专题讲座:排列组合问题的解题思路和解题方法

合集下载

排列组合问题的常用解题技巧与方法

排列组合问题的常用解题技巧与方法

排列组合问题的常用解题技巧与方法纵观近年全国高考数学试题,每年都有1-2个排列组合题,考察排列组合的基础知识与思维能力,试题的难度与课本中的试题难度相当,但也有个别试题的难度较大,重点考察学生理解、分析和解决问题的能力,有些试题以应用题的形式出现,考察学生解决实际生活问题的能力。

有关排列组合的问题是高中学生学习中棘手的一个问题,很多学生在高考中失分较多。

解决排列组合的有关问题,首先,必须认真审题,明确问题是否是排列、组合问题。

其次,抓住问题的本质特征,灵活运用基本原理和公式进行分析解答。

实践证明,备考的有效方法是题型和解法归类,识别模式,熟练运用。

下面,谈谈笔者在多年教学研究中的一些解题思路与方法:一、相邻问题“捆绑法”(大元素法、整体法或并组法)对于某几个元素要求相邻的排列问题,可先将相邻的元素“捆绑”起来,看作一个大元素(整体)与其他元素排列,然后再对大元素内部进行排列。

例1:书架上有4本不同的数学书,5本不同的语文书,3本不同的化学书,全部竖起排成一排,如果不使同类书分开,一共有多少种排法?分析:由于同类书不分开,即把4本数学书,5本语文书,3本化学书,分别捆成一捆,看作3个大元素进行排列有,每捆内部分别有种、种、种不同的排列,再由分步计数原理,共有排法: =103680种。

二、不相邻问题“插空法”对于某几个元素要求不相邻的问题,可以先将其他无要求的全排列,再把规定不相邻的几个元素插入上述几个元素之间及两端的空位之中。

例2:七个人并排站成一排,如果甲、乙两人必须不相邻,那么,不同排法的种数是多少?分析:先把5个人全排列有不同排法,再把甲乙两人插入6个空位有种插法。

∴共有=3600种不同排法。

三、特殊元素“优先安排法”对含有特殊元素的排列组合问题,一般应优先考虑特殊元素的排法,再考虑其他元素的排列。

例3:七人站成一排照相,其中甲不站排头,也不站排尾,共有多少种排法?分析:由于甲不站两端,既为“特殊”元素,应优先安排,甲可站个位置,其余6人再进行全排列共有,由分步计数原理得共有=3600种。

高中数学排列组合问题的常见解题方法和策略(完整版)

高中数学排列组合问题的常见解题方法和策略(完整版)

