x的每一个值,y都有唯一的值与它对应,则y 是x的函数,故A符合题意;B、变量x,y满足y2=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故B不符合题意;C、变量x,y满足|y|=x,对于自变量x的每一个值,y都有两个值与它对应,则y不是x的函数,故C不符合题意;D、在中,π是常量,r是自变量,对于自变量r的每一个值,V都有唯一的值与它对应,则V是r的函数,故D不符合题意,故选:A.【点评】本题考查了函数的概念,常量与变量,熟练掌握函数的概念是解题的关键.三.函数关系式(共3小题)5.物理学告诉我们,液体的压强只与液体的密度和深度有关,其公式为p=ρgh.已知水的密度为ρ=1×103kg/m3,g=9.8N/kg,水的压强p随水的深度h的变化而变化,则p与h之间满足的关系式为 p=9.8×103h .【分析】根据已知条件求出一次函数的系数,确定一次函数的解析式.【解答】解:∵ρ=1×103kg/m3,g=9.8N/kg,∴ρ×g=1×103×9.8=9.8×103,p=9.8×103h;故答案为:p=9.8×103h.【点评】考查一次函数解析式,关键掌握待定系数法求函数解析式.6.一艘轮船装载2800吨货物,写出平均卸货速度v(单位:吨/天)与卸货天数t之间的关系式为 v= .【分析】根据题中等量关系直接列出函数关系式.【解答】解:由题意得:2800=vt.∴v=.故答案为:v=.【点评】本题考查求函数关系式,理解题意,找到等量关系是求解本题的关键.7.如图,在矩形中截取两个相同的圆作为圆柱的上、下底面,剩余的矩形作为圆柱的侧面,刚好能组合成圆柱.设矩形的长和宽分别为y和x,求y关于x的函数解析式 y=x .【分析】根据组成圆柱后,底面圆的周长等于剩余长方形的长列出方程,再化成函数关系式即可.【解答】解:由题意得:=y﹣,∴y=,即y=x,故答案为:y=x.【点评】本题考查了函数关系式,展开图折叠成几何体,根据题目的已知条件并结合图形找到等量关系是解题的关键.四.函数自变量的取值范围(共3小题)8.函数y=﹣(x+1)0中自变量x的取值范围是( )A.x≥﹣2B.x>﹣2C.x>﹣2且x≠﹣1D.x≥﹣2且x≠﹣1【分析】根据二次根式(a≥0),以及a0=1(a≠0)可得x+2≥0且x+1≠0,然后进行计算即可解答.【解答】解:由题意得:x+2≥0且x+1≠0,∴x≥﹣2且x≠﹣1,故选:D.【点评】本题考查了函数自变量的取值范围,零指数幂,熟练掌握二次根式(a≥0),以及a0=1(a≠0)是解题的关键.9.在函数中,自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≥﹣3且x≠0D.x≠0且x≠﹣3【分析】根据分式有意义的条件和二次根式有意义的条件,可得,然后进行计算即可解答.【解答】解:根据题意可得:,解得:x≥﹣3且x≠0,故选:C.【点评】本题考查了函数自变量的取值范围,熟练掌握分式有意义的条件和二次根式有意义的条件是解题的关键.10.函数的自变量x的取值范围是( )A.x≥﹣3B.x>﹣3C.x≠0且x≠﹣3D.x≥﹣3且x≠0【分析】根据二次根式(a≥0)且分母不为0,可得x+3≥0且x≠0,然后进行计算即可解答.【解答】解:由题意得:x+3≥0且x≠0,解得:x≥﹣3且x≠0,故选:D.【点评】本题考查了函数自变量的取值范围,熟练掌握二次根式(a≥0)且分母不为0是解题的关键.五.函数值(共3小题)11.根据如图所示的程序计算函数y的值,若输入x的值是3,则输出y的值是﹣3.若输入x的值是﹣5,则输出y的值是( )A.5B.7C.13D.16【分析】根据题意把x=3,y=﹣3代入y=中,从而求出b的值,然后再把x=﹣5,b=﹣3代入y=﹣2x+b中,进行计算即可解答.【解答】解:由题意得:把x=3,y=﹣3代入y=中可得:﹣3=,解得:b=﹣3,把x=﹣5,b=﹣3代入y=﹣2x+b中可得:y=﹣2×(﹣5)+(﹣3)=10﹣3=7,故选:B.【点评】本题考查了函数值,根据题意把x=3,y=﹣3代入y=中求出b值是解题的关键.12.当x=﹣1时,函数y=的值是( )A.1B.﹣1C.D.【分析】把x=﹣1代入函数解析式求得相应的y值即可.【解答】解:当x=﹣1时,y===.故选:D.【点评】本题主要考查了函数值的求解,把自变量的值代入函数解析式计算即可,是基础题,比较简单.13.有下列四个函数:①y=x;②y=﹣x﹣5;③y=;④y=x2+4x﹣1.当自变量满足﹣4≤x≤﹣1时,函数值满足﹣4≤y≤﹣1的函数有( )A.①②B.①②③C.①③④D.①②③④【分析】根据一次函数的增减性,反比例函数的增减性以及二次函数的增减性分别作出判断即可得解.【解答】解:①y=x,x=﹣4时y取最小值﹣4,x=﹣1时,y取最大值﹣1,符合,②y=﹣x﹣5,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,③y=,x=﹣4时y取最大值﹣1,x=﹣1时y取最小值﹣4,符合,④y=x2+4x﹣1=(x+2)2﹣5,对称轴是直线x=﹣2,x=﹣4时,y取最大值﹣1,x=﹣2时y取最小值﹣5,x=﹣1时y=﹣4,不是最小值,不符合.综上所述,符合条件的函数有①②③共3个.故选:B.【点评】本题考查了二次函数的性质,一次函数的性质,反比例函数的性质,熟练掌握各函数的增减性是解题的关键.六.函数的图象(共6小题)14.晚饭后彤彤和妈妈散步到小区旁边的公园,在公园中央的休息区聊了会天,然后一起跑步回家,下面能反映彤彤和妈妈离家的距离y与时间x的函数关系的大致图象是( )A.B.C.D.【分析】根据在每段中,离家的距离随时间的变化情况即可进行判断.【解答】解:图象应分三个阶段,第一阶段:散步到离家较远的公园,在这个阶段,离家的距离随时间的增大而增大;第二阶段:在公园中央的休息区聊了会天,这一阶段离家的距离不随时间的变化而改变.故D错误;第三阶段:跑步回家,这一阶段,离家的距离随时间的增大而减小,故A错误,并且这段的速度大于第一阶段的速度,则B错误.故选:C.【点评】本题考查了函数的图象,解题的关键是理解路程y的含义,理解直线的倾斜程度与速度的关系,属于中考常考题型.15.将一圆柱形小水杯固定在大圆柱形容器底面中央,小水杯中有部分水,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致是( )A.B.C.D.【分析】根据将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水,即可求出小水杯内水面的高度h(cm)与注水时间t(min)的函数图象.【解答】解:将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小玻璃杯,因而这段时间h不变,当大杯中的水面与小杯水平时,开始向小杯中流水,h随t的增大而增大,当水注满小杯后,小杯内水面的高度h不再变化.故选:B.【点评】本题考查了函数的图象.正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.16.如图,图中折线表示张师傅在某天上班途中的情景:骑车离家行了一段路,由于车子出现故障,于是停下修车,修好车子后继续骑行,按时赶到单位.下列关于图中信息的说法中,错误的是( )A.张师傅修车用了15分钟B.张师傅的单位距他家2000米C.张师傅从家到单位共用了20分钟D.修车后的骑行速度是修车前的2倍【分析】根据题意和函数图象中的数据可以判断各个选项中的结论是否正确,从而可以解答本题.【解答】解:由图可得,张师傅修车用了15﹣10=5(分钟),故选项A符合题意;张师傅上班处距他家2000米,故选项B不合题意;张师傅路上耗时20分钟,故选项C不合题意,修车后张师傅骑车速度是修车前的:=2(倍),故选项D不合题意,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.17.某自行车厂甲、乙两名工人组装自行车,2小时后,甲的机器出现故障进行维修,乙加速组装.他们每人组装自行车y(辆)与生产时间t(小时)的关系如图所示.根据图象回答:(1)2小时后,乙每小时组装几辆自行车?当t为多少小时,乙组装自行车25辆?(2)甲维修好机器后,每小时组装几辆自行车?(3)甲维修好机器后,t的值为多少时,甲与乙组装的车辆一样多?【分析】(1)根据图象,用车辆数÷时间可得出每小时组装车辆;再根据车辆总数÷速度可得出时间;(2)根据图象,用车辆数÷时间可得出每小时组装车辆;(3)根据函数图象和图象中的数据可以求得甲乙对应的函数解析式,从而可以解答本题.【解答】解:(1)由图象可知:2小时后,乙每小时组装(40﹣4)÷(8﹣2)=6(辆)自行车,(25﹣4)÷6=3.5,∴t=3.5+2=5.5(小时).(2)甲维修好机器后,每小时组装(40﹣10)÷(7﹣5)=15辆.(3)设甲维修好机器后,经过x小时,甲与乙组装的车辆一样多.由题意可知,10+15x=4+6(3+x),10+15x=6x+22;解得:.此时,.【点评】本题考查一次函数的应用、函数图象,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.18.为迎接体质监测,小明和小军进行了1000米跑练习.如图是两人的路程s(米)与时间t(分钟)之间关系的图象,根据图象解答下列问题:(1)2分钟时,谁跑在前面?(2)谁先跑到终点?(3)小军的平均速度是多少?(4)起跑后两人第一次相遇时距离终点多少米?【分析】(1)由图象可直接得出结论.(2)根据图象可知,小明用的时间小,所以小明先跑到终点.(3)利用速度=路程÷时间,可得出小军的速度.(4)利用总路程﹣走过的路程=剩下的路程可得出结论.【解答】解:(1)由图象可知,2分钟时,小军跑在前面.(2)由图象可知,小明用时3.8分钟,小军用时4分钟,∴小明先跑到终点.(3)小军的平均速度为:1000÷4=250(米/分钟).∴小军的平均速度为:250米/分钟.(4)起跑后两人第一次相遇时距离终点:1000﹣250×3.4=150(米).∴起跑后两人第一次相遇时距离终点150米.【点评】本题考查函数图象的应用,借助函数图象表达题目中的信息,读懂图象是关键.注意图中的时间﹣路程的函数图象意义.19.甲、乙两人在笔直的公路AB上从起点A地以不同的速度匀速跑向终点B地,先到B地的人原地休息,已知A、B两地相距1500米,且甲比乙早出发,甲、乙两人之间的距离y(米)与甲出发的时间x(秒)的关系如图所示.(1)甲早出发 30 秒,乙出发时两人距离 75 米;(2)甲的速度是 2.5 米/秒,甲从A地跑到B地共需 600 秒;(3)乙出发 150 秒时追上了甲;(4)甲出发 420或552 秒时,两人相距120米.【分析】(1)根据图象解答即可;(2)根据题意和图象中的数据即可求出甲的速度,进而求出甲从A地跑到B地共需要的时间;(3)根据题意可知,当y=0时,乙追上甲,由图象可得出结果;(4)根据题意列方程解答即可.【解答】解:(1)由图象可知,甲早出发30秒,乙出发时两人距离75米;故答案为:30;75.(2)根据题意得,甲的速度为:75÷30=2.5米/秒,1500÷2.5=600(秒).即甲从A地跑到B地共需600秒.故答案为:2.5;600.(3)180﹣30=150(秒),∴乙出发150秒时追上了甲.故答案为:150;(4)设甲出发x秒时,两人相距120米,根据题意得:3(x﹣30)﹣2.5x=120或2.5x=1500﹣120,解得x=420或552.即甲出发420秒或552秒时,两人相距120米.故答案为:420或552.【点评】本题考查函数图象的应用,解答本题的关键是明确题意,利用数形结合的思想和时间﹣距离图象进行解答.七.动点问题的函数图象(共3小题)20.小明在一个半圆形的花园的周边散步,如图1,小明从圆心O出发,按图中箭头所示的方向,依次匀速走完下列三条线路:(1)线段OA;(2)半圆弧AB;(3)线段BO后,回到出发点.小明离出发点的距离S(小明所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,请据图回答下列问题(圆周率π的值取3):(1)请直接写出:花园的半径是 100 米,小明的速度是 50 米/分,a= 8 ;(2)若沿途只有一处小明遇到了一位同学停下来交谈了2分钟,并且小明在遇到同学的前后,始终保持速度不变,请你求出:①小明遇到同学的地方离出发点的距离;②小明返回起点O的时间.【分析】(1)由t在2﹣a变化时,S不变可知,半径为100米,速度为50米/分,再求出在半圆上的运动时间即可;(2)①由(1)根据图象,第11分时,小明继续行走,则小明之前行走9分,可求出已经行走路北,用全程路程减去已走路程即可;②可求全程时间为500用时10分钟,再加上停留2分钟即可.【解答】解:(1)由图象可知,花园半径为100米,小明速度为100÷2=50米/分,半圆弧长为100π=300米,则a=2+=8故答案为:100,50,8.