电磁感应现象 楞次定律(教案)

电磁感应现象 楞次定律(教案)
电磁感应现象 楞次定律(教案)

考点内容 要求 说明 考纲解读

电磁感应现象 Ⅰ 1.应用楞次定律和右手定则判断感应电流的方向. 2.结合各种图象(如Φ-t 图象、B -t 图象和i -t 图象),考查感应电流的产生条件及其方向的判定,导体切割磁感线产生感应电

动势的计算.

3.电磁感应现象与磁场、电路、力学等知识的综合,以及电磁感应与实际相结

合的题目.

感应电流的产生条件

法拉第电磁感应定律;楞

次定律

限于导线方向与磁场方

向、运动方向垂直的情况;有关反电动势的计算

不作要求

互感;自感

电磁感应现象 楞次定律

考纲解读 1.知道电磁感应现象产生的条件.2.理解磁通量及磁通量变化的含义,并能计算.3.掌握楞次定律和右手定则的应用,并能判断感应电流的方向及相关导体的运动方向.

1. [对磁通量的考查]如图1所示,ab 是水平面上一个圆的直径,在

过ab 的竖直面内有一根通电直导线ef ,且ef 平行于ab ,当ef 竖直向上平移时,穿过圆面积的磁通量将 ( ) A .逐渐变大

图1

B .逐渐减小

C .始终为零

D .不为零,但始终保持不变 答案 C

解析 穿过圆面积的磁通量是由通电直导线ef 产生的,因为通电直导线位于圆的正上方,所以向下穿过圆面积的磁感线条数与向上穿过该面积的条数相等,即磁通量为零,而且竖直方向的平移也不会影响磁通量的变化.故C 正确.

2.[对电磁感应现象发生条件的考查]试分析下列各种情形中,金属线框或线圈里能否产生感应电流?

答案除A外均能产生感应电流

3.[对楞次定律的考查]下列各图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流.各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中正确的是()

答案CD

解析根据楞次定律可确定感应电流的方向:以C选项为例,当磁铁向下运动时:(1)闭合线圈原磁场的方向——向上;(2)穿过闭合线圈的磁通量的变化——增加;(3)感应电流产生的磁场方向——向下;(4)利用安培定则判断感应电流的方向——与图中箭头方向相同.线圈的上端为S极,磁铁与线圈相互排斥.运用以上分析方法可知,C、D 正确.

4.[对右手定则的考查]如图2所示,在直线电流附近有一根金属棒ab,当

金属棒以b端为圆心,以ab为半径,在过导线的平面内匀速旋转到达

图中的位置时()

A.a端聚积电子

B.b端聚积电子图2

C.金属棒内电场强度等于零

D.U a>U b

答案BD

解析因金属棒所在区域的磁场的方向垂直于纸面向外,当金属棒转动时,由右手定则可知,a端的电势高于b端的电势,b端聚积电子,B、D正确.

考点梳理

一、磁通量

1.定义:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积.2.公式:Φ=BS.

适用条件:(1)匀强磁场.

(2)S为垂直磁场的有效面积.

3.磁通量是标量(填“标量”或“矢量”).

4.磁通量的意义:

(1)磁通量可以理解为穿过某一面积的磁感线的条数.

(2)同一平面,当它跟磁场方向垂直时,磁通量最大;当它跟磁场方向平行时,磁通量

为零;当正向穿过线圈平面的磁感线条数和反向穿过的一样多时,磁通量为零.

二、电磁感应现象

1.电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.

2.产生感应电流的条件:

表述1:闭合回路的一部分导体在磁场内做切割磁感线的运动.

表述2:穿过闭合回路的磁通量发生变化.

3.能量转化

发生电磁感应现象时,机械能或其他形式的能转化为电能.

深化拓展当回路不闭合时,没有感应电流,但有感应电动势,只产生感应电动势的现象也可以称为电磁感应现象,且产生感应电动势的那部分导体或线圈相当于电源.三、感应电流方向的判断

1.楞次定律

(1)内容:感应电流的磁场总要阻碍引起感应电流的磁通量的变化.

(2)适用情况:所有的电磁感应现象.

2.右手定则

(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让

磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.

(2)适用情况:导体棒切割磁感线产生感应电流.

5.[利用楞次定律的推论“增反减同”解题]如图3所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R的滑

片P自左向右滑动过程中,线圈ab将()

A.静止不动

B.逆时针转动图3

C.顺时针转动

D.发生转动,但因电源的极性不明,无法确定转动的方向

答案 C

解析当P向右滑动时,电路中电阻减小,电流增大,穿过线圈ab的磁通量增大,根据楞次定律判断,线圈ab将顺时针转动.

6.[利用楞次定律的推论“阻碍相对运动”解题]如图4所示,甲是闭合铜线框,乙是有缺口的铜线框,丙是闭合的塑料线框,它们的正下方都放置一薄强磁铁,现将甲、乙、丙拿至相同高度H处同时释放(各线框下落过程中不翻转),则以下说法正确的是()

图4

A.三者同时落地

B.甲、乙同时落地,丙后落地

C.甲、丙同时落地,乙后落地

D.乙、丙同时落地,甲后落地

答案 D

解析甲是闭合铜线框,在下落过程中产生感应电流,所受的安培力阻碍它的下落,故所需的时间长;乙不是闭合回路,丙是塑料线框,故都不会产生感应电流,它们做自由落体运动,所需时间相同,故D正确.

方法提炼

利用电磁感应的效果进行判断的方法:

方法1:阻碍原磁通量的变化——“增反减同”.

方法2:阻碍相对运动——“来拒去留”.

方法3:使线圈面积有扩大或缩小的趋势——“增缩减扩”

方法4:阻碍原电流的变化(自感现象)——“增反减同”.

考点一 电磁感应现象能否发生的判断 1. 磁通量发生变化的三种常见情况

(1)磁场强弱不变,回路面积改变; (2)回路面积不变,磁场强弱改变;

(3)回路面积和磁场强弱均不变,但二者的相对位臵发生改变. 2. 判断流程:(1)确定研究的闭合回路.

(2)弄清楚回路内的磁场分布,并确定该回路的磁通量Φ.

(3)???

Φ不变→无感应电流

Φ变化→?

??

??

回路闭合,有感应电流

不闭合,无感应电流,但有感应电动势

例1 如图5所示,一个金属薄圆盘水平放置在竖直向上的匀强磁场中,

下列做法中能使圆盘中产生感应电流的是

( )

A .圆盘绕过圆心的竖直轴匀速转动

B .圆盘以某一水平直径为轴匀速转动

C .圆盘在磁场中向右匀速平移

图5

D .匀强磁场均匀增加

解析 只有当圆盘中的磁通量发生变化时,圆盘中才产生感应电流,当圆盘绕过圆心的竖直轴匀速转动或圆盘在磁场中向右匀速平移时,圆盘中的磁通量不发生变化,不能产生感应电流,A 、C 错误;当圆盘以某一水平直径为轴匀速转动或匀强磁场均匀增加时,圆盘中的磁通量发生变化,圆盘中将产生感应电流,B 、D 正确. 答案 BD

突破训练1 如图所示,能产生感应电流的是

( )

答案 B

解析 A 图中线圈没闭合,无感应电流;B 图中磁通量增大,有感应电流;C 图中导线在圆环的正上方,不论电流如何变化,穿过线圈的磁感线相互抵消,磁通量恒为零,也

无感应电流;D图中的磁通量恒定,无感应电流.故选B.

考点二利用楞次定律判断感应电流的方向

1.楞次定律中“阻碍”的含义

2.楞次定律的使用步骤

例2(2011·上海单科·13)如图6,均匀带正电的绝缘圆环a与金属圆环

b同心共面放置,当a绕O点在其所在平面内旋转时,b中产生顺

时针方向的感应电流,且具有收缩趋势,由此可知,圆环a()

A.顺时针加速旋转

B.顺时针减速旋转

C.逆时针加速旋转图6

D.逆时针减速旋转

解析由楞次定律知,欲使b中产生顺时针电流,则a环内磁场应向里减弱或向外增强,a环的旋转情况应该是顺时针减速或逆时针加速,由于b环又有收缩趋势,说明a环外部磁场向外,内部向里,故选B.

答案 B

逆向思维法在感应电流方向判断中的应用

逆向思维法是指从事物正向发展的目标、规律的相反方向出发,运用对立的、颠倒的思维方式去思考问题的一种方法.而电磁感应现象中因果相对的关系恰好反映了自然界的这种对立统一规律.对楞次定律中“阻碍”的含义可以推广为感应电流的效果总是阻碍产生感应电流的原因.

突破训练2如图7(a)所示,两个闭合圆形线圈A、B的圆心重合,放在同一水平面内,线圈A中通以如图(b)所示的交变电流,t=0时电流方向为顺时针(如图中箭头所示),在t1~t2时间段内,对于线圈B,下列说法中正确的是()

图7

A.线圈B内有顺时针方向的电流,线圈有扩张的趋势

B.线圈B内有顺时针方向的电流,线圈有收缩的趋势

C.线圈B内有逆时针方向的电流,线圈有扩张的趋势

D.线圈B内有逆时针方向的电流,线圈有收缩的趋势

答案 A

解析在t1~t2时间段内,A线圈的电流为逆时针方向,产生的磁场垂直纸面向外且是增加的,由此可判定B线圈中的电流为顺时针方向.线圈的扩张与收缩可用阻碍Φ变化的观点去判定.在t1~t2时间段内B线圈内的Φ增强,根据楞次定律,只有B线圈增大面积,才能阻碍Φ的增加,故选A.

