8-1统计与统计案例
2016届高考数学理命题猜想专题18统计与统计案例(解析版)
【命题热点突破一】抽样方法某工厂生产的甲、乙、丙、丁四种不同型号的产品分别有150件、120件、180件、150件.为了调查产品的情况,需从这600件产品中抽取一个容量为100的样本,若采用分层抽样法,设甲产品中应抽取的产品件数为x ,某件产品A 被抽到的概率为y ,则x ,y 的值分别为( )A .25,14B .20,16 C .25,1600 D .25,16 【【答案】】D【特别提醒】 三种抽样方法均是等概率抽样,当总体是由差异明显的几个部分组成时,往往选用分层抽样的方法.【变式探究】从编号分别为0,1,2,…,79的80件产品中,采用系统抽样的方法抽取容量为10的样本,若编号为58的产品在样本中,则该样本中产品的最大编号为________.【【答案】】74【【解析】】每8件产品抽取一件,编号为58的产品在样本中,则样本中产品的最大编号为58+16=74.【命题热点突破二】用样本估计总体(1)将某市8所中学参加中学生合唱比赛的得分用茎叶图表示(如图18-3所示),其中茎为十位数,叶为个位数,则这组数据的中位数和平均数分别是( )图18-3A .91,91.5B .91,92C .91.5,91.5D .91.5,92(2)2014年6月,一篇关于“键盘侠”(“键盘侠”一词描述了部分网民在现实生活中胆小怕事自私自利,却习惯在网络上大放厥词的一种现象)的时评引发了大家对“键盘侠”的热议.某地区新闻栏目对该地区群众对“键盘侠”的认可度做出调查:在随机抽取的50人中,有14人持认可态度,其余持反对态度.若该地区有9600人,则估计该地区对“键盘侠”持反对态度的有________人.【【答案】】(1)C(2)6912【特别提醒】统计的基本思想之一就是以样本估计总体.以样本的频率估计总体的概率、以样本的特征数估计总体的特征数.【变式探究】(1)某学校随机抽查了本校20个同学,调查他们平均每天在课外进行体育锻炼的时间(分钟),根据所得数据的茎叶图,以5为组距将数据分为八组,分别是[0,5),[5,10),…,[35,40],作出的频率分布直方图如图18-4所示,则原始的茎叶图可能是()图18-5(2)高三年级上学期期末考试中,某班级数学成绩的频率分布直方图如图18-6所示,数据分组依次如下:[70,90),[90,110),[110,130),[130,150].估计该班数学成绩的平均分数为()图18-6A.112B.114C.116D.120【【答案】】(1)B(2)B【命题热点突破三】统计案例例3、某高校共有15 000人,其中男生10 500人,女生4500人,为调查该校学生每周平均参加体育运动时间情况,采用分层抽样的方法,收集了300名学生每周平均参加体育运动时间的样本数据(单位:小时).(1)应收集多少名女生的样本数据?(2)根据这300个样本数据,得到学生每周平均参加体育运动时间的频率分布直方图(如图18-7所示),其中样本数据分组区间为[0,2],(2,4],(4,6],(6,8],(8,10],(10,12],估计该校学生每周平均参加体育运动时间超过4个小时的概率.(3)在样本数据中,有60名女生每周平均参加体育运动的时间超过4个小时,请画出每周平均参加体育运动时间与性别的列联表,并判断是否有95%的把握认为“该校学生每周平均参加体育运动的时间与性别有关”.附:K2=n(ad-bc)(a+b)(c+d)(a+c)(b+d)结合列联表可得K 2的观测值k =300×(165×30-45×60)75×225×210×90=10021≈4.762>3.841. 所以有95%的把握认为“该校学生每周平均参加体育运动的时间与性别有关”.【特别提醒】 在计算K 2时要注意公式中各个字母的含义,分子上是总量乘2×2列联表中对角线数字乘积之差的平方,分母上是四个分和量的乘积.【变式探究】为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球的时间x(单位:小时)与当天投篮命中率y 之间的关系.(1)求小李这5天的平均投篮命中率;(2)用线性回归分析的方法,预测小李该月6号打6小时篮球的投篮命中率. 解:(1)小李这5天的平均投篮命中率y -= 0.4+0.5+0.6+0.6+0.45=0.5.(2)易知x -=1+2+3+4+55=3, 设线性回归方程为y ^=b ^x +a ^,则由公式可得b ^==(-2)×(-0.1)+(-1)×0+0×0.1+1×0.1+2×(-0.1)(-2)2+(-1)2+02+12+22=0.01,所以a ^=y --b ^x -=0.5-0.01×3=0.47, 所以y ^=b ^x +a ^=0.01x +0.47.当x =6时,y ^=0.53,故小李该月6号打6小时篮球的投篮命中率约为0.53.【特别提醒】 回归直线一定过样本点的中心(x ,y),当已知回归直线方程两个系数中的一个时,可以直接代入样本点中心的坐标求得另一个系数.正相关和负相关是根据回归直线方程的斜率判断的:正相关时回归直线方程的斜率为正值;负相关时回归直线方程的斜率为负值.回归直线方程斜率的符号与相关系数的符号是一致的.【高考真题解读】1.(2015·陕西,2)某中学初中部共有110名教师,高中部共有150名教师,其性别比例如图所示,则该校女教师的人数为( )A .167B .137C .123D .93【答案】 B2.(2015·安徽,6)若样本数据x 1,x 2,…,x 10的标准差为8,则数据2x 1-1,2x 2-1,…,2x 10-1的标准差为( )A .8B .15C .16D .32 【答案】 C【解析】 法一 由题意知,x 1+x 2+…+x 10=10x ,s 1则y =1n [(2x 1-1)+(2x 2-1)+…+(2x 10-1)] =1n[2(x 1+x 2+…+x 10)-n]=2x -1,所以S 2==2s 1,故选C.3.(2015·重庆,3)重庆市2013年各月的平均气温(℃)数据的茎叶图如下: 则这组数据的中位数是( )01228 9 2 5 80 0 03 3 8 1 2A .19B .20C .21.5D .23【答案】 B4.(2015·新课标全国Ⅱ,31)根据下面给出的2004年至2013年我国二氧化硫排放量(单位:万吨)柱形图.以下结论不正确的是( )A .逐年比较,2008年减少二氧化硫排放量的效果最显著B .2007年我国治理二氧化硫排放显现成效C .2006年以来我国二氧化硫年排放量呈减少趋势D .2006年以来我国二氧化硫年排放量与年份正相关 【答案】 D【解析】从2006年,将每年的二氧化硫排放量与前一年作差比较,得到2008年二氧化硫排放量与2007年排放量的差最大,A选项正确;2007年二氧化硫排放量较2006年降低了很多,B选项正确;虽然2011年二氧化硫排放量较2010年多一些,但自2006年以来,整体呈递减趋势,即C选项正确;自2006年以来我国二氧化硫年排放量与年份负相关,D选项错误,故选D.5.(2015·福建,4)为了解某社区居民的家庭年收入与年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:根据上表可得回归直线方程y∧=b∧x+a∧,其中b∧=0.76,a∧=y-b∧x.据此估计,该社区一户年收入为15万元家庭的年支出为()A.11.4万元B.11.8万元C.12.0万元D.12.2万元【答案】B6.(2014·山东,7)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,……,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为()A .6B .8C .12D .18 【答案】 C【解析】 由题图可知,第一组和第二组的频率之和为(0.24+0.16)×1=0.40,故该试验共选取的志愿者有200.40=50人.所以第三组共有50×0.36=18人,其中有疗效的人数为18-6=12.7.(2014·陕西,9)设样本数据x 1,x 2,…,x 10的均值和方差分别为1和4,若y i =x i +a(a 为非零常数,i =1,2,…,10),则y 1,y 2,…,y 10的均值和方差分别为( )A .1+a ,4B .1+a ,4+aC .1,4D .1,4+a【答案】 A8.(2014·湖南,2)对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1,p 2,p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3【答案】 D【解析】 因为采取简单随机抽样、系统抽样和分层抽取样本时,总体中每个个体被抽中的概率相等,故选D.9.(2014·广东,6)已知某地区中小学生人数和近视情况分别如图1和图2所示.为了解该地区中小学生的近视形成原因,用分层抽样的方法抽取2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为()A .200,20B .100,20C .200,10D .100,10【答案】A10.(2014·天津,9)某大学为了解在校本科生对参加某项社会实践活动的意向,拟采用分层抽样的方法,从该校四个年级的本科生中抽取一个容量为300的样本进行调查.已知该校一年级、二年级、三年级、四年级的本科生人数之比为4∶5∶5∶6,则应从一年级本科生中抽取________名学生.【答案】 60【解析】 420×300=60(名).11.(2015·江苏,2)已知一组数据4,6,5,8,7,6,那么这组数据的平均数为________. 【答案】 6【解析】 这组数据的平均数为16(4+6+5+8+7+6)=6.12.(2015·湖南,12)在一次马拉松比赛中,35名运动员的成绩(单位:分钟)的茎叶图如图所示:1314150 0 3 4 5 6 6 8 8 91 1 12 2 23 34 45 5 56 678 0 1 2 2 3 3 3若将运动员按成绩由好到差编为1~35号,再用系统抽样方法从中抽取7人,则其中成绩在区间[139,151]上的运动员人数是________.【答案】 41 3.(2015·新课标全国Ⅱ,18)某公司为了解用户对其产品的满意度,从A,B两地区分别随机调查了20个用户,得到用户对产品的满意度评分如下:A地区:6273819295857464537678869566977888827689B地区:7383625191465373648293486581745654766579(1)根据两组数据完成两地区用户满意度评分的茎叶图,并通过茎叶图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可);(2)根据用户满意度评分,将用户的满意度从低到高分为三个等级:记事件C:“A地区用户的满意度等级高于B地区用户的满意度等级”.假设两地区用户的评价结果相互独立.根据所给数据,以事件发生的频率作为相应事件发生的概率,求C的概率.解(1)两地区用户满意度评分的茎叶图如下通过茎叶图可以看出,A 地区用户满意度评分的平均值高于B 地区用户满意度评分的平均值;A 地区用户满意度评分比较集中,B 地区用户满意度评分比较分散.由所给数据得C A1,C A2,C B1,C B2发生的频率分别为1620,420,1020,820,故P(C A1)=1620,P(C A2)=420,P(C B1)=1020,P(C B2)=820,P(C)=1020×1620+820×420=0.48.。
统计案例(精讲)(提升版)(原卷版)
8.5 统计案例(精讲)(提升版)思维导图考点一独立性检验【例1】(2022·吉林·梅河口市第五中学高三开学考试)某中学准备组建“文科”兴趣特长社团,由课外活动小组对高一学生进行了问卷调查,问卷共100道题,每题1分,总分100分,该课外活动小组随机抽取了100名学生的问卷成绩(单位:分)进行统计,将数据按照[0,20),[20,40),[40,60),[60,80),[80,100]分成5组,绘制的频率分布直方图如图所示,若将不低于60分的称为“文科方向”学生,低于60分的称为“理科方向”学生.(1)根据已知条件完成下面2×2列联表,并据此判断是否有99.5%的把握认为“文科方向”与性别有关?理科方向文科方向总计男40女45考点呈现例题剖析总计 1001人,共抽取4次,记被抽取的4人中“文科方向”的人数为X ,若每次抽取的结果是相互独立的,求X 的分布列和数学期望.参考公式:()()()()22()n ad bc a b c d a c b d χ-=++++,其中n a b c d =+++.参考临界值:()2P k αχ=0.10 0.05 0.025 0.010 0.005 0.001k2.7063.841 5.024 6.635 7.879 10.828【一隅三反】1.(2022·白山模拟)十三届全国人大四次会议表决通过了关于国民经济和社会发展第十四个五年规划和2035年远景目标纲要的决议,决定批准这个规划纲要,纲要指出:“加强原创性引领性科技攻关”.某企业集中科研骨干,攻克系列“卡脖子”技术,已成功实现离子注入机全谱系产品国产化,包括中束流、大束流、高能、特种应用及第三代半导体等离子注入机,工艺段覆盖至28nm,为我国芯片制造产业链补上重要一环,为全球芯片制造企业提供离子注入机一站式解决方案.此次技术的突破可以说为国产芯片的制造做出了重大贡献.该企业使用新技术对某款芯片进行试生产,在试产初期,生产一件该款芯片有三道工序,每道工序的生产互不影响,这三道工序的次品率分别为118,119,120.附:()()()()()22n ad bcKa b c d a c b d-=++++,n a b c d=+++.()2P K k≥0.0500.0100.0050.001 k 3.841 6.6357.87910.828(①P①100X(2)某手机生产厂商将该款芯片投入到某新款手机上使用,并对部分芯片做了技术改良,推出了两种型号的手机,甲型号手机采用没有改良的芯片,乙型号手机采用改良了的芯片,现对使用这两种型号的手机用户进行回访,就他们对开机速度进行满意度调查.据统计,回访的100名用户中,使用甲型号手机的有30人,其中对开机速度满意的有15人;使用乙型号手机的有70人,其中对开机速度满意的有55人.完成下列22⨯列联表,并判断是否有99.5%的把握认为该项技术改良与用户对开机速度的满意度有关.甲型号乙型号合计满意不满意合计2.(2022·陕西咸阳·三模(理))2022年北京冬奥组委发布的《北京2022年冬奥会和冬残奥会经济遗产报告(2022)》显示,北京冬奥会已签约45家赞助企业,冬奥会赞助成为一项跨度时间较长的营销方式.为了解该45家赞助企业每天销售额与每天线上销售时间之间的相关关系,某平台对45家赞助企业进行跟踪调查,其中每天线上销售时间不少于8小时的企业有20家,余下的企业中,每天的销售额不足30万元的企业占35,统计后得到如下22⨯列联表:销售额不少于30万元销售额不足30万元合计线上销售时间不少于8小时 17 20 线上销售时间不足8小时合计45售时间有关?(2)按销售额在上述赞助企业中采用分层抽样方法抽取5家企业.在销售额不足30万元的企业中抽取时,记“抽到线上销售时间不少于8小时的企业数”为X ,求X 的分布列和数学期望. 附: ()20P K k ≥0.050 0.010 0.001 0k3.841 6.635 10.828参考公式:()()()()2 n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.考点二 线性回归方程【例2-1】(2022·齐齐哈尔模拟)某单位为了解夏季用电量与月份的关系,对本单位2021年5月份到8月份的日平均用电量y (单位:千度)进行了统计分析,得出下表数据:月份(x )5 6 7 8 日平均用电量(y )1.93.4t7.11.7877ˆ.0y x =-t 的值为( )A .5.8B .5.6C .5.4D .5.2【例2-2】(2022·湖南模拟)《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》,这是21世纪以来第18个指导“三农”工作的中央一号文件.文件指出,民族要复兴,乡村必振兴.