(2)①由已知,第11分时小明继续前进,则行进时间为9分钟,路程为450米全程长100+300+100=500米,则小明离出发点距离为50米;②小明返回起点O的时间为分【点评】本题为动点问题的函数图象探究题,考查了通过函数图象探究图象代表的实际意义,运用数形结合的数学思想.21.如图①所示,在△ABC中,AD是三角形的高,且AD=6cm,E是一个动点,由B向C移动,其速度与时间的变化关系如图②所示,已知BC=8cm(1)由图②,E点运动的时间为 2 s,速度为 3 cm/s(2)求当E点在运动过程中△ABE的面积y与运动时间x之间的关系式;(3)当E点停止后,求△ABE的面积.【分析】(1)根据图象解答即可;(2)根据三角形的面积公式,可得答案;(3)根据三角形的面积公式,可得答案.【解答】解:(1)根据题意和图象,可得E点运动的时间为2s,速度为3cm/s.故答案为:2;3;(2)根据题意得y=×BE×AD==9x,即y=9x(0<x≤2);(3)当x=2时,y=9×2=18.故△ABE的面积为18cm2.【点评】本题主要考查了动点问题的函数图象,涉及求函数解析式,求函数值问题,能读懂函数图象是解决问题的关键.22.已知动点P以2cm/s的速度沿图1所示的边框从B﹣C﹣D﹣E﹣F﹣A的路径运动,记△ABP的面积为S (cm2),S与运动时间t(s)的关系如图2所示,若AB=6cm,请回答下列问题:(1)图1中BC= 8 cm,CD= 4 cm,DE= 6 cm(2)求出图1中边框所围成图形的面积;(3)求图2中m、n的值;(4)分别求出当点P在线段BC和DE上运动时S与t的关系式,并写出t的取值范围.【分析】(1)因为点P速度为2,所以根据右侧的时间可以求出线段BC,CD和DE的长度.(2)对多边形采取切割的方法求面积,将多边形切割为两个长方形即可.(3)m代表的是点P在C时对应图形面积,n代表的是点P运动到A时对应的时间,由图象都可以求出.(4)表示出点P到AB的水平距离作为高,以AB为底求出面积.【解答】解:(1)由右侧图象可知,点P在BC线段运动4秒,BC=8,点P在CD线段运动2秒,CD =4cm,点P在DE线段运动3秒,DE=6cm,(2)∵AB=6cm,CD=4cm,∴EF=2cm,∴图形的面积可以看作是两个长方形面积之和6×8+6×2=60(cm2)(3)当点P到C时,△ABP的面积为24(cm2)∴m=24BC+CD+DE+EF+AF=34cm∴n=34×=17cm(4)当点P在BC上运动时0≤t≤4S==6t(cm2)当点P在DE上运动时6≤t≤9S==6t﹣12(cm2)【点评】本题考查了数形结合的数学思维,通过图象找出对应图形的线段长度,很好的考查了学生分析问题和看图的能力.八.一次函数的定义(共2小题)23.已知函数y=(m+1)x2﹣|m|+4,y是x的一次函数,则m的值是( )A.1B.﹣1C.1或﹣1D.任意实数【分析】根据一次函数的定义:形如y=kx+b(k,b为常数且k≠0),可得2﹣|m|=1且m+1≠0,然后进行计算即可解答.【解答】解:由题意得:2﹣|m|=1且m+1≠0,∴m=±1且m≠﹣1,∴m=1,故选:A.【点评】本题考查了一次函数的定义,熟练掌握一次函数的定义是解题的关键.24.已知函数y=(m﹣2)+1是一次函数,则m的值为( )A.±B.C.±2D.﹣2【分析】根据一次函数的定义,自变量的次数为1列方程求出m的值,再根据比例系数k≠0求解得到m ≠2,从而得解.【解答】解:由题意得,m2﹣3=1且m﹣2≠0,解得m=±2且m≠2,所以m=﹣2.故选:D.【点评】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.九.正比例函数的定义(共2小题)25.若y关于x的函数y=(a﹣2)x+b是正比例函数,则a,b应满足的条件是( )A.a≠2B.b=0C.a=2且b=0D.a≠2且b=0【分析】直接利用正比例函数的定义分析求出答案.【解答】解:∵y=(a﹣2)x+b是y关于x的正比例函数,∴b=0,a﹣2≠0,解得:b=0,a≠2.故选:D.【点评】此题主要考查了正比例函数的定义,正确把握正比例函数一般形式是解题关键.26.若函数y=(k﹣2)x+2k+1是正比例函数,则k的值是( )A.k≠2B.k=2C.k=﹣D.k=﹣2【分析】根据正比例函数的定义得出k﹣2≠0且2k+1=0,再求出k即可.【解答】解:∵函数y=(k﹣2)x+2k+1是正比例函数,∴k﹣2≠0且2k+1=0,解得:k=﹣,故选:C.【点评】本题考查了正比例函数的定义,能熟记正比例函数的定义是解此题的关键,注意:形如y=kx+b (k、b为常数,k≠0)的函数,叫一次函数,当b=0时,函数y=kx+b叫正比例函数.一十.一次函数的图象(共3小题)27.在平面直角坐标系中,已知m为常数,且m≠2,m≠3,则关于x的一次函数y=(m﹣3)x+4﹣2m 与y=(4﹣2m)x+m﹣3的图象可能是( )A.B.C.D.【分析】根据一次函数的图象和性质判断即可.【解答】解:当m﹣3>0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、三、四象限,y=(4﹣2m)x+m﹣3的图象过第一、二、四象限,无选项符合题意;当m﹣3<0,4﹣2m<0时,一次函数y=(m﹣3)x+4﹣2m与y=(4﹣2m)x+m﹣3的图象都过第二、三、四象限,选项D符合题意;当m﹣3<0,4﹣2m>0时,一次函数y=(m﹣3)x+4﹣2m图象都过第一、二、四象限,y=(4﹣2m)x+m﹣3的图象过第一、三、四象限,无选项符合题意.故选:D.【点评】本题考查了一次函数图象:一次函数y=kx+b(k、b为常数,k≠0)是一条直线,当k>0,图象经过第一、三象限,y随x的增大而增大;当k<0,图象经过第二、四象限,y随x的增大而减小;图象与y轴的交点坐标为(0,b).28.在同一平面直角坐标系中,一次函数y=kx+b(k≠0)与y=bx﹣k(b≠0)的大致图象可以是( )A.B.C.D.【分析】根据一次函数经过的象限与系数的关系进行求解即可.【解答】解;当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,一次函数y=bx﹣k经过第一、三、四象限;当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,一次函数y=bx﹣k经过第二、三、四象限;当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,一次函数y=bx﹣k经过第一、二、三象限;当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限,一次函数y=bx﹣k经过第一、二、四象限;∴四个选项只有C符合题意.故选:C.【点评】本题主要考查了一次函数图象与系数的关系,熟知对于一次函数y=kx+b,当k>0,b>0时,一次函数y=kx+b经过第一、二、三象限,当k>0,b<0时,一次函数y=kx+b经过第一、三、四象限,当k<0,b>0时,一次函数y=kx+b经过第一、二、四象限,当k<0,b<0时,一次函数y=kx+b经过第二、三、四象限是解题的关键.29.在同一平面直角坐标系中,一次函数y=ax+a2与y=a2x+a的图象可能是( )A.B.C.D.【分析】利用一次函数的性质进行判断.【解答】解:∵y=ax+a2与y=a2x+a,∴x=1时,两函数的值都是a2+a,∴两直线的交点的横坐标为1,若a>0,则一次函数y=ax+a2与y=a2x+a都是增函数,且都交y轴的正半轴,图象都经过第一、二、三象限;若a<0,则一次函数y=ax+a2经过第一、二、四象限,y=a2x+a经过第一、三、四象限,且两直线的交点的横坐标为1;故选:D.【点评】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题.一次函数y=kx+b的图象有四种情况:①当k>0,b>0时,函数y=kx+b的图象经过第一、二、三象限;②当k>0,b<0时,函数y=kx+b的图象经过第一、三、四象限;③当k<0,b>0时,函数y=kx+b的图象经过第一、二、四象限;④当k<0,b<0时,函数y=kx+b的图象经过第二、三、四象限.一十一.一次函数的性质(共4小题)30.若一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,则a的值可以是( )A.4B.2C.﹣2D.﹣6【分析】由一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,可得出a﹣2>0,解之即可得出a的取值范围,再对照四个选项即可得出结论.【解答】解:∵一次函数y=(a﹣2)x﹣b的图象中y值随x值的增大而增大,∴a﹣2>0,∴a>2.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.31.若点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,则a与b的大小关系是( )A.a>b B.a<bC.a=b D.与m的值有关【分析】由k=﹣2<0,利用一次函数的性质可得出y随x的增大而减小,结合﹣3<4,即可求出a>b.【解答】解:∵k=﹣2<0,∴y随x的增大而减小,又∵点A(﹣3,a)和点B(4,b)都在直线y=﹣2x+m上,且﹣3<4,∴a>b.故选:A.【点评】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.32.直线y=﹣3x+2图象不经过下列哪个象限( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】先根据一次函数的解析式判断出k、b的符号,再根据一次函数的性质进行解答即可.【解答】解:∵解析式y=﹣3x+2中,k=﹣3<0,b=2>0,∴图象过第一、二、四象限,∴图象不经过第三象限.故选:C.【点评】本题考查的是一次函数的性质,即一次函数y=kx+b(k≠0)中,当k<0时,函数图象经过第二、四象限,当b>0时,函数图象与y轴相交于正半轴.33.若a、b为实数,且,则直线y=ax+b不经过的象限是( )A.第一象限B.第二象限C.第三象限D.第四象限【分析】依据,即可得到a=,b=﹣5,进而得到直线y=x﹣5不经过的象限.【解答】解:∵,∴,解得a=,∴b=﹣5,∴直线y=x﹣5经过第一,三,四象限,∴不经过的象限是第二象限,故选:B.【点评】本题主要考查了一次函数的性质,解决问题的关键是掌握二次根式中被开方数的取值范围:二次根式中的被开方数是非负数.一十二.一次函数图象与系数的关系(共2小题)34.已知正比例函数y=(2m+1)x,y随x的增大而减小,则m的取值范围是( )A.m>﹣B.m C.m D.m【分析】根据正比例函数图象与系数的关系列出关于m的不等式2m+1<0,然后解不等式即可.【解答】解:∵正比例函数y=(2m+1)x中,y的值随自变量x的值增大而减小,∴2m+1<0,解得m<﹣,故选:B.【点评】本题主要考查正比例函数图象在坐标平面内的位置与k的关系.解答本题注意理解:直线y=kx 所在的位置与k的符号有直接的关系.k>0时,直线必经过一、三象限,y随x的增大而增大;k<0时,直线必经过二、四象限,y随x的增大而减小.35.两条直线y=ax+b与y=bx+a在同一直角坐标系中的图象位置可能是( )A.B.C.D.【分析】根据一次函数的图象与系数的关系,逐一判断即可解答.【解答】解:A、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故A不符合题意;B、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故B符合题意;C、当经过第一、二、三象限的直线为y=ax+b,则a>0,b>0,∴直线y=bx+a应该经过第一、二、三象限,故C不符合题意;D、当经过第一、三、四象限的直线为y=ax+b,则a>0,b<0,∴直线y=bx+a应该经过第一、二、四象限,故D不符合题意;故选:B.【点评】本题考查了一次函数的图象与系数,熟练掌握一次函数的图象与系数的关系是解题的关键.一十三.一次函数图象上点的坐标特征(共2小题)36.一次函数y=2x+3的图象与y轴的交点是( )A.(2,3)B.(0,2)C.(0,3)D.(﹣,0)【分析】代入x=0,求出y值,进而可得出一次函数y=2x+3的图象与y轴的交点坐标.【解答】解:当x=0时,y=2×0+3=3,∴一次函数y=2x+3的图象与y轴的交点是(0,3).故选:C.【点评】本题考查了一次函数图象上点的坐标特征,牢记“直线上任意一点的坐标都满足函数关系式y=kx+b”是解题的关键.37.若点(﹣3,y1)、(2,y2)都在函数y=﹣4x+b的图象上,则y1与y2的大小关系( )。