突破训练3如图8所示,当磁场的磁感应强度B增强时,内、外金属

环上的感应电流的方向应为()

A.内环顺时针,外环逆时针

B.内环逆时针,外环顺时针

C.内、外环均为顺时针图8

D.内、外环均为逆时针

答案 A

解析磁场增强,则穿过回路的磁通量增大,故感应电流的磁场向外,由安培定则知感应电流对整个电路而言应沿逆时针方向;若分开讨论,则外环逆时针,内环顺时针,A 正确.

40.“一定律三定则”的应用技巧

1.应用现象及规律比较

基本现象

应用的定则或定律

运动电荷、电流产生磁场 安培定则 磁场对运动电荷、电流有作用力 左手定则 电磁 感应

部分导体做切割磁感线运动 右手定则 闭合回路磁通量变化

楞次定律

2. 应用技巧

无论是“安培力”还是“洛伦兹力”,只要是“力”都用左手判断. “电生磁

”或“

磁生电”均用右手判断.

例3 如图9所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ 、MN ,MN 的左边有一闭合电路,当PQ 在外力的作用下运动时,MN 向右运动,则PQ 所做的运动可能是

( )

A .向右加速运动

B .向左加速运动

C .向右减速运动

图9

D .向左减速运动

解析 MN 向右运动,说明MN 受到向右的安培力,因为ab 在MN 处的磁场垂直纸面向里

MN 中的感应电流由M →N

L 1中感应电流的磁场方向向上

?

????

L 2中磁场方向向上减弱L

2

中磁场方向向下增强;若L 2中磁场方向向上减弱PQ 中电流

为Q →P 且减小向右减速运动;若L 2中磁场方向向下增强

PQ 中

电流为P →Q 且增大,向左加速运动.

答案 BC

突破训练4 两根相互平行的金属导轨水平放置于图10所示的匀强磁场

中,在导轨上接触良好的导体棒AB 和CD 可以自由滑动.当AB 在外力F 作用下向右运动时,下列说法中正确的是 ( ) A .导体棒CD 内有电流通过,方向是D →C

图10

B.导体棒CD内有电流通过,方向是C→D

C.磁场对导体棒CD的作用力向左

D.磁场对导体棒AB的作用力向左

答案BD

解析利用楞次定律.两个导体棒与两根金属导轨构成闭合回路,分析出磁通量增加,结合安培定则判断回路中感应电流的方向是B→A→C→D→B.以此为基础,再根据左手定则进一步判定CD、AB的受力方向,经过比较可得正确答案.

高考题组

1.(2012·山东理综·14)下列叙述正确的是() A.法拉第发现了电磁感应现象

B.惯性是物体的固有属性,速度大的物体惯性一定大

C.牛顿最早通过理想斜面实验得出力不是维持物体运动的原因

D.感应电流遵从楞次定律所描述的方向,这是能量守恒定律的必然结果

答案AD

解析电磁感应现象的发现者是法拉第,故选项A正确;惯性是物体本身固有的属性,质量是物体惯性大小的唯一量度,故选项B错误;伽利略通过理想斜面实验得出力不是维持物体运动的原因,故选项C错误;楞次定律是能量守恒定律在电磁感应现象中的表现,故选项D正确.

2.(2012·北京理综·19)物理课上,老师做了一个奇妙的“跳环实验”.如图11,她把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环.闭合开关S的瞬间,套环立刻跳起.

图11

某同学另找来器材再探究此实验.他连接好电路,经重复实验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是()

A.线圈接在了直流电源上

B.电源电压过高

C.所选线圈的匝数过多

D.所用套环的材料与老师的不同

答案 D

解析金属套环跳起的原因是开关S闭合时,套环上产生的感应电流与通电螺线管上的电流相互作用而引起的.线圈接在直流电源上,S闭合时,金属套环也会跳起.电源电压越高,线圈匝数越多,S闭合时,金属套环跳起越剧烈.若套环是非导体材料,则套环不会跳起.故选项A、B、C错误,选项D正确.

3.(2011·海南单科·20)如图12,磁场垂直于纸面,磁感应强度在竖直

方向均匀分布,水平方向非均匀分布.一铜制圆环用丝线悬挂于O点,

将圆环拉至位置a后无初速度释放,在圆环从a摆向b的过程中()

A.感应电流方向先逆时针后顺时针再逆时针

B.感应电流方向一直是逆时针

C.安培力方向始终与速度方向相反图12

D.安培力方向始终沿水平方向

答案AD

解析圆环从位臵a运动到磁场分界线前,磁通量向里增大,感应电流方向为逆时针;

跨越分界线过程中,磁通量由向里最大变为向外最大,感应电流方向为顺时针;再摆到b的过程中,磁通量向外减小,感应电流方向为逆时针,A正确,B错误;由于圆环所在处的磁场,上下对称,所受安培力在竖直方向平衡,因此总的安培力方向沿水平方向,故C错误,D正确.

模拟题组

4.如图13所示,一根条形磁铁从左向右靠近闭合金属环的过程中,环

中的感应电流(自左向右看) ()

A.沿顺时针方向

B.先沿顺时针方向后沿逆时针方向

C.沿逆时针方向图13 D.先沿逆时针方向后沿顺时针方向

答案 C

解析条形磁铁从左向右靠近闭合金属环的过程中,向右的磁通量一直增加,根据楞次定律,环中的感应电流(自左向右看)为逆时针方向,C对.

5. 如图14,铜质金属环从条形磁铁的正上方由静止开始下落,在下落过

程中,下列判断中正确的是()

A.金属环在下落过程中机械能守恒

B.金属环在下落过程中动能的增加量小于其重力势能的减少量

C.金属环的机械能先减小后增大图14 D.磁铁对桌面的压力始终大于其自身的重力

答案 B

解析金属环在下落过程中,磁通量发生变化,闭合金属环中产生感应电流,金属环受到磁场力的作用,机械能不守恒,A错误.由能量守恒知,金属环重力势能的减少量等于其动能的增加量和在金属环中产生的电能之和,B正确.金属环下落的过程中,机械能转变为电能,机械能减少,C错误.当金属环下落到磁铁中央位臵时,金属环中的磁通量不变,其中无感应电流,和磁铁间无作用力,磁铁所受重力等于桌面对它的支持力,由牛顿第三定律,磁铁对桌面的压力等于桌面对磁铁的支持力,等于磁铁的重力,D错误.

(限时:30分钟)

?题组1对电磁感应现象产生条件的考查

1.现将电池组、滑动变阻器、带铁芯的线圈A、线圈B、电流计及电键按如图1所示连接.下列说法中正确的是()

图1

A.电键闭合后,线圈A插入或拔出都会引起电流计指针偏转

B.线圈A插入线圈B中后,电键闭合和断开的瞬间电流计指针均不会偏转

C.电键闭合后,滑动变阻器的滑片P匀速滑动,会使电流计指针静止在中央零刻度D.电键闭合后,只有滑动变阻器的滑片P加速滑动,电流计指针才能偏转

答案 A

解析电键闭合后,线圈A插入或拔出都会引起穿过线圈B的磁通量发生变化,从而使电流计指针偏转,选项A正确;线圈A插入线圈B中后,电键闭合和断开的瞬间,线圈B的磁通量会发生变化,电流计指针会偏转,选项B错误;电键闭合后,滑动变阻器的滑片P无论匀速滑动还是加速滑动,都会导致线圈A的电流发生变化,使线圈B 的磁通量变化,电流计指针都会发生偏转,选项C、D错误.

2.如图2所示,一个U形金属导轨水平放置,其上放有一个金属导体

棒ab,有一个磁感应强度为B的匀强磁场斜向上穿过轨道平面,且

与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感

应电流的是()

A.ab向右运动,同时使θ减小图2

B.使磁感应强度B减小,θ角同时也减小

C.ab向左运动,同时增大磁感应强度B

D.ab向右运动,同时增大磁感应强度B和θ角(0°<θ<90°)

答案 A

解析设此时回路面积为S,据题意,磁通量Φ=BS cos θ,对A,S增大,θ减小,cos

θ增大,则Φ增大,A正确.对B,B减小,θ减小,cos θ增大,Φ可能不变,B错误.对C,S减小,B增大,Φ可能不变,C错误.对D,S增大,B增大,θ增大,cos θ减小,Φ可能不变,D错误.故只有A正确.

3.如图3所示,在条形磁铁的中央位置的正上方水平固定一铜质圆

环.以下判断中正确的是()

A.释放圆环,环下落时产生感应电流

B.释放圆环,环下落时无感应电流图3

C.释放圆环,环下落时环的机械能守恒

D.释放圆环,环下落时环的机械能不守恒

答案BC

解析由条形磁铁磁场分布特点可知,穿过其中央位臵正上方的圆环的合磁通量为零,所以在环下落的过程中,磁通量不变,没有感应电流,圆环只受重力,则环下落时机械能守恒,故A、D错误,B、C正确.