高中数学排列组合问题的常见解题方法和策略江西省永丰中学陈保进排列组合问题是高中数学的一个难点,它和实际问题联系紧密,题型多样,解题思路灵活多变,学生不容易掌握。

下面介绍一些常见的排列组合问题的解题方法和策略。

1.相邻问题捆绑法:将相邻的几个元素捆绑成一组,当作一个大元素参与排列例1:A ,B ,C ,D ,E 五人站成一排,如果A ,B 必须相邻,则不同的排法种数为_____解析:把A ,B 捆绑,视为一个整体,整体内部排序,有22A 种情况,再将整体和另外三人排序,有44A 种情况,所以答案为22A ×44A =48注意:小集团问题也可以用捆绑法变式1:7人排成一排,甲、乙两人中间恰好有3人,则不同的排法有_____种解析:把甲、乙及中间3人看作一个整体,答案为720333522=⨯⨯A A A 2.不相邻问题插空法:不相邻问题,可先把其他元素全排列,再把需要不相邻的元素插入到其他元素的空位或两端例2:七人并排站成一行,如果甲乙丙两两不相邻,那么不同的排法种数是_____解析:先将其它4人全排列,共44A 种情况,再将甲乙丙插入到其他4人的空位或两端,共35A 种情况,所以答案为44A ×35A =14403.定序问题用除法:若要求某几个元素必须保持一定的顺序,可用除法例3:A ,B ,C ,D ,E 五人站成一列,如果A 必须在B 前面,则不同的排法种数有_____解析:先将5人全排列,共55A 种情况,考虑A ,B 的顺序有22A 种,符合题意的只有一种,所以答案为602255=A A 4.特殊元素优先考虑例4:8名男生排成一排,其中甲不站最左边,乙不站最右边,有种排法解析:①甲在最右边时,其他的可全排,有77A 种不同排法②甲不在最右边时,可从余下6个位置中任选一个,有16A 种,再排乙,有16A 种排法,其余人全排列,共有77A +16A ×16A ×66A =30960种不同排法5.特殊位置优先考虑例5:从6名志愿者中选出4人分别从事翻译、导游、导购、保洁四项不同的工作,若其中甲、乙两名志愿者都不能从事翻译工作,则不同的选派方案共有种解析:翻译工作是特殊位置,先选择一人参加翻译工作,14C 种情况,再从其他5人中选择5人参加导游、导购、保洁工作,有35A 种情况,答案为14C ×35A =2406.分组、分配问题:先分组后分配,如果是整体平均分组或部分平均分组,最后计算组数时要除以n n A (n 为均分的组数),避免重复计数例6:将6本不同的书分给甲、乙、丙3名学生,其中一人得1本,一人得2本,一人得3本,则有________种不同的分法解析:第一步把书按数量1,2,3分成三组,不是平均分组,有332516C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故共有3606033=⨯A 种情况A BC DE变式1:将6本不同的书分给甲、乙、丙3名学生,其中有两人各得1本,一人得4本,则有________种不同的分法解析:第一步把书按数量1,1,4分成三组,为部分平均分组,有1522441516=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式2:将6本不同的书分给甲、乙、丙3名学生,每人得2本,则有_______种不同的分法解析:第一步把书按数量2,2,2分成三组,为整体平均分组,有1533222426=A C C C 种情况,第二步将分好的3组分到3名学生,有33A 种方法,故有901533=⨯A 种情况变式3:某学校派出5名优秀教师去边远地区的三所中学进行教学交流,每所中学至少派一名教师,则不同的分配方法有_____种解析:①按照人数2,2,1分成3组;②按照人数3,1,1分成3组答案为15033221112353322112325=⨯+⨯A A C C C A A C C C 7.正难则反,考虑反面:例7:从10名大学毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数为解析:493739=-C C 此法适用于至多、至少、有、没有这类问题8.分类法(含多个限制条件的排列组合问题、多元问题)例8:甲、乙、丙、丁四位同学高考之后计划去A ,B ,C 三个不同社区进行帮扶活动,每人只能去一个社区,每个社区至少一人.其中甲必须去A 社区,乙不去B 社区,则不同的安排方法种数为解析:分2种情况,①乙去A 社区,再将丙丁二人安排到B ,C 社区,有22A 种情况,②乙不去A 社区,则乙必须去C 社区,若丙丁都去B 社区,有1种情况,若丙丁中有1人去B 社区,则先在丙丁中选出1人,安排到B 社区,剩下1人安排到A 或C 社区,有2×2=4种情况,所以答案为2+1+4=7变式1:由数字0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有个解析:元素多,取出的情况多种,个位数字可能是0、1、2、3和4共5种情况,分别有55A 、113433A A A 、113333A A A 、113233A A A 和1333A A 个数,合计为300个变式2:在8张奖券中有一、二、三等奖各1张,其余5张无奖.将这8张奖券分配给4个人,每人2张,不同的获奖情况有________种解析:只需考虑三张奖券的归属情况,①有三人各得一张奖券,情况数为34A ;②一人获两张奖券一人获一张奖券,情况数为362423=A C ,故答案为609.可重复的排列求幂法例9:把6名实习生分配到7个车间实习,每个车间人数不限,共有种不同方法解析:每名实习生有7种分配方法,答案为7×7×7×7×7×7×7=76种不同的分法10.多排问题单排法例10:6个不同的元素排成前后两排,每排3个元素,那么不同的排法种数是解析:先排前排,36A 种情况,再排后排,33A 种情况,答案为720663336==⨯A A A如果没有条件限制,把元素排成几排和排成一排情况一样多变式1:8个人排成前后两排,每排4人,其中甲乙要排在前排,丙要排在后排,有种排法解析:先排甲乙和丙,还剩5个位置,让5个人做全排列,答案为5760551424=⨯⨯A A A 11.相同元素的分配问题隔板法(名额分配问题也可用隔板法)例11:将7个相同的小球放入四个不同的盒子,每个盒子都不空,放法有种解析:可以在7个小球的6个空位中插入3块木板,每一种插法对应一种放法,故放法有3620C =种变式1:把20个相同的球全放入编号分别为1,2,3的三个盒子中,要求每个盒子中的球数不少于其编号数,则有种放法解析:先向1,2,3号三个盒子中分别放入0,1,2个球后还余下17个球,然后再把这17个球分成3份,每份至少一球,运用隔板法,共有216120C =种放法12.选排问题先取后排例12:10名同学合影,站成了前排3人,后排7人,现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为解析:首先从后排的7人中抽2人,有27C 方法;再将这2人安排在前排,第一人有4种放法,第二人有5种放法,答案为2745420C ⨯⨯=变式1:摄像师要对已坐定一排照像的6位小朋友的座位顺序进行调整,要求其中恰有3人座位不调整,则不同的调整方案的种数为______解析:从6人中任选3人有36C 种情况,将这3人位置全部进行调整,有1112112C C C ⨯⨯=种情况,答案为36240C ⨯=13.部分合条件问题排除法例13:以正方体的顶点为顶点的四面体共有个解析:正方体8个顶点从中每次取四点,理论上可构成48C 个四面体,但6个表面和6个对角面的四个顶点共面都不能构成四面体,所以答案为481258C -=变式1:四面体的顶点和各棱中点共10点,在其中取4个不共面的点,不同的取法共有种A、150种B、147种C、144种D、141种解析:从10个点中任取4个的组合数为410210C =,其中4点共面的分三类:①4点在同一侧面或底面的共4组,即46460C ⨯=种②每条棱上的三点和它的对棱的中点共面,这样的共6种③所有棱的6个中点中,4点构成平行四边形共面的有3种答案为210-(60+6+3)=14114.构造模型,等价转化例14:马路上有编号为1,2,3…9九只路灯,现要关掉其中的三盏,但不能关掉相邻的二盏或三盏,也不能关掉两端的两盏,求满足条件的关灯方案有多少种?解析:此问题相当于一个排对模型,在6盏亮灯的5个空隙中插入3盏不亮的灯种方法。

排列组合题解题思维方法

排列组合题解题思维方法

排列组合题解题思维方法排列组合题解题思维方法随着数学考试越来越接近,不少同学开始重点练习数学中的排列组合题目。

然而,面对这些比较抽象的题目,许多同学们都显得有些束手无策。

本文将介绍解决排列组合题目的思维方法,帮助大家深入理解和掌握排列组合知识。

一、排列组合基础概念1. 排列排列是指从$n$个不同元素中取出$r$($r\leq n$)个不同元素进行排列的方式数,记作$A_n^r$,公式如下:$$A_n^r=n(n-1)(n-2)\cdots (n-r+1)$$2. 组合组合是指从$n$个不同元素中取出$r$($r\leq n$)个不同元素进行组合的方式数,记作$C_n^r$,公式如下:$$C_n^r=\dfrac{n!}{r!(n-r)!}$$二、解题思路1. 首先,要明确题目的含义。

排列组合题目在日常生活中并不多见,因此需要认真看题,理解题目的意思。

通常,排列组合题目的意思就是从一堆元素中选取一定数量的元素进行排序或组合,然后求解不同可能的结果数。

2. 紧接着,确定解题的方式。

对于排列组合题目,有一些比较典型的解法,如公式法、画图法、分类讨论法、化归法等。

需要根据题目的特点,选择合适的解题方式。

3. 确定解题的步骤。

排列组合题目通常有多个步骤,需要依次进行,一步步得出最终结果。

所以,需要仔细分析题目,确定整个解题过程中的每个步骤,防止出错。

4. 结合实际问题进行思考。

很多排列组合问题都是有实际意义的,例如隔板法、分配法、抽屉原理等。

通过把抽象的排列组合问题转化为实际问题,可以帮助我们更好地理解问题本质,从而提高解决问题的能力。

三、典型例题1. 从$n$个元素中取出$r$个元素,有多少种不同的排列方式?解:根据排列的定义,从$n$个元素中取出$r$个元素进行排列的方式数为$A_n^r$。