第16讲、期末复习3:一次函数 S版

第16讲、期末复习3:一次函数  S版

()()()321000.0k ⎪⎩⎪⎨⎧<=><b b b ()()()32100.0k ⎪⎩⎪⎨⎧<=>>b b b 一次函数一、知识框架二、知识概念1.一次函数:若两个变量x,y 间的关系式可以表示成y=kx+b(k≠0)的形式,则称y 是x 的一次函数(x 为自变量,y 为因变量)。

特别地,当b=0时,称y 是x 的正比例函数。

2.正比例函数一般式:y=kx (k≠0),其图象是经过原点(0,0)的一条直线。

当k>0时,直线y=kx 经过第一、三象限,y 随x 的增大而增大,当k<0时,直线y=kx 经过第二、四象限,y 随x 的增大而减小,在一次函数y=kx+b 中:当k>0时,y 随x 的增大而增大;当k<0时,y 随x 的增大而减小。

3.已知两点坐标求函数解析式的方法叫待定系数法(1)(2)(3)(1)(3)(2)三、考点1.小明和小华是同班同学,也是邻居,某日早晨,小明7:00先出发去学校,走了一段后,在途中停下吃了早晨,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和小明所用时间t(分钟)的关系图.则下列说法中正确的个数是()①小明吃早晨用时5分钟;②小华到学校的平均速度是240米/分;③小明跑步的平均速度是100米/分;④小华到学校的时间是7:05.A.1B.2C.3D.42.一次函数y=kx﹣k,若y随着x的增大而减小,则该函数的图象经过()A.一、二、三B.一、二、四C.二、三、四D.一、三、四3.如图1,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C停止,它们运动的速度都是1cm/s.设P、Q出发ts时,△BPQ 的面积为ycm2,已知y与t的函数关系如图2所示(其中曲线OM为抛物线的一部分,其余各部分均为线段)当点P在ED上运动时,连接QD,若QD平分∠PQC,则t的值为.4.若一次函数y=(1﹣2m)x+m的图象经过点A(x1,y1)和点B(x2,y2),当x1<x2时,y1<y2,且与y轴相交于正半轴,则m的取值范围是.5.如图,已知函数y=2x+b与函数y=kx﹣6的图象交于点P,则不等式kx﹣6<2x+b的解集是.6.已知直线y=﹣3x+b与直线y=﹣kx+1在同一坐标系中交于点 t, t ,则关于x的方程﹣3x+b=﹣kx+1的解为x=.7.已知y﹣2与x成正比例,当x=1时,y=6,求y与x的函数表达式.8.已知一次函数的图象经过A(﹣1,4),B(1,﹣2)两点.(1)求该一次函数的解析式;(2)直接写出函数图象与两坐标轴的交点坐标.9.已知一次函数y1=﹣2x+4,完成下列问题:(1)画出此函数的图象;(2)将函数y1的图象向下平移2个单位,得到函数y2的图象,直接写出函数y2的表达式;(3)当x时,y2>0.10.在坐标系中作出函数y=2x+6的图象,利用图象解答下列问题:(1)求方程2x+6=0的解;(2)求不等式2x+6>4的解集;(3)若﹣2≤y≤2,求x的取值范围.11.在如图所示的平面直角坐标系中,已知一次函数y=x+3的图象与x轴交于点A,与y轴交于点B.(1)写出A点和B点的坐标;(2)在平面直角坐标系中画出一次函数=x+3的图象;(3)若C点的坐标为C(3,0),判断△ABC的形状,并说明理由.12.如图,函数 t t h的图象与x轴、y轴分别交于点A、B,与函数y=x的图象交于点M,点M 的横坐标为2,在x轴上有一点P(a,0)(a>2),过点P作x轴的垂线,分别交函数 t t h 和y=x的图象于点C、D.(1)求点A的坐标;(2)若OB=CD,求a的值;(3)直接写出不等式组 t h< 的解集.13.某教学网站策划了A,B两种上网学习的月收费方式收费方式月使用费/元月包时上网时间/h月超时费/(元/h)A7250.6B10503设每月的上网时间为xh(Ι)根据题意,填写下表:收费方式月使用费/元月上网时间/h月超时费/元月总费用/元A745B1045(Ⅱ)设A,B两种方式的收费金额分别为y1元和y2元,分别写出y1,y2与x的函数解析式;(Ⅲ)当x>60时,你认为哪种收费方式省钱?请说明理由.14.在一条笔直的公路上依次有A、B、C三地,自行车爱好者甲、乙两人分别从A、B两地同时出发,沿直线匀速骑向C地.已知甲的速度为20km/h,如图所示,甲、乙两人与A地的距离y(km)与行驶时间x(h)的函数图象分别为线段OD、EF.(1)A、B两地的距离为km.(2)求线段EF所在直线对应的函数关系式.(3)若两人在出发时都配备了通话距离为3km的对讲机,求甲、乙两人均在骑行过程中可以用对讲机通话的时间段.15.无锡阳山盛产水蜜桃,上市期间,一外地运销客户安排15辆汽车装运A、B、C三种不同品种的水蜜桃120吨到外地销售,按计划15辆汽车都要装满且每辆汽车只能装同一种品种的水蜜桃,每种水蜜桃所用车辆都不少于3辆.(1)设装运A种水蜜桃的车辆数为x辆,装运B种水蜜桃的车辆数为y辆,根据如表提供的信息,求出y与x之间的函数关系式;水蜜桃品种A B C每辆汽车运载量(吨)1086每吨水蜜桃获利(元)80012001000(2)在(1)条件下,求出该函数自变量x的取值范围,车辆的安排方案共有几种?请写出每种安排方案;(3)为了减少水蜜桃积压,无锡市制定出台了促进水蜜桃销售的优惠政策,在外地运销客户原有获利不变的情况下,政府对其中A、C两种水蜜桃按每吨m元(200≤m≤500)的标准实行运费补贴.若要使该外地运销客户所获利润W(元)最大,应采用哪种车辆安排方案?16.甲、乙两个工程队共同开凿一条隧道,甲队按一定的工作效率先施工,一段时间后,乙队从隧道的另一端按一定的工作效率加入施工,中途乙队调离一部分工人去完成其他任务,工作效率降低.当隧道气打通时,甲队工作了40天,设甲,乙两队各自开凿隧道的长度为y(米),甲队的工作时间为x(天),y与x之间的函数图象如图所示.(1)求甲队的工作效率.(2)求乙队调离一部分工人后y与x之间的函数关系式(3)求这条隧道的总长度.17.如图1,在某条公路上有A、B、C三个车站,一辆汽车从A站以速度v1匀速驶向B站,到达B站后不停留,又以速度v2匀速驶向C站,汽车行驶路程y(千米)与行驶时间x(小时)之间的函数图象如图2所示.(1)当汽车在A、B两站之间匀速行驶时,求y与x之间的函数关系式及自变量的取值范围;(2)当汽车的行驶路程为360千米时,求此时的行驶时间x的值;(3)若汽车在某一段路程内行驶了90千米用时50分钟,求行驶完这段路程时x的值.18.某省A,B两市遭受严重洪涝灾害,2万人被迫转移,邻近县市C,D获知A,B两市分别急需救灾物资250吨和350吨的消息后,决定调运物资支援灾区,已知C市有救灾物资280吨,D市有救灾物资320吨,现将这些救灾物资全部调往A,B两市.已知从C市运往A,B两市的费用分别为每吨20元和25元,从D市运往A,B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)请填写下表.A市(吨)B市(吨)合计(吨)C市280D市x320总计(吨)250350600(2)设C,D两市的总运费为y元,求y与x之间的函数表达式,并写出自变量x的取值范围.(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少a元(a>0),其余路线运费不变.若C,D两市的总运费的最小值不小于12360元,求a的取值范围.19.甲骑电动车、乙骑摩托车都从M地出发,沿一条笔直的公路匀速前往N地,甲先出发一段时间后乙再出发,甲、乙两人到达N地后均停止骑行.已知M、N两地相距 地相t km,设甲行驶的时间为x(h),甲、乙两人之间的距离为y(km),表示y与x函数关系的部分图象如图所示.请你解决以下问题:(1)求线段BC所在直线的函数表达式;(2)求点A的坐标,并说明点A的实际意义;(3)根据题目信息补全函数图象.(须标明相关数据)20.小王准备给家中长为3米的正方形ABCD电视墙铺设大理石,按图中所示的方案分成9块区域分别铺设甲,乙,丙三种大理石(正方形EFGH是由四块全等的直角三角形围成),(1)已知甲大理石的单价为150元/m2,乙大理石的单价为200元/m2,丙大理石的单价为300元/m2,整个电视墙大理石总价为1700元.①当铺设甲,乙大理石区域面积相等时,求铺设丙大理石区域的面积.②设铺设甲,乙大理石区域面积分别为xm2,ym2,当丙的面积不低于1m2时,求出y关于x的函数关系式,并写出y的最大值.(2)若要求AE:AF=1:2,EQ:FQ=1:3,甲,乙大理石单价之和为300元/m2,丙大理石的单价不低于300元/m2,铺设三种大理石总价为1620元,求甲的单价取值范围.21.请你用学习“一次函数”时积累的经验和方法研究函数y=|x|的图象和性质,并解决问题.(1)完成下列步骤,画出函数y=|x|的图象;①列表、填空;x…﹣3﹣2﹣10123…y…31123…②描点:③连线(2)观察图象,当x时,y随x的增大而增大;(3)结合图象,不等式|x|<x+2的解集为.22.在平面直角坐标系xOy中有一点,过该点分别作x轴和y轴的垂线,垂足分别是A、B,若由该点、原点O以及两个垂足所组成的长方形的周长与面积的数值相等,则我们把该点叫做平面直角坐标系中的平衡点.(1)请判断下列各点中是平面直角坐标系中的平衡点的是;(填序号)①A(1,2)②B(﹣4,4)(2)若在第一象限中有一个平衡点N(4,m)恰好在一次函数y=﹣x+b(b为常数)的图象上.①求m、b的值;②一次函数y=﹣x+b(b为常数)与y轴交于点C,问:在这函数图象上,是否存在点M.使S△OMC,若存在,请直接写出点M的坐标;若不存在,请说明理由.=3S△ONC(3)经过点P(0,﹣2),且平行于x轴的直线上有平衡点吗?若有,请求出平衡点的坐标;若没有,说明理由.23.如图,正方形ABCD的边长为6cm,动点P从A点出发,在正方形的边上由A→B→C→D运动,设运动的时间为t(s),△APD的面积为S(cm2),S与t的函数图象如图所示(1)求点P在BC上运动的时间范围;(2)当t为何值时,△APD的面积为10cm2.24.如图1,在直角梯形ABCD中,动点P从B点出发,沿B→C→D→A匀速运动,设点P运动的路程为x,△ABP的面积为y,图象如图2所示.(1)在这个变化中,自变量、因变量分别是、;(2)当点P运动的路程x=4时,△ABP的面积为y=;(3)求AB的长和梯形ABCD的面积.25.如图,在平面直角坐标系中,边长为2的正方形ABCD在第一象限内,AD∥y轴,点A的坐标为(5,3),已知直线l:y t x﹣2.(1)将直线l向上平移m个单位,使平移后的直线恰好经过点A,求m的值;(2)在(1)的条件下,平移后的直线与正方形的边长BC交于点E,求△ABE的面积.26.如图,正方形ABCD中,点A在x轴上,点D在y轴正半轴上,点B和点C都在第一象限,已知点A 的坐标为(3,0),正方形ABCD的面积为25.(1)填空:点D的坐标为,点B的坐标为,点C的坐标为;(2)连接OB、OC,求△OBC的面积;(3)已知直线y=kx﹣(k+1)(k≠0).①若该直线将正方形ABCD分成面积相等的两部分,求k的值;②若点P是该直线上的任意一点,且 ,求此直线解析式.27.点O为平面直角坐标系的坐标原点,直线y t t x+2与x轴相交于点A,与y轴相交于点B.(1)求点A,点B的坐标;(2)若∠BAO=∠AOC,求直线OC的函数表达式;(3)点D是直线x=2上的一点,把线段BD绕点D旋转90°,点B的对应点为点E.若点E恰好落在直线AB上,则称这样的点D为“好点”,求出所有“好点”D的坐标.28.如图,直线y t x+3与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数表达式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q,连接BM.①若∠MBC=90°,求点P的坐标;②若△PQB的面积为 ,请直接写出点M的坐标.29.如图,直线y=kx+b与x轴,y轴分别交于A,B两点,且经过点(4,b+3).(1)求k的值;(2)若AB=OB+2,①求b的值;②点M为x轴上一动点,点N为坐标平面内另一点.若以A,B,M,N为顶点的四边形是菱形,请直接写出所有符合条件的点N的坐标.30.如图,在平面直角坐标系中,过点A(0,6)的直线AB与直线OC相交于点C(2,4)动点P沿路线O→C→B运动.(1)求直线AB的解析式;(2)当△OPB的面积是△OBC的面积的 时,求出这时点P的坐标;(3)是否存在点P,使△OBP是直角三角形?若存在,直接写出点P的坐标,若不存在,请说明理由.。

2021-2022学年北师大版八年级数学上册《第4章一次函数》期末复习易错题型专题测试(附答案)

2021-2022学年北师大版八年级数学上册《第4章一次函数》期末复习易错题型专题测试(附答案)