4.如图4所示,闭合圆导线线圈放置在匀强磁场中,线圈平面与磁场平行,

其中ac、bd分别是平行、垂直于磁场方向的两条直径.试分析线圈做

如下运动时,能产生感应电流的是()

A.使线圈在纸面内平动

B.使线圈平面沿垂直纸面方向向纸外平动图4

C.使线圈以ac为轴转动

D.使线圈以bd为轴转动

答案 D

解析使线圈在纸面内平动、沿垂直纸面方向向纸外平动或以ac为轴转动,线圈中的磁通量始终为零,不变化,无感应电流产生;以bd为轴转动时,线圈中的磁通量不断变化,能产生感应电流,所以D选项正确.

?题组2对楞次定律应用的考查

5.金属环水平固定放置,现将一竖直的条形磁铁,在圆环上方沿圆环轴线从静止开始释放,在条形磁铁穿过圆环的过程中,条形磁铁与圆环() A.始终相互吸引

B.始终相互排斥

C.先相互吸引,后相互排斥

D.先相互排斥,后相互吸引

答案 D

解析

磁铁靠近圆环的过程中,穿过圆环的磁通量增加,根据楞次定律

可知,感应电流的磁场阻碍穿过圆环的原磁通量的增加,与原磁

场方向相反,如图甲所示,二者之间是斥力;当磁铁穿过圆环下

降离开圆环时,穿过圆环的磁通量减少,根据楞次定律可知,感

应电流的磁场阻碍穿过圆环的磁通量的减少,二者方向相同,如

图乙所示,磁铁与圆环之间是引力.因此选项D正确.也可直接根据楞次定律中“阻碍”的含义推论:来则拒之,去则留之分析.磁铁在圆环上方下落过程是靠近圆环.根据来则拒之,二者之间是斥力;当磁铁穿过圆环后继续下落过程是远离圆环.根据去则留之,二者之间是引力.因此选项D正确.

6. 如图5所示,线圈M和线圈N绕在同一铁芯上.M与电源、开关、

滑动变阻器相连,P为滑动变阻器的滑动触头,开关S处于闭合

状态,N与电阻R相连.下列说法正确的是()

A.当P向右移动时,通过R的电流为b到a

B.当P向右移动时,通过R的电流为a到b 图5

C.断开S的瞬间,通过R的电流为b到a

D.断开S的瞬间,通过R的电流为a到b

答案AD

解析本题考查楞次定律.根据右手螺旋定则可知M线圈内磁场方向向左,当滑动变阻器的滑动触头P向右移动时,电阻减小,M线圈中电流增大,磁场增大,穿过N线圈内的磁通量增大,根据楞次定律可知N线圈中产生的感应电流通过R的方向为b到a,A正确,B错误;断开S的瞬间,M线圈中的电流突然减小,穿过N线圈中的磁通量减小,根据楞次定律可知N线圈中产生的感应电流方向为a到b,C错误,D正确.7.如图6所示,质量为m的铜质小闭合线圈静置于粗糙水平桌面

上.当一个竖直放置的条形磁铁贴近线圈,沿线圈中线由左至右

从线圈正上方等高、快速经过时,线圈始终保持不动.则关于线

圈在此过程中受到的支持力F N和摩擦力F f的情况,以下判断正

确的是() 图6

A.F N先大于mg,后小于mg

B.F N一直大于mg

C.F f先向左,后向右

D.F f一直向左

答案AD

解析条形磁铁贴近线圈,沿线圈中线由左至右从线圈正上方等高、快速经过时,线圈中磁通量先增大后减小,由楞次定律中“来拒去留”关系可知A、D正确,B、C错误.

8. 如图7所示,线圈由A 位置开始下落,在磁场中受到的安培力如果总

小于它的重力,则它在A 、B 、C 、D 四个位置(B 、D 位置恰好线圈有 一半在磁场中)时,加速度关系为 ( )

A .a A >a

B >a

C >a

D B .a A =a C >a B >a D C .a A =a C >a D >a B

7

D .a A =a C >a B =a D 答案 B

解析 线圈在A 、C 位臵时只受重力作用,加速度a A =a C =g .线圈在B 、D 位臵时均受两个力的作用,其中安培力向上,重力向下.由于重力大于安培力,所以加速度向下,大小a =g -F

m F B ,所以a D

速度的关系为a A =a C >a B >a D ,选项B 正确.

9. 如图8所示,圆环形导体线圈a 平放在水平桌面上,在a 的正上方固

定一竖直螺线管b ,二者轴线重合,螺线管与电源和滑动变阻器连接成如图所示的电路.若将滑动变阻器的滑片P 向上滑动,下面说法中正确的是

( ) A .穿过线圈a 的磁通量变大

图8

B .线圈a 有收缩的趋势

C .线圈a 中将产生俯视顺时针方向的感应电流

D .线圈a 对水平桌面的压力F N 将增大 答案 C

解析 P 向上滑动,回路电阻增大,电流减小,磁场减弱,穿过线圈a 的磁通量变小,根据楞次定律,a 环面积应增大,A 、B 错;由于a 环中磁通量减小,根据楞次定律知a 环中感应电流应为俯视顺时针方向,C 对;由于a 环中磁通量减小,根据楞次定律,a 环有阻碍磁通量减小的趋势,可知a 环对水平桌面的压力F N 减小,D 错. 10.如图9所示,绝缘水平面上有两个离得很近的导体环a 、b .将条形磁

铁沿它们的正中向下移动(不到达该平面),a 、b 将如何移动( ) A .a 、b 将相互远离 B .a 、b 将相互靠近 C .a 、b 将不动

图 9

D .无法判断 答案 A

解析 根据Φ=BS ,条形磁铁向下移动过程中B 增大,所以穿过每个环中的磁通量都

有增大的趋势.由于S不可改变,为阻碍磁通量增大,导体环会尽量远离条形磁铁,所以

a、b将相互远离.

?题组3对三个“定则”,一个“规律”的综合考查

11.如图10所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下

列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸

引()

A.向右做匀速运动图10

B.向左做减速运动

C.向右做减速运动

D.向右做加速运动

答案BC

解析当导体棒向右匀速运动时产生恒定的电流,线圈中的磁通量恒定不变,无感应电流出现,A错;当导体棒向左减速运动时,由右手定则可判定回路中出现从b→a的感应电流且减小,由安培定则知螺线管中感应电流的磁场向左在减弱,由楞次定律知c 中出现顺时针感应电流(从右向左看)且被螺线管吸引,B对;同理可判定C对,D错.12.如图11所示装置中,cd杆原来静止.当ab杆做如下哪些运动时,cd杆将向右移动()

图11

A.向右匀速运动B.向右加速运动

C.向左加速运动D.向左减速运动

答案BD

解析ab匀速运动时,ab中感应电流恒定,L1中磁通量不变,穿过L2的磁通量不变,L2中无感应电流产生,cd杆保持静止,A不正确;ab向右加速运动时,L2中的磁通量向下增大,由楞次定律知L2中感应电流产生的磁场方向向上,故通过cd的电流方向向下,cd向右移动,B正确;同理可得C不正确,D正确.

13.如图12甲所示,等离子气流由左边连续以v0射入P1和P2两板间的匀强磁场中,ab直导线与P1、P2相连接,线圈A与直导线cd连接.线圈A内有随图乙所示的变化磁场,且磁场B的正方向规定为向左,如图甲所示.则下列说法正确的是()

图12

A.0~1 s内ab、cd导线互相排斥

B.1 s~2 s内ab、cd导线互相排斥

C.2 s~3 s内ab、cd导线互相排斥

D.3 s~4 s内ab、cd导线互相排斥

答案CD

解析由图甲左侧电路可以判断ab中电流方向由a到b;由右侧电路及图乙可以判断,0~2 s内cd中电流为由c到d,跟ab中的电流同向,因此ab、cd相互吸引,选项A、B错误;2 s~4 s内cd中电流为由d到c,跟ab中电流反向,因此ab、cd相互排斥,选项C、D正确.

14. 如图13所示,通电导线cd右侧有一个金属框与导线cd在同一平

面内,金属棒ab放在框架上,若ab受到向左的磁场力,则cd中

电流的变化情况是()