为助力乡村振兴,某电商平台为某地的农副特色产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:单价x (元/件) 8 8.2 8.4 8.6 8.8 9 销量y (万件)908483807568附:参考公式:回归方程ˆˆˆybx a =+,其中()()()iii ii 1i 1222iii 1i 1ˆnnx x y y x y nxyb x x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 参考数据:614066i ii x y==∑,621434.2i i x ==∑.(1)(i )根据以上数据,求y 关于x 的线性回归方程;(ii )若该产品成本是7元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润.(2)为了解该产品的价格是否合理,在试销平台上购买了该产品的顾客中随机抽了400人,阅读“购买后的评价”得知:对价格满意的有300人,基本满意的有50人,不满意的有50人.为进一步了解顾客对该产品价格满意度形成的原因,在购买该产品的顾客中随机抽取4人进行电话回访,记抽取的4人中对价格满意的人数为随机变量X ,求随机变量X 的分布列和数学期望.(视频率为相应事件发生的概率)【一隅三反】1.(2022·安徽三模)对某位同学5次体育测试的成绩(单位:分)进行统计得到如下表格:第x 次 1 2 3 4 5 测试成绩y3940484850根据上表,可得关于的线性回归方程为ˆ3ˆy x a =+,下列结论不正确的是( )A .ˆ36a= B .这5次测试成绩的方差为20.8 C .y 与x 的线性相关系数0r < D .预测第6次体育测试的成绩约为542.(2022·安徽模拟)新冠疫情期间,口罩的消耗量日益增加,某药店出于口罩进货量的考虑,连续9天统计了第i (i 1239)x =,,,,天的口罩的销售量i y (百件),得到的数据如下:99i i i=1i=145171x y ==∑∑,,()99922ii i i i=1i=1i=1312528510953x x y y y ==-=∑∑∑,,. 参考公式:相关系数()()()()iii=122iii=1i=1nnnx x y y r x x y y --=--∑∑∑数据()i i ()i 123x y n =,,,,,,其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘估计分别为()()()iii i1222i i11ˆˆˆnn i inni i x x y y x y nxybay bx x x xnx ===---===---∑∑∑∑, (1)若用线性回归模型ˆˆˆybx a =+拟合y 与x 之间的关系,求该回归直线的方程; (2)统计学家甲认为用(1)中的线性回归模型(下面简称模型1)进行拟合,不够精确,于是尝试使用非线性模型(下面简称模型2)得到i x 与i y 之间的关系,且模型2的相关系数20989r =.,试通过计算说明模型1,2中,哪一个模型的拟合效果更好. 3.(2022·湖南模拟)《中共中央国务院关于全面推进乡村振兴加快农业农村现代化的意见》,这是21世纪以来第18个指导“三农”工作的中央一号文件.文件指出,民族要复兴,乡村必振兴.为助力乡村振兴,某电商平台为某地的农副特色产品开设直播带货专场.为了对该产品进行合理定价,用不同的单价在平台试销,得到如下数据:单价x (元/件) 8 8.2 8.4 8.6 8.8 9 销量y (万件)908483807568附:参考公式:回归方程ˆˆˆybx a =+,其中()()()iiiii 1i 1222iii 1i 1ˆnnx x y y x y nxyb x x xnx ====---==--∑∑∑∑,ˆˆay bx =-. 参考数据:614066i ii x y==∑,621434.2i i x ==∑.(1)(i )根据以上数据,求y 关于x 的线性回归方程;(ii )若该产品成本是7元/件,假设该产品全部卖出,预测把单价定为多少时,工厂获得最大利润.(2)为了解该产品的价格是否合理,在试销平台上购买了该产品的顾客中随机抽了400人,阅读“购买后的评价”得知:对价格满意的有300人,基本满意的有50人,不满意的有50人.为进一步了解顾客对该产品价格满意度形成的原因,在购买该产品的顾客中随机抽取4人进行电话回访,记抽取的4人中对价格满意的人数为随机变量X,求随机变量X的分布列和数学期望.(视频率为相应事件发生的概率)考点三非线性回归方程【例3】(2022·福建·三明一中模拟预测)当前,新一轮科技革命和产业变革蓬勃兴起,以区块链为代表的新一代信息技术迅猛发展,现收集某地近5年区块链企业总数量相关数据,如下表年份20172018201920202021编号x12345企业总数量y(单位:千个) 2.156 3.7278.30524.27936.224(1)根据表中数据判断,y a bx=+与e dxy c=(其中 2.71828e=…为自然对数的底数),哪一个回归方程类型适宜预测未来几年我国区块链企业总数量?(给出结果即可,不必说明理由),并根据你的判断结果求y关于x的回归方程;(2)为了促进公司间的合作与发展,区块链联合总部决定进行一次信息化技术比赛,邀请甲、乙、丙三家区块链公司参赛.比赛规则如下:①每场比赛有两个公司参加,并决出胜负;①每场比赛获胜的公司与未参加此场比赛的公司进行下一场的比赛;①在比赛中,若有一个公司首先获胜两场,则本次比赛结束,该公司获得此次信息化比赛的“优胜公司”.已知在每场比赛中,甲胜乙的概率为12,甲胜丙的概率为13,乙胜丙的概率为35,若首场由甲乙比赛,求甲公司获得“优胜公司”的概率.参考数据:5174.691i i y ==∑,51312.761i i i x y ==∑,5110.980i i z ==∑,5140.457i i i x z ==∑(其中ln z y =). 附:样本(),(1,2,,)i i x y i n =的最小二乘法估计公式为1221ˆni ii nii x y nx ybxnx==-=-∑∑,ˆa y bx=-.【一隅三反】1.(2022·山西二模)数据显示,中国在线直播用户规模及在线直播购物规模近几年都保持高速增长态势,下表为2017-2021年中国在线直播用户规模(单位:亿人),其中2017年-2021年对应的代码依次为1-5.年份代码x 1 2 3 4 5 市场规模y3.984.565.045.866.36参考数据: 5.16y =, 1.68v =,145.10i ii v y==∑,其中i i v x =.参考公式:对于一组数据()11v y ,,()22v y ,,…,()n n v y ,,其回归直线ˆˆˆybv a =+的斜率和截距的最小二乘估计公式分别为1221ˆni ii ni i v y nvybv nv ==-=-∑∑,ˆˆay bv =-. (1)由上表数据可知,可用函数模型ˆˆyx a =拟合y 与x 的关系,请建立y 关于x 的回归方程(ˆa ,ˆb 的值精确到0.01);(2)已知中国在线直播购物用户选择在品牌官方直播间购物的概率为p ,现从中国在线直播购物用户中随机抽取4人,记这4人中选择在品牌官方直播间购物的人数为X ,若()()34P X P X ===,求X 的分布列与期望.2.(2022·广东广州·一模)人们用大数据来描述和定义信息时代产生的海量数据,并利用这些数据处理事务和做出决策,某公司通过大数据收集到该公司销售的某电子产品1月至5月的销售量如下表. 月份x1 2 3 4 5 销售量y (万件)4.95.86.88.310.2该公司为了预测未来几个月的销售量,建立了y 关于x 的回归模型:ˆv . (1)根据所给数据与回归模型,求y 关于x 的回归方程(ˆu 的值精确到0.1);(2)已知该公司的月利润z (单位:万元)与x ,y 的关系为z x x=,根据(1)的结果,问该公司哪一个月的月利润预报值最大? 参考公式:对于一组数据()()()1122,,,,,,n n x y x y x y ,其回归直线ˆˆˆy bx a =+的斜率和截距的最小二乘估计公式分别为()()()121ˆniii nii x x y y bx x ==--=-∑∑,ˆˆay bx =-.11 / 113.(2022·广东肇庆·二模)下表是我国从2016年到2020年能源消费总量近似值y (单位:千万吨标准煤)的数据表格: 年份2016 2017 2018 2019 2020 年份代号x1 2 3 4 5 能源消费总量近似值y (单位:千万吨标准煤) 442 456 472 488 498以x 为解释变量,y 为预报变量,若以11为回归方程,则相关指数210.9946R ≈,若以22ˆln ya b x =+为回归方程,则相关指数220.9568R ≈. (1)判断11ˆyb x a =+与22ˆln y a b x =+哪一个更适宜作为能源消费总量近似值y 关于年份代号x 的回归方程,并说明理由;(2)根据(1)的判断结果及表中数据,求出y 关于年份代号x 的回归方程.参考数据:512356i i y ==∑,517212i i i x y ==∑.参考公式:回归方程ˆˆˆybx a =+中斜率和截距的最小二乘估计公式分别为:()()()1122211ˆn ni i i ii i n n ii i i x x y y x y nxy b x x x nx ====---==--∑∑∑∑,ˆˆa y bx =-.。
高中数学:统计与统计案例练习
高中数学:统计与统计案例练习一、选择题1.某校为了解学生平均每周的上网时间(单位:h),从高一年级1 000名学生中随机抽取100 名进行了调查,将所得数据整理后,画出频率分布直方图(如图),其中频率分布直方图从左到右前3个小矩形的面积之比为1 : 3 : 5,据此估计该校高一年级学生中平均每周上网时间少于4 h的学生人数为()领率组距A. 200 C. 400 0.0350.015B. 240D. 48010平均每周上网时间(h)解析:选C 设频率分布直方图中从左到右前3个小矩形的面积分别为A3K5P.由频率分布直方图可知,最后2个小矩形的面积之和为(0.015+0.035)X2 = 0.1.由于频率分布直方图中各个小矩形的面积之和为1,所以P+3P+5P=0.9,即尸=0.1.所以平均每周上网时间少于4h的学生所占比例为尸+3P=0.4,由此估计学生人数为0.4X1 000 =400.2. AQI(Air Quality Index,空气质量指数)是报告每日空气质量的参数,描述了空气清洁或污染的程度.AQI共分六级,一级优(0〜50),二级良(51〜100),三级轻度污染(101〜150),四级中度污染(151〜200),五级重度污染(201〜300),六级严重污染(大于300).如图是昆明市2021年4月份随机抽取的10天的AQI茎叶图,利用该样本估计昆明市2021年4月份空气质量优的天数为 ()A. 3B. 4C. 12D. 2142解析:选c 从茎叶图知,10天中有4天空气质量为优,所以空气质量为优的频率为 1 V.Z 22所以估计昆明市2021年4月份空气质量为优的天数为30X5=12,应选C.3.〔成都模拟〕某城市收集并整理了该市2021年1月份至10月份各月最低气温与最高气 温〔单位:C 〕的数据,绘制了下面的折线图.该城市各月的最低气温与最高气温具有较好的线性关系,那么根据折线图,以下结论错误 的是〔〕A.最低气温与最高气温为正相关B. 10月的最高气温不低于5月的最高气温C.月温差〔最高气温减最低气温〕的最大值出现在1月D.最低气温低于0C 的月份有4个解析:选D 在A 中,最低气温与最高气温为正相关,故A 正确;在B 中,10月的最高气温 不低于5月的最高气温,故B 正确;在C 中,月温差〔最高气温减最低气温〕的最大值出现在1月, 故C 正确:在D 中,最低气温低于0℃的月份有3个,故D 错误.应选D.4 .〔承德模拟〕为了解户籍、性别对生育二胎选择倾向的影响,某地从育龄人群中随机抽取 了容量为100的样本,其中城镇户籍与农村户籍各50人;男性60人,女性40人,绘制不同群体 中倾向选择生育二胎与倾向选择不生育二胎的人数比例图〔如下图〕,其中阴影局部表示倾向 选择生育二胎的对应比例,那么以下表达中错误的选项是〔〕A.是否倾向选择生育二胎与户籍有关B.是否倾向选择生育二胎与性别无关♦最高气温 ♦最低气温C.倾向选择生育二胎的人员中,男性人数与女性人数相同D.倾向选择不生育二胎的人员中,农村户籍人数少于城镇户籍人数解析:选C 由题图,可得是否倾向选择生育二胎与户籍有关、与性别无关;倾向选择不 生育二胎的人员中,农村户籍人数少于城镇户籍人数;倾向选择生育二胎的人员中,男性人数为 60X60% =36,女性人数为40X60%=24,不相同.应选C.5 .(石家庄模拟)某学校48两个班的兴趣小组在一次对抗赛中的成绩如茎叶图所示,通过 茎叶图比拟两个班兴趣小组成绩的平均值及标准差.3 4 28 8 4 6 8 65152①A 班兴趣小组的平均成绩高于B 班兴趣小组的平均成绩; ②B 班兴趣小组的平均成绩高于A 班兴趣小组的平均成绩; ③A 班兴趣小组成绩的标准差大于B 班兴趣小组成绩的标准差;@B 班兴趣小组成绩的标准差大于A 班兴趣小组成绩的标准差. 其中正确结论的编号为()A.①④C. ®®其方差为白义[(53—78尸+(62—78/ +…+ (95—78)2]=121.6, 那么其标准差为'121.6%11.03;45+48+5H -------- F91B 班兴趣小组的平均成成为'」=66,其方差为表义[(45—66)2+(48 - 66)2 + ... + (91-66)2] =169.2, 那么其标准差为1169.2%13.01.应选A.6 .某商场对某一商品搞活动,该商品每一个的进价为3元,销售价为8元,每天售出的 第20个及之后的半价出售.该商场统计了近10天这种商品的销量,如下图,设M 个)为每天商 品的销量,M 元)为该商场每天箱售这种商品的利润.从日利润不少于96元的几天里任选2天, 那么选出的这2天日利润都是97元的概率为()4 5 5 1 6 2 7 38班8 3 6 4 5 3 4 02B.②③D.①③解析:选A A 班兴趣小组的平均成绩为 53+62+64+…+92+95--------------- ---------------- =785x, x=18, 19, y =<l95+(x-19)(4-3), x=20, 21, J5x, x=18, 19, 即 L176+x, x=20, 21.当日销量不少于20个时,日利泗不少于96元, 当日销量为20个时,日利润为96元, 当日销量为21个时,日利润为97元,日利泗为96元的有3天,记为日利泗为97元的有2天,记为人丛从中任选2天有 (.4),(〃石),(.力),(.1),3/),(48),3«),(c4),(.,8),(48),共 10 种情况.其中选出的这2天日利泗都是97元的有(A,8)1种情况. 故所求概率为关.应选B. 二、填空题7 .某小卖部销售某品牌饮料的零售价与销量间的关系统计如下:单价x/元 3.0 3.2 3.4 3.6 3.8 4.0 销量w 瓶504443403528x,y 的关系符合回归方程£=£+2其中分=-20.假设该品牌饮料的进价为2元,为使利润 最大,零售价应定为 元.解析:依题意得:x =3.5, y =40,A所以.=40—(- 20)X3.5=110,所以回归直线方程为f=-20x+110,利润 L = (A —2)(-20A + 110)= -201+ 150x-220,B 选• •1 - 9 1 - 5 A.C 解BioD.g由题意知频数(天)0 18 19 20 2 俏量〔个〕所以x=* = 3.75元时,利润最大.答案:3.758.某高校调查了200名学生每周的自习时间(单位:小时),制成了如下图的频率分布直方图,其中自习时间的范围是[17.5,30],样本数据分组为[17.5,20),[20,22.5),[22.5,25),[25,27.5),[27.5,30].根据直方图,这200名学生中每周的自习时间不少于22.5小时的人数是.解析:设所求的人数为〃,由频率分布直方图,自习时间不少于22.5小时的频率为(0.04+0.08 +0.16) X 2.5=0.7, n=0.7 X 200=140.答案:1409.为比拟甲乙两地某月11时的气温情况,随机选取该月5天11时的气温数据(单位:C) 制成如下图的茎叶图,甲地该月11时的平均气温比乙地该月11时的平均气温高1 ℃,那么甲地该月11时的平均气温的标准差为.甲9 8 2 62 m 03 I解析:甲地该月11时的气温数据(单位:℃)为28,29,30,30+〃?,32;乙地该月11时的气温数据(单位:℃)为26,28,29,31,31,那么乙地该月11时的平均气温为(26+28+29+31+31计5 = 29(℃),所以甲地该月11时的平均气温为30 ℃,故(28+29+30+30+m + 32)+5 = 30,解得〃?