2021-2022学年北师大版八年级数学上册《第4章一次函数》期末复习易错题型专题测试(附答案)一.选择题(共8小题,满分32分)1.将一次函数y=的图象向左平移2个单位得到的新的函数的表达式()A.y=x+1B.y=x+2C.y=x﹣1D.y=x﹣2 2.成都市双流新城公园是亚洲最大的城市湿地公园,周末小李在这个公园里某笔直的道路上骑车游玩,先前进了a千米,休息了一段时间,又原路返回b千米(b<a),再前进c 千米,则他离起点的距离s与时间t的关系的示意图是()A.B.C.D.3.小明从家出发到公园晨练,在公园锻炼一段时间后按原路返回,同时小明爸爸从公园按小明的路线返回家中,如图是两人离家的距离y(米)与小明出发的时间x(分)之间的函数图象,则下列结论中不正确的是()A.公园离小明家1600米B.小明出发分钟后与爸爸第一次相遇C.小明在公园停留的时间为5分钟D.小明与爸爸第二次相遇时,离家的距离是960米4.已知一次函数y=kx+b,函数值y随自变量x的增大而减小,且kb<0,则函数y=kx+b 的图象大致是()A.B.C.D.5.甲骑摩托车从A地去B地,乙开汽车从B地去A地,同时出发,匀速行驶,各自到达终点后停止,设甲乙两人间距离为s(单位:千米),甲行驶的时间为(单位:小时),s与t之间的函数关系如图所示,有下列结论:①出发1小时时,甲、乙在途中相遇;②乙开车速度是80千米/小时;③出发1.5小时时,乙比甲多行驶了60千米;④出发3小时时,甲乙同时到达终点;其中正确结论的个数是()A.1B.2C.3D.46.宇嘉同学从家出发沿笔直的公路去晨练,他离开家的距离y(米)与时间x(分)的函数关系图象如图所示.下列结论中,不正确的是()A.整个行进过程花了30分钟B.整个行进过程共走了1000米C.在图中停下来休息了5分钟D.返回时速度为100米/分7.已知点(﹣4,y1),(2,y2)都在直线y=﹣x+2上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较8.已知直线y=﹣x+与x轴,y轴分别交于A,B两点,在坐标轴上取一点P,使得△P AB是等腰三角形,则符合条件的点P有()个A.4B.6C.7D.8二.填空题(共10小题,满分40分)9.某市出租车白天的收费起步价为7元,即路程不超过3千米时收费7元,超过部分每千米收费1.2元,如果乘客白天乘坐出租车的路程为x(x>3)千米,乘车费为y元,那么y与x之间的关系为.10.某地出租车行驶里程x(km)与所需费用y(元)的关系如图.若某乘客一次乘坐出租车里程12km,则该乘客需支付车费元.11.我们知道:当x=2时,不论k取何实数,函数y=k(x﹣2)+3的值为3,所以直线y =k(x﹣2)+3一定经过定点(2,3);同样,直线y=(k﹣2)x+3k一定经过的定点为.12.如图,将八个边长为1的小正方形摆放在平面直角坐标系中,若过原点的直线l将图形分成面积相等的两部分,则将直线l向右平移3个单位长度后所得直线l′的函数解析式为.13.如图,一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点.P是x轴上一个动点,若沿BP将△OBP翻折,点O恰好落在直线AB上的点C处,则点P的坐标是.14.一次函数y=2x﹣6的图象与两坐标轴所围成的三角形面积为.15.如图是表示的是甲、乙两人运动的图象,图中s(米)和t(秒)分别表示运动的路程和时间,根据图象判断,快者的速度比慢者的速度每秒快米.16.若一次函数y=kx+3与x轴、y轴分别交于点A、B,且三角形OAB的面积是6,则k =.17.正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和x轴上,已知点B1(1,1),B2(3,2),则B n的坐标是.18.直线y=﹣x+4与x轴、y轴分别交于点A、B,M是y轴上一点,若将△ABM沿AM 折叠,点B恰好落在x轴上,则点M的坐标为.三.解答题(共6小题,满分48分)19.如图,在平面直角坐标系xOy中,直线y=﹣x+8分别交x轴、y轴于点A、B,将正比例函数y=2x的图象沿y轴向下平移3个单位长度得到直线l,直线l分别交x轴、y 轴于点C、D,交直线AB于点E.(1)直接写出直线l对应的函数表达式;(2)在直线AB上存在点F(不与点E重合),使BF=BE,求点F的坐标;(3)在x轴上是否存在点P,使∠PDO=2∠PBO?若存在,求点P的坐标;若不存在,请说明理由.20.周末,小明骑电动自行车从家里出发到野外郊游.从家出发0.5小时后到达甲地,游玩一段时间后按原速前往乙地.小明离家1小时20分钟后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑电动自行车速度的3倍.(1)小明骑电动自行车的速度为千米/小时,在甲地游玩的时间为小时;(2)小明从家出发多少小时的时候被妈妈追上?此时离家多远?21.一条笔直的公路上有甲、乙两地相距2400米,王明步行从甲地到乙地,每分钟走96米,李越骑车从乙地到甲地后休息2分钟沿原路原速返回乙地设他们同时出发,运动的时间为t(分),与乙地的距离为s(米),图中线段EF,折线OABD分别表示两人与乙地距离s和运动时间t之间的函数关系图象(1)李越骑车的速度为米/分钟;F点的坐标为;(2)求李越从乙地骑往甲地时,s与t之间的函数表达式;(3)求王明从甲地到乙地时,s与t之间的函数表达式;(4)求李越与王明第二次相遇时t的值.22.已知一次函数y=kx+b的图象经过点(﹣1,﹣5),且与正比例函数y=x的图象相交于点(2,a),求(1)a的值;(2)k,b的值;(3)这两个函数图象与x轴所围成的三角形的面积.23.有一进水管与出水管的容器,从某时刻开始4min内只进水不出水,在随后的8min内既进水又出水,每分的进水量和出水量是两个常数,容器内的水量y(单位:L)与时间x (单位:分)之间的关系如图所示:(1)求0≤x≤4时y随x变化的函数关系式;(2)当4<x≤12时,求y与x的函数解析式;(3)每分钟进水、出水各是多少升?24.如图,在平面直角坐标系中,直线y=x+2与x轴,y轴分别交于A,B两点,点C(2,m)为直线y=x+2上一点,直线y=﹣x+b过点C.(1)求m和b的值;(2)直线y=﹣x+b与x轴交于点D,动点P从点D开始以每秒1个单位的速度向x 轴负方向运动.设点P的运动时间为t秒.①若点P在线段DA上,且△ACP的面积为10,求t的值;②是否存在t的值,使△ACP为等腰三角形?若存在,直接写出t的值;若不存在,请说明理由.参考答案一.选择题(共8小题)1.解:∵一次函数y=的图象向左平移2个单位,∴平移后所得图象对应的函数关系式为:y=﹣(x+2)+2,即y=﹣x﹣1.故选:C.2.解:由题意,得路程先增加,路程不变,路程减少,路程又增加,故D符合题意;故选:D.3.解:由图可得,公园离小明家1600米,故A选项正确;∵小明从家出发到公园晨练时,速度为1600÷10=160米/分,小明爸爸从公园按小明的路线返回家中的速度为1600÷50=32米/分,∴小明出后与爸爸第一次相遇的时间为1600÷(160+32)=分钟,故B选项正确;由图可得,30分钟后小明与爸爸第二次相遇时,离家的距离是1600﹣30×32=640米,故D选项错误;∵小明在与爸爸第二次相遇后回到家的时间为:40﹣30=10分,∴小明在公园锻炼一段时间后按原路返回的速度为640÷10=64米/分,∴40﹣1600÷64=15分,∴小明在公园停留的时间为15﹣10=5分钟,故C选项正确;故选:D.4.解:∵一次函数y=kx+b,y随着x的增大而减小,∴k<0,∴一次函数y=kx+b的图象经过第二、四象限;∵kb<0,∴b>0,∴图象与y轴的交点在x轴上方,∴一次函数y=kx+b的图象经过第一、二、四象限.故选:C.5.解:由图象可得,当t=1时,s=0,即出发1小时时,甲乙在途中相遇,故①正确,甲的速度是:120÷3=40千米/时,则乙的速度是:120÷1﹣40=80千米/h,故②正确;出发1.5小时时,乙比甲多行驶路程是:1.5×(80﹣40)=60千米,故③正确;在1.5小时时,乙到达终点,甲在3小时时到达终点,故④错误,故选:C.6.解:①∵当y=0时,x=0或x=30,∴整个行进过程花了30分钟,A正确;②观察函数图象可知,y的最大值为1000,∵1000×2=2000(米),∴整个行进过程共走了2000米,B错误;③∵15﹣10=5(分钟),∴在途中停下来休息了5分钟,C正确;④∵1000÷(30﹣20)=100(米/分),∴返回时速度为100米/分,D正确.故选:B.7.解:∵k=﹣<0,∴y随x的增大而减小.∵﹣4<2,∴y1>y2.故选:A.8.解:如图所示,∵直线y=﹣x+与x轴,y轴分别交于A,B两点,∴A(1,0),B(0,),(1)当AB是底边时,作AB的垂直平分线,∵OA≠OB,∴AB的垂直平分线与x轴,y轴都有交点,此时有2个;(2)当AB是腰时,①以A为圆心,以AB为半径画弧,和x轴交于2点,和y轴交于2点(点B除外),即有3个;②以B为圆心,AB为半径画弧,和x轴交于2点(点A除外),和y轴交于2点,即有3个.其中有3个点,即(﹣1,0)重合.共6个.故选:B.二.填空题(共10小题)9.解:依据题意得:y=7+1.2(x﹣3)=1.2x+3.4,故答案为:y=1.2x+3.4,10.解:由图象知,y与x的函数关系为一次函数,并且经过点(2,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+2.将x=12代入一次函数解析式,得y=18+2=20,故出租车费为20元.故答案为:20.11.解:根据题意,y=(k﹣2)x+3k可化为:y=(x+3)k﹣2x,∴当x=﹣3时,不论k取何实数,函数y=(x+3)k﹣2x的值为6,∴直线y=(k﹣2)x+3k一定经过的定点为(﹣3,6),故答案为:(﹣3,6).12.解:设直线l和八个正方形的最上面交点为A,过A作AB⊥OB于B,过A作AC⊥OC 于C,∵正方形的边长为1,∴OB=3,∵经过原点的一条直线l将这八个正方形分成面积相等的两部分,∴两边分别是4,∴三角形ABO面积是5,∴OB•AB=5,∴AB=,∴OC=,由此可知直线l经过(,3),设直线l为y=kx,则3=k,k=,∴直线l解析式为y=x,∴直线l向右平移3个单位长度后所得直线l′的函数解析式为y=(x﹣3),即y=x ﹣,故答案为:y=x﹣.13.解:由一次函数y=﹣x+8的图象与x轴、y轴分别交于A、B两点,可得AO=6,BO=8,AB=10,分两种情况:①当点P在OA上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6﹣x,AC=10﹣8=2,在Rt△ACP中,由勾股定理可得x2+22=(6﹣x)2,解得x=,∴P(,0);②当点P在AO延长线上时,由O与C关于PB对称,可得OP=CP,BC=OB=8,设OP=CP=x,则AP=6+x,AC=10+8=18,在Rt△ACP中,由勾股定理可得x2+182=(6+x)2,解得x=24,∴P(﹣24,0);故答案为:(,0)或(﹣24,0).14.解:∵令x=0,则y=﹣6,令y=0,则x=3,∴一次函数y=2x﹣1的图象与两坐标轴的交点分别为(0,﹣6),(3,0),∴一次函数y=2x﹣1的图象与两坐标轴围成三角形的面积=×3×6=9.故答案为:9.15.解:∵慢者8秒走了64﹣12=52米,快者8秒走了64米,∴快者每秒走:64÷8=8m,慢者每秒走:52÷8=6.5m,所以8﹣6.5=1.5m.故答案为:1.5.16.解:(1)当x=0时,y=3,∴B(0,3),∴OB=3.∵•OA•OB=6,∴3OA=12,∴OA=4,∴A(±4,0).∴0=±4k+3,∴k=±,故答案为±17.解:∵点B1(1,1),B2(3,2),∴A1(0,1)A2(1,2)A3(3,4),∴直线y=kx+b(k>0)为y=x+1,∴Bn的横坐标为A n+1的横坐标,纵坐标为An的纵坐标又A n的横坐标数列为An=2n﹣1﹣1,所以纵坐标为2n﹣1,∴Bn的坐标为[A(n+1)的横坐标,An的纵坐标]=(2n﹣1,2n﹣1).故答案为:(2n﹣1,2n﹣1).18.解:如图所示,当点M在y轴正半轴上时,设沿直线AM将△ABM折叠,点B正好落在x轴上的C点,则有AB=AC,由直线y=﹣x+4可得,A(3,0),B(0,4),∴OA=3,OB=4,∴AB=5,∴CO=AC﹣AO=5﹣3=2,∴点C的坐标为(﹣2,0).设M点坐标为(0,b),则OM=b,CM=BM=4﹣b,∵CM2=CO2+OM2,∴(4﹣b)2=22+b2,∴b=,∴M(0,),如图所示,当点M在y轴负半轴上时,OC=OA+AC=3+5=8,设M点坐标为(0,b),则OM=﹣b,CM=BM=4﹣b,∵CM2=CO2+OM2,∴(4﹣b)2=82+b2,∴b=﹣6,∴M点(0,﹣6),故答案为:(0,)或(0,﹣6).三.解答题(共6小题)19.解:(1)∵l是y=2x向下平移3个单位所得,∴l:y=2x﹣3,(2)∵,解得:,∴E(4,5),∵BF=BE,且F不与E重合,∴F在y轴左侧,又∵y=﹣+8,∴当x=0时,y=8,B(0,8),∴BE==5=BF,设F(x0,﹣x0+8),∴BF==5,解得x0=﹣4,∴F(﹣4,11).(3)由图可知,作PG=PD,G在y轴上,∴∠PGO=∠PDO,又∵∠PDO=2∠PBO,∠PGO=∠PBO+∠BPG,∴∠BPG=∠PBG=∠PDO,∴BG=PG=PD,①P在x轴正半轴,∵l:y=2x﹣3,∴当x0时,y=﹣3,即D(0,﹣3),∴OD=3,∴OG=OD=3,则BF=8﹣3=5=PF,∴OP==4,∴P(4,0).②若P在x轴负半轴,与①同理,P(﹣4,0).综上所述P(4,0),(﹣4,0).20.解:(1)由图象得在甲地游玩的时间是1﹣0.5=0.5(h),小明骑车速度:10÷0.5=20(km/h),故答案为:20,0.5.(2)如图,妈妈驾车速度:20×3=60(km/h)设直线OA的解析式为y=kx(k≠0),则10=0.5k,解得:k=20,故直线OA的解析式为:y=20x.∵小明走OA段与走BC段速度不变,∴OA∥BC,设直线BC解析式为y=20x+b1,把点B(1,10)代入得b1=﹣10,∴y=20x﹣10,设直线DE解析式为y=60x+b2,把点D(,0)代入得:b2=﹣80,∴y=60x﹣80,∴,解得:,∴F(1.75,25).答:小明出发1.75小时(105分钟)被妈妈追上,此时离家25km.21.解:(1)由图象可得,李越骑车的速度为:2400÷10=240米/分钟,2400÷96=25,所以F点的坐标为(25,0).故答案为:240;(25,0);(2)设李越从乙地骑往甲地时,s与t之间的函数表达式为s=kt,2400=10k,得k=240,即李越从乙地骑往甲地时,s与t之间的函数表达式为s=240t,故答案为:s=240t;(3)设王明从甲地到乙地时,s与t之间的函数表达式为s=kt+2400,根据题意得,25k+2400=0,解得k=﹣96,所以王明从甲地到乙地时,s与t之间的函数表达式为:s=﹣96t+2400;(4)根据题意得,240(t﹣2)﹣96t=2400,解得t=20.答:李越与王明第二次相遇时t的值为20.22.解:(1)由题知,把(2,a)代入y=x,解得a=1;(2)由题意知,把点(﹣1,﹣5)及点(2,a)代入一次函数解析式得:﹣k+b=﹣5,2k+b=a,又由(1)知a=1,解方程组得:k=2,b=﹣3;(3)由(2)知一次函数解析式为:y=2x﹣3,直线y=2x﹣3与x轴交点坐标为(,0)∴所求三角形面积=×1×=.23.解:设y=kx.∵图象过(4,20),∴4k=20,∴k=5.∴y=5x(0≤x≤4);(2)设y=kx+b.∵图象过(4,20)、(12,30),∴,解得:,∴y=x+15 (4≤x≤12);(3)根据图象,每分钟进水20÷4=5升,设每分钟出水m升,则5×8﹣8m=30﹣20,解得:m=,∴每分钟进水、出水各是5升、升.24.解:(1)把点C(2,m)代入直线y=x+2中得:m=2+2=4,∴点C(2,4),∵直线y=﹣x+b过点C,4=﹣+b,b=5;(2)①由题意得:PD=t,y=x+2中,当y=0时,x+2=0,x=﹣2,∴A(﹣2,0),y=﹣x+5中,当y=0时,﹣x+5=0,x=10,∴D(10,0),∴AD=10+2=12,即0≤t≤12,∵△ACP的面积为10,∴•4=10,t=7,则t的值7秒;②存在,分三种情况:i)当AC=CP时,如图1,过C作CE⊥AD于E,∴PE=AE=4,∴PD=12﹣8=4,即t=4;ii)当AC=AP时,如图2,AC=AP1=AP2==4,∴DP1=t=12﹣4,DP2=t=12+4;iii)当AP=PC时,如图3,∵OA=OB=2∴∠BAO=45°∴∠CAP=∠ACP=45°∴∠APC=90°∴AP=PC=4∴PD=12﹣4=8,即t=8;综上,当t=4秒或(12﹣4)秒或(12+4)秒或8秒时,△ACP为等腰三角形.。