A.cd中通有由d→c方向逐渐减小的电流图13

B.cd中通有由d→c方向逐渐增大的电流

C.cd中通有由c→d方向逐渐减小的电流

D.cd中通有由c→d方向逐渐增大的电流

答案BD

电磁感应现象教学反思

篇一:电磁感应教学反思 《电磁感应》教学反思 —— 一名年轻教师的课后感想 临沧 市一中物理教研组李芳 时光 飞逝,转眼间,我步入教学岗位已经接近三年了,在我从一个学生变成一名教师的巨大角色转 换中,在学校领导和老教师的帮助和指导下,我努力做好每一件事情,注重自己教学业务水平 的提高、注重反思教学中的缺漏、注意做好对学生和引导和与学生之间的沟通,但毕竟经验 不足、能力有限、应变能力还很欠缺,教学中还是经常快乐并失落着。 对于 一名教师来说,每上完一节课,都会有很多感受,有源于 传授 知识的喜悦、有对重点突出和难点突破的成就感、当然也有对课中遗漏每个细节的遗憾、有对 部队学生有厌学情绪的不解、有对没有处理好教学中出现的一些突发事件的沮丧、有对课堂效 率不高的忧虑 本节 课我试图改变这种弊端,在教学过程的总体设计上以学生为探索者,教师做引路人。按照教师 为主导,学生为主体,多媒体演示作手段,问题为线索的构想,采用引导探索式教法来进行教 学。试图教学过程的各个环节不断地为学生创设问题情境,设置悬念,适时点拨。例如在引 入新课时启发学生用逆向思维去提出问题,激发他们探求新知识的兴趣。当探索多次失败时, 启迪学生要持之以恒;当探索成功时,则简明扼要地概括研究问题的思路。把学生从纯知识的 学习导向知识、能力、思想的全面发展。 首 先,开始时没有培养好学生的学习兴趣,让学生由“老师要我学”变为“我要学”这个问题上 我做的还很不够。有学生上课注意力不集中,甚至打瞌睡。 其 次,课堂中还是没做到敢于“放”,善于“引” 。这堂课在学生探究方法上和时间可能不够 的问题上会比较突出,三个探究实验能否收到良好的教学效果,与教师的科学引导密切相关。 如果“放而不引”,流于形式,不仅教学时间不够,学生也可能“玩无所获”,如探究“电磁 感应现象”实验、“感应电流的大小与哪些因素有关”的实验,实验次数较多,操作中易出现 如电路故障、方法不合理等这样那样的问题,没有教师的合理引导,学生不可能在有限时间内 完成学习任务。 最 后,我对初中物理教材和高中物理教材的研究还不够透彻。 篇二:电磁感应教学反思 高二物理《电磁感应现象》教学反思

电磁感应现象教学设计

电磁感应现象教学设计 电磁感应现象教学设计 篇一:电磁感应现象教学设计 一、教材分析 课本从4个层面介绍了电磁感应——定性了解定磁感应现象、掌握感应电动势方向的判定规则和定量计算感应电动势的大小、了解电磁感应的两类情况、了解电磁感应规律在自感涡流电磁阻尼电磁驱动中的应用。 教材对感应电流产生条件、感应电流方向的判定、感应电动势的大小等的处理,全部是从唯象的角度,而且全部是拿磁通量来说事;但实际上,电磁感应存在两种本质完全不同的情况,而且谈论磁通量必须有一个回路,可是一根导体棒切割磁感线却没有回路。这种处理,实际上给学生造成了许多理解和应用上的困难。 不过,教材利用第五节做了一个补充,那么,一轮复习,笔者认为就应该纠回正常思路,先分两种情况说明,然后总结出感应电流产生条件、感应电流方向的判定规则和感应电动势的大小计算的磁通量表述。 另外,一轮复习,第一讲承担着全章知识内容的引领作用,因此本讲可以将本章所涉及的大部分关键模型拿出来与学生见面。 二、学情分析 学生已经自主复习了教材,并自主完成了第一讲资料前后的填空、

辨析和例题、练习,对本章、本讲所涉及的内容和题型都有了较为熟悉的了解。 但是,从练习的完成质量来看,学生对电磁感应的实质、磁通量的变化、楞次定律的综合应用都存在明显困难,这需要老师引导梳理和透彻理解本讲内容、并分类讲解楞次定律的应用思路和技巧。三、教学目标 1、知识与技能:熟练掌握磁通量及其变化的计算方法,理解感应电流的产生条件,深刻理解楞次定律并能够熟练、灵活应用。 2、过程与方法:通过教师的引导,一起重新整理知识脉络,从而加深对本章本节知识内容的理解;同时,通过对练习题的归类分析,从而加深对楞次定律的理解。 3、情感、态度与价值观:培养学生深入学习本章的兴趣和信心。 四、教学重难点 1、磁通量及其变化; 2、感应电流的产生条件; 3、楞次定律、右手定则的理解和应用。五、教学媒体 PPT多媒体课件,《与名师对话》一轮复习资料六、教学时间 七、教学反思 1、本讲第一部分内容——知识串讲部分,结合PPT课件讲快一些,因为特殊原因我的课件未能用成,导致知识串讲部分没有讲完。 2、有教师反映,感生电动势的讲解超纲——高考不考,一轮复习就不应该涉及。 3、楞次定律是电磁感应一章的难点,从后续几讲练习完成情况

电磁感应现象 楞次定律练习题

电磁感应现象楞次定律练习题 1.发现电流磁效应现象的科学家是___________,发现通电导线在磁场中受力规律的科学家是__________,发现电磁感应现象的科学家是___________,发现电荷间相互作用力规律的的科学家是___________。 2.位于载流长直导线近旁的两根平行铁轨A和B,与长直导线平行且在同一水平面上,在铁轨A、B上套有两段可以自由滑动的导体CD和EF,如图所示, 若用力使导体EF向右运动,则导体CD将() A.保持不动 B.向右运动 C.向左运动 D.先向右运动,后向左运动 3.如图所示,要使Q线圈产生图示方向的电流,可采用的方法有 ( ) A.闭合电键K B.闭合电键K后,把R的滑片右移 C.闭合电键K后,把P中的铁心从左边抽出 D.闭合电键K后,把Q靠近P 4.如图所示是家庭用的“漏电保护器”的关键部分的原理图,其中P是一个变压器铁芯,入户的两根电线(火线和零线)采用双线绕法,绕在铁芯的一侧作为原线圈,然后再接入户内的用电器.Q是一个脱扣开关的控制部分(脱扣开关本身没有画出,它是串联在本图左边的火线和零线上,开关断开时,用户的供电被切断),Q接在铁芯 另一侧副线圈的两端a、b之间,当a、b间没有电压时,Q使得脱 扣开关闭合,当a、b间有电压时,脱扣开关即断开,使用户断电. (1)用户正常用电时,a、b之间有没有电压? (2)如果某人站在地面上,手误触火线而触电,脱扣开关是否会断开?为什么? 5.如图所示为闭合电路中的一部分导体ab在磁场中做切割磁感线运动的情景,其中能产生由a到b的感应电流的是( ) 6.如图所示,通电螺线管两侧各悬挂一个小铜环,铜环平面与 螺线管截面平行。当电键S接通瞬间,两铜环的运动情况是( ) A.同时向两侧推开 B.同时向螺线管靠拢 C.一个被推开,一个被吸引,但因电源正负极未知,无法具体 判断

《电磁感应现象》教学设计

《电磁感应现象》教学设计 一、教材分析 电磁感应现象实在学生学习了电学的初步知识和电流能够产生磁场的基础上编排的,是初中电与磁的重点,同时也是电磁学的基础,通过本节课的学习,不仅能加深对电能生磁的理解,同时让学生对电磁学有一个较全面的认识,为下面和以后有关电磁学的学习奠定了基础。此外,电磁感应知识与人们日常生活、生产技术有着密切的联系,因此,学习这部分知识有重要的现实意义。 二、学情分析 初中学生正处于发育、成长阶段,他们对事物存在好奇心,具有强烈的操作兴趣。而且通过前面的学习,已经初步掌握了科学探究的方法,分析问题、应用知识解决问题的能力也有所加强。 三、设计理念 本节课以新课程理念为指导,实施探究式教学,注重培养学生动手、动脑的良好习惯,让学生通过自主探究获得新知识,渗透科学探索的精神。 本节课利用日常生活中的“电”由何而来,引入新课,以激发学生的学习欲望,体现了从生活走向物理。在探究“磁生电”的过程中,采取了“逆向思维”、“科学探究”等方法,使学生始终处于积极的思索之中,把“教学过程”转变为“探究过程”,培养了学生良好的思维习惯和初步的科学实践能力。而在学习发电机的过程中,则以学生自主学习为主,结合图片和模型,解决有关问题,同时通过“三峡工程”和“磁记录”等内容,把所学知识应用与生产实际中,以培养学生的自学能力以及终生的探索乐趣。 四、设计思路 1、三维目标 (1)知识与技能 ①理解电磁感应现象。 ②了解感应电流的方向与导体运动的方向及磁场的方向有关。

③知道发电机的工作原理,知道发电机在工作时能量如何转化。 ④知道我们的生活用电是交流电。 (2)过程与方法 ①通过经历探究“磁生电”的过程,培养学生进行逆向思维和发散思维的能力。 ②通过制作发电机的过程培养学生的动手实践能力,鼓励学生积极开展小 发明、小制作活动。 (3)情感、态度与价值观: ①通过向学生介绍法拉第的生平,培养学生锲而不舍、坚忍不拔的思想品质。 ②通过介绍发电机的发明,是学生了解科技发展是人类社会进步的巨大推动力。 2、教学重点和难点 (1)教学重点:磁如何产生电。 (2)教学难点:电磁感应实验的设计方案和制作小发电机。 3、教学方法 观察实验法、科学猜想、实验探索法、讨论归纳法、多媒体演示、合作探究。 4、学法指导 现代的素质教育有一个更新的观念,就是培养学生的创新精神和实践能力,这其中最主要的因素就是懂得自己去发现问题而不是等别人来提问题,这也是我们以前教学过程中不太注意的,所以,现在我们要注意这些问题的发现。 对现时期的教学来讲,我们不仅要教学生知识,培养学生能力,传播学习的思想方法,重要的是通过这些手段,培养他们的学习能力,为他们今后继续教育或终身教育打下良好的基础。所以教学法部分有:(1)使学生学会发现问题,然后是分析、解决问题的能力。学生只有有了疑问,才有学习的动力,而问题的解决,恰好就是建立新的知识结构的过程,从而培养学生