=1,那么甲地该月11时的平均气温的标准差为嗝义[(28 - 30产+(29 - 30)2+(30 - 30/+(31 - 30/+(32 - 30户]=\(2.答案:^2三、解做题10.某篮球运发动的投篮命中率为50%,他想提升自己的投篮水平,制定了一个夏季练习计划,为了了解练习效果,执行练习前他统计了10场比赛的得分,计算出得分的中位数为15,平均得分为15,得分的方差为463执行练习后也统计了10场比赛的得分,茎叶图如下图:0 8 91 2 4 4 5 6 82 1 3(1)请计算该篮球运发动执行练习后统计的10场比赛得分的中位数、平均得分与方差;⑵如果仅从执行练习前后统计的各10场比赛得分数据分析,你认为练习方案对该运发动的投篮水平的提升是否有帮助?为什么?解:(1)练习后得分的中位数为上芋=14.5;平均得分为8+9+12+14+14+15+16+18 + 21+23= 15:10方差为击义[(8—15)2 + (9 — 15>+(12 —15>+(14 — 15)2+(14 — 15> + (15 —15>+(16 — 15产+(18-15)2+(21-15)2+(23 —15)2]=20.6.(2)尽管中位数练习后比练习前稍小,但平均得分一样,练习前方差20.6小于练习前方差46.3, 说明练习后得分稳定性提升了(阐述观点合理即可),这是投篮水平提升的表现.故此练习方案对该篮球运发动的投篮水平的提升有帮助.11.(西安八校联考)在2021年俄罗斯世界杯期间,莫斯科的局部餐厅销售了来自中国的小龙虾,这些小龙虾均标有等级代码.为得到小龙虾等级代码数值x与销售单价y(单位:元)之间的关系,经统计得到如下数据:⑴销售单价),与等级代码数值x之间存在线性相关关系,求),关于x的线性回归方程(系数精确到0.1);(2)假设莫斯科某餐厅销售的中国小龙虾的等级代码数值为98,请估计该等级的中国小龙虾销售单价为多少元?参考公式:对于一组数据(xi1 ),3,光),…其回归直线f=源+2的斜率和截距的最小2Xyi一〃x y八 '। A — A——二乘估计分别为Z? = ----------------- a= y —b x .n _Xxr-n x 26 6参考数据:2>»=8 440, 2e = 25 564.—38+48 + 58 + 68 + 78 + 88解:(1)由题意,得x -■= 63,- 16.8+18.8+20.8 + 22.8 + 24+25.8 _y = 6 =21.5,yA_8 440 - 6X63X21.5〜h = ~~6Z—=25 564—6X63X63「026 A 2A — A 一a= y -bx =21.5-0.2X63 = 8.9.故所求线性回归方程为f=0.2x+8.9.⑵由(1)知,当%=98 时,>=0.2X98+8.9=28.5.・•・估计该等级的中国小龙虾销售单价为28.5元.12.(长沙模拟)某职称晋级评定机构对参加某次专业技术测试的100人的成绩进行了统计, 绘制的频率分布直方图如下图.规定80分以上者晋级成功,否那么晋级失败(总分值为100分).(1)求图中.的值;(2)估计该次测试的平均分不(同一组中的数据用该组的区间中点值代表);(3)根据条件完成下面2X2列联表,并判断能否有85%的把握认为“晋级成功〞与性别有关.P(K?2k)0.40 0.25 0.15 0.1()0.050.025k0.708 1.323 2.072 2.706 3.841 5.024解:(1)由频率分布直方图中各小长方形面积总和为1,得(2.+ 0.020+0.03.+0.040)义10=1,解得〃=0...5.⑵由频率分布直方图知洛小组的中点值依次是55,65,75,85,95, 对应的频率分别为0.05.30,0.40,0.20.05,那么估计该次测试的平均分为 x = 55X0.05 + 65X0.30 + 75X0.40 + 85X0.20 + 95X0.05 = 74(分). ⑶由频率分布直方图知,晋级成功的频率为0.20+0.05=0.25, 故晋级成功的人数为100X0.25 = 25,填写2X2列联表如下:晋级成功 晋级失败合计男 16 34 50 女 9 41 50 合计2575100100X(16X41 ——25X75X50X50^2,613>2.072,所以有85%的把握认为“晋级成功〞与性别有关.1 .为检查某工厂所生产的8万台电风扇的质量,抽查了其中20台的无故障连续使用时限(单 位:小时)如下:248 256 232 243 188 268 278 266 289 312 274296 288 302 295 228 287 217 329 283K 2=n(acl-bc)2(1)完成下面的频率分布表,并作出频率分布直方图;(2)估计8万台电风扇中有多少台无故障连续使用时限不低于280小时;(3)用组中值(同一组中的数据在该组区间的中点值)估计样本的平均无故障连续使用时限.解:(1)频率分布表及频率分布直方图如下所示:0.0100 ——⑵由题意可得8乂(0.30+0.10+0.05) = 3.6,所以估计8万台电风扇中有3.6万台无故障连续使用时限不低于280小时.(3)由频率分布直方图可知x =190X0.05 + 210X0.05 + 230X0.10 + 250X0.15 + 270X0.20 + 290X0.30 + 310X0.10 + 330X0.05 = 269(小时),所以样本的平均无故障连续使用时限为269小时.2 .海水养殖场进行某水产品的新、旧网箱养殖方法的产量比照,收获时各随机抽取了 100 个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如下:(1)记A 表示事件“旧养殖法的箱产量低于50kg 〞,估计A 的概率;⑵填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:箱产量V50 kg箱产量250 kg旧养殖法新养殖法(3)根据箱产量的频率分布直方图,对这两种养殖方法的优劣进行比拟. 附:P (心2)0.050 0.010 0.001 k3.841 6.635 10.8280.01500.0125频率 仇距0.0075 0.0050 0.0025.厂工丁丁丁丁厂!无故障连续使用时用/小时新养殖法、n(ad-bc)1 _ .K-= . , , ,,其中〃=a+/?+c+d.(a+Z?)(c 十d)(a十c)(Z?+d)解:⑴旧养殖法的箱产量低于50 kg的频率为(0.012+0.014+0.024+0.034+0.040)X5=0.62.因此,事件A的概率估计值为0.62.⑵根据箱产量的频率分布直方图得到联表:K2=---------- -------------------- 15 705100X100 X 96X104由于15.705>6.635,故有99%的把握认为箱产量与养殖方法有关.(3)箱产量的频率分布直方图说明:新养殖法的箱产量平均值(或中位数)在50 kg到55 kg 之间,旧养殖法的箱产量平均值(或中位数)在45 kg到50 kg之间,且新养殖法的箱产量分布集中程度较旧养殖法的箱产量分布集中程度高,因此,可以认为新养殖法的箱产量较高且稳定,从而新养殖法优于旧养殖法.3.为了监控某种零件的一条生产线的生产过程,检验员每隔30 min从该生产线上随机抽取一个零件,并测量其尺寸(单位:cm).下面是检验员在一天内依次抽取的16个零件的尺寸:经计算得x =+£即=9.97,5=、*ZG L x )21 /=1 \ / 1O/=1/ 1 16 _ / 16 16 _=、/讳16 X 2比0.212, / L G-8.5)2^ 18.439,Z (x,- x )(L8.5)=—2.78,其中为为抽取的第i个零件的尺寸,i= 1,2, (16)(1)求⑶,i)(i= 12…,16)的相关系数二并答复是否可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小(假设加V0.25,那么可以认为零件的尺寸不随生产过程的进行而系统地变大或变小);(2)一天内抽检零件中,如果出现了尺寸在(刀-35,7 +3s)之外的零件,就认为这条生产线在这一天的生产过程可能出现了异常情况,需对当天的生产过程进行检查.①从这一天抽检的结果看,是否需对当天的生产过程进行检查?②在(7 -35,7 +3s)之外的数据称为离群值,试剔除离群值,估计这条生产线当天生产的零件尺寸的均值与标准差.(精确到0.01)附:样本(H,v)(i = 12…4的相关系数£(X,-7)(57-7)r=I ______/ / ・、/(),008公丫0・09・、/ £ d )2、/ £ 8 - 5 )216 _Z (XL x )(/—8.5)尸1解:(1)由样本数据得8,i)(i= 1,2,…,16)的相关系数为r= --------- /--- 1/16 _ / 16、/ Z (即- X C-8.5)2 -2.78剔除第13个数据,剩下数据的样本方差为aX 〔1 591.134 —9.22?—15X 10.022〕=0.008,A Q 这条生产线当天生产的零件尺寸的标准差的估计值为廊而比0.09.4.〔昆明模拟〕〞工资条里显红利,个税新政入民心〞.随着2021年新年钟声的敲响,我国 自1980年以来,力度最大的一次个人所得税〔简称个税〕改革迎来了全面实施的阶段.某IT 从业 者为了解自己在个税新政下能享受多少税收红利,绘制了他在26〜35岁〔2021〜2021年〕之间各 年的月平均收入〕,〔单位:千元〕的散点图:20・・・・ 16- ・ , 12- ., 8 ■ •4°123456789 io"年龄代码工注:年龄代码1~10分别对应年的26〜35岁⑴由散点图知,可用回归模型y=h\n x+a 拟合〕,与x 的关系,试根据有关数据建立〕,关于x 的回归方程;〔2〕如果该IT 从业者在个税新政下的专项附加扣除为3 000元/月,试利用〔1〕的结果,将月平 均收入视为月收入,根据新旧个税政策,估计他36岁时每个月少缴纳的个人所得税.1010 10 _10_ _ 10附注:参考数据:= 55,2〕〉= 155.5,N 〔即一x 〕2 =82.5,2 — x〕〔F — y 〕 = 94.9,26= i=li=li=lJ =1io _ io _ _15.1,2 缶- 1〕2=4.84,£〔力一 t 〕〔yi- y 〕 =242其中"=ln 为;取 In 11 =24,In 36=361=1 /=1参考公式:回归方程.=筋+味中斜率和截距的最小二乘估计分别为公= n ______ _X 〔出一〃〕〔.- V 〕 曰 A - A — -------------------------- \a= v —b u .Z 〔3一 〃 〕2月平均收入y千元解:(1)令 f=lnx,那么 y=bf+a10__Z & -,)()L y)24.2, b ~ ~__Z _痴_5ze —)2r=l10Zu-_2__155.5-_2_=而=-^-=15.55, t =苗A — A —a= y —b t = 15.55 —5X 1.51=8,所以〕,关于/的回归方程为〕,=5/+8.1015.1 lo"=L51由于/=lnx,所以y关于x的回归方程为y=51nx+8.⑵由⑴得,该IT从业者36岁时月平均收入为y=51n 11+8 = 5X2.4+8 = 20〔千元〕.旧个税政策下每个月应缴纳的个人所得税为1 500X3%+3 000X10%+4 500X20%+〔20 000-3 500-9 000〕X25% = 3 120〔元〕.新个税政策下每个月应缴纳的个人所得税为3 000X3%+〔20 000-5 OOO-3OOO-3 000〕X 10%=990〔元〕.故根据新旧个税政策,该IT从业者36岁时每个月少缴纳的个人所得税为3 120-990=2 130(70).I— 0 180.212X716X18.439 ',由于lrlV0.25,因此可以认为这一天生产的零件尺寸不随生产过程的进行而系统地变大或变小.(2)①由于7 =9.97,产0.212,由样本数据可以看出抽取的第13个零件的尺寸在(T—3s,7 + 3s)以外,因此需对当天的生产过程进行检查.②剔除离群值,即第13个数据,剩下数据的平均数为右义(16义9.97—9.22)=10.02,这条生产线当天生产的零件尺寸的均值的估计值为10.02.162X?=16X0.212I2+16X9.972^1 591.134,。
统计学相关案例解析
解: H0: 480000, H1: 480000。
统计检验量z x 0 450000 480000 1.581
S
120000
n
40
由 0.05,查表得临界值z z0.05 1.645
n
10
置信上限:x t0.025
S 791.1 2.262 17.136 803.3(6 克)
n
10
∴ 有95%的把握这批食品的平均每袋重 量在778.84克到803.36克之间。
例4.某制造厂质量管理部门的负责人希望估计移交给
接收部门的5500包原材料的平均重量。一个由250包
原材料组成的随机样本所给出的平均值 x 65千克 。
35
50
环比发展速 — 110 度(%)
105 95
要求:(1)利用指标间的关系将表中所缺数字补齐; (结果保留1位小数)
(2)按水平法计算该地区第八个五年计划期间 化肥产量年平均增长速度。
解:(1)、
时间 1990年
化肥产量 (万吨)
300
定基增长 量(万吨)
—
环比发展 速度(%)
—
第八个五年计划期间 1991年 1992年 1993年 1994年 1995年
总体标准差 15千克。试构造总体平均值 的置
信区间,已知置信概率为95%,总体为正态分布。
已知Z0.05 1.645,Z0.025 1.96,t0.05 (249) 1.645, t0.025 (249) 1.96。
解:已知总体服从正态分布,所以样本均值也服从
高考数学二轮复习专题突破—统计与统计案例(含解析)
高考数学二轮复习专题突破—统计与统计案例1.某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y 的频数分布表.(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01) 附:√74≈8.602.2.(2021·江西赣州二模改编)遵守交通规则,人人有责.“礼让行人”是我国《道路交通安全法》的明文规定,也是全国文明城市测评中的重要内容.《道路交通安全法》第47条明确规定:“机动车行经人行横道时,应当减速行驶;遇行人正在通过人行横道,应当停车让行.机动车行经没有交通信号的道路时,遇行人横过道路,应当避让.否则扣3分罚200元”.下表是2021年1至4月份我市某主干路口监控设备抓拍到的驾驶员不“礼让行人”行为统计数据:(1)请利用所给数据求不“礼让行人”驾驶员人数y 与月份x 之间的经验回归方程y ^=b ^x+a ^,并预测该路口2021年10月不“礼让行人”驾驶员的大约人数(四舍五入);(2)交警从这4个月内通过该路口的驾驶员中随机抽查50人,调查驾驶员不“礼让行人”行为与驾龄的关系,得到下表:依据小概率值α=0.10的独立性检验,分析“礼让行人”行为是否与驾龄有关.参考公式:b ^=∑i=1nx i y i -nx y ∑i=1nx i 2-nx2=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2.χ2=n(ad-bc)2(a+b)(c+d)(a+c)(b+d),其中n=a+b+c+d.3.(2021·河北石家庄二模改编)某地区在2020年底全面建成小康社会,随着实施乡村振兴战略规划,该地区农村居民的收入逐渐增加,可支配消费支出也逐年增加.该地区统计了2016~2020年农村居民人均消费支出情况,对有关数据处理后,制作如图1的折线图[其中变量y (单位:万元)表示该地区农村居民人均年消费支出,年份用变量t 表示,其取值依次为1,2,3,…].(1)由图1可知,变量y与t具有很强的线性相关关系,求y关于t的经验回归方程,并预测2021年该地区农村居民人均消费支出;2016~2020年该地区农村居民人均消费支出图1(2)在国际上,常用恩格尔系数(其含义是指食品类支出总额占个人消费支出总额的比重)来衡量一个国家和地区人民生活水平的状况.根据联合国粮农组织的标准:恩格尔系数在40%~50%为小康,30%~40%为富裕.