2. 从$n$个元素中取出$r$个元素,有多少种不同的组合方式?解:根据组合的定义,从$n$个元素中取出$r$个元素进行组合的方式数为$C_n^r$。

排列组合解题的高效技巧与策略

排列组合解题的高效技巧与策略

排列组合解题的高效技巧与策略排列组合是数学中的一个重要概念,它在解决问题时可以帮助我们快速、高效地找出正确的答案。

本文将介绍一些排列组合解题的高效技巧与策略,帮助读者更好地应对相关问题。

1. 理解排列和组合的概念在开始讨论解题技巧之前,我们首先需要理解排列和组合的概念。

排列是指从一组元素中选取一部分元素按照一定的顺序进行排列,而组合是指从一组元素中选取一部分元素,不考虑顺序的情况下进行组合。

2. 利用公式计算排列组合数排列和组合问题的解答往往涉及到计算排列数和组合数。

针对不同的问题,我们可以利用相应的公式来计算。

例如,计算从n个元素中选取r个元素的排列数可以使用下面的公式:P(n,r) = n! / (n-r)!其中,n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 2 * 1。

3. 利用乘法原理和加法原理乘法原理和加法原理是解决排列组合问题的基本原理。

乘法原理指出,如果一个任务可以分为k个相互独立的子任务,每个子任务有n1、n2、...、nk种选择,则总的选择方式数为n1 * n2 * ... * nk。

而加法原理指出,如果一个任务可以通过两个步骤完成,第一步有n种选择,第二步有m种选择,则总的选择方式数为n + m。

4. 利用递推关系简化计算在解决排列组合问题时,有时可以利用递推关系简化计算过程,减少计算量。

例如,C(n, r) = C(n-1, r-1) + C(n-1, r)就是一个常见的递推关系。

通过利用递推关系,我们可以将原始问题转化为更小规模的子问题,从而简化计算过程。

5. 利用二项式定理求解复杂问题二项式定理是数学中的一个重要定理,它展示了如何将一个二次多项式展开成一个多项式的和。

利用二项式定理,我们可以求解复杂的排列组合问题。

例如,在计算(x + y)^n的展开式中,我们可以得到展开式中各个项的系数,进而能够解决一些特殊问题。

6. 善于应用化简的方法在解决排列组合问题时,有时候问题的描述较为复杂,难以直接进行计算。

排列组合问题的解答技巧和记忆方法

排列组合问题的解答技巧和记忆方法

排列组合问题的解题策略关键词:排列组合,解题策略①分堆问题;②解决排列、组合问题的一些常用方法:错位法、剪截法(隔板法)、捆绑法、剔除法、插孔法、消序法(留空法). 一、相临问题——捆绑法例1.7名学生站成一排,甲、乙必须站在一起有多少不同排法?解:两个元素排在一起的问题可用“捆绑”法解决,先将甲乙二人看作一个元素与其他五人进行排列,并考虑甲乙二人的顺序,所以共有种。

评注:一般地: 个人站成一排,其中某个人相邻,可用“捆绑”法解决,共有种排法。

二、不相临问题——选空插入法例2.7名学生站成一排,甲乙互不相邻有多少不同排法?解:甲、乙二人不相邻的排法一般应用“插空”法,所以甲、乙二人不相邻的排法总数应为:种 .评注:若个人站成一排,其中个人不相邻,可用“插空”法解决,共有种排法。

三、复杂问题——总体排除法在直接法考虑比较难,或分类不清或多种时,可考虑用“排除法”,解决几何问题必须注意几何图形本身对其构成元素的限制。

例3.(1996年全国高考题)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有多少个.解:从7个点中取3个点的取法有种,但其中正六边形的对角线所含的中心和顶点三点共线不能组成三角形,有3条,所以满足条件的三角形共有-3=32个.四、特殊元素——优先考虑法对于含有限定条件的排列组合应用题,可以考虑优先安排特殊位置,然后再考虑其他位置的安排。

例4.(1995年上海高考题) 1名老师和4名获奖学生排成一排照像留念,若老师不排在两端,则共有不同的排法种.解:先考虑特殊元素(老师)的排法,因老师不排在两端,故可在中间三个位置上任选一个位置,有种,而其余学生的排法有种,所以共有=72种不同的排法.例5.(2000年全国高考题)乒乓球队的10名队员中有3名主力队员,派5名队员参加比赛,3名主力队员要安排在第一、三、五位置,其余7名队员选2名安排在第二、四位置,那么不同的出场安排共有种.解:由于第一、三、五位置特殊,只能安排主力队员,有种排法,而其余7名队员选出2名安排在第二、四位置,有种排法,所以不同的出场安排共有=252种.五、多元问题——分类讨论法对于元素多,选取情况多,可按要求进行分类讨论,最后总计。