高考物理专题:电磁感应定律与楞次定律

2020高考物理 电磁感应定律 楞次定律(含答案) 1.如图所示,一水平放置的N 匝矩形线框面积为S ,匀强磁场的磁感应强度为B ,方向斜向上,与水平面成30°角,现若使矩形框以左边的一条边为轴转到竖直的虚线位置,则此过程中磁通量的改变量的大小是( ) A.3-1 2BS B.3+1 2NBS C. 3+1 2 BS D. 3-1 2 NBS 答案 C 2.(多选)涡流检测是工业上无损检测的方法之一,如图所示,线圈中通以一定频率的正弦交流电,靠近待测工件时,工件内会产生涡流,同时线圈中的电流受涡流影响也会发生变化。下列说法中正确的是( ) A .涡流的磁场总是要阻碍穿过工件磁通量的变化 B .涡流的频率等于通入线圈的交流电频率 C .通电线圈和待测工件间存在周期性变化的作用力 D .待测工件可以是塑料或橡胶制品 答案 ABC 3.如图所示,ab 为一金属杆,它处在垂直于纸面向里的匀强磁场中,可绕a 点在纸面内转动;S 为以a 为圆心位于纸面内的金属环;在杆转动过程中,杆的b 端与金属环保持良好接触;A 为电流表,其一端与金属环相连,一端与a 点良好接触。当杆沿顺时针方向转动时,某时刻ab 杆的位置如图所示,则此时刻( )

A.有电流通过电流表,方向由c向d,作用于ab的安培力向右 B.有电流通过电流表,方向由c向d,作用于ab的安培力向左 C.有电流通过电流表,方向由d向c,作用于ab的安培力向右 D.无电流通过电流表,作用于ab的安培力为零 答案A 4.(多选)航母上飞机弹射起飞是利用电磁驱动来实现的。电磁驱动原理如图所示,当固定线圈上突然通过直流电流时,线圈端点的金属环被弹射出去。现在固定线圈左侧同一位置,先后放有分别用横截面积相等的铜和铝导线制成形状、大小相同的两个闭合环,且电阻率ρ铜<ρ铝。闭合开关S的瞬间() A.从左侧看环中感应电流沿顺时针方向 B.铜环受到的安培力大于铝环受到的安培力 C.若将环放置在线圈右方,环将向左运动 D.电池正负极调换后,金属环不能向左弹射 答案AB 5.如图所示,矩形金属线框abcd放在水平桌面上,ab边和条形磁铁的竖直轴线在同一竖直平面内,现让条形磁铁沿ab边的竖直中垂线向下运动,线框始终静止。则下列说法正确的是()

法拉第电磁感应定律教学设计

§4.4法拉第电磁感应定律 ——感应电动势的大小 昌吉市第四中学 常志平 【教学依据】 人教版高中物理选修3-2第四章第四节 【教学流程】 1.感应电动势:创设问题情景→设计问题→迁移类比→回答问题→定义概念 2.法拉第电磁感应定律:创设问题情景→提出问题→设计实验→进行实验→分析与论证→交流与评估→总结规律→规律应用 【教材分析】 本节是选修3-2模块的一个二级主题“电磁感应”的一节内容(另外两个二级主题分别是交变电流和传感器)。本模块的大部分内容都要求通过实验、探究与活动来展现。应让学生尽可能多的经历一些探究的过程,领悟物理学研究的思想和方法。结合这一要求,虽然本节教材没有安排实验,然而我认为在本节教学设计中根据教材前后内容的承接关系及学生的认知能力和特点,还是以实验定性探究来突破重难点和落实三维目标。 由于高中阶段电磁感应定律的定量实验很难完成,因而【新课程标准】没有要求通过定量实验来研究,但应通过定性的实验让学生观察磁通量的变化快慢是影响感应电动势的主要因素,从而直接给出法拉第电磁感应定律和公式。要求学生能应用电磁感应定律解释一些生活和技术中的现象,要会应用电磁感应定律计算有关问题。 就本节内容而言,“法拉第电磁感应定律”是电磁学的核心内容,从知识的发展来看,它既能与电场、磁场和恒定电流有紧密的联系,又是学习交流电、电磁振荡和电磁波的重要基础;从能力的发展来看,它既能在与力、热知识的综合应用中培养综合分析能力,又能全面体现能量守恒的观点。因此,它既是教学的重点,又是教学的难点。根据课程标准和学生的接受能力,教学中应着重揭示法拉第电磁感应定律及其公式E=n t ??Φ的建立过程、物理意义及应用,(而公式E =BLv 只作为法拉第电磁感应定律在特定条件下推导出的表达式.这样做可以让学生在这节课的学习中分清主次,减轻学生认知上的负担,又不降低应用上的要求)可选讲。 【学情分析】 此部分知识较抽象,而现在学生的抽象思维能力还比较弱。所以在这节课的教学中,应该注重体现新课程改革的要求,注意新旧知识的联系,同时紧扣教材,通过实验、类比、等效的手段和方法,来化难为简、循序渐进,力求通过引导、启发,使同学们能利用已掌握的旧知识,来理解所要学习的新规律,力求通过明显的实验现象启发同学们主动起来,从而活跃大脑,激发兴趣,变被动记忆为主动认知。 【三维目标】 1.知识与技能: ①知道感应电动势的含义,能区分磁通量、磁通量的变化量和磁通量的变化率; ②理解法拉第电磁感应定律的内容和表达式,会用法拉第电磁感应定律解答有关问题. 2.过程与方法: ①通过演示实验,定性分析感应电动势的大小与磁通量变化快慢之间的关系。培养学生对实验条件的控制能力和对实验的观察能力;

电磁感应现象 楞次定律

第九章电磁感应 课时作业27电磁感应现象楞次定律 时间:45分钟满分:100分 一、选择题(8×8′=64′) 图1 1.如图1所示,一个矩形线圈与通有相同大小的电流的平行直导线处于同一平面,而且处在两导线的中央,则() A.两电流同向时,穿过线圈的磁通量为零 B.两电流反向时,穿过线圈的磁通量为零 C.两电流同向或反向,穿过线圈的磁通量都相等 D.因两电流产生的磁场是不均匀的,因此不能判定穿过线圈的磁通量是否为零 解析:两电流同向时,在线圈范围内,产生的磁场方向相反,大小对称,穿过线圈的磁通量为零,A正确,BCD不正确. 答案:A 图2 2.位于载流长直导线近旁的两根平行铁轨A和B,与长直导线平行且在同一水平面上,在铁轨A、B上套有两段可以自由滑动的导体CD和EF,如图2所示,若用力使导体EF向右运动,则导体CD将() A.保持不动 B.向右运动 C.向左运动 D.先向右运动,后向左运动 解析:当EF向右运动时,由右手定则,有沿FECD逆时针方向的电流,再由左手定则,

得CD受力向右,选B.本题也可以直接由楞次定律判断,由于EF向右,线框CDFE面积变大,感应电流产生的效果是阻碍面积变大,即CD向右运动. 答案:B 图3 3.如图3所示,要使Q线圈产生图示方向的电流,可采用的方法有() A.闭合电键K B.闭合电键K后,把R的滑片右移 C.闭合电键K后,把P中的铁心从左边抽出 D.闭合电键K后,把Q靠近P 解析:当闭合电键K时,Q中的磁场由无变有,方向向右,由楞次定律,Q产生的感应电流方向如题图,A正确.闭合电键K后,把Q靠近P时,Q中的磁场变强,方向向右,由楞次定律,Q产生的感应电流方向如题图,D正确,B、C不正确. 答案:AD 图4 4.如图4所示,在光滑水平桌面上有两个金属圆环,在它们圆心连线中点正上方有一个条形磁铁,当条形磁铁自由下落时,将会出现的情况是() A.两金属环将相互靠拢 B.两金属环将相互分开 C.磁铁的加速度会大于g D.磁铁的加速度会小于g 解析:当条形磁铁自由下落时,金属圆环中的感应电流产生的效果总是阻碍磁通量增大,阻碍磁铁发生相对运动,磁铁加速度小于g,同时,金属圆环向远处运动,有使磁通量变小的趋势,B、D正确. 答案:BD

(推荐)自编电磁感应导学案

第四章 《电磁感应》 预习作业: 一、磁通量(阅读3-1 第三章磁场88页) 定义: 公式: 单位: 符号: 1、 理解S ? 2、 的量性? 3、 引起的变化的原因? 4、 定性讨论如何确定磁通量的变化? 磁通密度 推导:B=/S ,磁感应强度又叫磁通密度,用Wb/ m 2 表示B 的单位; 习题思考: 1、比较穿过线圈A 、B 磁通量的大小 2、线圈由此时位置向左穿过导线过程,磁通量如何变化? 二、4.1划时代的发现(阅读3-2第一节) 问题1:奥斯特在什么思想的启发下发现了电流的磁效应? 问题2:1803年奥斯特总结了一句话内容是什么? 问题3:法拉第在了奥斯特的电流磁效应的基础上思考对称性原理从而得出 了什么样的结论? 问题4:其他很多科学家例如安培、科拉顿等物理学家也做过磁生电的试验可他们都没有成功他们问题出现在那里? 问题5:法拉第经过无数次试验经历10年的时间终于领悟到了什么? C d b a

