信号处理实验报告

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数字信号处理课程实验报告

课程名称:任课教师:

机房:计算机编号:

实验日期:实验成绩:

实验班级:学生姓名:

实验名称:z变换和零极点的求法

实验目的:1、掌握z变换和反z变换的应用

2、掌握用部分分式法求z变换

3、掌握零极点的求法

实验步骤与内容:

1、求Z变换。

2.求z反变换。

3.

4.

1.将上述的程序进行验证,并进行思考,掌握其编写的方法,将程序和结果复

制到下面:

1、

syms z a w0n

x1=a^n; X1=ztrans(x1)

x2=n; X2=ztrans(x2)

x3=(n*(n-1))/2; X3=ztrans(x3)

x4=exp(j*w0*n); X4=ztrans(x4)

x5=1/n*(n-1); X5=ztrans(x5)

X1 =-z/(a - z)

X2 =z/(z - 1)^2

X3 =(z^2 + z)/(2*(z - 1)^3) - z/(2*(z - 1)^2)

X4 =z/(z - exp(i*w0))

X5 =z/(z - 1) - ztrans(1/n, n, z)

2、

syms n z a

X1=z/(z-1); x1=iztrans(X1)

X2=a*z/(a-z)^2;x2=iztrans(X2)

X3=z/(z-1)^3;x3=iztrans(X3)

X4=(1-z^-n)/(1-z^-1); x4=iztrans(X4)

x1 =1

x2 =piecewise([a <> 0, a*(a^n/a - kroneckerDelta(n, 0)/a) + a^2*(kroneckerDelta(n, 0)/a^2 + (a^n*(n - 1))/a^2)])

x3 =n + binomial(n - 1, 2) - 1

x4 =iztrans(1/(z^n*(1/z - 1)), z, n) + 1

3、

b=[1,0,0];

a=[1,-1.5,0.5];

[r p c]=residuez(b,a)

N=20; n=0: N-1;

x=r(1)*p(1).^n+r(2)*p(2).^n

stem(n,x)

结果

02468101214161820 4、

b=[0.2,0.1,0.3,0.1,0.2]

a=[1,-1.1,1.5,-0.7,0.3]

rz=roots(b)

rp=roots(a)

subplot(1,2,1),zplane(b,a);

subplot(1,2,2),impz(b,a,20);

title('ϵͳµÄ³å¼¤ÏìÓ¦');

xlabel('n'),ylabel('h(n)')

-2

-1.5

-1-0.500.51

1.5

2Real Part

I m a g i n a r y P a r t

05

1015

n

h (n )

系统的冲激响应

2.编写程序实现

1.求z 变换:(1)n na n x =)(1 (2))sin()(02n n x ω= 代码:

syms z a w0 n x1=n*a^n; X1=ztrans(x1) x2=sin(w0*n); X2=ztrans(x2) 结果:

X1 =z/(a*(z/a - 1)^2)

X2 =(z*sin(w0))/(z^2 - 2*cos(w0)*z + 1)

2. 求z 反变换:(1)a

z z

z X -=

)(1(2)22)()(a z z z X -=

syms n z a

X1=z/(z-a); x1=iztrans(X1) X2=z/(z-a)^2;x2=iztrans(X2)

x1 =piecewise([a <> 0, a*(a^n/a - kroneckerDelta(n, 0)/a) + kroneckerDelta(n, 0)])

x2 =piecewise([a <> 0, a*(kroneckerDelta(n, 0)/a^2 + (a^n*(n - 1))/a^2) + a^n/a - kroneckerDelta(n, 0)/a])

3.用部分分式法求解下列系统函数的z 反变换,写出x (n )的表示式,用图形表示出来,取前10个点作图。

3

211

1219812010)(----++++=z z z z z X

代码:

c=[10,20,0,0] d=[1,8,19,12] [r,p,c]=residuez(c,d)

N1=10; n=0:N1-1;

x=r(1)*p(1).^n+r(2)*p(2).^n+r(3)*p(3).^n stem(n,x)

结果:

0123456789

6

4.已知离散时间系统函数分为:

3

213

214.035.04.0146.16.14)(-------+++--=z

z z z z z z H 求该系统的零极点分布图,并判断系统的因果稳定性。 代码:

b=[4,-1.6,-1.6,4] a=[1,0.4,0.35,-0.4] rz=roots(b) rp=roots(a)

subplot(1,2,1),zplane(b,a); subplot(1,2,2),impz(b,a,20); title('ϵͳµÄ³å¼¤ÏìÓ¦'); xlabel('n'),ylabel('h(n)')

相关文档
最新文档