排列组合解题方法和策略总结

排列组合解题方法和策略总结

排列组合解题方法和策略总结排列组合是数学中一个重要的概念,它涉及到从n个不同元素中取出m个元素(n>m)进行排列或组合的问题。

排列组合问题在日常生活和科学研究中有着广泛的应用,因此掌握排列组合的解题方法和策略非常重要。

以下是排列组合解题方法和策略的总结:1.明确问题要求:在解决排列组合问题时,首先要明确问题的要求,确定是排列问题还是组合问题,以及具体的限制条件。

2.确定元素范围:根据问题要求,确定所选取元素的范围,明确哪些元素可以选取,哪些元素不能选取。

3.列出所有可能的排列或组合:根据排列组合的公式,列出所有可能的排列或组合,确保不遗漏任何一种可能性。

4.分类讨论:对于一些复杂的问题,需要进行分类讨论。

根据问题的特点,将问题分成若干个子问题,分别求解子问题的排列组合情况。

5.排除法:在某些情况下,可以通过排除法求解问题。

根据问题的限制条件,排除一些不可能的情况,从而减少计算量。

6.递推关系:对于一些具有递推关系的问题,可以利用递推关系求解。

通过递推关系,逐步推导出最终的排列组合情况。

7.容斥原理:容斥原理是解决排列组合问题的一种重要方法。

通过容斥原理,可以将多个排列或组合的情况合并为一个,从而简化计算过程。

8.实际应用:排列组合问题在日常生活和科学研究中有着广泛的应用。

通过实际应用,可以加深对排列组合概念的理解,并掌握解题方法和策略。

解决排列组合问题需要掌握一定的方法和策略。

通过明确问题要求、确定元素范围、分类讨论、排除法、递推关系、容斥原理等方法和策略,可以有效地解决各种排列组合问题。

同时,通过实际应用,可以加深对排列组合概念的理解,提高解题能力。

排列组合在日常生活和科学研究中有着广泛的应用,以下是其中一些典型的应用场景:1.生日庆祝:在生日庆祝中,排列组合可以用来确定不同的庆祝活动安排。

例如,如果有5个朋友参加生日派对,可以使用排列组合确定他们坐在一张圆桌上的不同方式。

2.彩票购买:在购买彩票时,可以使用排列组合来计算不同号码的组合。

数学排列组合题的解题思路和方法

数学排列组合题的解题思路和方法

数学排列组合题的解题思路和方法数学排列组合题是高中数学中的重要内容之一,也是考试中常出现的题型。

解决这类题目需要掌握一定的思路和方法。

本文将介绍数学排列组合题的解题思路和方法,帮助读者更好地应对这类题目。

一、排列组合的基本概念在开始讨论解题思路和方法之前,我们先来回顾一下排列组合的基本概念。

排列是指从一组元素中选取若干个元素按一定的顺序排列的方式。

排列的公式为P(n, m),表示从n个元素中选取m个元素排列的方式数。

组合是指从一组元素中选取若干个元素不考虑顺序的方式。

组合的公式为C(n, m),表示从n个元素中选取m个元素组合的方式数。

在解决排列组合问题时,我们需要根据题目的要求确定使用排列还是组合的方式,并结合具体情况来计算。

二、解题思路和方法1. 确定题目要求在解决排列组合题时,首先要仔细阅读题目,理解题目的要求。

明确题目要求是使用排列还是组合的方式,以及需要计算的具体数值。

2. 确定元素个数根据题目的描述,确定参与排列组合的元素个数。

通常题目中会给出元素的个数,但也有一些题目需要根据题意进行推断。

3. 确定排列还是组合根据题目的要求,确定是使用排列还是组合的方式。

如果题目要求考虑元素的顺序,则使用排列;如果题目不考虑元素的顺序,则使用组合。

4. 计算排列组合的方式数根据确定的元素个数和使用的排列组合方式,计算出排列组合的方式数。

使用相应的公式,将元素个数代入公式中进行计算。

5. 考虑特殊情况有些排列组合题目中可能存在特殊情况,需要进行额外的考虑。

例如,题目中可能要求某些元素不能重复使用,或者要求某些元素必须同时出现等。

在解题过程中,要注意这些特殊情况,并根据题目要求进行相应的调整。

6. 检查和回答问题在计算出排列组合的方式数后,要对结果进行检查,确保计算的准确性。

同时,根据题目的要求,回答问题,给出最终的答案。

三、实例分析为了更好地理解解题思路和方法,我们来看一个具体的例子。

例题:某班有10名学生,其中3名男生和7名女生,从中选取3名学生组成一支代表队,要求队伍中至少有一名男生,有多少种不同的选择方式?解题思路和方法:1. 确定题目要求:从10名学生中选取3名学生组成代表队,要求队伍中至少有一名男生。

排列组合解题技巧课件

排列组合解题技巧课件
值法。
解题步骤:首 先确定特殊值, 然后根据特殊 值的特性进行
计算。
注意事项:特 殊值的选择要 合理,不能随
意选取。
构造法
定义:根据题目的要求,通过构造模型或图形来解决问题的方法。
应用场景:适用于解决排列组合问题中的计数问题。
解题步骤:首先分析题目,确定需要构造的模型或图形,然后根据模型或图形的特点,选择合适 的构造方法,最后计算出结果。
多做练习,提高解题能力
反思总结:在练习过程中不 断反思和总结,发现自己的 不足并加以改进
大量练习:通过不断的练习, 熟悉排列组合的解题思路和 技巧
刻意练习:有针对性地进行 练习,针对自己的薄弱环节
进行强化训练
持续学习:不断学习新的解 题技巧和方法,提高自己的
解题能力
THANK YOU
汇报人:XX
解题思路:先考虑相邻元素之间的顺序,再对其他元素进行排列组合。
常见题型:如将5个不同的小球放到4个不同的盒子里,要求每个盒子都 不空,则不同的放法种数为多少。 注意事项:在解决相邻问题时,需要注意元素之间的顺序要求,避免出 现重复或遗漏的情况。
相同元素问题
相同元素在排列组合中的 处理方式
相同元素的排列组合计算 公式

排列组合解题技巧总结
熟悉基本概念和公式
理解排列组合的 定义和公式
掌握排列组合的 常用公式和定理
了解排列组合的 常见题型和解题 思路
掌握排列组合的 解题技巧和注意 事项
掌握解题思路和方法
分析问题,确定使用哪种解 题方法
理解排列组合的概念和公式
掌握常见的解题技巧,如插 空法、捆绑法等
练习经典例题,加深理解和 应用
排列组合解题技巧
汇报人:XX

排列组合问题教案_排列组合解题技巧_排列组合问题经典例题_排列组合a和c的区别

排列组合问题教案_排列组合解题技巧_排列组合问题经典例题_排列组合a和c的区别

排列组合的知识点(一)排列和排列数(1)排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

从排列的意义可知,如果两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序必须完全相同,这就告诉了我们如何判断两个排列是否相同的方法。

(2)排列数公式:从n个不同元素中取出m(m≤n)个元素的所有排列当m=n时,为全排列Pnn=n(n-1)(n-1)…3·2·1=n!(二)组合和组合数(1)组合:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从 n个不同元素中取出m 个元素的一个组合。

从组合的定义知,如果两个组合中的元素完全相同,不管元素的顺序如何,都是相同的组合;只有当两个组合中的元素不完全相同时,才是不同的组合。

(2)组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个数这里要注意排列和组合的区别和联系,从n个不同元素中,任取m(m≤n)个元素,“按照一定的顺序排成一列”与“不管怎样的顺序并成一组”这是有本质区别的。

[反思] 排列与组合的共同点是从n个不同的元素中,任取m(m≤n)个元素,而不同点是排列是按照一定的顺序排成一列,组合是无论怎样的顺序并成一组,因此“有序”与“无序”是区别排列与组合的重要标志。

简单举例:1、2、3挑两个组成一个数字和1、2、3挑两个数字是完全不一样的!1、2、3挑两个组成一个数字那是排列;1、2、3挑两个数字那是组合。

例如我选1和2,排列里面12和21是两个数字!但是组合的话挑1和2就和挑2和1没有分别!!!《排列组合》教案教学目标:一.知识与技能目标:使学生通过观察,猜测,试验等活动,找出简单事物的排列规律,培养学生初步观察,分析,推理能力,以及有规律的全面思考问题。