问题6:什么是电磁感应?什么是感应电流? 三、4.2探究感应电流产生的条件(阅读课本第二节) 1、初中学习过电磁感应现象产生的条件? 2、阅读实验,猜想实验现象? 演示:导体左右平动,前后运动、上下运动。猜想电流表的指针变化?导体棒的 运动 表针摆 动方向 导体棒的 运动 表针摆 动方向向右平动向后平动 向左平动向上平动 向前平动向下平动 结论: 开关和变阻器的状态线圈B中有无电 流 开关闭合瞬间 开关断开瞬间

演示:把磁铁的某一个磁极向线圈中插入,从线圈中拔出,或静止地放在线圈中,猜想电流表的指针变化? 演示:线圈A 通过变阻器和开关连接到电源上,线圈B 的两端与电流表连接,把线圈A 装在线圈B 的里面。猜想以下几种操作中线圈B 中是否有电流产生,记录在下表中。 开关闭合时,滑动变阻器不动 开关闭合时,迅速移动变阻器的滑片 结论: 导体棒的运动 表针摆动方向 导体棒的运动 表针摆动方向 向右平动 向后平动 向左平动 向上平动 向前平动 向下平动 结论:

电磁感应现象楞次定律(含答案)

第1课时 电磁感应现象 楞次定律 一、对磁通量的理解 1.如图1所示,正方形线圈abcd 位于纸面内,边长为L ,匝数为N ,过ab 中点和cd 中点的连线OO ′恰好位于垂直纸面向里的匀强磁场的右边界上,磁感应强度为B ,则穿过线圈的磁通量为 ( ) A.BL 22 B.NBL 22 C .BL 2 D .NBL 2 答案 A 2.如图所示,一水平放置的N 匝矩形线框面积为S ,匀强磁场的磁感应强度为B ,方向斜向上,与水平面成30 °角,现若使矩形线框以左边的一条边为轴转到竖直的虚线位置,则此过程中磁通量的改变量的大小是( ) A.3-12BS B.3+1 2 NBS C. 3+12BS D.3-1 2NBS [答案] C 二、磁感应现象 1.法拉第圆盘发电机中,似乎穿过闭合电路的磁通量没有变化,怎么能产生感应电流? 提示:随着圆盘的转动,定向运动电子受到洛伦兹力作用,造成正、负电荷分别向圆盘中心和边缘累积,产生电动势,进而产生感应电流。也可把圆盘看成由许多根“辐条”并联,圆盘转动,每根“辐条”做切割磁感线运动产生电动势,进而产生感应电流。 2.如图所示,能产生感应电流的是 ( ) 答案 B 3.(2014·宁波期末)如图9-1-17所示,矩形线框在磁场内做的各种运动中,能够产生感应电流的是( ) 图9-1-17 解析:选B 4. 如图9-1-8所示,一个U 形金属导轨水平放置,其上放有一个金属导体棒ab ,有一个磁感应强度为B 的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ。在下列各过程中,一定能在轨道回路里产生感应电流的是( ) 图9-1-8 A .ab 向右运动,同时使θ减小 B .使磁感应强度B 减小,θ角同时也减小 C .ab 向左运动,同时增大磁感应强度B D .ab 向右运动,同时增大磁感应强度B 和θ角(0°<θ<90°) 变,D 错误。 5.(2012山西四校第二次联考).如图所示,竖直放置的长直导线通以恒定电流,有一矩形线框与导线在同一平面,在下列情况中线圈产生感应电流的是( ) A .导线中电流强度变大 B .线框向右平动 C .线框向下平动 D .线框以ab 边为轴转动 答案:ABD 6.带电圆环绕圆心在圆环所在平面内旋转,在环的中心处有一闭合小线圈,小线圈和圆环在同一平面内,则( ) A .只要圆环在转动,小线圈内就一定有感应电流 B .不管圆环怎样转动,小线圈内都没有感应电流 C .圆环做变速转动时,小线圈内一定有感应电流 D .圆环做匀速转动时,小线圈内没有感应电流 解析:选CD 7.某部小说中描述一种窃听电话:窃贼将并排在一起的两根电话线分开,在其中一根电话线旁边铺设一条两端分别与耳机连接的导线,这条导线与电话线之间是绝缘的,如图2所示.下列说法正确的是 ( ) 图2 A .不能窃听到电话,因为电话线中电流太小 B .不能窃听到电话,因为电话线与耳机没有接通 C .可以窃听到电话,因为电话线中的电流是恒定电流,在耳机电路中引起感应电流 D .可以窃听到电话,因为电话线中的电流是交变电流,在耳机电路中引起感应电流 答案 D 8.在图3所示的闭合铁芯上绕有一组线圈,线圈与滑动变阻器、电池构成电路,a 、b 、c 为三个闭合金属圆环,假定线圈产生的磁场的磁感线全部集中在铁芯内,则当滑动变阻器滑动触头左右滑动时,能产生感应电流的圆环是 ( ) 图3

电磁感应教学设计

电磁感应教学设计 (一)教学目的 1.知道电磁感应现象及其产生的条件。 2.知道感应电流的方向与哪些因素有关。 3.培养学生观察实验的能力和从实验事实中归纳、概括物理概念与规律的能力。 (二)教具 蹄形磁铁4~6块,漆包线,演示用电流计,导线若干,开关一只。 (三)教学过程 1.由实验引入新课 重做奥斯特实验,请同学们观察后回答: 此实验称为什么实验?它揭示了一个什么现象? (奥斯特实验。说明电流周围能产生磁场) 进一步启发引入新课: 奥斯特实验揭示了电和磁之间的联系,说明电可以生磁,那么,我们可不可以反过来进行逆向思索:磁能否生电呢?怎样才能使磁生电呢?下面我们就沿着这个猜想来设计实验,进行探索研究。 2.进行新课 (1)通过实验研究电磁感应现象 板书:〈一、实验目的:探索磁能否生电,怎样使磁生电。〉 提问:根据实验目的,本实验应选择哪些实验器材?为什么?

师生讨论认同:根据研究的对象,需要有磁体和导线;检验电路中是否有电流需要有电流表;控制电路必须有开关。 教师展示以上实验器材,注意让学生弄清蹄形磁铁的N、S极和磁感线的方向,然后按课本图12—1的装置安装好(直导线先不要放在磁场内)。 进一步提问:如何做实验?其步骤又怎样呢? 我们先做如下设想:电能生磁,反过来,我们可以把导体放在磁场里观察是否产生电流。那么导体应怎样放在磁场中呢?是平放?竖放?斜放?导体在磁场中是静止?还是运动?怎样运动?磁场的强弱对实验有没有影响?下面我们依次对这几种情况逐一进行实验,探索在什么条件下导体在磁场中产生电流。 用小黑板或幻灯出示观察演示实验的记录表格。 教师按实验步骤进行演示,学生仔细观察,每完成一个实验步骤后,请学生将观察结果填写在上面表格里。 实验完毕,提出下列问题让学生思考: 上述实验说明磁能生电吗?(能) 在什么条件下才能产生磁生电现象?(当闭合电路的一部分导体在磁场中左右或斜着运动时) 为什么导体在磁场中左右、斜着运动时能产生感应电流呢? (师生讨论分析:左右、斜着运动时切割磁感线。上下运动或静止时不切割磁感线,所以不产生感应电流。) 通过此实验可以得出什么结论? 学生归纳、概括后,教师板书: 〈实验表明:闭合电路的一部分导体在磁场中做切割磁感线运动时,导体中就产生电流。这种现象叫做电磁感应,产生的电流叫做感应电流。〉

电磁感应楞次定律

电磁感应楞次定律 一、电磁感应现象 感应电流产生的条件是:穿过闭合电路的磁通量发生变化。 感应电动势产生的条件是:穿过电路的磁通量发生变化。 二、楞次定律 感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。 2.对“阻碍”意义的理解: (1)阻碍原磁场的变化。“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,原磁场的变化趋势不会改变,不会发生逆转. (2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流. (3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动. (4)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,从而导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现. 5.楞次定律的应用步骤 楞次定律的应用应该严格按以下四步进行:①确定原磁场方向;②判定原磁场如何变化(增大还是减小);③确定感应电流的磁场方向(增反减同);④根据安培定则判定感应电流的方向。 6.解法指导: (1)楞次定律中的因果关联 楞次定律所揭示的电磁感应过程中有两个最基本的因果联系,一是感应磁场与原磁场磁通量变化之间的阻碍与被阻碍的关系,二是感应电流与感应磁场间的产生和被产生的关系.抓住“阻碍”和“产生”这两个因果关联点是应用楞次定律解决物理问题的关键. (2)运用楞次定律处理问题的思路 (a)判断感应电流方向类问题的思路 ①明确原磁场:弄清原磁场的方向及磁通量的变化情况.