已知2020年该地区农村居民平均消费支出构成如图2所示,预测2021年该地区农村居民食品类支出比2020年增长3%,从恩格尔系数判断2021年底该地区农村居民生活水平能否达到富裕生活标准.2020年该地区农村居民人均消费支出构成图2参考公式:经验回归方程y ^=b ^x+a ^中斜率和截距的最小二乘估计分别为:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2=∑i=1nx i y i -nx y∑i=1nx i 2-nx 2,a ^=y −b ^x .4.(2021·山东潍坊一模)在对人体的脂肪含量和年龄之间的关系的研究中,科研人员获得了一些年龄和脂肪含量的简单随机样本数据(x i ,y i )(i=1,2,…,20,25<x i <65),其中x i 表示年龄,y i 表示脂肪含量,并计算得到∑i=120x i 2=48 280,∑i=120y i 2=15 480,∑i=120x i y i =27 220,x =48,y =27,√22≈4.7.(1)请用样本相关系数说明该组数据中y 与x 之间的关系可用线性回归模型进行拟合,并求y 关于x的经验回归方程y ^=a ^+b ^x (a ^,b ^的计算结果保留两位小数);(2)科学健身能降低人体脂肪含量,下表是甲、乙两款健身器材的使用年限(整年)统计表:某健身机构准备购进其中一款健身器材,以使用年限的频率估计概率,请根据以上数据估计,该机构选择购买哪一款健身器材,才能使用更长久?参考公式:样本相关系数r=∑i=1n(x i -x)(y i -y)√∑i=1n (x i -x)2√∑i=1n(y i -y)2=∑i=1nx i y i -nx y√∑i=1nx i 2-nx 2√∑i=1ny i 2-ny 2;对于一组具有线性相关关系的数据(x i ,y i )(i=1,2,…,n ),其经验回归直线y ^=b ^x+a ^的斜率和截距的最小二乘估计分别为:b ^=∑i=1n(x i -x)(y i -y)∑i=1n(x i -x)2,a ^=y −b ^x .答案及解析1.解 (1)根据产值增长率频数分布表得,所调查的100个企业中产值增长率不低于40%的企业频率为14+7100=0.21.产值负增长的企业频率为2100=0.02.用样本频率分布估计总体分布得这类企业中产值增长率不低于40%的企业比例为21%,产值负增长的企业比例为2%.(2)y =1100(-0.10×2+0.10×24+0.30×53+0.50×14+0.70×7)=0.30, s 2=1100[(-0.40)2×2+(-0.20)2×24+02×53+0.202×14+0.402×7]=0.029 6, s=√0.029 6=0.02×√74≈0.17.所以,这类企业产值增长率的平均数与标准差的估计值分别为0.30,0.17. 2.解 (1)由表中数据易知:x =1+2+3+44=52,y =125+105+100+904=105,则b ^=∑i=14x i y i -4x y∑i=14x i 2-4x2=995−1 05030−25=-11,a ^=y −b ^ x =105-(-11)×52=132.5,故所求经验回归方程为y ^=-11x+132.5.令x=10,则y ^=-11×10+132.5=22.5≈23(人),预测该路口10月份不“礼让行人”的驾驶员大约人数为23. (2)零假设为H 0:“礼让行人”行为与驾龄无关.由表中数据可得χ2=50×(10×12−20×8)218×32×30×20≈0.23<2.706=x 0.10,依据小概率值α=0.10的独立性检验,没有充分证据推断H 0不成立,可以认为H 0成立,即认为“礼让行人”行为与驾龄无关.3.解 (1)由已知数据可求t =1+2+3+4+55=3, y =1.01+1.10+1.21+1.33+1.405=1.21,∑i=15t i 2=12+22+32+42+52=55,∑i=15t i y i =1×1.01+2×1.10+3×1.21+4×1.33+5×1.40=19.16,b ^=19.16−5×3×1.2155−5×32=1.0110=0.101,a ^=1.21-0.101×3=0.907,所求经验回归方程为y ^=0.101t+0.907. 当t=6时,y ^=0.101×6+0.907=1.513(万元),故2021年该地区农村居民人均消费支出约为1.513万元.(2)已知2021年该地区农村居民平均消费支出1.513万元,由图2可知,2020年该地区农村居民食品类支出为4 451元,则预测2021年该地区食品类支出为4 451×(1+3%)=4 584.53元,恩格尔系数=4 584.5315 130×100%≈30.3%∈(30%,40%),所以,2021年底该地区农村居民生活水平能达到富裕生活标准.4.解 (1)x 2=2 304,y2=729,∑i=120x i y i -20x y =1 300,∑i=120x i 2-20x 2=2 200,∑i=1ny i 2-20y 2=900,r=∑i=120x i y i -20x y√∑i=120x i 2-20x 2√∑i=1ny i 2-20y2≈0.92,因为y 与x 的样本相关系数接近1,所以y 与x 之间具有较强的线性相关关系,可用线性回归模型进行拟合.由题可得,b ^=∑i=120(x i -x)(y i -y)∑i=120(x i -x)2=∑i=120x i y i -20x y∑i=120x i 2-20x2=1322≈0.591,a ^=y −b ^ x =27-0.591×48≈-1.37,所以y ^=0.59x-1.37.(2)以频率估计概率,设甲款健身器材使用年限为X (单位:年).E (X )=5×0.1+6×0.4+7×0.3+8×0.2=6.6. 设乙款健身器材使用年限为Y (单位:年).E (Y )=5×0.3+6×0.4+7×0.2+8×0.1=6.1.因为E (X )>E (Y ),所以该健身机构购买甲款健身器材更划算.。
统计与统计案例
统计与统计案例
考点1、抽样方法
考法、分层抽样与系统抽样中的计算
1、为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段的视力情况有较大差异,而男女生视力情况差异不大,在下面抽样方法中,最合理的抽样方法是()
A.简单随机抽样B、按性别分层抽样
C、按学段分层抽样
D、系统抽样
2、一个总体分为A,B两层,其个体数之比为5:3,用分层抽样方法从总体中抽取一个容量为120的样本,则A层中应该抽取的个数为
3、将参加夏令营的500名学生编号为:001,002,003,,500,采用系统抽样的方法抽取一个容量为50 的样本,且随机抽得的号码为003,这500名学生分住在三个营区,从001到200在第一营区,从201到355在第二营区,从356到500在第三营区,三个营区被抽到的人数为
A、20,15,15
B、20,16,14
C、12,14,16
D、21,15,14
考点2、统计图表
核心概念
1、在频率分布直方图中,纵轴表示,数据落在个小组内的频率用个,各小长方形的面积总和等于
2、从某小区抽取100户居民进行月用电量调查,发现其用电量都在50到350度之间,频率
分布直方图所示。
(I)直方图中x的值为;
100,250内的户数为。
(II)在这些用户中,用电量落在区间[)
[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是().
A.45 B.50 C.55 D.60
考点3、样本数字特征
在一组数据。
统计学案例分析
1/6陳例13-1]我国人身保险业的发展情况保险可分为财产保险和人身保险两大类。
人身意外伤害险是人身保险的一部分。
随着我国国民经济的快速发展,我国保险业也呈现出良好的发展态势,由人身意外伤害险的保费收入的变化可见一斑。
案例思考与分析要求:1.利用Excel绘制岀该动态序列的折线图。
2.按本章第四节中所讲的动态数列构成因素的分类和特征,观察折线图并说明我国人身意外伤害险保费收入的变化中受哪几种构成因素的影响?3.对上述月度数据计算同比增长速度和环比增长速度各有什么意义?4.汇总出各年度保费收入总额,并根据年度数据计算2000—2006 年间的:(1)年平均发展水平。
(2)各年的逐期增长量、累计增长量和年平均增长量,验证逐期增长量与累计增长量之间的关系。
(3)各年的增长速度(环比、定基)、平均发展速度和平均增长速度, 并指岀增长速度超过一般水平的是哪几年?(4)年度保费收入总额呈现岀哪种形态的长期趋势?用恰当的数学模拟合效果的好坏,并预测2007年和2008年的发展水平。
5.如果要根据月度数据来测定保费收入序列的长期趋势,适合采用移动平均法还是数学模型拟合法?为什么?若采用移动平均法,平均的项数应为几项?试用Excel的移动平均工具进行计算并输出图表。
[案例1KL]表8—12中是16只公益股票某年的每股账面价值和当年红利:2/6根据表8—12屮的资料:⑴画出这些数据的散点图;⑵根据散点图,表明二变量之间存在什么关系?(3)求出当年红利是如何依赖每股账面价值的估计的回归方程;(4)对估计的回归方程屮的估计回归系数(斜率)的经济意义作出解释;(5)若序号为6的公司的股票每股账面价值增加1元,估计当年红利可能为多少?[案例口・2]股票分析案例背景随着中国经济的发展和经济体制改革的深入,建立一个繁荣有效的金融市场势在必行,证券市场作为它的重要组成部分,正在发挥越来越重要的作用。
在这一进程中,股票投资成为了一个越来越被普遍接受的投资选择。
二年数学下:《第八单元-统计》数学教案设计
二年数学下:《第八单元-统计》數學教案設計标题:二年数学下:第八单元 - 统计教案设计一、教学目标:1. 学生能够理解并掌握统计的基本概念,如数据的收集、分类和排序。
2. 学生能够使用图表(包括条形图和饼图)来表示数据,并从图表中获取信息。
3. 学生能运用所学知识解决实际生活中的简单统计问题。
二、教学内容:1. 数据的收集和分类2. 数据的排序3. 条形图和饼图的制作与解读4. 解决简单的统计问题三、教学方法:1. 讲解法:教师通过讲解、示范使学生理解统计的基本概念和方法。
2. 实践法:让学生自己动手收集、整理和分析数据,加深对统计的理解和应用能力。
3. 讨论法:鼓励学生进行小组讨论,分享自己的观察和思考,提高学生的交流和合作能力。
四、教学步骤:1. 引入新课:以生活中常见的统计现象为例,引出统计的概念和重要性。
2. 新知传授:通过具体的实例,讲解数据的收集、分类和排序的方法,以及如何制作和解读条形图和饼图。
3. 实践操作:让学生分组进行实践操作,每人选择一个主题,收集相关数据,制作条形图或饼图,并在全班展示和解释。
4. 课堂小结:回顾本节课的学习内容,强调统计的重要性和应用价值。
5. 布置作业:布置一些相关的练习题,让学生巩固和深化所学知识。
五、教学评估:1. 过程评价:观察学生在课堂上的参与度和表现,了解他们对统计知识的理解和掌握程度。
2. 结果评价:通过作业和测验,检查学生是否能正确地运用统计知识解决问题。
六、教学反思:1. 反思教学过程,看是否有需要改进的地方。
2. 关注学生的反馈,了解他们在学习过程中遇到的问题和困难,及时调整教学策略。
2013届高三数学二轮复习课件:8.1统计与统计案例
《 走 向 高 考 》 二 轮 专 题 复 习 · ( ) 数 学 新 课 标 版
专题八
概率与统计
a+b+c+dad-bc2 则 χ2= , a+bc+da+cb+d 若 χ2>3.841,则有 95%的把握说两个事件有关; 若 χ2>6.635,则有 99%的把握说两个事件有关; 若 χ2<2.706,则没有充分理由认为两个事件有关.
《 走 向 高 考 》 二 轮 专 题 复 习 · ( ) 数 学 新 课 标 版
专题八
概率与统计
(2)茎叶图
①茎叶图:当数据有两位有效数字时,用中间的数字 表示十位数,即第一个有效数字,两边的数字表示个位数, 即第二个有效数字,它的中间部分像植物的茎,两边部分 像植物茎上长出来的叶子,因此通常把这样的图叫做茎叶
专题八
概率与统计
(2010·安徽文,14)某地有居民100 000户,其中普通家 庭99 000户,高收入家庭1 000户.从普遍家庭中以简单随 机抽样方式抽取990户,从高收入家庭中以简单随机抽样方 式抽取100户进行调查,发现共有120户家庭拥有3套或3套 以上住房,其中普通家庭50户,高收入家庭70户.依据这 些数据并结合所掌握的统计知识,你认为该地拥有3套或3 套以上住房的家庭所占比例的合理估计是____________.
的作用. 5.了解回归的基本思想、方法及其简单应用.
( )
专题八
概率与统计
《 走 向 高 考 》 二 轮 专 题 复 习 · ( ) 数 学 新 课 标 版
专题八
概率与统计
1.本部分内容在高考中所占分数大约在5%左右.
2.本部分考查的主要内容是抽样方法,用样本估计总 体等,一般在每份试卷中有1~2题,多为容易题和中档
8.1.2 案例应用——投入与产出的关系研究_spss统计分析标准教程_[共7页]
第8章 非线性回归·187·续表 名 称 模型表达式Gauss b1*(1−b3*exp(−b2*x**2))Gompertz b1*exp(−b2*exp(−b3*x))Johnson-Schumacher b1*exp(−b2/(x+b3))对数修改(b1+b3*x)**b2 对数Logisticb1−ln(1+b2*exp(−b3*x)) Metcherlich 的收益递减规律b1+b2*exp(−b3*x) Michaelis Menten b1*x/(x+b2)Morgan-Mercer-Florin (b1*b2+b3*x**b4)/(b2+x**b4) Peal-Reed b1/(1+b2*exp(−(b3*x+b4*x**2+b5*x**3)))三次比 (b1+b2*x+b3*x**2+b4*x**3)/(b5*x**3) 四次比 (b1+b2*x+b3*x**2)/(b4*x**2)Richards b1/((1+b3*exp(−b2*x))**(1/b4))Verhulst b1/(1+b3*exp(−b2*x))V on Bertalanffy(b1**(1−b4) −b2*exp(−b3*x))**(1/(1−b4)) Weibull b1−b2*exp(−b3*x**b4)产量密度(b1+b2*x+b3*x**2)**(−1) 在PASW 中执行非线性回归过程前,需要根据经验或已有信息,确定一个本质非线性的模型,可参考表8-1。
另外,因变量与自变量都要求为数值型的连续变量,对于分类变量,应该将其重新编码为数值型。
在非线性回归中,损失函数是用来最小化的目标函数,PASW 默认将残差平方和作为损失函数,这类似于线性回归中最小二乘法的目标,PASW 还允许用户自定义损失函数。
关于参数的初始值及其取值范围,由于非线性回归采用迭代算法估计参数,故需事先指定参数的初始值和取值范围。
统计与统计案例PPT课件
走向高考 ·二轮专题复习 ·新课标版 ·数学
用样本估计总体
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
用样本估计总体 (文)某学校为了调查学生平均每周的上网时间(单 位:h)对学习产生的影响,从高三年级随机抽取了 100 名学生, 将所得数据整理后,画出频率分布直方图(如图),其中频率分 布直方图从左到右前 3 个小矩形的面积之比为 1:3:5,试估 计:
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
疑难误区警示 1.当总体数 N 不能被样本容量整除,用系统抽样法剔除 多余个体时,必须随机抽样. 2.注意中位数与平均数的区别,中位数可能不在样本数 据中.
专题七 第一讲
走向高考 ·二轮专题复习 ·新课工厂甲、乙、丙三个车
间生产了同一种产品,数量分别为 120 件,80 件,60 件,为
了解它们的产品质量是否存在显著差异,用分层抽样方法抽
取了一个容量为 n 的样本进行调查,其中从丙车间的产品中
抽取了 3 件,则 n=( )
A.9
B.10
C.12
D.13
[答案] D
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
某市有大型超市 200 家、中型超市 400 家、小型超市 1400 家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个 容量为 100 的样本,应抽取中型超市________家.
[答案] 20
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
[解析] 属简单题,关键是清楚每一层的抽取比例都一样 是Nn .