二.过程与方法:引导学生使用数学方法解决实际生活中的问题,学会表达解决问题的大致过程。

三.情感态度目标:感受数学与生活的联系,激发学习数学,探索数学的浓厚兴趣,使学生在数学活动中养成与人合作的良好习惯。

小学奥数精讲:排列组合常见解题方法

小学奥数精讲:排列组合常见解题方法

小学奥数精讲:排列组合问题常见解题方法方法一:捆绑法“相邻问题”——捆绑法,即在解决对于某几个元素要求相邻的问题时,先将其“捆绑”后整体考虑,也就是将相邻元素视作“一个”大元素进行排序,然后再考虑大元素内部各元素间排列顺序的解题策略。

例1.若有A、B、C、D、E五个人排队,要求A和B两个人必须站在相邻位置,则有多少排队方法?【解析】:题目要求A和B两个人必须排在一起,首先将A和B两个人“捆绑”,视其为“一个人”,也即对“A,B”、C、D、E“四个人”进行排列,有种排法。

又因为捆绑在一起的A、B两人也要排序,有种排法。

根据分步乘法原理,总的排法有种。

例2.有8本不同的书,其中数学书3本,外语书2本,其它学科书3本。

若将这些书排成一列放在书架上,让数学书排在一起,外语书也恰好排在一起的排法共有多少种?【解析】:把3本数学书“捆绑”在一起看成一本大书,2本外语书也“捆绑”在一起看成一本大书,与其它3本书一起看作5个元素,共有种排法;又3本数学书有种排法,2本外语书有种排法;根据分步乘法原理共有排法种。

【提示】:运用捆绑法解决排列组合问题时,一定要注意“捆绑”起来的大元素内部的顺序问题。

解题过程是“先捆绑,再排列”。

方法二:插空法“不邻问题”——插空法,即在解决对于某几个元素要求不相邻的问题时,先将其它元素排好,再将指定的不相邻的元素插入已排好元素的间隙或两端位置,从而将问题解决的策略。

例3.若有A、B、C、D、E五个人排队,要求A和B两个人必须不站在一起,则有多少排队方法?【解析】:题目要求A和B两个人必须隔开。

首先将C、D、E三个人排列,有种排法;若排成D C E,则D、C、E“中间”和“两端”共有四个空位置,也即是:︺ D ︺ C ︺E ︺,此时可将A、B两人插到四个空位置中的任意两个位置,有种插法。

由乘法原理,共有排队方法:。

例4.在一张节目单中原有6个节目,若保持这些节目相对顺序不变,再添加进去3个节目,则所有不同的添加方法共有多少种?【解析】:直接解答较为麻烦,可根据插空法去解题,故可先用一个节目去插7个空位(原来的6个节目排好后,中间和两端共有7个空位),有种方法;再用另一个节目去插8个空位,有种方法;用最后一个节目去插9个空位,有方法,由乘法原理得:所有不同的添加方法为=504种。

排列组合问题

排列组合问题

排列组合问题一、知识点:分类计数原理:做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有种不同的方法分步计数原理:做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有种不同的方法二、解题思路:解排列组合问题,首先要弄清一件事是“分类”还是“分步”完成,对于元素之间的关系,还要考虑“是有序”的还是“无序的”,也就是会正确使用分类计数原理和分步计数原理、排列定义和组合定义,其次,对一些复杂的带有附加条件的问题,需掌握以下几种常用的解题方法:特殊优先法对于存在特殊元素或者特殊位置的排列组合问题,我们可以从这些特殊的东西入手,先解决特殊元素或特殊位置,再去解决其它元素或位置,这种解法叫做特殊优先法.例如:用0、1、2、3、4这5个数字,组成没有重复数字的三位数,其中偶数共有________个.(答案:30个)解答:当末尾是0、2、4时,这个三位数是偶数。

——————当末尾是0时,一共有4×3=12种方法。

当末尾是2或4时,一共有2×3×3=18种方法。

所以一共有12+18=30种方法。

科学分类法对于较复杂的排列组合问题,由于情况繁多,因此要对各种不同情况,进行科学分类,以便有条不紊地进行解答,避免重复或遗漏现象发生例如:从6台原装计算机和5台组装计算机中任取5台,其中至少有原装与组装计算机各两台,则不同的选取法有_______种.(答案:350)解答:C(6,2)×C(5,3)+C(6,3)×C(5,2)=350种插空法解决一些不相邻问题时,可以先排一些元素然后插入其余元素,使问题得以解决例如:7人站成一行,如果甲乙两人不相邻,则不同排法种数是______.(答案:3600)解答:分步计算:第一步:先排其它5人,一共有A(5,5)=120种方法,第二步:5个人一共有6个空隙,从这6个空隙中任选2个进行排列,一共有A(6,2)=30种方法。

排列组合问题的解题方法与技巧的总结(完整版)

排列组合问题的解题方法与技巧的总结(完整版)

学员数学科目第次个性化教案授课时间教师姓名备课时间学员年级高二课题名称排列组合问题的解题策略课时总数共课时教育顾问学管邱老师教学目标1、两个计数原理的掌握与应用;、两个计数原理的掌握与应用;2、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握;、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握;3、运用排列与组合的意义与公式解决简单的应用问题(多为排列与组合的混合问题)、运用排列与组合的意义与公式解决简单的应用问题(多为排列与组合的混合问题)教学重点1、两个计数原理的掌握与应用;、两个计数原理的掌握与应用;2、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握;、关于排列与组合的定义的理解;关于排列与组合数公式的掌握;关于组合数两个性质的掌握;教学难点运用排列与组合的意义与公式解决简单的应用问题(多为排列与组合的混合问题)运用排列与组合的意义与公式解决简单的应用问题(多为排列与组合的混合问题)教学过程教师活动一、作业检查与评价(第一次课程)二、复习导入排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。

三、内容讲解1.1.分类计数原理分类计数原理分类计数原理((加法原理加法原理))完成一件事,有n类办法,在第1类办法中有1m种不同的方法,在第2类办法中有2m种不同的方法,…,在第n类办法中有n m种不同的方法,那么完成这件事共有:12nN m m m=+++种不同的方法.2.2.分步计数原理(乘法原理)分步计数原理(乘法原理)完成一件事,需要分成n个步骤,做第1步有1m种不同的方法,做第2步有2m种不同的方法,…,做第n步有nm种不同的方法,那么完成这件事共有:12nN m m m=´´´种不同的方法.3.3.分类计数原理分步计数原理区别分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。