人教版八年级数学下学期期末重难点知识专题04一次函数重难点知识1(解析版).doc

人教版八年级数学下学期期末重难点知识专题04一次函数重难点知识1(解析版).doc

学校班级姓名1【本文档由书林工作坊整理发布,谢谢你的下载和关注!】【本文档由书林工作坊整理发布,谢谢你的下载和关注!】2专题04 一次函数期末总复习重难点知识一遍过1一、基础知识点综述基础讲解基 础 知 识函数与变量一般地,如果在一个变化过程中有两个变量x 与y ,如果对于x 的每一个值,y 都有唯一的值与它对应,那么就说x 是自变量,y 是x 的函数.常见自变量取值范围:00100y x x y x xy x x =≥=≠=≠ ()() ()常量:其值在变化过程中始终保持不变的量叫常量. 变量:其值在变化过程中会发生变化的量叫变量. 正比例函数 解析式 y =kx (k ≠0)形状一条过(0,0)、(1,k )的直线 坐标系中位置k >0时过一、三象限;k <0时过二、四象限 增减性k >0时,y 随x 的增大而增大;k <0时,y 随x 的增大而减小一次函数解析式 y =kx +b (k ≠0)形状一条过(0,b )、(bk-,0)的直线 坐标系中位置k >0,b >0时过一、二、三象限;k >0,b <0时过一、三、四象限;k <0,b >0时过一、二、四象限;k <0,b <0时过二、三、四象限增减性k >0时,y 随x 的增大而增大;k <0时,y 随x 的增大而减小【本文档由书林工作坊整理发布,谢谢你的下载和关注!】3基 础 知 识一次函数图象的位置关系 l 1∥l 2,则k 1=k 2,b 1≠b 2;l 1⊥l 2,则k 1·k 2=-1一次函数图象平移 上下平移与b 有关,上加下减;左右平移与x 有关,左加右减一次函数图象的对称y =kx +b 关于y 轴对称的解析式为:y =-kx +b ;y =kx +b 关于x 轴对称的解析式为:y =-kx -b ;一次函数与二元一次方程组方程组的解是两条直线的交点坐标一次函数与不等式会借助图象判断y =0,y <0,y >0时自变量取值范围;会借助图象判断y 1=y 2,y 1<y 2,y 1>y 2时自变量取值范围;求一次函数解析式方法待定系数法上表中,l 1:y 1=k 1x +b 1;l 2:y 2=k 2x +b 2二、典型例题讲解题1. (1)函数11y x x=+-自变量的取值范围是(2)函数()02y x x=--自变量的取值范围是(3)函数214y x x =-+自变量的取值范围是(4)在三角形中,它的一条边是a ,这条边上的高是h ,则其面积S =0.5ah ,当a 为定长时,在此式中变量是,常量是(5)将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,现用一注水管沿大容器内壁匀速注水(如图所示),则小水杯内水面的高度h (cm )与注水时间t (min )的函数图象大致为( )【答案】(1)x ≥-1且x ≠0;(2)x >0且x ≠2;(3)全体实数;(4)S 、h ;0.5、a ;(5)B ;【本文档由书林工作坊整理发布,谢谢你的下载和关注!】4【解析】解:(1)由10x x +≥⎧⎨≠⎩,解得:x ≥-1且x ≠0;(2)由020x x >⎧⎨-≠⎩,解得:x >0且x ≠2;(3)由2211042x x x ⎛⎫-+=-≥ ⎪⎝⎭,得x 为全体实数;(4)由题意知S 随h 的变化而变化,所以S 和h 是变量,a 、0.5是常量;(5)通过分析可知,在注水开始至水面与小玻璃杯水面平齐过程中,水面高度不变,随后增大至最大后不再变化,故选B .题2. (1)正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大,则一次函数y =x +k 的图象过象限;(2)若函数y =(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限,则m 的取值范围(3)在平面直角坐标系中,将直线l 1:y =-3x -3平移后,得到直线l 2:y =-3x +2,则应向上平移个单位,或向右平移个单位;(4)已知点A (﹣5,y 1),B (10,y 2)在一次函数y =﹣x +9的图象上,则y 1y 2(5)直线y =k 1x +b 1(k 1>0)与y =k 2x +b 2(k 2<0)相交于点(﹣2,0),且两直线与y 轴围成的三角形面积为4,那么b 1﹣b 2等于(6)一次函数y =(m 2-4)x +(1-m )和y =(m -1)x +m 2-3的图象与y 轴分别交于点P 和点Q ,若点P 与点Q 关于x 轴对称,则m =(7)函数y =-2x +4的图象上存在点P ,使得点P 到y 轴的距离等于1,则点P 的坐标为 . (8)过点(﹣1,7)的一条直线与x 轴,y 轴分别相交于点A ,B ,且与直线123+-=x y 平行.则在线段AB 上,横、纵坐标都是整数的点的坐标是【答案】(1)一、二、三;(2)m <-1;(3)5,53;(4)>;(5)4或-4;(6)-1; (7)(1,2)或(-1,6);(8)(1,4)、(3,1);【解析】解:(1)∵正比例函数y =kx (k ≠0)的函数值y 随x 的增大而增大, ∴k >0,则y =x +k 的图象过一、二、三象限;(2)∵函数y =(m +1)x ﹣(4m ﹣3)的图象在第一、二、四象限,【本文档由书林工作坊整理发布,谢谢你的下载和关注!】5∴()10430m m +<⎧⎨-->⎩,解得:m <-1;(3)y =-3x -3平移后,得到直线l 2:y =-3x +2,可向上平移5个单位;设向右平移m 个单位,则y =-3(x -m )-3,即-3(x -m )-3=-3x +2,解得:m =53即向右平移53个单位; (4)y =﹣x +9中,y 随x 的增大而减小,因为A (﹣5,y 1),B (10,y 2)在一次函数图象上, 而-5<10,所以y 1>y 2 (5)由题意知:12122S b b =⨯⨯-, 即121422b b =⨯⨯-解得:b 1﹣b 2=4或-4 (6)由题意知:221304010m m m m ⎧-+-=⎪-≠⎨⎪-≠⎩,解得:m =-1; (7)点P 到y 轴的距离等于1,则P 点的横坐标为1或-1, 在y =-2x +4中,当x =1时,y =2;x =-1时,y =6, 即P 点坐标为(1,2)或(-1,6);(8)设直线AB 解析式为y =kx +b ,由题意知:k =32-, 将(﹣1,7)代入得:7=32-×(-1)+b ,解得:b =112, 即直线AB 解析式为:y =32-x +112,整理得:2y +3x =11,由题意知x 、y 均为整数时,有x =1,y =4;x =3,y =1,即符合要求的点的坐标是(1,4)、(3,1). 题3. (1)一次函数y =kx +b ,当1≤x ≤4时,3≤y ≤6,求k 、b 的值.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】6【答案】见解析.【解析】解:①当k >0时,由当1≤x ≤4时,3≤y ≤6得: x =1,y =3;x =4,y =6,代入y =kx +b 得:346k b k b +=⎧⎨+=⎩,解得:12k b =⎧⎨=⎩ ②当k <0时,由当1≤x ≤4时,3≤y ≤6得: x =1,y =6;x =4,y =3,代入y =kx +b 得:643k b k b +=⎧⎨+=⎩,解得:17k b =-⎧⎨=⎩即k =1,b =2或k =-1,b =7.(2)如图3-1,函数y =2x 和y =ax +4的图象相交于点A (m ,4),则不等式2x <ax +4的解集为图3-1【答案】x <2.【解析】解:因为函数y =2x 和y =ax +4的图象相交于点A (m ,4), 所以当y =4时,x =2,由图象知:不等式2x <ax +4的解集为x <2.(3)甲骑摩托车从A 地去B 地,乙开汽车从B 地去A 地,同时出发,匀速行驶,各自到达终点后停止,设甲、乙两人间距离为s (千米),甲行驶的时间为t (小时),s 与t 之间的函数关系如图3-2所示.有下列结论:①出发1小时时,甲、乙在途中相遇; ②出发1.5小时时,乙比甲多行驶了60千米; ③出发3小时时,甲、乙同时到达终点; ④甲的速度是乙速度的一半. 其中正确结论是.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】7图3-2【答案】①②④.【解析】解:由图象可得:出发1小时,甲、乙在途中相遇,故①正确;甲骑摩托车的速度为:120÷3=40(千米/小时),设乙开汽车的速度为a 千米/小时, 则120140a=+,解得:a =80,∴乙开汽车的速度为80千米/小时, ∴甲的速度是乙速度的一半,故④正确;∴出发1.5小时,乙比甲多行驶了:1.5×(80-40)=60(千米),故②正确; 乙到达终点所用的时间为1.5小时,甲得到终点所用的时间为3小时,故③错误; ∴正确的结论是①②④.题4. 如图4-1所示,在平面直角坐标系xOy 中,矩形ABCD 的AB 边在x 轴上,AB =3,AD =2,经过点C 的直线y =x ﹣2与x 轴、y 轴分别交于点E 、F .(1)求:①点D 的坐标;②经过点D ,且与直线FC 平行的直线的函数表达式;(2)直线y =x ﹣2上是否存在点P ,使得△PDC 为等腰直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.(3)在平面直角坐标系内确定点M ,使得以点M 、D 、C 、E 为顶点的四边形是平行四边形,请直接写出点M 的坐标.图4-1【答案】见解析.【解析】解:(1)①设点C的坐标为(m,2),∵点C在直线y=x﹣2上,∴2=m﹣2,解得m=4,即点C的坐标为(4,2),∵四边形ABCD是矩形,∴AB=CD=3,AD=BC=2,∴点D的坐标为(1,2);②设经过点D且与FC平行的直线函数表达式为y=x+b,将D(1,2)代入y=x+b,得b=1,∴经过点D且与FC平行的直线函数表达式为y=x+1;(2)存在.∵△EBC为等腰直角三角形,∴∠CEB=∠ECB=45°,∵DC∥AB,∴∠DCE=∠CEB=45°,∴△PDC是以P、D为直角顶点的等腰直角三角形,如图4-2所示,图4-2①当∠D=90°时,延长DA与直线y=x﹣2交于点P1,8【本文档由书林工作坊整理发布,谢谢你的下载和关注!】【本文档由书林工作坊整理发布,谢谢你的下载和关注!】9∵点D 的坐标为(1,2), ∴点P 1的横坐标为1,把x =1代入y =x ﹣2得,y =﹣1,即P 1(1,﹣1);②当∠DPC =90°时,作DC 的垂直平分线与直线y =x ﹣2的交点即为点P 2, 点P 2的横坐标为52, 将x =52代入y =x ﹣2得,y =12,即P 2(52,12), 综上所述,符合条件的点P 的坐标为(1,﹣1)、(52,12); (3)当y =0时,x ﹣2=0,解得x =2, ∴OE =2,∵以点M 、D 、C 、E 为顶点的四边形是平行四边形, ①若DE 是对角线,则EM =CD =3, OM =EM ﹣OE =3﹣2=1, 点M 的坐标为(﹣1,0),②CE 是对角线,则EM =CD =3,OM =OE +EM =2+3=5, 点M 的坐标为(5,0),③CD 是对角线,则平行四边形的中心坐标为(52,2), 设点M 的坐标为(x ,y ), 则2522x +=,22y=, 解得x =3,y =4,此时,点M 的坐标为(3,4),综上所述,点M 的坐标为(﹣1,0),(5,0)(3,4).题5. 小华和爸爸上山游玩,爸爸乘电缆车,小华步行,两人相约在山顶的缆车终点会合.已知小华行走到缆车终点的路程是爸爸乘缆车到山顶的线路长的2倍,爸爸在小华出发后50min 才乘上电缆车,电缆车的平均速度为180m /min .设小华出发x (min )行走的路程为y (m ),图5-1中的折线表示小华在整个行走过程中y (m )与x (min )之间的函数关系.(1)小华行走的总路程是_____m ,他途中休息了_____min ; (2)当50≤x ≤80时,求y 与x 的函数关系式;【本文档由书林工作坊整理发布,谢谢你的下载和关注!】10(3)当爸爸到达缆车终点时,小华离缆车终点的路程是多少?图5-1【答案】(1)3600,20;(2)(3)见解析. 【解析】解:(2)①当50≤x ≤80时, 设y 与x 的函数关系式为y =kx +b , 根据题意,当x =50时,y =1950; 当x =80时,y =3600,得:195050360080k bk b =+=+⎧⎨⎩解得k =55,b =-800,∴函数关系式为:y =55x -800;(3)缆车到山顶的线路长为3600×2=1800米, 缆车到达终点所需时间为1800÷180=10分钟 小颖到达缆车终点时,小亮行走的时间为10+50=60分钟, 把x =60代入y =55x ﹣800,得y =55×60﹣800=2500, ∴当小颖到达缆车终点时,小亮离缆车终点的路程是3600﹣2500=1100米.题6. 某校运动会需购买A 、B 两种奖品.若购买A 种奖品3件和B 种奖品2件,共需60元;若购买A 种奖品5件和B 种奖品3件,共需95元.(1)求A 、B 两种奖品单价各是多少元?(2)学校计划购买A 、B 两种奖品共100件,购买费用不超过1150元,且A 种奖品的数量不大于B 种奖品数量的3倍.设购买A 种奖品m 件,购买费用为W 元,写出W (元)与m (件)之间的函数关系式,求出自变量m 的取值范围,并确定最少费用W 的值.【答案】见解析.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】11【解析】解:(1)设A 奖品的单价是x 元,B 奖品的单价是y 元,由题意,得:60329553x y x y =+=+⎧⎨⎩, 解得:1015x y ==⎧⎨⎩.答:A 奖品的单价是10元,B 奖品的单价是15元;(2)由题意,得W =10m +15(100-m )=-5m +1500∴()150051150310m m m -≤≤-⎧⎨⎩, 解得:70≤m ≤75.∵m 是整数,∴m =70,71,72,73,74,75.在W =-5m +1500中,∴-5<0,∴W 随m 的增大而减小,∴m =75时,W 最小=1125.∴应买A 种奖品75件,B 种奖品25件,才能使总费用最少为1125元.题7. 在平面直角坐标系xOy 中,直线y =kx +4(k ≠0)与y 轴交于点A .(1)如图,直线y =-2x +1与直线y =kx +4(k ≠0)交于点B ,与y 轴交于点C ,点B 的横坐标为-1.①求点B 的坐标及k 的值;②直线y =-2x +1与直线y =kx +4与y 轴所围成的△ABC 的面积等于;(2)直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),若-2<x 0<-1,求k 的取值范围.【答案】见解析.【本文档由书林工作坊整理发布,谢谢你的下载和关注!】12【解析】解:(1)①∵直线y =-2x +1过点B ,点B 的横坐标为-1,∴y =2+1=3,即B (-1,3),∵直线y =kx +4过B 点,∴3=-k +4,解得:k =1;②∵k =1,∴直线AB 的解析式为:y =x +4,∴A (0,4),在y =-2x +1中,当x =0时,y =1,∴C (0,1),∴AC =4-1=3, ∴△ABC 的面积为:12×1×3=32; 故答案为:32; (2)∵直线y =kx +4(k ≠0)与x 轴交于点E (x 0,0),-2<x 0<-1,∴当x 0=-2,则E (-2,0),代入y =kx +4得:0=-2k +4,解得:k =2,当x 0=-1,则E (-1,0),代入y =kx +4得:0=-k +4,解得:k =4,故k 的取值范围是:2<k <4.中考数学知识点代数式一、 重要概念分类:1.代数式与有理式用运算符号把数或表示数的字母连结而成的式子,叫做代数式。