《电磁感应》教学设计

《电磁感应》教学设计 (一)引入新课:我们的物理“很美”,它具有“和谐的美”、“规律的美”——如浩瀚的宇宙及我们的太阳系在各就各位的运行着;它还具有“对称美”——如有“正电”就有“负电”、磁体有“南极”就有“北极”、平面镜中的像与物完全对称、还听说有“物质”就有“反物质”??当然物理也具有“奇异的美”,如听说有“磁单极子”,还有什么“宇称不守恒”……随着以后年级的递增,你会逐渐发现物理的各种美。通过奥斯特实验,我们知道:“电”能产生出“磁” ,(老师不妨在30秒内重现这个实验),那么同学猜想,反过来,“磁”能否生产出“电”来呢?(顺便板书逆向箭头并带问号) 几乎所有学生猜:“磁”也能生“电”。(那只是乱猜,无正当 理由,只是思维定势喊的) (二)引导学生确定需要哪些器材(这里,老师起很大主导作用):当然要有磁体,还得有导线(否则,电流在哪流?),我给准备的是2m长的。还得有检验是否生出电流来的电流表(否则,你生出电来 了都还不知道呢)。 (三)这时,老师宣布:“开始试验,我看咱班那位同学把法拉 第憋了10年才发现的电流找出来”:同学们跃跃欲试,摩拳擦掌, 都想第一个发现,情绪激动,但无从下手,不知怎么摆弄好,憋得难

受,我则煞有介事的巡视着??我知道他们几乎发现不了。但我就想让他们憋很长一段时间并且还没书看,急的难受。巡视时,我发现各种各样的做法:1、导线敞开着,放在蹄型磁体上不动(很多学生);2、导线敞开着,在蹄型磁体上随便乱动(很多学生);3、导线敞开着,放在蹄型磁体中间不动(很多学生);4、导线敞开着,放在蹄型磁体中间晃动(部分学生);?? 这时候,我只问学生一句话:“开着的导线里会有电流吗?”只见大部分学生开始把导线闭合。但还是没有同学生产出电流来,我再说:“不急,人家法拉第用了好几年,我们才一节课,不过二班有个同学发现了”(其实没有)。就这样,学生们在好胜心的驱动下,积极的想着办法??我巡视着,开始发现有些学生把导线缠绕到蹄型磁体上。约15——20分钟以后(绝不是浪费),我走上讲台演示,我用的演示器材就是普通导线,我用夸张的慢动作缠绕10圈,快速切割,学生不约而同的:“啊,电流!”,我再用夸张的慢动作缠绕20圈,30圈,学生高呼:“大电流!”;再换正规实验器材——线圈,再做实验,然后,在线圈里接入一个灯泡,也发光。到此,学生一直感叹,后悔,我就差那么一点点!此时,我讲法拉第及科拉顿的故事。发给学生们线圈也感受感受。师生共同总结:产生电流的条件及电流方向与什么有关。

4.5 电磁感应现象的两类情况 第1课时 导学案 (人教版选修3-2)

高二物理 (4.5 电磁感应现象的两类情况 第1课时)导学提纲 §4.2 探究感应电流的产生条件 ) 导学提纲 【自主学思】 由于引起磁通量的变化的原因不同感应电动势产生的机理也不同,一般分为两种:一种是 不变,导体运动引起的磁通量的变化而产生的感应电动势,这种电动势称作 ,另外一种是 不动,由于磁场变化引起磁通量的变化而产生的电动势称作 。 1、感应电场:19世纪60年代,英国物理学家麦克斯韦在他的电磁场理论中指出,变化的 磁场会在周围空间激发一种电场,我们把这种电场叫做感应电场。 静止的电荷激发的电场叫 ,静电场的电场线是由 发出,到 终止,电场线 闭合,而感应电场是一种涡旋电场,电场线是 的,如图所 示,如果空间存在闭合导体,导体中的自由电荷就会在电场力的作用下定向移动,而产生感应电流,或者说导体中产生感应电动势。 感应电场是产生 或 的原因,感应电场的方向也可以由 来判断。感应电流的方向与感应电场的方向 。 2、感生电动势:(1)产生:磁场变化时会在空间激发 ,闭合导体中的 在电场力的作用下定向运动,产生感应电流,即产生了感应电动势。(2)定义:由感生电场产生的感应电动势称为 。 (3)感生电场方向判断: 定则。 3、洛伦兹力与动生电动势 导体切割磁感线时会产生感应电动势,该电动势产生的机理是什么呢? 导体切割磁感线产生的感应电动势与哪些因素有关? 它是如何将其他形式的能转化为电能的? 动生电动势(1)产生: 运动产生动生电动势(2)大小:E= (B 的方向与v 的方向 ) 1、自主探究 一、电磁感应现象中的感生电场 常用电源的电动势是由非静电力移动电荷做功使电源两极分别带上异种电荷,电磁感应现象中的感应电动势又是怎样产生的呢? 1、感生电场:右图所示,一个闭合电路静止于磁场中,当磁场由弱变强时,闭合电路中产生了感应电动势与感应电流,这时又是什么力相当于非静电力促使电荷发生定向移动的? 2、阅读课本例题,回答下列问题: ①真空室内的磁场由谁提供?当电磁铁的电流恒定时,真空室内的电子受力如何? ②当电磁铁中通有图示方向均匀减小的电流时,所激发的磁场和感应电场怎样?真空室中的电子受力怎样?能使电 班级 姓名 小组 【学习目标】 1.知道电磁感应现象中的感生电场及共作用。 2.会用相关公式计算电磁感应问题。 3.了解电磁感应现象中的洛伦兹力及其作用。 【教学重、难点】 1.感生电动势和动生电动势产生的原因。 2.电磁感应问题的计算。 B E

《楞次定律和法拉第电磁感应定律

2016楞次定律和法拉第电磁感应定律(一) 班级姓名 【知识反馈】 1.产生感应电流的条件: 2.楞次定律的内容: 从不同角度理解楞次定律: (1)从磁通量变化的角度: (2)从相对运动的角度: (3)从面积变化的角度: 3.法拉第电磁感应定律的内容: 表达式:,适用 表达式:,适用 【巩固提升】 1、如图所示,蹄形磁铁的两极间,放置一个线圈abcd,磁铁和线圈 都可以绕OO′轴转动,磁铁如图示方向转动时,线圈的运动情况是 ( ) A.俯视,线圈顺时针转动,转速与磁铁相同 B.俯视,线圈逆时针转动,转速与磁铁相同 C.线圈与磁铁转动方向相同,但转速小于磁铁转速 D.线圈静止不动 2、如图所示,两轻质闭合金属圆环,穿挂在一根光滑水平绝缘直杆上,原来处于静止状态。当条形磁铁的N极自右向左插入圆环时,两环的运动情况是( ) A.同时向左运动,两环间距变大; B.同时向左运动,两环间距变小; C.同时向右运动,两环间距变大; D.同时向右运动,两环间距变小。 3.如图所示,光滑固定导轨M、N水平放置,两根导体棒P、Q 平行放置于导轨上,形成一个闭合回路,一条形磁铁从高处下 落接近回路时( ) A.P、Q将相互靠拢 B.P、Q将相互远离 C.磁铁的加速度仍为g D.磁铁的加速度小于g 4.如图是验证楞次定律实验的示意图,竖直放置的线圈固定不动,将磁铁从线圈上方插入或拔出,线圈和电流表构成的闭合回路中就会产生感应电流,各图中分别标出了磁铁的极性、磁铁相对线圈的运动方向以及线圈中产生的感应电流的方向等情况,其中表示正确的是( )

5.如图所示,一金属弯杆处在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,已知ab=bc=L,当它以速度v向右平动时,a、c两点间的电势差为( ) A.BLv B.BLv sinθ C.BLv cosθ D.BLv(l+sinθ) 6.如图所示,两块水平放置的金属板距离为d,用导线与一 个n匝的线圈连接,线圈置于方向竖直向上的变化磁场B 中,两板间有一个质量为m、电量为+q的油滴处于静止状态,则线圈中的磁场B 的变化情况和磁通量变化率分别是( ) A、正在增加, B、正在减弱, C、正在增加, D、正在减弱, 7.在竖直方向的匀强磁场中,水平放置一圆形导体环。规定导体环中电流的正方向如图11(甲)所示,磁场方向竖直向上为正。当磁感应强度B 随时间t按图(乙)变化时,下列能正确表示导体环中感应电流随时间变化情况的是( ) 8.如图所示,平行金属导轨MN和PQ,它们的电阻可忽略不计,在M和P之间接有阻值为R=3.0 Ω的定值电阻,导体棒ab长L=0.5 m,其电阻不计,且与导轨接触良好,整个装置处于方向竖直向上的匀强磁场中,磁感应强度B=0.4 T,现使ab以v=10 m/s的速度向右做匀速运动,则以下判断正确的是( ) A.导体棒ab中的感应电动势E=2.0 V B.电路中的电流I=0.5 A C.导体棒ab所受安培力方向向右 D.导体棒ab所受合力做功为零 9. 在匀强磁场中放一电阻不计的平行金属导轨,导轨跟大 线圈M相接,如图所示,导轨上放一根导线ab,磁感线垂 直导轨所在的平面,欲使M所包围的小闭合线圈N产生顺 时针方向的感应电流,则导线的运动可能是()