排列与组合问题的解题方法

排列与组合问题的解题方法

排列与组合问题的解题方法排列与组合是数学中重要的组合数学问题,常用于解决计数和选择问题。

在排列与组合中,排列是指从一组元素中选取若干个按特定顺序排列的方式;而组合则是指从一组元素中选取若干个无序的方式。

解决排列与组合问题的方法有很多,下面将介绍一些常用的解题方法。

一、排列问题的解题方法1. 全排列方法:全排列是指对给定的一组元素进行全面排列,确保每个元素都排在不同的位置上。

全排列问题可以通过递归算法来解决。

具体步骤如下:1)选取第一个元素作为排列的首位;2)将剩余的元素进行全排列;3)将选取的元素与全排列的结果进行组合。

2. 循环方法:循环方法是指通过循环遍历的方式来求解排列问题。

具体步骤如下:1)确定排列的元素个数和位置;2)通过循环遍历的方式确定每个位置上的元素。

3. 递归方法:递归方法是指通过递归函数的调用来求解排列问题。

递归方法可以将一个问题分解为更小的子问题,并通过递归调用来解决子问题。

具体步骤如下:1)选取第一个元素作为排列的首位;2)将剩余的元素进行递归调用,求解子问题的排列;3)将选取的元素与子问题的排列进行组合。

二、组合问题的解题方法1. 递推公式法:递推公式法是一种求解组合问题的常用方法。

通过递推公式,可以将大的组合问题分解为更小的子问题,并通过递归调用来解决子问题。

具体步骤如下:1)确定组合的元素个数和位置;2)通过递推公式计算每个位置上的元素。

2. 数学公式法:数学公式法是指通过数学公式来求解组合问题。

常用的组合公式有排列组合公式、二项式定理等。

通过应用数学公式,可以快速计算组合问题的解。

具体步骤如下:1)确定组合的元素个数和位置;2)通过数学公式计算每个位置上的元素。

3. 动态规划法:动态规划法是一种求解组合问题的高效算法。

通过定义递推关系和初始条件,可以通过动态规划的方式求解组合问题。

具体步骤如下:1)定义递推关系和初始条件;2)通过递推公式计算每个位置上的元素。

总结:排列与组合问题的解题方法有很多种,选择合适的方法取决于具体的问题和求解的要求。

组合问题解题思维方法与典型技巧

组合问题解题思维方法与典型技巧

组合问题解题思维方法与典型技巧【序言】在日常生活和工作中,我们经常面临各种问题,而解决问题的能力对于个人的发展和成功至关重要。

组合问题解题思维方法与典型技巧是一种重要的思维工具,能帮助我们全面、深入地分析和解决问题。

本文将从浅入深,由简到繁地介绍组合问题解题思维方法与典型技巧,帮助您更好地掌握和运用。

【一、组合问题解题的基本概念】1.1 组合问题的定义组合问题是指从给定的元素集合中选取一定数量的元素,使得这些元素的组合满足一定的条件。

组合问题可以是排列、组合或子集问题等。

1.2 组合问题解题的重要性组合问题解题不仅能提升我们的逻辑思维和分析能力,还有助于培养我们的创新和发散思维。

通过解决组合问题,我们能够更好地发现问题的本质、找到问题的解决方案,并培养我们的问题解决能力。

【二、组合问题解题的思维方法】2.1 从简单到复杂的思维路径解决组合问题时,可以从简单到复杂的思维路径,依次分析不同条件和问题,从而得出解决方案。

对问题进行拆解,将复杂的组合问题分解为简单的子问题,然后逐步解决每个子问题,并逐步推导出最终的解答。

2.2 核心思想与技巧组合问题解题需要掌握一些核心思想和技巧。

要搞清楚问题的要求和限制条件,了解问题的本质和目标。

要灵活运用数学和逻辑思维方法,如排列组合、贪心算法、动态规划等,以找出解决问题的最佳途径。

还可以运用归纳法、对比法和类比法等思维方法,从不同角度思考问题,寻找更多解决方案。

【三、典型的组合问题解题技巧】3.1 排列组合技巧排列和组合是组合问题中常用的技巧之一。

在解决问题时,可以灵活运用排列和组合的概念和公式,从而得出问题的解答。

掌握排列组合技巧能够更好地解决各种组合问题,如无重复元素的排列组合、有重复元素的排列组合等。

3.2 贪心算法技巧贪心算法是一种常用的解决组合问题的方法。

通过贪心算法,我们可以从局部最优开始,逐步扩展得到全局最优解。

贪心算法要求问题具备贪心选择性质和最优子结构性质,通过贪心策略的选择,能够快速解决组合问题。

小学奥数四年级排列组合题解题思路指导

小学奥数四年级排列组合题解题思路指导

小学奥数四年级排列组合题解题思路指导四年级奥数排列组合题解题思路指导在小学奥数中,排列组合是一个重要的数学概念,也是孩子们在解题过程中常遇到的难题之一。

本篇文章将向您介绍四年级奥数排列组合题的解题思路指导,帮助您更好地理解和解决这类题目。

一、什么是排列组合?排列是指从一组事物中按照一定的顺序选取若干个事物,不重复地排列在一起;而组合是指从一组事物中任意选取若干个事物,不考虑顺序,组合在一起。

二、排列的概念1. 顺序很重要:排列问题中的每一个元素在结果中的位置是固定的,只是位置的先后发生变化。

2. 不重复:每个元素只能出现一次。

三、组合的概念1. 顺序不重要:组合问题中的每个元素在结果中的位置是无关紧要的,只要包含了这些元素即可。

2. 不重复:每个元素只能选取一次。

四、排列组合题的解题步骤1. 明确题目要求:仔细读题,确定题目所给条件和要求。

2. 确定问题类型:判断题目是排列问题还是组合问题,注意区分。

3. 计算元素个数:根据题目所给条件确定排列或组合的元素个数。

4. 进行排列或组合计算:根据题目所给条件计算排列或组合的个数。

5. 解答问题:根据题目要求,将计算得到的结果进行运用,得出最终答案。

五、排列组合题示例下面,我们通过一些具体的例子来说明排列组合题的解题思路。

例题一:小明手中有5本不同的书,他要选择其中3本参加班级图书展览,请问一共有多少种不同的选择方式?解题思路:由于题目要求选择不同的书籍,属于组合问题。

根据组合的计算公式,可以得出解答结果。

解答过程:C(5, 3) = 5! / (3! * (5-3)!)= 5! / (3! * 2!)= (5 * 4 * 3!) / (3! * 2)= 5 * 4 / 2= 10答案:小明有10种不同的选择方式。