专题七 第一讲
走向高考 ·二轮专题复习 ·新课标版 ·数学
高中数学统计与统计案例全章复习题型完美版
第八章统计与统计案例第1节随机抽样最新考纲:1.理解随机抽样的必要性和重要性;2.会用简单随机抽样方法从总体中抽取样本;3.了解分层抽样和系统抽样方法.会用随机抽样的基本方法解决一些简单的实际问题.1.简单随机抽样(1)定义:设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)最常用的简单随机抽样的方法:抽签法和随机数法.2.系统抽样的步骤假设要从容量为N的总体中抽取容量为n的样本.(1)先将总体的N个个体编号.(2)确定分段间隔K,对编号进行分段,当Nn是整数时,取k=Nn,当Nn不是整数时,随机从总体中剔除余数,再取k=N′n(N′为从总体中剔除余数后的总数).1知识梳理(3)在第1段用简单随机抽样确定第一个个体编号l(l≤k).(4)按照一定的规则抽取样本,通常是将l 加上间隔k得到第2个个体编号(l+k),再加k得到第3个个体编号(l+2k),依次进行下去,直到获取整个样本.3.分层抽样(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法叫做分层抽样.(2)分层抽样的应用范围:当总体由差异明显的几个部分组成时,往往选用分层抽样.2题型分类【例1】下列抽取样本的方式属于简单随机抽样的个数为( )①从无限多个个体中抽取100个个体作为样本.②盒子里共有80个零件,从中选出5个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里.③从20件玩具中一次性抽取3件进行质量检验.④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.A.0B.1C.2D.3【例2】(2017?葫芦岛模拟)福利彩票“双色球”中红球的号码可以从01,02,03,…,32,33这33个二位号码中选取,小明利用如图所示的随机数表选取红色球的6个号码,选取方法是从第1行第9列和第10列的数字开始从左到右依次选取两个数字,则第四个被选中的红色球号码为()A.12B.33C.06D.16【例3】(教材习题改编)老师在班级50名学生中,依次抽取学号为5,10,15,20,25,30,35,40,45,50的学生进行作业检查,这种抽样方法是( )A.随机抽样B.分层抽样C.系统抽样D.以上都不是【例4】某地区有小学150所,中学75所,大学25所,现采用分层抽样的方法从这些学校中抽取30所学校对学生进行视力调查,应从小学中抽取________所学校,中学中抽取________所学校.【例5】哈六中2016届有840名学生,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为________.【例6】(2017·西安质检)对一个容量为N的总体抽取容量为n的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p1,p2,p3,则( )A.p1=p2<p3B.p2=p3<p1C.p1=p3<p2D.p1=p2=p3【变式1】(2017?大连二模)某单位员工按年龄分为A,B,C三组,其人数之比为5:4:1,现用分层抽样的方法从总体中抽取一个容量为10的样本,已知C组中某个员工被抽到1,则该单位员工总数为()的概率是9A.110B.10C.90D.80【变式2】(2017?黄州区三模)某校为了解1000名高一新生的身体生长状况,用系统抽样法(按等距的规则)抽取40名同学进行检查,将学生从1~1000进行编号,现已知第18组抽取的号码为443,则第一组用简单随机抽样抽取的号码为()A.16B.17C.18D.19【变式3】(2017?宣城二模)一支田径队共有运动员98人,其中女运动员42人,用分层2,则男运动员应抽取()抽样的方法抽取一个样本,每名运动员被抽到的概率都是7A.18人B.16人C.14人D.12人3课后作业1.为了了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是( )A.简单随机抽样B.按性别分层抽样C.按学段分层抽样D.系统抽样2.从编号为1~50的50枚最新研制的某种型号的导弹中随机抽取5枚来进行发射试验,若采用每部分选取的号码间隔一样的系统抽样方法,则所选取5枚导弹的编号可能是( )A.5,10,15,20,25B.3,13,23,33,43C.1,2,3,4,5D.2,4,6,16,323.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显着差异,用分层抽样方法抽取了一个容量为n的样本进行调查,其中从丙车间的产品中抽取了3件,则n=( )A.9B.10C.12D.134.将参加英语口语测试的1 000名学生编号为000,001,002,...,999,从中抽取一个容量为50的样本,按系统抽样的方法分为50组,如果第一组编号为000,001,002, (019)且第一组随机抽取的编号为015,则抽取的第35个编号为( )A.700B.669C.695D.6765.某防疫站对学生进行身体健康调查,欲采用分层抽样的办法抽取样本.某中学共有学生2 000名,抽取了一个容量为200的样本,已知样本中女生比男生少6人,则该校共有女生( )A.1030人B.97人C.950人D.970人第2节用样本估计总体最新考纲:1.了解分布的意义与作用,能根据概率分布表画频率分布直方图、频率折线图、茎叶图,体会它们各自的特点.2.理解样本数据标准差的意义和作用,会计算数据标准差.3.能从样本数据中提取基本的数字特征(如平均数、标准差),并做出合理的解释.4.会用样本的频率分布估计总体分布,会用样本的基本数字特征估计总体的基本数字特征.理解用样本估计总体的思想,会用样本估计总体的思想解决一些简单的实际问题.1.频率分布直方图(1)频率分布表的画法:第一步:求极差,决定组数和组距,组距=极差组数;第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间;1知识梳理第三步:登记频数,计算频率,列出频率分布表.(2)频率分布直方图:反映样本频率分布的直方图.横轴表示样本数据,纵轴表示频率组距,每个小矩形的面积表示样本落在该组内的频率.2.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶是从茎的旁边生长出来的数.3.样本的数字特征方差s2=1n[(x1-x)2+(x2-x)2+…+(x n-x)2],其中s为标准差题型一茎叶图【例1】(必修3P70改编)若某校高一年级8个班参加合唱比赛的得分茎叶图如图所示,则这组数据的中位数和平均数分别是( )A.91.5和91.5B.91.5和92C.91和91.5D.92和92【例2】(2016?唐山一模)为迎接即将举行的集体跳绳比赛,高一年级对甲、乙两个代表队各进行了6轮测试,测试成绩(单位:次/分钟)如表:(1)补全茎叶图并指出乙队测试成绩的中位数和众数;(2)试用统计学中的平均数、方差知识对甲乙两个代表队的测试成绩进行分析.2题型分类【变式1】如图,茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分).已知甲组数据的中位数为15,乙组数据的平均数为16.8,则x,y的值分别为( )A.2,5B.5,5C.5,8D.8,8【变式2】(2015秋?宣城期末)甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:(1)用茎叶图表示这两组数据;(2)现要从中选派一人参加数学竞赛,从统计学的角度(在平均数、方差或标准差中选两个)考虑,你认为选派哪位学生参加合适?请说明理由.题型二频率分布直方图【例1】(教材习题改编)某校为了了解教科研工作开展状况与教师年龄之间的关系,将该校不小于35岁的80名教师按年龄分组,分组区间为[35,40),[40,45),[45,50),[50,55),[55,60],由此得到频率分布直方图如图,则这80名教师中年龄小于45岁的有________人.【例2】(2017·济南调研)为了研究某药品的疗效,选取若干名志愿者进行临床试验.所有志愿者的舒张压数据(单位:kPa)的分组区间为[12,13),[13,14),[14,15),[15,16),[16,17],将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.下图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有20人,第三组中没有疗效的有6人,则第三组中有疗效的人数为_______.【变式1】(2017?东台市模拟)从高三年级随机抽取100名学生,将他们的某次考试数学成绩绘制成频率分布直方图.由图中数据可知成绩在[130,140)内的学生人数为_______.【变式2】(2016秋?威海期末)从某小学随机抽取100名同学,将他们的身高(单位:厘米)数据绘制成频率分布直方图(如图).若要从身高在[100,110),[110,120),[120,130)三组内的学生中,用分层抽样的方法选取28人参加一项活动,则从身高在[120,130)内的学生中选取的人数应为_______.【例3】(2016·四川卷)我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查.通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),……,[4,4.5]分成9组,制成了如图所示的频率分布直方图.(1)求直方图中a的值;(2)设该市有30万居民,估计全市居民中月均用水量不低于3吨的人数,说明理由;(3)估计居民月均用水量的中位数.【变式3】(2017?灵丘县四模)为对考生的月考成绩进行分析,某地区随机抽查了10000名考生的成绩,根据所得数据画了如下的样本频率分布直方图.(1)求成绩在[600,650)的频率;(2)根据频率分布直方图算出样本数据的中位数;(3)为了分析成绩与班级、学校等方面的关系,必须按成绩再从这10000人中用分层抽样方法抽出20人作进一步分析,则成绩在[550,600)的这段应抽多少人?【例4】(2017?唐山二模)共享单车的出现方便了人们的出行,深受我市居民的喜爱.为调查某校大学生对共享单车的使用情况,从该校8000名学生中按年级用分层抽样的方式随机抽取了100位同学进行调查,得到这100名同学每周使用共享单车的时间(单位:小时)如表:使用时间[0,2](2,4](4,6](6,8](8,10]人数104025205(1)已知该校大一学生由2400人,求抽取的100名学生中大一学生人数;(2)作出这些数据的频率分布直方图;(3)估计该校大学生每周使用共享单车的平均时间t(同一组中的数据用该组区间的中点值作代表).【变式4】(2014·全国Ⅰ卷)从某企业生产的某种产品中抽取100件,测量这些产品的一项质量指标值,由测量结果得如下频数分布表:(1)作出这些数据的频率分布直方图:(2)估计这种产品质量指标值的平均数及方差(同一组中的数据用该组区间的中点值作代表);(3)根据以上抽样调查数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品80%”的规定?【例5】(2017?肇庆三模)某市房产契税标准如下:从该市某高档住宅小区,随机调查了一百户居民,获得了他们的购房总额数据,整理得到了如下的频率分布直方图:(1)假设该小区已经出售了2000套住房,估计该小区有多少套房子的总价在300万以上,说明理由.(2)假设同组中的每个数据用该组区间的右端点值代替,估计该小区购房者缴纳契税的平均值.【变式5】(2016·北京卷)某市居民用水拟实行阶梯水价,每人月用水量中不超过w立方米的部分按4元/立方米收费,超出w立方米的部分按10元/立方米收费.从该市随机调查了10 000位居民,获得了他们某月的用水量数据,整理得到如下频率分布直方图:(1)如果w为整数,那么根据此次调查,为使80%以上居民在该月的用水价格为4元/立方米,w至少定为多少?(2)假设同组中的每个数据用该组区间的右端点值代替.当w=3时,估计该市居民该月的人均水费.3课后作业1.重庆市2016年各月的平均气温(℃)数据的茎叶图如图,则这组数据的中位数是( )A.19B.20C.21.5D.232.我国古代数学名着《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为 ( )A.134石B.169石C.338石D.1365石3.某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若低于60分的人数是15,则该班的学生人数是( )A .45B .50C .55D .604.(2016·全国卷Ⅲ)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图.图9-3-11中A 点表示十月的平均最高气温约为15 ℃,B 点表示四月的平均最低气温约为5 ℃.下面叙述不正确的是( )A .各月的平均最低气温都在0 ℃以上B .七月的平均温差比一月的平均温差大C .三月和十一月的平均最高气温基本相同D .平均最高气温高于20 ℃的月份有5个5.(2015?广东)某城市100户居民的月平均用电量(单位:度),以[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300)分组的频率分布直方图如图.(1)求直方图中x的值;(2)求月平均用电量的众数和中位数;(3)在月平均用电量为,[220,240),[240,260),[260,280),[280,300)的四组用户中,用分层抽样的方法抽取11户居民,则月平均用电量在[220,240)的用户中应抽取多少户?第3节线性回归方程最新考纲:1.会做两个有关联变量的数据的散点图,并利用散点图认识变量间的相关关系.2.了解最小二乘法的思想,能根据给出的线性回归方程系数公式建立线性回归方程(线性回归系数公式不要求记忆).3.了解回归分析的基本思想、方法及其简单应用.1知识梳理1.回归分析回归分析是对具有相关关系的两个变量进行统计分析的一种常用方法;判断相关性的常用统计图是散点图;统计量有相关系数与相关指数.(1)在散点图中,点散布在从左下角到右上角的区域,对于两个变量的这种相关关系,我们将它称为正相关.(2)在散点图中,点散布在从左上角到右下角的区域,两个变量的这种相关关系称为负相关.(3)如果散点图中点的分布从整体上看大致在一条直线附近,称两个变量具有线性相关关系.2.线性回归方程(1)最小二乘法:使得样本数据的点到回归直线的距离的平方和最小的方法叫做最小二乘法.(2)回归方程:两个具有线性相关关系的变量的一组数据:(x 1,y 1),(x 2,y 2),…,(x n ,y n ),其回归方程为y ^=b ^x +a ^,则∑∑∑∑====∧--=---=ni i ni ii ni i ni i i xn x yx n yx x x y y x x b 1221121)())((,x b y a ∧∧-=.其中,b ^是回归方程的斜率,a ^是在y 轴上的截距.3.相关系数a .计算公式:∑∑∑===----=ni ni iini ii y yx x y yx x r 11221)()())((b .当r >0时,表明两个变量正相关;当r <0时,表明两个变量负相关.r的绝对值越接近于1,表明两个变量的线性相关性越强.r的绝对值越接近于0,表明两个变量之间相关性越弱.通常|r|大于0.75时,认为两个变量有很强的线性相关性.2题型分类题型一相关关系的判断【例】某公司2010~2015年的年利润x(单位:百万元)与年广告支出y(单位:百万元)的统计资料如下表所示:根据统计资料,则()A.利润中位数是16,x与y有正线性相关关系B.利润中位数是17,x与y有正线性相关关系C.利润中位数是17,x与y有负线性相关关系D.利润中位数是18,x与y有负线性相关关系【变式】对变量x,y有观测数据(x i,y i)(i=1,2,…,10),得散点图(1);对变量u,v 有观测数据(u i,v i)(i=1,2,…,10),得散点图(2).由这两个散点图可以判断( )A.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关题型二线性回归分析【例1】(2017?延边州模拟)如表提供了某厂节能降耗改造后在生产A产品过程中记录的产量x(吨)与相应的生产能耗y(吨)的几组对应数据,根据表中提供的数据,求出y关于x的线性回归方程为yˆ=0.7x+0.35,则下列结论错误的是()A.