八年级上册期末章节复习第四章一次函数

八年级上册期末章节复习第四章一次函数

第四章 一次函数(一)、函数及一次函数的有关概念1、函数:在某个变化过程中,有两个变量x 和y,如果对于变量x 在它范围内的每一个确定的值,变量y 都有唯一确定的值与它对应,那么我们称y 是x 的函数,x 是自变量。

2、函数有三种表示方法,即解析法、列表法和图像法.3、函数自变量取值范围是指使函数值有意义的自变量取值范围。

4、一次函数的定义:形如y=kx+b (k 、b 为常数,且k ≠0)的函数叫做一次函数。

(1)、当b=0而k ≠0时,一次函数变为y=kx (k 是常数,且k ≠0),叫做正比例函数。

正比例函数是一次函数,但一次函数不一定是正比例函数; (2)、当k=0时,y=b,不是一次函数,它是常函数。

(3)、求一次函数的解析式就是求常数K 和b ,有两种方法:①、待定系数法②、根据实际应用问题列出一次函数的解析式。

(二)一次函数的图像1、一次函数通过列表、描点、连线画出来的图像是一条直线,因此我们也把一次函数y=kx+b(k ≠0)的图像叫做直线y=kx+b.2、一次函数图像的画法:用取两点A (kb-,0),B (0,b )画直线的方法画图像 3、一次函数y=kx+b 中的k 叫做直线的斜率,b 叫做直线在y 轴上的截距,kb-叫做直线在x 轴上的截距;4、一次函数图像的平移:一次函数中,自变量x 增加或减少,图像就左、右平移,其法则是:左加右减;函数值y 增加或减少,图像就上、下平移,其法则是:上加下减,反之亦然。

5.正比例函数(1)定义:一般地,形如 的函数,叫正比例函数,k 叫比例系数. (2)图象:正比例函数图象是一条经过 的 .函数(0)y kx k =≠也叫直线y kx =. (6.一次函数(1)定义:一般地,形如 的函数,叫做一次函数. 当0b =时,y kx b =+即为y kx =,所以正比例函数是特殊的一次函数.(2)图象:一次函数y kx b =+的图象是一条 ,我们称它为直线y kx b =+,它可以看作直线y kx =平移 个单位长度而得到(当0b >时,向 平移;当0b <时,向 平移).(3)图象与坐标轴交点:图象与y 轴交于点(0,)b ,与x 轴交于点0b k ⎛⎫- ⎪⎝⎭,.(5)一次函数的解析式 ①待定系数法:因为两点确定一条直线,所以有两个已知的点11(,)x y ,22(,)x y 带入解析式y kxb =+中,通过解关于k 、b 的二元一次方程组确定k 与b 的值,就可以求出解析式.步骤:一设二代三解.②点斜式,让学生理解这种方法,并熟练使用,提升解题速率. 例题1 判断下列式子中,y 是否是x 的函数.(1)3y x = (2)1y x =-+(3)2y x= (4)2321y x x =+-(5)22(35)y x =- (6)y = (7)||12y x =- (8)|8|y x =-例题2 求下列函数中自变量的取值范围.(1)3231y x x =++ (2)223x y x -=-(3)211y x=+(4)y =(5)y =(6)y =例题3 (1)三角形的周长是y cm ,三边长分别为4cm ,6cm ,x cm ,则以x 为自变量表示y 的函数关系式为_________,自变量x 的取值范围是__________.(2)矩形周长为30,则面积y 与一条边长x 之间的函数关系式为_______________. (3)某市为了鼓励居民节约用水,对自来水用户按如下标准收费:若每月每户用水不超过12立方米,按每立方米2元收费;若超过12立方米,则超过部分每立方米按4元收费,某户居民五月份交水费y (元)与用水量x (立方米)(12x >)之间的关系式为__________,若该月交水费40元,则这个月的实际用水__________立方米.x例题4(1)下图分别给出了变量y 与x 之间的对应关系,y 是x 的函数的图象是( )(2)下面的曲线不表示y 是x 的函数的是( ).例题5 (1)若函数227(2)my m x -=-是正比例函数,则m 的值是__________.(2)下面哪个正比例函数的图象经过第一、三象限( )A .y x =B .(3.14π)y x =-C .2(1)y m x =-+(m 为常数)D .1)y x = (3)若正比例函数(12)y m x =-的图象经过点11(,)A x y 和点22(,)B x y ,当12x x <时,12y y >,则m 的取值范围是__________.(4)一个正比例函数的图象经过第四象限内的两点(2,3)A a -及B 3,92a ⎛⎫- ⎪⎝⎭,则这个正比例函数为__________.例题6(1)下列函数中,①2y px =(p 为常数);②2y x =-;③312x y -=;④23y x =+;⑤(1)y x π=+,其中是一次函数的是_____________. (2)当m =_____时,函数21(2my m x m -=+表示一次函数,其表达式是_________.(3)当m =__________时,函数28(2)56my m x x -=-+-是一次函数.例题7 (1)已知一次函数为31y x =+,其与x 轴的交点坐标为__________,与y 轴的交点坐标为__________.(2)已知一次函数y kx b =+,其中0kb >,则所有..符合条件的一次函数的图象一定都.经过( ).A .第一、二象限B .第二、三象限C .第三、四象限D .第一、四象限 (3)如果直线y ax b =-经过一、三、四象限,那么直线y bx a =+经过第________象限;直线by x a=-经过第__________象限.(4)如果一次函数y ax b =+不经过第一象限,那么ab ______0.(5)一次函数(21)y k x k =--不经过第一象限,则k 的取值范围是__________.D C BA ABCD xx例题8 (1)(石室联中期末)已知正比例函数(0)y kx k =≠的函数值y 随x 的增大而增大,则一次函数y x k =-的图像大致是( )(2)下列图像中,不可能是关于x 的一次函数(3)y mx m =--的图像的是( )A B C D (3)如图,一次函数y kx b =+和正比例函数y kbx =在同一坐标系的大致图像是( )A B C D例题9(1)若点(2,)P m -,点(2,)Q n 是直线23y x k =+(k 为常数)上的点,则m 、n 的大小关系是( ).A .m n <B .m n= C.m n>D .无法确定 (2)(嘉祥期末)在函数3(0)y kx k =+<的图像上有1(2,)A y -、2(1,)B y 、3(1,)Cy -三个点,则1y 、2y、3y 从小到大排列为___________.(3)三个一次函数11y k x b =+、22y k x b =+、33y k x b =+在同一直角坐标系中的图象如图所示,分别为直线1l 、2l 、3l ,则1k 、2k 、3k 的大小关系是__________.例题10求下列一次函数解析式:(1)已知一次函数的图象经过(1,2)-和(2,4)两点.则解析式为__________.(2)已知一次函数的图象经过(2,3)-和(2,4)两点.则解析式为__________.A .B .C .D .A .B .C .D .A。

一次函数期末复习

一次函数期末复习

一次函数复习题定义1、下列函数:①y x π=,②213x y -=,③18y x=+,④3y kx =+,⑤22(2)y x x =--中,是一次函数的是 .2、如图的四个图象中,不能表示y 是x 的函数的是( )3、两个一次函数y 1=mx+n .y 2=nx+n ,它们在同一坐标系中的图象可能是图l -6-2中的( )4、如图,在平行四边形ABCD 中,∠DAB =60°,AB =5,BC =3,点P 从起点D 出发,沿DC 、CB 向终点B 匀速运动。

设点P 所走过的路程为x ,点P 所经过的线段与线段AD 、AP 所围成图形的面积为y ,y 随x 的变化而变化。

在下列图象中,能正确反映y 与x 的函数关系的是( )面积5、已知一次函数2y kx =-的图象与x 轴、y 轴围成的三角形面积为8,则此一次函数的解析式为 .6、已知直线3y x =+与x 轴交于A 点,与y 轴交于B 点.直线l 经过原点,与线段AB 交于C 点,且把△ABO 的面积分为1∶2两部分,则直线l 的解析式为 。

平移7、如图,将直线OA 向上平移1个单位,得到一个一次函数的图像,那么这个一次函数的解析式是 .8、(09海淀一模)已知直线l 与直线y =-2x +m 交于点(2,0), 且与直线y =3x 平行,求m 的值及直线l 的解析式.增减性9、已知,一次函数()0y kx b k =+≠中自变量x 的取值范围是26x -≤≤,相对应函数值的取值范围是119y -≤≤,求此函数的解析式全等10、如图,直线AB ,与x 轴交于点点A (4,0),与y 轴交于点B (0,2),C 点坐标为(1,0),过点C 平行于x 轴的直线与直线AB 交于点D (1)求直线AB 的解析式(2)已知点P 是x 轴上一点,由A ,B ,C ,D 中的两点与点P 构成的三角形和△ACD 全等,这样的点P 有几个?并任意画出两个。

八年级期末数学复习(一次函数)

八年级期末数学复习(一次函数)

八年级期末数学复习函数与一次函数1. 已知1122(3)(2)P y P y -,,,是一次函数21y x =++k 的图象上的两个点,则12y y ,的大小关系是 (A )12y y > (B )12y y < (C )12y y = (D )不能确定2.使函数1-=x y 有意义的自变量的取值范围是( )A .x ≥0B .x ≥1C .y ≥0D .y ≥1 3.下列图象不能..表示y 是x 的函数的是( )A B C D4.已知定点M (1x ,1y )、N (2x ,2y )(21x x >)在直线2+=x y 上,若)()(2121y y x x t -⋅-=,则下列说明正确的是( )①tx y =是比例函数;②1)1(++=x t y 是一次函数;③t x t y +-=)1(是一次函数;④函数x tx y 2--=中y 随x 的增大而减小; A .①②③B .①②④C .①③④D .①②③④5.函数y =x 的取值范围是 .6.函数y =11x -的自变量x 的取值范围是 .7.已知函数43y x =-,则它的图象与x 轴的交点坐标为____________.与y 轴的交点坐标为____________.8.如图,已知函数y =3x +b 和y =ax -3的图像交于点P (-2,-5),则根据图象可得不等式3x +b >ax -3的解集是_______________.9.如图,直线b kx y +=与坐标轴交于A (3-,0),B (0,5)两点,则不等式0<--b kx 的解集为_________.10.一次函数b kx y +=的图像经过点(-2,4)且与直线x y 3=平行,求函数的解析式。

11.已知一次函数的图象过点(3,5)与点(-4,-9),求这个一次函数的解析式.解:12、已知直线m 经过(﹣4,1),(2,4)两点. (1)求直线m 的解析式;(2)若直线n 与直线m 关于x 轴对称,画出直线n 并求出直线n 的解析式.13.如图,已知直线b x y +=21经过点A (4,3),与y 轴交于点B 。