例题二:某个三位数的百位、十位和个位数字都不相同,且都是奇数,共有多少个符合条件的三位数?解题思路:由于题目要求百位、十位和个位数字都不相同,考虑到排列问题中元素的顺序是重要的,因此属于排列问题。

排列组合问题的解题思路

排列组合问题的解题思路

排列组合问题的解题思路
在解决排列组合问题时,我们需要遵循一定的解题步骤。

以下是解决排列组合问题的一般思路:
明确问题
首先,需要明确问题的类型和要求。

排列组合问题通常涉及到不同元素的选择、排列、组合等操作,因此需要了解问题的具体需求,例如要求解的是排列数、组合数,还是其他与排列组合相关的问题。

确定元素
确定问题中涉及的元素,了解每个元素的特点和属性。

这有助于我们确定解决问题的方法和策略。

理解限制条件
仔细阅读题目,了解题目中给出的限制条件。

这些限制条件可能涉及到元素的选择范围、排列顺序、组合方式等。

理解限制条件有助于我们建立模型和解决问题。

建立模型
根据问题的需求和已知信息,建立数学模型。

模型通常由公式、定理或图示等组成,用于描述问题中元素的排列组合方式。

求解模型
使用数学方法或计算机程序求解模型,得出问题的解。

这一步骤需要掌握相应的数学知识和算法。

验证答案
验证求解结果是否符合题目的要求和条件。

如果结果与预期不符,需要重新审视问题建模和求解过程,找出错误并进行修正。

总结方法
总结解决问题的思路和方法,提炼出经验和方法论。

这有助于我们在遇到类似问题时更快地找到解决方案。

同时,也可以将这些经验和方法与他人分享,以促进学术交流和学习。

总之,解决排列组合问题需要我们明确问题、确定元素、理解限制条件、建立模型、求解模型、验证答案和总结方法。

遵循这一解题思路,我们可以更好地解决排列组合问题并获得正确的答案。

排列组合分配问题的解题思路

排列组合分配问题的解题思路

排列组合分配问题的解题思路可以分为以下几个步骤:
明确题目要求:首先,需要仔细阅读题目,理解题目的要求,明确问题的背景和条件。

判断问题类型:根据题目的描述和要求,判断问题属于排列问题还是组合问题。

排列问题考虑顺序,而组合问题不考虑顺序。

选择解题方法:针对不同的问题类型,选择不同的解题方法进行求解。

常见的解题方法有直接法、间接法、平均分组法、插空法、捆绑法、隔板法等。

应用公式计算:根据所选的解题方法,应用相应的公式进行计算。

对于排列问题,常用的公式有Pn=n(n-1)(n-2)...(n-m+1);对于组合问题,常用的公式有Cn=n(n-1)(n-2)...(n-m+1)/m(m-1)(m-2)...2*1。

检验结果:在得出结果后,需要将结果代回原题进行检验,确保结果的正确性。

在解决排列组合问题时,还需要注意以下几点:
优先考虑特殊元素和特殊要求,比如限制条件、相邻或不相邻等问题;
注意分类讨论,比如多元问题的分类法;
对于复杂的排列组合问题,可以尝试使用逐一实验法;
需要细心和耐心,避免出现计算错误或遗漏情况。

排列与组合问题的解题思路与示例解析

排列与组合问题的解题思路与示例解析

排列与组合问题的解题思路与示例解析在数学中,排列与组合是一类常见的问题类型,需要运用一定的思维方法和技巧来解决。

本文将介绍一些解题思路和示例解析,帮助读者更好地理解和应用排列与组合的知识。

一、排列问题排列是指从一组元素中选取若干个元素按照一定顺序进行排列的方式。

解决排列问题的关键在于确定元素的选取顺序和确定每个位置的元素个数。

1.1 顺序问题在解决排列问题时,首先需要确定元素的选取顺序。

例如,有6个人参加一场比赛,需要确定他们的名次。

这是一个顺序问题,因为名次的不同会导致结果的不同。

解决这类问题时,可以使用乘法原理。

即,第一个位置有6种选择,第二个位置有5种选择,以此类推,直到最后一个位置有1种选择。

因此,总的排列方式为6 × 5 × 4 × 3 × 2 × 1 = 720种。

1.2 重复元素问题在一组元素中,如果存在重复的元素,解决排列问题时需要考虑重复元素的影响。

例如,有4个字母A、B、C、D,需要排列成3位的字符串。

解决这类问题时,可以使用分情况讨论的方法。

首先,考虑第一位的选择,共有4种选择。

然后,考虑第二位的选择,由于第一位已经选择了一个元素,所以只剩下3种选择。

最后,考虑第三位的选择,由于前两位已经选择了两个元素,所以只剩下2种选择。

因此,总的排列方式为4 × 3 × 2 = 24种。

二、组合问题组合是指从一组元素中选取若干个元素,不考虑元素的顺序。

解决组合问题的关键在于确定元素的选取个数和确定元素的组合方式。

2.1 选取个数问题在解决组合问题时,首先需要确定元素的选取个数。

例如,有8个人参加一场晚会,需要从中选取3个人组成一个小组。

解决这类问题时,可以使用组合数的公式。

即,从8个人中选取3个人的组合数为C(8,3) = 8! / (3! × (8-3)!) = 56种。

2.2 重复元素问题在一组元素中,如果存在重复的元素,解决组合问题时需要考虑重复元素的影响。

排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全

排列组合问题的解题方法总结很非常好的方法(高三复习很合适)全

排列组合问题的解题方法总结一、相邻问题 “捆绑法”:要求某几个元素必须排在一起的问题,可以用捆绑法来解决问题.即将需要相邻的元素合并为一个元素,再与其它元素一起作排列,同时要注意合并元素内部也可以作排列。

例1:5个男生3个女生排成一排,3个女生要排在一起,有多少种不同的排法?分析 此题涉及到的是排队问题,对于女生有特殊的限制,因此,女生是特殊元素,并且要求她们要相邻,因此可以将她们看成是一个元素来解决问题.解: 因为女生要排在一起,所以可以将3个女生看成是一个人,与5个男生作全排列,有66A 种排法,其中女生内部也有33A 种排法,根据乘法原理,共有6363A A 种不同的排法. 练1-1:7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再 与其它元素进行排列,同时对相邻元素内部进行自排。