线性回归直线一定过点(4.5,3.5)B.产品的生产能耗与产量呈正相关C .t 的取值必定是3.15D .A 产品每多生产1吨,则相应的生产能耗约增加0.7吨【变式1】(2017?南昌一模)设某中学的高中女生体重y (单位:kg )与身高x (单位:cm )具有线性相关关系,根据一组样本数据(x i ,y i )(i =1,2,3,…,n ),用最小二乘法近似得到回归直线方程为yˆ=0.85x?85.71,则下列结论中不正确的是( ) A .y 与x 具有正线性相关关系B .回归直线过样本的中心点(y x ,)C .若该中学某高中女生身高增加1cm ,则其体重约增加0.85kgD .若该中学某高中女生身高为160cm ,则可断定其体重必为50.29kg【例2】(2017?西青区模拟)为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表:据上表得回归直线方程a x b yˆˆˆ+=,其中76.0ˆ=b ,x b y a ˆˆˆ-=,据此估计,该社区一户收入为15万元家庭年支出为( )A .11.4万元B .11.8万元C .12.0万元D .12.2万元【变式2】(2017?成都四模)广告投入对商品的销售额有较大影响.某电商对连续5个年度的广告费和销售额进行统计,得到统计数据如表(单位:万元):由表可得到回归方程为a x yˆ2.10ˆ+=,据此模型,预测广告费为10万元时的销售额约为( )A .101.2B .108.8C .111.2D .118.2题型三 线性相关关系检验【例1】(2017?广西一模)在两个变量y 与x 的回归模型中,分别选择了四个不同的模型,它们的相关指数R 2如下,其中拟合效果最好的为( )A .模型①的相关指数为0.976 C .模型③的相关指数为0.076B .模型②的相关指数为0.776D .模型④的相关指数为0.351【例2】(2015春?祁县期中)某电脑公司有6名产品推销员,其工作年限与年推销金额数据如下表:求年推销金额y 与工作年限x 之间的相关系数.【变式】(2017?泉州模拟)关于衡量两个变量y 与x 之间线性相关关系的相关系数r 与相关指数R 2中,下列说法中正确的是( )A .r 越大,两变量的线性相关性越强 C .r 的取值范围为(-∞,+∞)B .R 2越大,两变量的线性相关性越强D .R 2的取值范围为[0,+∞)题型四 线性回归方程【例1】(2017?乐东县一模)某公司经营一批进价为每件4百元的商品,在市场调查时发现,此商品的销售单价x (百元)与日销售量y (件)之间有如下关系:(1)求y 关于x 的回归直线方程;(2)借助回归直线方程请你预测,销售单价为多少百元(精确到个位数)时,日利润最大?【变式1】(2017?全国模拟)从某居民区随机抽取10个家庭,获得第i个家庭的月收入xi(单位:千元)与月储蓄y i(单位:千元)的数据资料,算得∑==10180iix,∑==10120iiy,∑==101184iiiyx,∑==10 12720iix.(1)求家庭的月储蓄y关于月收入x的线性回归方程ax byˆˆˆ+=;(2)若该居民区某家庭月收入为7千元,预测该家庭的月储蓄.【例2】(2017?甘肃一模)如图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程(系数精确到0.01),预测2017年我国生活垃圾无害化处理量.参考数据:32.971=∑=i i y ,17.4071=∑=i i i y t ,55.0)(271=-∑=y yi i,646.27≈.参考公式:相关系数()()niit t y y r --=∑回归方程y a bt =+中斜率和截距的最小二乘估计公式分别为:121()()()nii i nii tt y y btt ==--=-∑∑,=.a y bt -【例3】(2017?河南一模)为了对2016年某校中考成绩进行分析,在60分以上的全体同学中随机抽出8位,他们的数学分数(已折算为百分制)从小到大排是60、65、70、75、80、85、90、95,物理分数从小到大排是72、77、80、84、88、90、93、95.(1)若规定85分以上为优秀,求这8位同学中恰有3位同学的数学和物理分数均为优秀的概率;(2)若这8位同学的数学、物理、化学分数事实上对应如下表:①用变量y与x、z与x的相关系数说明物理与数学、化学与数学的相关程度;②求y与x、z与x的线性回归方程(系数精确到0.01),当某同学的数学成绩为50分时,估计其物理、化学两科的得分.参考公式:相关系数∑∑∑===----=ni ni i i ni ii y y x x y yx x r 11221)()())((,∑∑==---=ni ini i ix xy y x xb 121)())((.参考数据:5.77=x ,85=y ,81=z ,1050)(812≈-∑=i i x x ,456)(812≈-∑=i i y y ,550)(812≈-∑=i i z z ,668)()(81≈--∑=y y x xi i i,755)()(81≈--∑=z z x xi i i,4.321050≈,4.21456≈,5.23550≈.【变式2】(2017?汕头一模)二手车经销商小王对其所经营的A 型号二手汽车的使用年数x 与销售价格y (单位:万元/辆)进行整理,得到如下数据:下面是z 关于x 的折线图:(1)由折线图可以看出,可以用线性回归模型拟合z 与x 的关系,请用相关数加以说明;(2)求y 关于x 的回归方程并预测某辆A 型号二手车当使用年数为9年时售价约为多少?(a bˆ,ˆ小数点后保留两位有效数字). (3)基于成本的考虑,该型号二手车的售价不得低于7118元,请根据(2)求出的回归方程预测在收购该型号二手车时车辆的使用年数不得超过多少年?参考数据:4.18761=∑=i i i y x ,64.4761=∑=i i i z x ,139612=∑=i i x ,96.13)(261=-∑=y y i i,53.1)(261=-∑=z zi i,38.046.1ln ≈,34.07118.0ln ≈.【例4】(2015高考新课标1,文19)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值.y46.56. 6.表中i ww =1881i i w =∑.(1)根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(2)根据(I )的判断结果及表中数据,建立y 关于x 的回归方程.附:对于一组数据),(),,(2211v u v u ,……,),(n n v u ,其回归线u v βα+=的斜率和截距的最小二乘估计分别为:∑∑==---=ni ini i iu uv v u u121)())((ˆβ.【变式3】(2017?衡水金卷一模)某种新产品投放市场一段时间后,经过调研获得了时间x (天数)与销售单价y (元)的一组数据,且做了一定的数据处理(如表),并作出了散点图(如图).表中ii x w 1=,∑==101101i i w w .(1)根据散点图判断,a bx y+=ˆ,c xdy ˆˆˆ+=哪一个更适宜作价格y 关于时间x 的回归方程类型?(不必说明理由)(2)根据判断结果和表中数据,建立y 关于x 的回归方程;(3)若该产品的日销售量g (x )(件)与时间x 的函数关系为120100)(+-=xx g (x ∈N *),求该产品投放市场第几天的销售额最高?最高为多少元?3课后作业1.(2015·全国卷Ⅱ)根据下面给出的2004年至2013年我国二氧化硫年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A.逐年比较,2008年减少二氧化硫排放量的效果最显着B.2007年我国治理二氧化硫排放显现成效C.2006年以来我国二氧化硫年排放量呈减少趋势D.2006年以来我国二氧化硫年排放量与年份正相关2.(2017·贵阳检测)若8名学生的身高和体重数据如下表:第3名学生的体重漏填,但线性回归方程是yˆ=0.849x-85.712,则第3名学生的体重估计为_____kg.3.(2017?合肥三模)网络购物已经成为一种时尚,电商们为了提升知名度,加大了在媒体上的广告投入.经统计,近五年某电商在媒体上的广告投入费用x(亿元)与当年度该电商的销售收入y(亿元)的数据如下表:):(1)求y关于x的回归方程;(2)2017年度该电商准备投入广告费1.5亿元,利用(Ⅰ)中的回归方程,预测该电商2017年的销售收入.附:回归直线的斜率和截距的最小二乘估计公式分别为:∑∑==---=niiniiixxyyxxb121)())((,选用数据:1.1231=∑=niiiyx,1.512=∑=ni ix4.(2017?包头一模)如图是某企业2010年至2016年污水净化量(单位:吨)的折线图.注:年份代码1~7分别对应年份2010~2016.(1)由折线图看出,可用线性回归模型拟合y 和t 的关系,请用相关系数加以说明;(2)建立y 关于t 的回归方程,预测2017年该企业污水净化量;(3)请用数据说明回归方程预报的效果.附注:参考数据:54=y ,21))((71=--∑=i i i y y t t ,74.314≈,49)ˆ(712=-∑=i i i yy . 参考公式:相关系数∑∑∑===----=ni ni i i ni i iy y t t y y t tr 11221)()())((,∑∑==---=ni ini i it ty y t tb121)())((ˆ.反映回归效果的公式第4节独立性检验最新考纲:了解独立性检验(只要求2×2列联表)的思想、方法及其初步应用.1知识梳理一.2×2列联表1.列联表用表格列出的分类变量的频数表,叫做列联表。
高中数学第三章统计案例1独立性检验卡方检验素材苏教版
2χ检验(一)掌握内容1. 2χ检验的用途。
2. 四格表的2χ检验.(1) 四格表2χ检验公式的应用条件; (2) 不满足应用条件时的解决办法; (3) 配对四格表的2χ检验。
3. 行⨯列表的2χ检验. (二) 熟悉内容频数分布拟合优度的2χ检验. (三) 了解内容1.2χ分布的图形。
2.四格表的确切概率法。
(一) 2χ检验的用途2χ检验(Chi —square test )用途较广,主要用途如下:1.推断两个率及多个总体率或总体构成比之间有无差别 2.两种属性或两个变量之间有无关联性 3.频数分布的拟合优度检验 (二) 2χ检验的基本思想1.2χ检验的基本思想是以2χ值的大小来反映理论频数与实际频数的吻合程度。
在零假设0H (比如0H :21ππ=)成立的条件下,实际频数与理论频数相差不应该很大,即2χ值不应该很大,若实际计算出的2χ值较大,超过了设定的检验水准所对应的界值,则有理由怀疑0H 的真实性,从而拒绝0H ,接受H 1(比如1H :21ππ≠).2. 基本公式:()∑-=TT A 22χ,A 为实际频数(Actual Frequency ),T 为理论频数(Theoretical Frequency ).四格表2χ检验的专用公式正是由此公式推导出来的,用专用公式与用基本公式计算出的2χ值是一致的。
(三)率的抽样误差与可信区间 1.率的抽样误差与标准误样本率与总体率之间存在抽样误差,其度量方法:np )1(ππσ-=,π为总体率,或 (8—1)np p S p )1(-=,p为样本率;(8—2)2.总体率的可信区间当n 足够大,且p 和1—p 均不太小,p 的抽样分布逼近正态分布.总体率的可信区间:(ppS u p S u p ⨯+⨯-2/2/,αα)。
(8—3)(四)2χ检验的基本计算见表8-1。
表8—1 2χ检验的用途、假设的设立及基本计算公式资料形式 用途 0H 、1H 的设立与计算公式 自由度 四格表 ①独立资料两 样本率的比较②配对资料两样本率的比较0H :两总体率相等 1H :两总体率不等①专用公式))()()(()(22d b c a d c b a n bc ad ++++-=χ②当n ≥40但1≤T 〈5时,校正公式))()()(()2/(22d b c a d c b a n n bc ad ++++--=χ③配对设计cb c b +--=22)1(χ1 R ⨯C 表 ①多个样本率、 0H :多个总体率(构成比)相等 (R —1)构成比的比较②两个变量之间关联性分析(0H:两种属性间存在关联)1H:多个总体率(构成比)不全相等(H:两种属性间存在关联))1(22-=∑CRnnAnχ(C—1)频数分布表频数分布的拟合优度检验H:资料服从某已知的理论分布1H:资料不服从某已知的理论分布∑-TTA2)(据频数表的组数而定(五)四格表的确切概率法当四格表有理论数小于1或n〈40时,宜用四格表的确切概率法。
统计案例分析及典型例题
统计案例分析及典型例题§11.1 抽样方法基础自测1.为了了解所加工的一批零件的长度,抽取其中200个零件并测量了其长度,在这个问题中,总体的一个样本是 .答案 200个零件的长度2.某城区有农民、工人、知识分子家庭共计2 004户,其中农民家庭1 600户,工人家庭303户,现要从中抽取容量为40的样本,则在整个抽样过程中,可以用到下列抽样方法:①简单随机抽样,②系统抽样,③分层抽样中的 .答案①②③3.某企业共有职工150人,其中高级职称15人,中级职称45人,初级职称90人.现采用分层抽样抽取容量为30的样本,则抽取的各职称的人数分别为 .答案3,9,184.某工厂生产A、B、C三种不同型号的产品,其相应产品数量之比为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型号产品有16件,那么此样本的容量n= .答案80例1某大学为了支援我国西部教育事业,决定从2007应届毕业生报名的18名志愿者中,选取6人组成志愿小组.请用抽签法和随机数表法设计抽样方案.解抽签法:第一步:将18名志愿者编号,编号为1,2,3, (18)第二步:将18个号码分别写在18张外形完全相同的纸条上,并揉成团,制成号签;第三步:将18个号签放入一个不透明的盒子里,充分搅匀;第四步:从盒子中逐个抽取6个号签,并记录上面的编号;第五步:所得号码对应的志愿者,就是志愿小组的成员.随机数表法:第一步:将18名志愿者编号,编号为01,02,03, (18)第二步:在随机数表中任选一数作为开始,按任意方向读数,比如第8行第29列的数7开始,向右读;第三步:从数7开始,向右读,每次取两位,凡不在01—18中的数,或已读过的数,都跳过去不作记录,依次可得到12,07,15,13,02,09.第四步:找出以上号码对应的志愿者,就是志愿小组的成员.例2 某工厂有1 003名工人,从中抽取10人参加体检,试用系统抽样进行具体实施. 解 (1)将每个人随机编一个号由0001至1003. (2)利用随机数法找到3个号将这3名工人剔除. (3)将剩余的1 000名工人重新随机编号由0001至1000. (4)分段,取间隔k =100001=100将总体均分为10段,每段含100个工人.(5)从第一段即为0001号到0100号中随机抽取一个号l .(6)按编号将l ,100+l ,200+l ,…,900+l 共10个号码选出,这10个号码所对应的工人组成样本. 例3 (14分)某一个地区共有5个乡镇,人口3万人,其中人口比例为3∶2∶5∶2∶3,从3万人中抽取一个300人的样本,分析某种疾病的发病率,已知这种疾病与不同的地理位置及水土有关,问应采取什么样的方法?并写出具体过程.解 应采取分层抽样的方法.3分过程如下:(1)将3万人分为五层,其中一个乡镇为一层.5分(2)按照样本容量的比例随机抽取各乡镇应抽取的样本. 300×153=60(人);300×152=40(人); 300×155=100(人);300×152=40(人); 300×153=60(人),10分因此各乡镇抽取人数分别为60人,40人,100人,40人,60人.12分(3)将300人组到一起即得到一个样本.14分练习:一、填空题1.(安庆模拟)某校高中生共有900人,其中高一年级300人,高二年级200人,高三年级400人,现分层抽取容量为45的样本,那么高一、高二、高三年级抽取的人数分别为 .答案15,10,202.某牛奶生产线上每隔30分钟抽取一袋进行检验,则该抽样方法为①;从某中学的30名数学爱好者中抽取3人了解学习负担情况,则该抽样方法为②.那么①,②分别为 .答案系统抽样,简单随机抽样3.下列抽样实验中,最适宜用系统抽样的是(填序号).①某市的4个区共有2 000名学生,且4个区的学生人数之比为3∶2∶8∶2,从中抽取200人入样②某厂生产的2 000个电子元件中随机抽取5个入样③从某厂生产的2 000个电子元件中随机抽取200个入样④从某厂生产的20个电子元件中随机抽取5个入样答案③4.