期末复习专题5:一次函数的图像与性质(解答题)(一)—解析版

期末复习专题5:一次函数的图像与性质(解答题)(一)—解析版

期末复习专题5:一次函数的图像与性质(一)1. 在学习一次函数时,我们经历了“确定函数的表达式--利用函数图象研究其性质--应用函数解决问题”的学习过程,在画函数图象时,我们可以通过描点或平移的方法画出一个函数的大致图象,结合上面经历的学习过程,现在来解决下面问题:在函数y=|2x+b|+kx (k≠0)中,当x=0时,y=1;当x=-1时,y=3. (1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数y=21x-1的图象如图所示,结合你所画的函数图形,直接写出不等式|2x+b|+kx≤21x-1的解集.【解答】(1)将x=0,y=1;x=-1,y=3分别代入函数y=|2x+b|+kx (k≠0)得:⎪⎩⎪⎨⎧=-+-=321k b b ,解得:⎩⎨⎧-==21k b 或()舍⎩⎨⎧=-=01k b ,∴y=|2x+1|-2x . (2)当2x+1≥0,即x≥-21时,y=1;当2x+1<0,即x <-21时,y=-1-4x ;∵y=1为平行于x 轴的直线,y=-1-4x 为过(-1,3)、(-23,5)的射线故可作图如下:这个函数的一条性质为:函数图象不过原点.(3)由(2)中图象可知不等式|2x+b|+kx≤21x-1的解集为x≥4.2.已知函数y=|x﹣4|(1)在平面直角坐标系中画出函数图象;(2)函数图象与x轴交于点A,与y轴交于点B.已知P(x,y)是图象上一个动点,若△OP A的面积为6,求P点坐标;(3)已知直线y=kx+1(k≠0)与该函数图象有两个交点,求k的取值范围.【解答】(1)当x≥4时,y=x﹣4,当x<4时,y=4﹣x,按照一次函数画出函数如下图象.(2)如上图所示,点P只可能在点A右侧的图象上,设点P(m,m﹣4),m≥4,△OP A的面积=AO×y P=6,则y P=3=m﹣4,解得:m=7,故点P(7,3)或(1,3);(3)设直线y=kx+1(k≠0)与y轴交于点C(0,1),当直线在m、n之间时,直线y=kx+1(k≠0)与该函数图象有两个交点,①直线m过点C、A,将点A的坐标代入直线方程得:0=4k+1,解得:k=﹣;②直线n与直线AP平行,在k=1,故﹣<k<1且k≠0.3.如图在平面直角坐标系中直线AB:y=kx+b经过A(,﹣1),分别交x轴、直线y=x、y轴于点B、P、C,已知B(2,0)(1)求直线AB的解析式;(2)直线y=m分别交直线AB于点E、交直线y=x于点F,若点F在点E的右边,说明m满足的条件.【解答】(1)∵直线AB:y=kx+b经过A(,﹣1),B(2,0),∴,解得,∴直线AB的解析式为y=﹣2x+4;(2)如图,设点E(x E,m),点F(x F,m),则m=﹣2x E+4,m=x F,∴x E=﹣m+2,x F=m.∵点F在点E的右边,∴m>﹣m+2,解得m>,即m满足的条件是m>.4.已知直线l1:y=kx+2k与函数y=|x﹣a|+a(1)直线l1经过定点P,直接写出点P的坐标;(2)当a=1时,直线与函数y=|x﹣a|+a的图象存在唯一的公共点,在图1中画出y=|x﹣a|+a的函数图象并直接写出k满足的条件;(3)如图2,在平面直角坐标系中存在正方形ABCD,已知A(2,2)、C(﹣2,﹣2).请认真思考函数y=|x﹣a|+a的图象的特征,解决下列问题:①当a=﹣1时,请直接写出函数y=|x﹣a|+a的图象与正方形ABCD的边的交点坐标;②设正方形ABCD在函数y=|x﹣a|+a的图象上方的部分的面积为S,求出S与a的函数关系式.【解答】(1)y=kx+2k=k(x+2),∴直线经过定点(﹣2,0),∴P(﹣2,0);(2)当a=1时,y=|x﹣1|+1,函数图象如下:直线与函数y=|x﹣a|+a的图象存在唯一的公共点,有以下三种情况:①当直线过点A(1,1)时,将点A的坐标代入y=kx+2k得:1=3k,解得:k=;②k=1直线和函数恰好有一个交点,且直线与图象右侧直线平行,故当k≥1时,直线和函数恰好有一个交点;③k=﹣1直线与图象左侧直线平行,直线和函数恰好没有交点,且故当k<﹣1时,直线和函数恰好没有交点;综上,k=或k≥1或k<﹣1;(3)如下图,图象的顶点为H(a,a),函数与正方形的交点为点T、点A,①当图象与函数无交点时,S=0,a>2;②当点T在AD上时,如图2(左),此时0<a≤2,过点H作HM⊥AD于点M,则S=×MH×AD=(2﹣a)×2×(2﹣a)=a2﹣4a+4;③当点T在边CD上时,此时﹣2<a≤0,连接HC,S=S△ACD﹣S△THC=8﹣×(2﹣a)(2﹣a)=﹣a2﹣4a+4;④当点T与点C重合时,S=8;综上,S=.5.如图,一次函数y=kx+b的图象经过点A (-2,6),与x轴交于点B,与正比例函数y=3x的图象交于点C,点C的横坐标为1.(1)求AB的函数表达式;(2)若点D在y轴负半轴,且满足S△COD=31S△BOC,求点D的坐标.【解答】(1)当x=1时,y=3x=3,∴C(1,3),将A (-2,6),C(1,3)代入y=kx+b,得⎩⎨⎧3=b+k6=b+2k-,解得⎩⎨⎧=-=41bk∴直线AB的解析式是y=-x+4;(2)y=-x+4中,令y=0,则x=4,∴B(4,0),设D(0,m)(m<0),S△BOC=21×OB×|y C|=21×4×3=6,S△COD=21×OD×|x C|=21|m|×1=-21m,∵S△COD=31S△BOC,∴-21m=31×6,解得m=-4,∴D(0,-4).6.如图,已知点A(6,0)、点B(0,2).(1)求直线AB所对应的函数表达式;(2)若C为直线AB上一动点,当△OBC的面积为3时,试求点C的坐标.【解答】(1)设直线AB所对应的函数表达式为y=kx+b(k≠0).由题意得:⎩⎨⎧==+26bbk,解得,⎪⎩⎪⎨⎧=-=231bk,∴直线AB所对应的函数表达式为y=−31x+2.(2)由题意得OB=2.又∵△OBC的面积为3,∴△OBC中OB边上的高为3.当x=-3时,y=−31x+2=3;当x=3时,y=−31x+2=1.∴点C的坐标为(-3,3)或(3,1).。

(完整版)一次函数期末复习练习题初中数学

(完整版)一次函数期末复习练习题初中数学

一次函数一、填空题(每小题3分,共18分)1.在平面直角坐标系中,已知一次函数y =2x +1的图象经过P 1(x 1,y 1),P 2(x 2,y 2)两点,若x 1<x 2,则y 1____________y 2.(填“>”“<”或“=”)2.当x =____________时,函数y =2x -1与y =3x +2有相同的函数值.3.如果直线y =2x +m 不经过第二象限,那么实数m 的取值范围是____________. 4.表格描述的是y 与x 之间的函数关系:x … -2 0 2 4 … y =kx +b…3-1mn…则m 与n 的大小关系是____________.5.直线y =kx +b 经过A(-2,-1)和B(-3,0)两点,则k= ,b=6.张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.汽车到达乙地时油箱中还余油____________升.二、选择题(每小题3分,共30分) 7.下列函数是一次函数的是( )A .-32x 2+y =0B .y =4x 2-1C .y =2xD .y=3x8.下列函数中,自变量x 的取值范围是x ≥3的是( )A .y =1x -3B .y =1x -3 C .y =x -3 D .y =x -39.若正比例函数的图象经过点(-1,2),则这个图象必经过点( )A .(1,2)B .(-1,-2)C .(2,-1)D .(1,-2) 10.(阜新中考)对于一次函数y =kx +k -1(k ≠0),下列叙述正确的是( )A .当0<k <1时,函数图象经过第一、二、三象限B .当k >0时,y 随x 的增大而减小C .当k <1时,函数图象一定交于y 轴的负半轴D .函数图象一定经过点(-1,-2)11.如图,直线y =ax +b 过点A(0,2)和点B(-3,0),则方程ax +b =0的解是( )A .x =2B .x =0C .x =-1D .x =-3 12汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,这一过程中汽车的行驶速度v 和行驶时间t 之间的关系用图象表示,其图象可能是( )13.要使直线y =(2m -3)x +(3n +1)的图象经过第一、二、四象限,则m 与n 的取值范围分别为( )A .m >32,n >-13B .m >3,n >-3C .m <32,n <-13D .m <32,n >-1314.(阜新中考)为了节省空间,家里的饭碗一般是摞起来存放的.如果6只饭碗摞起来的高度为15 cm ,9只饭碗摞起来的高度为20 cm ,那么11只饭碗摞起来的高度更接近( ) A .21 cm B .22 cm C .23 cm D .24 cm16.如图,直线y =23x +4与x 轴、y 轴分别交于点A 和点B ,点C ,D 分别为线段AB ,OB 的中点,点P 为OA 上一动点,PC +PD 值最小时,点P 的坐标为( )A .(-3,0)B .(-6,0)C .(-32,0)D .(-52,0)三、解答题(共52分)17.(8分)已知:y 与x +2成正比例,且当x =1时,y =-6. (1)求y 与x 之间的函数解析式;(2)若点M(m ,4)在这个函数的图象上,求m 的值.18.(10分)直线AB 与x 轴交于点A(1,0),与y 轴交于点B(0,-2). (1)求直线AB 的解析式;(2)若直线AB 上一点C 在第一象限且点C 的坐标为(2,2),求△BOC 的面积.19.(10分)在平面直角坐标系xOy中,直线y=kx+4(k≠0)与y轴交于点A.(1)如图,直线y=-2x+1与直线y=kx+4(k≠0)交于点B,与y轴交于点C,点B的横坐标为-1.①求点B的坐标及k的值;②直线y=-2x+1、直线y=kx+4与y轴所围成的△ABC的面积20.(12分)某个体户购进一批时令水果,20天销售完毕.他将本次销售情况进行了跟踪记录,根据所记录的数据可绘制如图所示的函数图象,其中日销售量y(千克)与销售时间x(天)之间的函数关系如图1所示,销售单价p(元/千克)与销售时间x(天)之间的函数关系如图2所示.(1)直接写出y与x之间的函数解析式;(2)分别求出第10天和第15天的销售金额;(3)若日销售量不低于24千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售单价最高为多少元/千克?r21.(12分)周末,小芳骑自行车从家出发到野外郊游,从家出发0.5小时到达甲地,游玩一段时间后按原速前往乙地,小芳离家1小时20分钟后,妈妈驾车沿相同路线前往乙地,行驶10分钟时,恰好经过甲地,如图是她们距乙地的路程y(km)与小芳离家时间x(h)的函数图象.(1)小芳骑车的速度为____________km/h,H点坐标为____________;(2)小芳从家出发多少小时后被妈妈追上?此时距家的路程多远?(3)相遇后,妈妈载上小芳和自行车同时到达乙地(彼此交流时间忽略不计),求小芳比预计时间早几分钟到达乙地?。

《一次函数》期末复习题

《一次函数》期末复习题

"

锥形瓶
t

量杯
圆底 烧 瓶
图 1
图 3 是

个单位


得到 的 函数 图象 的解 析式 为
。 :
-

— —
1
5

已 知 点 醇 4 中 学 生 煎 A (化



b )都 )名B校 同2步检 测 在 直 线 (
-


= ),
÷ Z

x
+
k
(七 为 常 数 ) 上


0
与 b 的大小 关 系是 相 交 于 点 的值为

b (填
<




=



>
)
rn x
图 2
+ n
6
F


直 线
y
=


y

=
2
x
+

l
n
(2 b ) 与
, ,

y
J
l
x +
2 相 交 于 点 (0

1)


(
m
l
z
7

次 函 数
', 吨
=

m
m
为常 数 )的 图象 与



的 交 点 坐 标 是 (1

则这 个容器 的形状 为 (
昌 9 昌9
A B C
D
图 9

一次函数的图象与性质(期末复习)

一次函数的图象与性质(期末复习)

一次函数的图象与性质班级_ 姓名______座号__ __一、选择题:(每题3分,共15分)1、下列各点一定在函数y=3x+1的图象上的是( ) A 、 (-2,3) B. (3,-2) C. (1,4) D. (4,2)2、下列函数中,图象经过原点和二、四象限的为( ) A .y =5x B .y =-x 5 C .y =5x+1 D. y =-x5 +13、函数y= x-2 中自变量x 的取值范围是A. x >2B. x <2C. x≥2D. x≤2 4、一次函数的图象大致是( )5、若一次函数1)1(2-+-=m x m y 的图象经过原点,则m 的值为( ) A 、-1 B 、1± C 、1 D 、任意实数 二、填空题:(每空4分,共44分)6、直线y =kx +5经过点(-2, -1),则k=_______7、当m ________时,函数y =(m -3)x -32,y 随x 的增大而增大? 8、已知函数35+-=x y ,当x =_________时,函数y 的值为0; 9、将直线3+-=x y 向下平移3个单位,得到直线 .10、直线52-=x y 与直线1+-=x y 的交点坐标是 .11、已知点(-4,y 1),(2,y 2)都在直线y=- 12 x+2上,则y 1 y 2大小关系是y 1 ____y 212、比较一次函数32y x =-+与122y x =+,写出它们图象的两个共同点和一个不同点:两个共同点① ,② ;一个不同点③ . 13、写出同时具备下列两个条件的一次函数表达式(写出一个即可)(1)y 随着x 的增大而减小。

(2)图象经过点(1,-3)14、将函数32+=x y 的图象平移,使它经过点(2,-1).求平移后的直线所对应的函数关系式 . 三、解答题:(8+11+10+12)15、在平面直角坐标系中,直线32+-=x y 与x 轴交于点A ,与y 轴交于点B .(1)求出点A 、B 的坐标,并画出这条直线(2)点P (m ,n )直线AB 上的一个动点,且-3≤n ≤3,求m 的最大值.16.某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。

第12章一次函数期末复习一次函数的图象及其性质课件

第12章一次函数期末复习一次函数的图象及其性质课件
一条 直线 .特别地,正比例函数y=kx(k≠0)的图象 是一条过 原点 的直线.
复习要点 3.正比例函数y =kx的图象及其性质
当k>0时,y随着x的增大而增大;图象经过第三、一象限.
当k<0时,y随着x的增大而减小;图象经过第二、四象限.
y
y
y=kx
O
x
y=kx
O
x
复习要点
4.一次函数y=kx+b与正比例函数y=kx图象的关系
A.y=-2x+3
B.y=-2+3x
C.y=-3x-2
D.y=3-2x
4.一次函数y=mx+|m-1|的图象过点(0,2),且y
随x的增大而增大,则m=( B ).
A.-1 B.3 C.1 D.-1或3
练习巩固
5.点A(4,m) ,B(4.7,n)都在直线y=2.3x-5上,则
m与n之间的关系是( B ).
Ox
∴ m+1=-1<0
A.
B.
y
即k<0
y
∵ m<-2 ∴-m>2
O x∴ 1-m>1 +2>0
C.
即b>0
Ox
D.
10.直线y=kx+2与y=2x+k在同一坐标系内的
大致图象是( D ).
y
k>0
k<0
O
x
y k>0
k<0
O
x
A. y k<0 k>0
O
x
B.
y k<0 k<0
b>0
O
x
C.
D.
y
y=kx+b y=kx
O
x
y=kx+b
复习要点 8.用待定系数法求一次函数解析式一般步骤: (1)先设出一次函数解析式为y=kx+b; (2)将已知两点的坐标代入所设的解析式,建立