由分步计数原理可得共有522522480A A A =种不同的排法练1-2:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20 练1-3:6个人排成一排,甲、乙二人必须相邻的排法有多少种?解:将甲、乙二人“捆绑”起来看作一个元素与其它4个元素一起排列,有A55种,甲、乙二人的排列有A22种,共有A22·A55=240种.二、不相邻问题 “插空法”:对元素不相邻问题,可先不考虑限制条件先排其它元素,再将不相邻元素插入已排好元素的空隙中(包括两端)即可。

例2: 学校组织老师学生一起看电影,同一排电影票12张。

8个学生,4个老师,要求老师在学生之间,且老师互不相邻,共有多少种不同的坐法?分析 此题涉及到的是不相邻问题,并且是对老师有特殊的要求,因此老师是特殊元素,在解决时就要特殊对待.所涉及问题是排列问题.解:先排学生共有88A 种排法,然后把老师插入学生之间的空档,共有7个空档可插,选其中的4个空档,共有47A 种选法.根据乘法原理,共有的不同坐法为4878A A 种.练2-1:一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的 出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的 6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练2-2:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果 将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30练2-3:用1,2,3,4,5,6,7,8组成没有重复数字的八位数,其中1与2相邻、3与4相邻、5与6相邻、7与8不相邻的八位数共有 个. 解:先“相邻”排列成三个“大元素”,再三个“大元素”排列,最后7与8“插空”,共有2223222234576A A A A A =种.三、特殊元素(或位置) “优先法”:排列组合问题无外乎“元素”与“位置”的关系问题,即某个元素排在什么位置或某个位置上排什么元素的问题.因此,对于有限制条件的排列组合问题,可从限制元素(或位置)入手,优先考虑。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

排列组合问题的解题思路和解题方法一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数. 113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 522522480A A A =练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4. 7人排队,其中甲乙丙3人顺序一定共有多少不同的排法 (倍缩法):7373/A A (空位法) 47A (插入法)练习:10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法? 510C五.重排问题求幂策略例5.把6名实习生分配到7个车间实习,共有多少种不同的分法 共有67种不同的排法练习题:1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个节目插入原节目单中,那么不同插法的种数为 422. 某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法873. 七名学生争夺五项冠军,每项冠军只能由一人获得,获得冠军的可能的种数有 75六.环排问题线排策略例6. 8人围桌而坐,共有多少种坐法? 7!练习题:6颗颜色不同的钻石,可穿成几种钻石圈 120七.多排问题直排策略例7.8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法 215445A A A 种练习题:有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 346八.排列组合混合问题先选后排策略例8.有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法. 2454C A 练习题:一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有 192 种九.小集团问题先整体后局部策略例9.用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1,5在两个奇数之间,这样的五位数有多少个 222222A A A .练习题:1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画, 排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为254254A A A2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有255255A A A 种十.元素相同问题隔板策略例10.有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案? 共有69C 种分法。

练习题:1.10个相同的球装5个盒中,每盒至少一有多少装法? 49C2 .100x y z w +++=求这个方程组的自然数解的组数 3103C 十一.正难则反总体淘汰策略例11.从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的 取法有多少种?1235559C C C +-练习题:我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种? 十二.平均分组问题除法策略例12. 6本不同的书平均分成3堆,每堆2本共有多少分法? 共有22236423/C C C A 种分法。

练习题:1 将13个球队分成3组,一组5个队,其它两组4个队, 有多少分法?(544213842/C C C A )2.10名学生分成3组,其中一组4人, 另两组3人但正副班长不能分在同一组,有多少种不同的分组方法 (1540)3.某校高二年级共有六个班级,现从外地转 入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为______ (22224262/90C C A A =) 十三. 合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目,有多少选派方法 22112223353455C C C C C C C ++种。

练习题:1.从4名男生和3名女生中选出4人参加某个座 谈会,若这4人中必须既有男生又有女生,则不同的选法共有342. 3成人2小孩乘船游玩,1号船最多乘3人, 2号船最多乘2人,3号船只能乘1人,他们任选2只船或3只船,但小孩不能单独乘一只船, 这3人共有多少乘船方法. (27)十四.构造模型策略例14. 马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏,也不能关掉两端的2盏,求满足条件的关灯方法有多少种? 35C 种练习题:某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?(120) 十五.实际操作穷举策略例15.设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法 252C 种练习题:1.同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种? (9)2.给图中区域涂色,要求相邻区 域不同色,现有4种可选颜色,则不同的着色方法有 72种54321十六. 分解与合成策略例16. 30030能被多少个不同的偶数整除 1234555555C C C C C ++++练习:正方体的8个顶点可连成多少对异面直线481258C -=, 358174⨯=对异面直线十七.化归策略例17. 25人排成5×5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种? 3311155321C C C C C 选法。

练习题:某街区由12个全等的矩形区组成其中实线表示马路,从A 走到B 的最短路径有多少种?(3735C =)B A十八.数字排序问题查字典策略例18.由0,1,2,3,4,5六个数字可以组成多少个没有重复的比324105大的数? 297221122334455=++++=A A A A A N练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是 3140 十九.树图策略例19.3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有______ 10=N练习: 分别编有1,2,3,4,5号码的人与椅,其中i 号人不坐i 号椅(54321,,,,i =)的不同坐法有多少种?44=N二十.复杂分类问题表格策略例20.有红、黄、兰色的球各5只,分别标有A 、B 、C 、D 、E 五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法排列与组合习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( B )A .40B .50C .60D .702.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( C )A .36种B .48种C .72种D .96种3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( C ) A .6个 B .9个 C .18个 D .36个4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( A )A .2人或3人B .3人或4人C .3人D .4人5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( C ) A .45种 B .36种 C .28种 D .25种6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( B )A .24种B .36种C .38种D .108种7.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( C )A .72B .96C .108D .1449.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( C )A .50种B .60种C .120种D .210种10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有___2400_____种.(用数字作答)11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答) C 49·C 25·C 33=126012.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).C 26·C 24A 22·A 44=1 080种 13.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).7214. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(B )(A )12种 (B )18种 (C )36种 (D )54种15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有(C )A. 504种B. 960种C. 1008种D. 1108种16. 由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是(C )(A )72 (B )96 (C ) 108 (D )14417. 在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为BA.10B.11C.12D.1518. 现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。

相关文档
最新文档