(2013·重庆文)某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,从男生中任意抽取25人,从女生中任意抽取20人进行调查,这种抽样方法是 .答案分层抽样法5.某中学有高一学生400人,高二学生300人,高三学生200人,学校团委欲用分层抽样的方法抽取18名学生进行问卷调查,则下列判断不正确的是(填序号).①高一学生被抽到的概率最大②高三学生被抽到的概率最大③高三学生被抽到的概率最小④每名学生被抽到的概率相等答案①②③6.某商场有四类食品,其中粮食类、植物油类、动物性食品类及果蔬类分别有40种、10种、30种、20种,现从中抽取一个容量为20的样本进行食品安全检测,若采用分层抽样的方法抽取样本,则抽取的植物油类与果蔬类食品种数之和是 .答案 67.(天津文,11)一个单位共有职工200人,其中不超过45岁的有120人,超过45岁的有80人.为了调查职工的健康状况,用分层抽样的方法从全体职工中抽取一个容量为25的样本,应抽取超过45岁的职工人.答案108.将参加数学竞赛的1 000名学生编号如下0001,0002,0003,…,1000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,如果第一部分编号为0001,0002,…,0020,从第一部分随机抽取一个号码为0015,则第40个号码为 . 答案 07959.某政府机关有在编人员100人,其中副处级以上干部10人,一般干部70人,工人20人,上级机关为了了解政府机构改革意见,要从中抽取一个容量为20的样本,试确定用何种方法抽取,如何抽取? 解 用分层抽样抽取. (1)∵20∶100=1∶5, ∴510=2,570=14,520=4∴从副处级以上干部中抽取2人,一般干部中抽取14人,从工人中抽取4人.(2)因副处级以上干部与工人人数较少,可用抽签法从中分别抽取2人和4人;对一般干部可用随机数表法抽取14人.(3)将2人、4人、14人编号汇合在一起就得到了容量为20的样本.10.某单位有工程师6人,技术员12人,技工18人,要从这些人中抽取一个容量为n 的样本.如果采用系统抽样法和分层抽样法抽取,不用剔除个体;如果样本容量增加一个,则在采用系统抽样时,需要在总体中先剔除1个个体,求样本容量n .解 总体容量为6+12+18=36.当样本容量是n 时,由题意知,系统抽样的间隔为n36,分层抽样的比例是36n ,抽取工程师36n ×6=6n (人),抽取技术人员36n ×12=3n (人),抽取技工36n×18=2n (人).所以n 应是6的倍数,36的约数即n =6,12,18,36.当样本容量为(n +1)时,在总体中剔除1人后还剩35人,系统抽样的间隔为135+n ,因为135+n 必须是整数,所以n 只能取6,即样本容量为6.总体分布的估计与总体特征数的估计基础自测1.一个容量为20的样本,已知某组的频率为0.25,则该组的频数为 . 答案 52.(2008·山东理)右图是根据《山东统计年鉴2007》中的资料作成的1997年至2006年我省城镇居民百户家庭人口数的茎叶图.图中左边的数字从左到右分别表示城镇居民百户家庭人口数的百位数字和十位数字,右边的数字表示城镇居民百户家庭人口数的个位数字.从图中可以得到1997年至2006年我省城镇居民百户家庭人口数的平均数为 . 答案 303.63.在抽查产品的尺寸过程中,将其尺寸分成若干组,[a ,b )是其中的一组,抽查出的个体在该组上的频率为m ,该组在频率分布直方图的高为h ,则|a -b |= . 答案 hm4.(2008·山东文,9)从某项综合能力测试中抽取100人的成绩,统计如表,则这100人成绩的标准差为 .分数 5 4 3 2 1 人数2010303010答案 51025.为了了解某地区高三学生的身体发育情况,抽查了该地区100名年龄为17.5岁~18岁的男生体重(kg ),得到频率分布直方图如下:根据上图可得这100名学生中体重在[56.5,64.5)的学生人数是 . 答案 40典型例题:例1 在学校开展的综合实践活动中,某班进行了小制作评比,作品上交时间为5月1日至30日,评委会把同学们上交 作品的件数按5天一组分组统计,绘制了频率分布直方图(如图所示),已知从左到右各长方形高的比为2∶3∶4∶6∶4∶1,第三组的频数为12,请解答下列问题:(1)本次活动共有多少件作品参加评比? (2)哪组上交的作品数量最多?有多少件?(3)经过评比,第四组和第六组分别有10件、2件作品获奖,问这两组哪组获奖率高? 解 (1)第三组的频率为1464324+++++=51又因为第三组的频数为12,∴参评作品数为5112=60.(2)根据频率分布直方图,可以看出第四组上交的作品数量最多,共有60×1464326+++++=18(件).(3)第四组的获奖率是1810=95,第六组上交的作品数量为60×1464321+++++=3(件),∴第六组的获奖率为32=96,显然第六组的获奖率高.例4(14分)某化肥厂甲、乙两个车间包装肥料,在自动包装传送带上每隔30 min 抽取一包产品,称其重量,分别 记录抽查数据如下: 甲:102, 101, 99, 98, 103, 98,99;乙:110, 115, 90,85,75,115, 110.(1)这种抽样方法是哪一种? (2)将这两组数据用茎叶图表示;(3)将两组数据比较,说明哪个车间产品较稳定. 解 (1)因为间隔时间相同,故是系统抽样. 2分(2)茎叶图如下:5分(3)甲车间: 平均值:1x =71(102+101+99+98+103+98+99)=100,7分方差:s 12=71[(102-100)2+(101-100)2+…+(99-100)2]≈3.428 6.9分乙车间:平均值:2x =71(110+115+90+85+75+115+110)=100,11分方差:s 22=71[(110-100)2+(115-100)2+…+(110-100)2]≈228.571 4.13分∵1x =2x ,s 12<s 22,∴甲车间产品稳定.14分练习:1.为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得数据整理后,画出频率分布直方图如图所示,已知图中从左到右前三个小组的频率分别是0.1,0.3,0.4,第一小组的频数为5.(1)求第四小组的频率;(2)参加这次测试的学生人数是多少?(3)在这次测试中,学生跳绳次数的中位数落在第几小组内? 解 (1)第四小组的频率=1-(0.1+0.3+0.4)=0.2. (2)设参加这次测试的学生人数是n , 则有n =第一小组频率第一小组频数=5÷0.1=50(人).(3)因为0.1×50=5,0.3×50=15,0.4×50=20,0.2×50=10,即第一、第二、第三、第四小组的频数分别为5、15、20、10,所以学生跳绳次数的中位数落在第三小组内. 练习:一、填空题1.下列关于频率分布直方图的说法中不正确的是 .①直方图的高表示取某数的频率②直方图的高表示该组上的个体在样本中出现的频率③直方图的高表示该组上的个体数与组距的比值④直方图的高表示该组上的个体在样本中出现的频率与组距的比值答案①②③2.甲、乙两名新兵在同样条件下进行射击练习,每人打5发子弹,命中环数如下:甲:6,8,9,9,8;乙:10,7,7,7,9.则这两人的射击成绩比稳定.答案甲乙4.某班50名学生在一次百米测试中,成绩全部介于13秒与19秒之间,将测试结果分成六组:右图是得到的频率分布直方图.设成绩小于17秒的学生人数占全班总人数的百分比为x,成绩大于等于15秒且小于17秒的学生人数为y,则从频率分布直方图中可分析出x和y分别为 .答案0.9, 356.甲、乙两名同学在5次体育测试中的成绩统计的茎叶图如图所示,若甲、乙两人的平均成绩分别是x甲、x乙,则x甲x乙,比稳定.答案<乙甲7.(上海,9)已知总体的各个体的值由小到大依次为2,3,3,7,a,b,12,13.7,18.3,20,且总体的中位数为10.5.若要使该总体的方差最小,则a、b的取值分别是 .答案10.5、10.5二、解答题10.为了了解高一学生的体能情况,某校抽取部分学生进行一分钟跳绳次数测试,将所得数据整理后,画出频率分布直方图(如图所示),图中从左到右各小长方形面积之比为2∶4∶17∶15∶9∶3,第二小组频数为12.(1)第二小组的频率是多少?样本容量是多少?(2)若次数在110以上(含110次)为达标,试估计该学校全体高一学生的达标率是多少? (3)在这次测试中,学生跳绳次数的中位数落在哪个小组内?请说明理由. 解 (1)由于频率分布直方图以面积的形式反映了数据落在各小组内的频率大小, 因此第二小组的频率为:391517424+++++=0.08.又因为频率=样本容量第二小组频数, 所以样本容量=第二小组频率第二小组频数=08.012=150. (2)由图可估计该学校高一学生的达标率约为39151742391517++++++++×100%=88%.(3)由已知可得各小组的频数依次为6,12,51,45,27,9,所以前三组的频数之和为69,前四组的频数之和为114,所以跳绳次数的中位数落在第四小组内.线性回归方程1.下列关系中,是相关关系的为 (填序号). ①学生的学习态度与学习成绩之间的关系; ②教师的执教水平与学生的学习成绩之间的关系; ③学生的身高与学生的学习成绩之间的关系; ④家庭的经济条件与学生的学习成绩之间的关系. 答案 ①②2.为了考察两个变量x 、y 之间的线性相关关系,甲、乙两同学各自独立地做10次和15次试验,并利用最小二乘法求得回归直线分别为l 1和l 2.已知在两人的试验中发现变量x 的观测数据的平均值恰好基础自测相等,都为s,变量y的观测数据的平均值也恰好相等,都为t,那么下列说法中正确的是(填序号).①直线l1,l2有交点(s,t)②直线l1,l2相交,但是交点未必是(s,t)③直线l1,l2由于斜率相等,所以必定平行④直线l1,l2必定重合答案①3.下列有关线性回归的说法,正确的是(填序号).①相关关系的两个变量不一定是因果关系②散点图能直观地反映数据的相关程度③回归直线最能代表线性相关的两个变量之间的关系④任一组数据都有回归直线方程答案①②③4.下列命题:①线性回归方法就是由样本点去寻找一条贴近这些样本点的直线的数学方法;②利用样本点的散点图可以直观判断两个变量的关系是否可以用线性关系表示;③通过回归直线yˆ=bˆx+aˆ及回归系数bˆ,可以估计和预测变量的取值和变化趋势.其中正确命题的序号是 .答案①②③5.已知回归方程为yˆ=0.50x-0.81,则x=25时,yˆ的估计值为 .答案11.69例1下面是水稻产量与施化肥量的一组观测数据:施化肥量15 20 25 30 35 40 45水稻产量320 330 360 410 460 470 480(1)将上述数据制成散点图;(2)你能从散点图中发现施化肥量与水稻产量近似成什么关系吗?水稻产量会一直随施化肥量的增加而增长吗?解(1)散点图如下:(2)从图中可以发现施化肥量与水稻产量具有线性相关关系,当施化肥量由小到大变化时,水稻产量由小变大,图中的数据点大致分布在一条直线的附近,因此施化肥量和水稻产量近似成线性相关关系,但水稻产量只是在一定范围内随着化 肥施用量的增加而增长.例2 (14分)随着我国经济的快速发展,城乡居民的生活水平不断提高,为研究某市家庭平均收入与月平均生活支出的关系,该市统计部门随机调查了10个家庭,得数据如下:家庭编号 12345678910x i (收入)千元 0.8 1.1 1.3 1.5 1.5 1.8 2.0 2.2 2.4 2.8y i (支出)千元0.7 1.0 1.2 1.0 1.3 1.5 1.3 1.7 2.0 2.5(1)判断家庭平均收入与月平均生活支出是否相关? (2)若二者线性相关,求回归直线方程. 解 (1)作出散点图:5分观察发现各个数据对应的点都在一条直线附近,所以二者呈线性相关关系. 7分(2)x =101 (0.8+1.1+1.3+1.5+1.5+1.8+2.0+2.2+2.4+2.8)=1.74,y =101(0.7+1.0+1.2+1.0+1.3+1.5+1.3+1.7+2.0+2.5)=1.42,9分bˆ=∑∑==-•-ni ini i i x n xyx n y x 1221≈0.813 6,a ˆ=1.42-1.74×0.813 6≈0.004 3,13分∴回归方程y ˆ=0.813 6x +0.004 3. 14分例3 下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x (吨)与相应的生产能耗y (吨)标准煤的几组对照数据.x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程yˆ=b ˆx +a ˆ; (3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5) 解 (1)散点图如下图:(2)x =46543+++=4.5,y =45.4435.2+++=3.5∑=41i ii yx =3×2.5+4×3+4×5+6×4.5=66.5.∑=412i ix=32+42+52+62=86∴bˆ=24124144x x yx yx i i i ii -•-∑∑===25.44865.45.345.66⨯-⨯⨯-=0.7aˆ =y -b ˆx =3.5-0.7×4.5=0.35. ∴所求的线性回归方程为yˆ=0.7x +0.35. (3)现在生产100吨甲产品用煤y =0.7×100+0.35=70.35,∴降低90-70.35=19.65(吨)标准煤.1.科研人员为了全面掌握棉花新品种的生产情况,查看了气象局对该地区年降雨量与年平均气温的统计数据(单位分别是mm,℃),并作了统计.年平均气温 12.51 12.84 12.84 13.69 13.33 12.74 13.05 年降雨量748542507813574701432(1)试画出散点图;(2)判断两个变量是否具有相关关系. 解 (1)作出散点图如图所示,(2)由散点图可知,各点并不在一条直线附近,所以两个变量是非线性相关关系.2.在研究硝酸钠的可溶性程度时,对于不同的温度观测它在水中的溶解度,得观测结果如下:温度(x ) 0 10 20 50 70 溶解度(y )66.776.085.0112.3128.0由资料看y 与x 呈线性相关,试求回归方程. 解 x =30,y =50.1283.1120.850.767.66++++=93.6.bˆ=25125155x xyx yx i ii ii -•-∑∑==≈0.880 9.aˆ=y -b ˆx =93.6-0.880 9×30=67.173. ∴回归方程为yˆ=0.880 9x +67.173.3.某企业上半年产品产量与单位成本资料如下:月份 产量(千件)单位成本(元)1 2 73 2 3 72 3 4 71 4 3 73 5 4 69 6568(1)求出线性回归方程;(2)指出产量每增加1 000件时,单位成本平均变动多少? (3)假定产量为6 000件时,单位成本为多少元? 解 (1)n =6,∑=61i i x =21,∑=61i i y =426,x =3.5,y =71,∑=612i i x =79,∑=61i i i y x =1 481,bˆ=26126166x x yx yx i i i ii -•-∑∑===25.3679715.364811⨯-⨯⨯-=-1.82.aˆ=y -b ˆx =71+1.82×3.5=77.37. 回归方程为yˆ=a ˆ+b ˆx =77.37-1.82x . (2)因为单位成本平均变动bˆ=-1.82<0,且产量x 的计量单位是千件,所以根据回归系数b 的意义有: 产量每增加一个单位即1 000件时,单位成本平均减少1.82元. (3)当产量为6 000件时,即x =6,代入回归方程:yˆ=77.37-1.82×6=66.45(元) 当产量为6 000件时,单位成本为66.45元.一、填空题1.观察下列散点图,则①正相关;②负相关;③不相关.它们的排列顺序与图形对应顺序是 .答案 a ,c ,b2.回归方程yˆ=1.5x -15,则下列说法正确的有 个. ①y =1.5x -15 ②15是回归系数a ③1.5是回归系数a ④x =10时,y =0 答案 13.(2009.湛江模拟)某地区调查了2~9岁儿童的身高,由此建立的身高y (cm)与年龄x (岁)的回归模型为yˆ=8.25x +60.13,下列叙述正确的是 . ①该地区一个10岁儿童的身高为142.63 cm ②该地区2~9岁的儿童每年身高约增加8.25 cm ③该地区9岁儿童的平均身高是134.38 cm④利用这个模型可以准确地预算该地区每个2~9岁儿童的身高 答案 ②4.