期末复习五 一次函数的解析式与图象

期末复习五 一次函数的解析式与图象
期末复习五
一次函数的解析式与图象
一、必备知识 1.求下列一次函数的解析式: (1)过(0,2),(-1,0); (2)与直线y=3x平行,且过点(0,-2); (3)直线y=2x向右平移一个单位.
【答案】(1)y=2x+2; (2)y=3x-2; (3)y=2x-2.
2.根据下列一次函数y=kx+b(k≠0)的草 图,判断k,b的符号及函数增减性:
【答案】如图,过点C作CD⊥x轴,设A(x,0), ∵将△AOB沿直线AB翻折,得△ACB,∴OA=AC. 3 3 ∵A(x,0),C( , ),∴OA=AC=x, 2 2 3 则AD= -x. 2 2 2 3 x 3 2 , Rt△ADC中,由勾股定理得x = 2 2 解得:x=1,即A(1,0),OA=AC=1.
【答案】(1)b=2 ;
x=1 (2) ; y=2 (3)经过,理由:∵y=mx+n经过点P(1,2), ∴m+n=2,当x=1时,y=nx+m=n+m=2, ∴y=nx+m也经过点P.
【反思】y=nx+m是否经过点P,就是 要解决“当x=1时,y是否为2”.
4 【答案】(1)y=- x+4 ; 3
(2)(0,10)或(0,-2).
【反思】△ABP的面积以BP为底,OA为高较 为简便,注意P有两解.
ห้องสมุดไป่ตู้
一次函数图象上点的特征 例2 已知点P在直线y=-2x+6上. (1)若点P到x轴距离为1,求点P的坐标. (2)若点P到x轴、y轴距离相等,求点P的坐 标. (3)若点P在第一象限,又点A(4,0),求 △AOP的面积S与点P横坐标x之间的函数关 系式并写出自变量x的取值范围.
【答案】(1)P(2.5,1)或(3.5,-1);

期末复习(一次函数)

期末复习(一次函数)

一次函数复习课学案一、考点导航1、结合具体情境体会一次函数的意义,根据已知条件确定一次函数表达式。

2、会画一次函数的图像,根据一次函数的图像和解析表达式y=kx+b (k ≠0),探索并理解其性质(k >0或k <0时,图像的变化情况)。

3、理解正比例函数。

4、能根据一次函数的图像求二元一次方程组的近似解,体会一次函数与二元一次方程、二元一次方程组的关系。

5、能用一次函数解决实际问题。

二、知识梳理1、一次函数:一般地,如果两个变量x 、y 之间的关系可以表示成y =__________(k_____,k 、b_________),则y 是x 的一次函数.特别地,当b______时,形如y =______(k_____,k 为常数)的一次函数叫做正比例函数.2、一次函数的图象是________________3、画法确定 个点就可以画一次函数图像。

一次函数与x 轴的交点坐标( ,0),与y 轴的交点坐标(0, ),正比例函数的图象必经过两点分别是(0, )、(1, )。

4、一次函数的图象和性质5、一次函数的应用若11b x k y +=与22b x k y +=平行,则 若11b x k y +=与22b x k y +=垂直,则 三、考点分析考点一:一次函数与正比例函数的定义 1、下列函数中是一次函数的是( )A.122-=x yB.x y 1-=C.31+=x y D.1232-+=x x y2、下列说法正确的是( )A. b kx y +=是一次函数B.2xy -=是正比例函数,但不是一次函数C.一次函数一定是正比例函数D.正比例函数一定是一次函数3、已知函数y=(k-1)x+k 2-1,当k________时,它是一次函数,当k=_______•时,它是正比例函数. 4、已知函数2)3(--=k xm y 是正比例函数,则k_______。

5、已知y-2与x 成正比例,且x=2时,y=4,则y 与x 的函数关系式是_________;当y=3时,x=__________.6、当3=x 时,函数k x y +=与1-=kx y 的函数值相等,则k=_______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数期末复习题型一、对称方法: x 轴上的点纵坐标为0,y 轴上的点横坐标为0;若两个点关于x 轴对称,则他们的横坐标相同,纵坐标互为相反数; 若两个点关于y 轴对称,则它们的纵坐标相同,横坐标互为相反数;若两个点关于原点对称,则它们的横坐标互为相反数,纵坐标也互为相反数; 1、 若点A (m,n )在第二象限,则点(|m|,-n )在第____象限;2、 若点P (2a-1,2-3b )是第二象限的点,则a,b 的范围为______________________;3、 已知A (4,b ),B (a,-2),若A ,B 关于x 轴对称,则a=_______,b=_________;若A,B关于y 轴对称,则a=_______,b=__________;若若A ,B 关于原点对称,则a=_______,b=_________;4、 若点M (1-x,1-y )在第二象限,那么点N (1-x,y-1)关于原点的对称点在第______象限。

5、已知直线y=kx+b 与直线y= -3x +7关于y 轴对称,求k 、b 的值。

6、已知直线y=kx+b 与直线y= -3x +7关于x 轴对称,求k 、b 的值。

7、已知直线y=kx+b 与直线y= -3x +7关于原点对称,求k 、b 的值。

题型二、关于点的距离的问题方法:点到x 轴的距离用纵坐标的绝对值表示,点到y 轴的距离用横坐标的绝对值表示;任意两点(,),(,)A A B B A x y B x y ;1、 点B (2,-2)到x 轴的距离是_________;到y 轴的距离是____________;2、 点C (0,-5)到x 轴的距离是______;到y 轴的距离是______;到原点的距离是________;3、 点D (a,b )到x 轴的距离是______;到y 轴的距离是__ ___;到原点的距离是_______;4、 已知点P (3,0),Q(-2,0),则PQ=_________,已知点M(0,-1),N(0,-8),则MQ=________;()()2,1,2,8E F --,则EF 两点之间的距离是________;已知点G (2,-3)、H (3,4),则G 、H 两点之间的距离是________; 5、 两点(3,-4)、(5,a )间的距离是2,则a 的值为__________; 6、 已知点A (0,2)、B (-3,-2)、C (a,b ),若C 点在x 轴上,且∠ACB=90°,则C 点坐标为________.题型三、一次函数与正比例函数的识别方法:若y=kx+b(k,b 是常数,k ≠0),那么y 叫做x 的一次函数,特别的,当b=0时,一次函数就成为y=kx(k 是常数,k ≠0),这时,y 叫做x 的正比例函数,当k=0时,一次函数就成为若y=b ,这时,y 叫做常函数。

☆A 与B 成正比例 A=kB(k ≠0) 1、当k________时,()2323y k x x =-++-是一次函数;2、当m_________时,()21345m y m xx +=-+-是一次函数; 3、当m_________时,()21445m y m xx +=-+-是一次函数;4、2y-3与3x+1成正比例,且x=2,y=12,则函数解析式为________________;题型四、函数图像及其性质方法:k(称为斜率)表示直线y=kx+b(k≠0)的倾斜程度;b(称为截距)表示直线y=kx+b(k≠0)与y轴交点的,也表示直线在y轴上的。

☆同一平面内,不重合的两直线 y=k1x+b1(k1≠0)与 y=k2x+b2(k2≠0)的位置关系:当时,两直线平行。

当时,两直线垂直。

当时,两直线相交。

当时,两直线交于y轴上同一点。

☆特殊直线方程:X轴 : 直线 Y轴 : 直线与X轴平行的直线与Y轴平行的直线一、三象限角平分线二、四象限角平分线考点一:一次函数的图象和性质例1 (2012•黄石)已知反比例函数y=xb(b为常数),当x>0时,y随x的增大而增大,则一次函数y=x+b的图象不经过第几象限.()A.一 B.二 C.三 D.四例2 (2012•上海)已知正比例函数y=kx(k≠0),点(2,-3)在函数上,则y随x的增大而(增大或减小).对应训练1.(2012•沈阳)一次函数y=-x+2图象经过()A .一、二、三象限B .一、二、四象限C .一、三、四象限D .二、三、四象限 2.(2012•贵阳)在正比例函数y=-3mx 中,函数y 的值随x 值的增大而增大, 则P (m ,5)在第 象限.3若y=kx-4的函数值y 随x 的增大而增大,则k 的值可能是下列的( )A .-4B .-0.5C .0D .34.(2012•山西)如图,一次函数y=(m-1)x-3的图象分别与x 轴、y 轴的负半轴相交于A 、B ,则m 的取值范围是( ) A .m >1 B .m <1 C .m <0 D .m >05.(2012•怀化)如果点P 1(3,y 1),P 2(2,y 2)在一次函数y=2x-1的图象上,则y 1 y 2. 6.已知一次函数y=kx+b (k≠0)经过(2,﹣1)、(﹣3,4)两点,则它的图象不经过( )A .第一象限B . 第二象限C . 第三象限D . 第四象限课下作业1、对于函数y =5x+6,y 的值随x 值的减小而___________。

2、对于函数x y 35-=, y 的值随x 值的________而增大。

3.(2012•乐山)若实数a 、c 满足a <0,c >0则函数y=ax+c 的图象可能是( )A .B .C .D .3、一次函数 y=(6-3m)x +(2n -4)不经过第三象限,则m 、n 的范围是__________。

4、已知直线y=kx+b 经过第一、二、四象限,那么直线y=-bx+k 经过第_______象限。

5、无论m 为何值,直线y=x+2m 与直线y=-x+4的交点不可能在第______象限。

6、已知一次函数(1)当m 取何值时,y 随x 的增大而减小? (2)当m 取何值时,函数的图象过原点? 题型五、待定系数法求解析式方法:依据两个独立的条件确定k,b 的值,即可求解出一次函数y=kx+b (k ≠0)的解析式。

☆ 已知是直线或一次函数可以设y=kx+b (k ≠0);☆ 若点在直线上,则可以将点的坐标代入解析式构建方程。

例3 (2012•聊城)如图,直线AB 与x 轴交于点A (1,0),与y 轴交于点B (0,-2). (1)求直线AB 的解析式;(2)若直线AB 上的点C 在第一象限,且BOC S ∆=2,求点C 的坐标.对应训练及课下作业1、若函数y=3x+b 经过点(2,-6),求函数的解析式。

2、直线y=kx+b 的图像经过A (3,4)和点B (2,7),3、如图1表示一辆汽车油箱里剩余油量y (升)与行驶时间x (小时)之间的关系.求油箱里所剩油y (升)与行驶时间x (小时)之间的函数关系式,并且确定自变量x 的取值范围。

4、一次函数的图像与y=2x-5平行且与x 轴交于点(-2,0)求解析式。

5.(2012•湘潭)已知一次函数y=kx+b (k ≠0)图象过点(0,2),且与两坐标轴围成的三角形面积为2,求此一次函数的解析式6、若一次函数y=kx+b 的自变量x 的取值范围是-2≤x ≤6,相应的函数值y 的范围是-11≤y ≤9,求此函数的解析式。

考点三:一次函数与方程(组)的关系例4 (2012•贵阳)如下图,一次函数y=k 1x+b 1的图象1l 与y=k 2x+b 2的图象2l 相交于点P ,则方程组 1122y k x b y k x b =+⎧⎨=+⎩的解是( )A .23x y =-⎧⎨=⎩B .32x y =⎧⎨=-⎩ C .23x y =⎧⎨=⎩ D .23x y =-⎧⎨=-⎩对应训练 1.(2012•桂林)如上图,函数y=ax-1的图象过点(1,2),则不等式ax-1>2的解集是 . 2.(2012•呼和浩特)下面四条直线,其中直线上每个点的坐标都是二元一次方程x-2y=2的解是( )A .BC .题型六、平移方法:直线y=kx+b 与y 轴交点为(0,b ),直线平移则直线上的点(0,b )也会同样的平移,平移不改变斜率k ,则将平移后的点代入解析式求出b 即可。

直线y=kx+b 向左平移2向上平移3 <=> y=k(x+2)+b+3;(“左加右减,上加下减”)。

1. 直线y=2x+1向上平移4个单位得到直线 2. 直线y=-3x+5向下平移6个单位得到直线 3 直线x y 31=向上平移1个单位,得到直线 。

4 过点(2,-3)且平行于直线y=2x 的直线是____ _____。

BA123404321O xy-346-2F EDC B A 5. 过点(2,-3)且平行于直线y=-3x+1的直线是___________. 题型七、交点问题及直线围成的面积问题 交点问题:①与x 轴的交点(y=0):把y=0代入解析式,求出x ,则交点为( x ,0) ②与y 轴的交点(x=0):把x=0代入解析式,求出y ,则交点为(0,y )③两直线交点坐标必满足两直线解析式,求交点就是联立两直线解析式求方程组的解; 面积问题:④复杂图形“外补内割”即:往外补成规则图形,或分割成规则图形(三角形); 往往选择坐标轴上的线段作为底,底所对的顶点的坐标确定高;1、 已知63+-=x y 则它与x 轴的交点为 ;它与y 轴的交点为 它与12-=x y 的交点是2、 直线32+=x y ,它与与x 轴的交点为 ;它与y 轴的交点为 它与43--=x y 的交点是3、 直线经过(1,2)、(-3,4)两点,求直线与坐标轴围成的图形的面积。

4、 已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB (1) 求两个函数的解析式;(2)求△AOB 的面积;5、 已知直线m 经过两点(1,6)、(-3,-2),它和x 轴、y 轴的交点式B 、A ,直线n 过点(2,-2),且与y 轴交点的纵坐标是-3,它和x 轴、y 轴的交点是D 、C ;(1) 分别写出两条直线解析式,并画草图; (2) 计算四边形ABCD 的面积;(3) 若直线AB 与DC 交于点E ,求△BCE 的面积。

4、已知:经过点(-3,-2),它与x 轴,y 轴分别交于点B 、A ,直线经过点(2,-2),且与y 轴交于点C (0,-3),它与x 轴交于点D (1)求直线的解析式; (2)若直线与交于点P ,求的值。

相关文档
最新文档