高中物理11电磁感应现象的发现教案教科版

1.1 电磁感应现象的发现 [要点导学] 1、不同自然现象之间是有相互联系的,而这种联系可以通过我们的观察与思考来发现。例如摩擦生热则表明了机械运动与热运动是互相联系的,奥斯特之所以能够发现电流产生磁场,就是因为他相信不同自然现象之间是互相联系和互相转化的。 2、机遇总是青睐那些有准备的头脑,奥斯特的发现是必然中的偶然。发现中子的历史过程(在选修3-5中学习)也说明了这一点。小居里夫妇首先发现这种不带电的未知射线,他们误认为这是能量很高的射线,一项划时代的伟大发现就与小居里夫妇擦肩而过了。当查德威克遇到这种未知射线时,查德威克很快就想到这种不带电的射线可能是高速运动的中子流,因为查德威克的老师卢瑟神福早已预言中子的存在,所以查德威克的头脑是一个有准备的头脑,查德威克就首先发现了中子,并因此获得诺贝尔物理学奖。所以学会用联系的眼光看待世界,比记住奥斯特实验重要得多。 3、法拉第就是用联系的眼光看待世界的人,他坚信既然电流能够产生磁场,那么利用磁场应该可以产生电流。信念是一种力量,但信念不能代替事实。探索“磁生电”的道路非常艰苦,法拉第为此寻找了10年之久,我们要学习的就是这种百折不挠的探索精神。 4、法拉第为什么走了10年弯路,这个问题值得我们研究。原来自然界的联系不是简单的联系,自然界的对称不是简单的对称,“磁生电”不象“电生磁”那样简单,“磁生电”必须在变化、运动的过程中才能出现。法拉第的弯路应该使我们对自然界的联系和对称的认识更加深刻、更加全面。 [范例精析] 例1奥斯特的实验证实了电流的周围存在磁场,法拉第经过10年的努力终于发现了利用磁场产生电流的途径,法拉第认识到必须在变化、运动的过程中才能利用磁场产生电流。法拉第当时归纳出五种情形,请说出这五种情形各是什么。 解析法拉第把能引起感应电流的实验现象归纳为五类:变化的电流、变化的磁场、运动的恒定电流、运动的磁铁、在磁场中运动的导体。它们都与变化和运动有关。 拓展法国物理学家安培也曾将恒定电流或磁铁放在导体线圈的附近,希望在线圈中看到被“感应”出来的电流,可是这种努力均无收获。因为“磁生电”是在变化或运动中产生的物理现象。 例2 自然界的确存在对称美,质点间的万有引力F=Gm1m2/r2和电荷间的库仑力F=kq1q2/r2就是一个对称美的例子。电荷间的相互作用是通过电场传递的,质点间的相互作用则是通过引力场传递的。点电荷q的在相距为r处的电场强度是E=kq/r2,那么质点m在相距为r 处的引力场强度是多少呢?如果两质点间距离变小,引力一定做正功,两质点的引力势能一定减少。如果两电荷间距离变小,库仑力一定做正功吗?两电荷的电势能一定减少吗?请简述理由。

【精品】自编电磁感应导学案

第四章《电磁感应》 预习作业: 一、磁通量(阅读3—1第三章磁场88页) 定义: 公式:单位:符号: 1、理解S? 2、的量性? 3、引起的变化的原因? 4、定性讨论如何确定磁通量的变化? 磁通密度 推导:B=/S,磁感应强度又叫磁通密度,用Wb/m2表示B的单位; 习题思考:

1、比较穿过线圈A、B磁通量的大小 2、线圈由此时位置向左穿过导线过程,磁通量 如何变化? 二、4.1划时代的发现(阅读3—2第一节) 问题1:奥斯特在什么思想的启发下发现了电流的磁效应? 问题2:1803年奥斯特总结了一句话内容是什么? 问题3:法拉第在了奥斯特的电流磁效应的基础上思考对称性原理从而得出了什么样的结论?问题4:其他很多科学家例如安培、科拉顿等物理学家也做过磁生电的试验可他们都没有成功他们问题出现在那里? 问题5:法拉第经过无数次试验经历10年的时间终于领悟到了什么? 问题6:什么是电磁感应?什么是感应电流?

三、4.2探究感应电流产生的条件(阅读课本第二节) 1、初中学习过电磁感应现象产生的条件? 2、阅读实验,猜想实验现象? 演示:导体左右平动,前后运动、上下运动。猜想电流表的指针变化? 演示:把磁铁的某一个磁极向线圈中插入,从线圈中拔出,或静止地放在线圈中,猜想电流表的指针变化? 演示:线圈A 通过变阻器和开关连接到电源上,线圈B 的两端与电流表连接,把线圈A 装在线圈B 的里面。猜想以下几种操作中线圈B 中是否有电流产生,记录在下表中。 导体棒的运动 表针摆动方向 导体棒的 运动 表针 摆动 方向 向右平动 向后平动 向左平动 向上平动 向前平动 向下平动 结论: 开关和变阻器的状态 线圈B 中有无电流 开关闭合瞬间 开关断开瞬间 开关闭合时,滑动变阻器不动 开关闭合时,迅速移动变阻器的滑片 结论: 导体棒的运动 表针摆动方向 导体棒的 运动 表针 摆动 方向 向右平动 向后平动 向左平动 向上平动 向前平动 向下平动 结论:

高中物理第一章电磁感应第节楞次定律电磁感应中的能量转化与守恒教学案教科版选修3

第4、5节楞次定律__电磁感应中的能量转化与守恒 1.闭合电路的一部分导体做切割磁感线的运动时, 可用右手定则判断感应电流的方向。 2.楞次定律的内容是:感应电流具有这样的方向, 即感应电流的磁场总是要阻碍引起感应电流的磁 通量的变化。 3.感应电流的效果总是要反抗产生感应电流的原 因。 4.在由于回路与磁场间发生相对运动引起的电磁 感应中产生的电能是通过克服安培力做功转化而 来的,克服安培力做的功等于产生的电能,这些电 能又通过电流做功转化为其他形式的能量,如使电 阻发热产生内能;在由于磁场变化引起的电磁感应 中产生的电能是由磁场能转化来的。 一、右手定则 1.内容 将右手手掌伸平,使大拇指与其余并拢的四指垂直,并与手掌在同一平面内,让磁感线从手心进入,大拇指指向导体运动方向,这时四指所指的方向就是感应电流的方向,也就是感应电动势的方向。 2.适用情景 闭合电路的一部分导体做切割磁感线运动产生感应电流的方向判断。 二、楞次定律 1.实验探究 (1)实验目的 探究决定感应电流方向的因素以及所遵循的规律。 (2)实验过程 实验前先查明电流的方向与电流表指针偏转方向的关系,然后将螺线管与电流表组成闭合回路,分别将条形磁铁的N极、S极插入、抽出线圈,如图1-4-2所示,记录感应电流方向如下。

图1-4- 1 图1-4-2 (3)实验记录及分析 ①线圈内磁通量增加时的情况。 图号磁场方向感应电流方向 (俯视) 感应电流的磁场 方向 归纳总结甲向下逆时针向上感应电流的磁场阻碍 磁通量的增加乙向上顺时针向下 ②线圈内磁通量减少时的情况。 图号磁场方向 感应电流方向 (俯视) 感应电流的磁场 方向 归纳总结丙向下顺时针向下感应电流的磁场阻碍 磁通量的减少丁向上逆时针向上 2.楞次定律 感应电流具有这样的方向,即感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。 三、电磁感应中的能量转化与守恒 1.在导线做切割磁感线运动而产生感应电流时,电路中的电能来源于机械能。 2.克服安培力做了多少功,就产生多少电能。 3.电流做功时又将电能转化为其他形式的能量。 4.电磁感应现象中,能量在转化过程中是守恒的。 1.自主思考——判一判

(完整版)法拉第电磁感应定律与楞次定律练习题(有详细答案)

法拉第电磁感应定律与楞次定律练习题 1、下列图中能产生感应电流的是( ) 2、关于电磁感应现象,下列说法中正确的是( ) A.闭合线圈放在变化的磁场中,必然有感应电流产生 B.穿过闭合线圈的磁通量变化时,线圈中有感应电流 C.闭合线圈在匀强磁场中垂直磁感线运动,必然产生感应电流 D.穿过闭合电路的磁感线条数发生变化时,电路中有感应电流 3、一飞机在北半球的上空以速度v水平飞行,飞机机身长为a,机翼两端的距离为b。该空间地磁场的磁 感应强度的水平分量为B1,竖直分量为B2;设驾驶员左侧机翼的端点为C,右侧机翼的端点为D,则CD 两点间的电势差U为 A.U=B1vb,且C点电势低于D点电势 B.U=B1vb,且C点电势高于D点电势 C.U=B2vb,且C点电势低于D点电势 D.U=B2vb,且C点电势高于D点电势 4、某实验小组用如图所示的实验装置来验证楞次定律。在线圈由图示位置自上而下 穿过固定的条形磁铁的过程中,从上向下看,线圈中感应电流方向是 A.先顺时针方向,后逆时针方向 B.先逆时针方向,后顺时针方向 c.一直是顺时针方向 D.一直是逆时针方向 5、如图所示,一金属弯杆处在磁感应强度大小为B、方向垂直纸面向里的匀强磁场中,已知ab=bc=L, 当它以速度v向右平动时,a、c两点间的电势差为() A.BLv B.BLv sinθ C.BLv cosθD.BLv(l+sinθ) 6、穿过某线圈的磁通量随时间变化的Φ-t图象,如图所示,下面几段时间 内,产生感应电动势最大的是 ①0-5s ②5-10s ③10-12s ④12-15s A.①② B.②③ C.③④ D.④

相关文档
最新文档