三点(3,10),(7,20),(11,24)的回归方程是 .答案 yˆ=1.75x +5.75 5.某人对一地区人均工资x (千元)与该地区人均消费y (千元)进行统计调查,y 与x 有相关关系,得到回归直线方程yˆ=0.66x +1.562.若该地区的人均消费水平为7.675千元,估计该地区的人均消费额占人均工资收入的百分比约为 . 答案 83%6.某化工厂为预测产品的回收率y ,需要研究它和原料有效成分含量x 之间的相关关系,现取8对观测值,计算,得∑=81i i x =52, ∑=81i i y =228, ∑=812i i x =478, ∑=81i i i y x =1 849,则其线性回归方程为 .答案 yˆ=11.47+2.62x 7.有下列关系:①人的年龄与他(她)拥有的财富之间的关系;②曲线上的点与该点的坐标之间的关系;③苹果的产量与气候之间的关系;④森林中的同一种树木,其断面直径与高度之间的关系.其中,具有相关关系的是 .答案①③④8.已知关于某设备的使用年限x与所支出的维修费用y(万元),有如下统计资料:使用年限2 3 4 5 6x维修费用2.23.8 5.5 6.5 7.0y若y对x呈线性相关关系,则回归直线方程yˆ=bˆx+aˆ表示的直线一定过定点 .答案(4,5)二、解答题9.期中考试结束后,记录了5名同学的数学和物理成绩,如下表:学生A B C D E学科数学80 75 70 65 60物理70 66 68 64 62(1)数学成绩和物理成绩具有相关关系吗?(2)请你画出两科成绩的散点图,结合散点图,认识(1)的结论的特点.解(1)数学成绩和物理成绩具有相关关系.(2)以x轴表示数学成绩,y轴表示物理成绩,可得相应的散点图如下:由散点图可以看出,物理成绩和数学成绩对应的点不分散,大致分布在一条直线附近.10.以下是某地搜集到的新房屋的销售价格y和房屋的面积x的数据:房屋面积x(m2) 115 110 80 135 105销售价格y(万24.8 21.6 18.4 29.2 22元)(1)画出数据对应的散点图;(2)求线性回归方程,并在散点图中加上回归直线. 解 (1)数据对应的散点图如图所示:(2)x =109,y =23.2,∑=512i i x =60 975,∑=51i iiy x=12 952,bˆ=25125155x xyx yx i ii ii -•-∑∑==≈0.196 2aˆ=y -b ˆx ≈1.814 2 ∴所求回归直线方程为yˆ=0.196 2x +1.814 2. 11.某公司利润y 与销售总额x (单位:千万元)之间有如下对应数据:x 10 15 17 20 25 28 32 y11.31.822.62.73.3(1)画出散点图; (2)求回归直线方程;(3)估计销售总额为24千万元时的利润. 解 (1)散点图如图所示:(2)x =71(10+15+17+20+25+28+32)=21,y =71(1+1.3+1.8+2+2.6+2.7+3.3)=2.1,∑=712i i x =102+152+172+202+252+282+322=3 447,∑=71i iiy x=10×1+15×1.3+17×1.8+20×2+25×2.6+28×2.7+32×3.3=346.3,bˆ=27127177x x yx yx i i i ii -•-∑∑===221744731.22173.346⨯-⨯⨯-≈0.104, aˆ=y -b ˆx =2.1-0.104×21=-0.084, ∴yˆ=0.104x -0.084. (3)把x =24(千万元)代入方程得,yˆ=2.412(千万元). ∴估计销售总额为24千万元时,利润为2.412千万元.12.某种产品的广告费支出x 与销售额y (单位:百万元)之间有如下对应数据:x 2 4 5 6 8 y3040605070(1)画出散点图; (2)求回归直线方程;(3)试预测广告费支出为10百万元时,销售额多大? 解 (1)根据表中所列数据可得散点图如下:(2)列出下表,并用科学计算器进行有关计算:i 1 2 3 4 5 x i 2 4 5 6 8 y i3040605070x i y i60 160 300 300 560因此,x =525=5,y =5250 =50,∑=512i i x =145, ∑=512i i y =13 500, ∑=51i i i y x =1 380.于是可得:bˆ=25125155x xyx yx i ii ii -•-∑∑===55514550553801⨯⨯-⨯⨯-=6.5;aˆ=y -b ˆx =50-6.5×5=17.5. 因此,所求回归直线方程为:yˆ=6.5x +17.5. (3)根据上面求得的回归直线方程,当广告费支出为10百万元时,yˆ=6.5×10+17.5=82.5(百万元),即这种产品的销售收入大约为82.5百万元.§11.4 统计案例1.对有线性相关关系的两个变量建立的回归直线方程y ˆ=a ˆ+b ˆx 中,回归系数bˆ与0的大小关系为 .(填序号) ①大于或小于 ②大于 ③小于 ④不小于答案 ①2.如果有90%的把握说事件A 和B 有关系,那么具体计算出的数据χ2 2.706.(用“>”,“<”,“=”填空) 答案 >3.对两个变量y 与x 进行回归分析,分别选择不同的模型,它们的相关系数r 如下,其中拟合效果最好的模型是 .基础自测①模型Ⅰ的相关系数r 为0.98 ②模型Ⅱ的相关系数r 为0.80 ③模型Ⅲ的相关系数r 为0.50 ④模型Ⅳ的相关系数r 为0.25 答案 ①4.下列说法中正确的有:①若r >0,则x 增大时,y 也相应增大;②若r <0,则x 增大时,y 也相应增大;③若r =1或r =-1,则x 与y 的关系完全对应(有函数关系),在散点图上各个点均在一条直线上 . 答案 ①③例1 (14分)调查339名50岁以上人的吸烟习惯与患慢性气管炎的情况,获数据如下:患慢性气管炎未患慢性气管炎 总计 吸烟 43 162 205 不吸烟 13 121 134 合计56283339试问:(1)吸烟习惯与患慢性气管炎是否有关? (2)用假设检验的思想给予证明. (1)解 根据列联表的数据,得到χ2=))()()(()(2c d b d c a b a bc ad n ++++- 2分 =13428356205)1316212143(3392⨯⨯⨯⨯-⨯⨯=7.469>6.6356分 所以有99%的把握认为“吸烟与患慢性气管炎有关”.9分(2)证明 假设“吸烟与患慢性气管炎之间没有关系”,由于事件A ={χ2≥6.635}≈0.01,即A 为小概率事件,而小概率事件发生了,进而得假设错误,这种推断出错的可能性约有1%.14分例2 一台机器使用时间较长,但还可以使用.它按不同的转速生产出来的某机械零件有一些会有缺点,每小时生产有 缺点零件的多少,随机器运转的速度而变化,下表为抽样试验结果:(1)对变量y 与x 进行相关性检验;(2)如果y 与x 有线性相关关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺点的零件最多为10个,那么,机器的运转速度应控制在什么范围内?解 (1)x =12.5,y =8.25,∑=41i iiy x=438,4x y =412.5,∑=412i i x =660,∑=412i i y =291,所以r =)4)(4(42412241241y yx xyx yx i ii ii ii --•-∑∑∑====)25.272291()625660(5.412438-⨯--=25.6565.25≈62.2550.25≈0.995 4.因为r >r 0.05,所以y 与x 有很强的线性相关关系.(2)yˆ=0.728 6x -0.857 1. (3)要使yˆ≤10⇒0.728 6x -0.857 1≤10, 所以x ≤14.901 3.所以机器的转速应控制在14.901 3转/秒以下.例3 下表是某年美国旧轿车价格的调查资料,今以x 表示轿车的使用年数,y 表示相应的年均价格,求y 关于x 的回归 方程.数x年均价格y(美元)2 651 1 943 1 494 1 087 765 538 484 290 226 204解作出散点图如图所示.可以发现,各点并不是基本处于一条直线附近,因此,y与x之间应是非线性相关关系.与已学函数图象比较,用yˆ=e a x bˆˆ 来刻画题中模型更为合理,令zˆ=ln yˆ,则zˆ=bˆx+aˆ,题中数据变成如下表所示:x 1 2 3 4 5 6 7 8 9 10z 7.8837.5727.3096.9916.646.2886.1825.675.4215.318相应的散点图如图所示,从图中可以看出,变换的样本点分布在一条直线附近,因此可以用线性回归方程拟合.由表中数据可得r≈-0.996.|r|>r0.05.认为x与z之间具有线性相关关系,由表中数据得bˆ≈-0.298,aˆ≈8.165,所以zˆ=-0.298x+8.165,最后回代zˆ=ln yˆ,即yˆ=e-0.298x+8.165为所求.1.某班主任对全班50名学生学习积极性和对待班级工作的态度进行了调查,统计数据如下表所示:积极参加班级工作不太主动参加班级工作合计学习积极性高18 7 25(1)如果随机抽查这个班的一名学生,那么抽到积极参加班级工作的学生的概率是多少?抽到不太主动参加班级工作且学习积极性一般的学生的概率是多少?(2)试运用独立性检验的思想方法分析:学生的学习积极性与对待班级工作的态度是否有关系?说明理由.解 (1)随机抽查这个班的一名学生,有50种不同的抽查方法,由于积极参加班级工作的学生有18+6=24人,所以有24种不同的抽法,因此由古典概型的计算公式可得抽到积极参加班级工作的学生的概率是P 1=5024=2512,又因为不太主动 参加班级工作且学习积极性一般的学生有19人,所以抽到不太主动参加班级工作且学习积极性一般的学生的概率是P 2=5019.(2)由2χ统计量的计算公式得2χ=25252624)761918(502⨯⨯⨯⨯-⨯⨯≈11.538,由于11.538>10.828,所以可以有99.9%的把握认为“学生的学习积极性与对待班级工作的态度有关系”.2.某个体服装店经营某种服装,一周内获纯利y (元)与该周每天销售这种服装的件数x 之间的一组数据如下:已知∑=712i i x =280, ∑=712i i y =45 309, ∑=71i i i y x =3 487,此时r 0.05=0.754.(1)求x ,y ;(2)判断一周内获纯利润y 与该周每天销售件数x 之间是否线性相关,如果线性相关,求出回归直线方程.解 (1)x =71(3+4+5+6+7+8+9)=6,y =71(66+69+73+81+89+90+91)≈79.86.(2)根据已知∑=712i i x =280, ∑=712i i y =45 309, ∑=71i i i y x =3 487,得相关系数 r =)86.79730945)(67280(86.7967487322⨯-⨯-⨯⨯-≈0.973.。
专题八概率,统计,算法框图,复数.doc
专题八概率,统计,算法框图,复数主备人:杨国安1 概率、本部分内容的基础是概率,安徽高考试题中以古典概型为背景的分布列要求计算概率.解此类问题的一个难点是正确的理解题意,需特别注意.2 统计、统计案例3 算法框图,复数高考考查算法初步主要是程序框图,内容则是运行结果的计算、判断条件的确定、题型为选择题或填空题;而复数出现在高考题中一般为复数的计算、复数的几何意义,这两部分题目的难度虽然都较小,属易失分题考点一:古典概型【例1】(1)(2012·衡水模拟)盒子中装有形状、大小完全相同的3个红球和2个白球,从中随机取出一个记下颜色后放回,当红球取到2次时停止取球.那么取球次数恰为3次的概率是A.18125 B.36125C.44125 D.811252.(2012·广州模拟)从3名男生和n名女生中,任选3人参加比赛,已知3人中至少有1名女生的概率为3435,则n=________.统计与统计案例部分的高考试题难度一般不大,考查的内容多为抽样方法,用样本估计总体、线性回归分析、独立性检验等,这类题目作为解答题出现时,往往与概率结合命题.考点二:抽样方法【例1】(2012·中山模拟)某校共有学生2 000名,各年级男、女学生人数如图表示,已知在全校学生中随机抽取1名,抽到高二级女生的概率是0.19,现用分层抽样的方法(按年级分层)在全校学生中抽取100人,则应在高三级中抽取的学生人数为________.高一级高二级高三级女生385x y男生375360z[审题导引]据题意求出字母的值,按照分层抽样的规则计算.[规范解答]据题意得x=2 000×0.19=380,∴高三级的学生人数为y+z=2 000-385-375-380-360=500,=25.∴在高三级中抽取的学生人数为500×1002 000【规律总结】抽样方法的选取注意分层抽样与系统抽样的计算方法,分层抽样是按比例抽样,比例的性质、方程的方法起主要作用;系统抽样首先是对总体分段的计算,注意分段时可能要排除一些个体,各段的间隔距离是一样的,但各段中抽取的个体就可有不同的规则,要根据这些规则通过计算确立抽取的个体.【变式训练】1.某班级有50名学生,现要采取系统抽样的方法在这50名学生中抽出10名学生,将这50名学生随机编号1~50号,并分组,第一组1~5号,第二组6~10号,…,第十组46~50号.若在第三组中抽得号码为12的学生,则在第八组中抽得号码为________的学生.解析由于组距为5,所以所抽号码为(8-3)×5+12=37.考点三:用样本估计总体【例2】(1)(2012·西城二模)下图是1、2两组各7名同学体重(单位:kg)数据的茎叶图.设1、2两组数据的平均数依次为1和2,标准差依次为s1和s2,那么A.x -1>x -2,s 1>s 2B.x -1>x -2,s 1<s 2C.x -1<x -2,s 1<s 2D.x -1<x -2,s 1>s 2(2)(2012·徐州模拟)某年级120名学生在一次百米测试中,成绩全部介于13秒与18秒之间.将测试结果分成5组:[13,14),[14,15),[15,16),[16,17),[17,18],得到如图所示的频率分布直方图.如果从左到右的5个小矩形的面积之比为1∶3∶7∶6∶3,那么成绩在[16,18]的学生人数是________.[审题导引] (1)根据茎叶图中的数据分别计算x -1,x -2,s 21,s 22,然后比较大小;(2)根据直方图中各小矩形的面积和为1计算出成绩在[16,18]的频率,然后计算成绩在[16,18]的学生人数.[规范解答] (1)由茎叶图知x -1=58+57+56+53+61+72+707=61.s 21=17[(58-61)2+(57-61)2+(56-61)2+(53-61)2+(61-61)2+(72-61)2+(70-61)2]=2997,同理x -2=64,s 22=3907,所以x -1<x -2,s 1<s 2.(2)由频率分布直方图可知成绩在[16,18]的学生的频率为6+31+3+7+6+3=920,所以成绩在[16,18]的学生人数为920×120=54.[答案] (1)C (2)54【规律总结】用样本估计总体时应注意的问题(1)理解在抽样具有代表性的前提下,可以用样本的频率分布估计总体的频率分布,用样本的特征数估计总体的特征数,这是统计的基本思想;(2)反映样本数据分布的主要方式,一个是频率分布表,一个是频率分布直方图,要学会根据频率分布直方图估计总体的概率分布以及总体的特征数,特别是均值、众数和中位数;(3)要掌握好样本均值和方差的实际意义,并在具体的应用问题中会根据计算样本数据的均值和方差对实际问题做出解释;(4)茎叶图是表示样本数据分布的一种方法,其特点是保留了所有的原始数据,这是茎叶图的优势. 【变式训练】2.(2012·义乌模拟)在如图所示的茎叶图中,乙组数据的中位数是________;若从甲、乙两组数据中分别去掉一个最大数和一个最小数后,两组数据的平均数中较大的一组是________组.解析 把乙组数据从小到大排, 得79,84,84,84,86,87,93,故中位数是84,x -甲=84,x -乙=85,∴x -乙>x -甲.答案 84 乙3.(2012·杭州二模)将容量为n 的样本中的数据分成6组,若第一组至第六组数据的频率之比为2∶3∶4∶6∶4∶1,且前三组数据的频数之和等于27,则n 的值为 A .70 B .60 C .50 D .40解析 据题意知2+3+42+3+4+6+4+1=27n ,∴n =60.考点四:线性回归分析y (万元)有以下的统计数据,如表所示 x 3 4 5 6 y2.5344.5(1)画出上表数据的散点图; (2)请根据上表提供的数据,求出y 关于x 的线性回归方程y ∧=bx +a ; (3)估计使用年限为10年,维修费用是多少?[审题导引] (1)根据对应值组成点的坐标,画出各点即可; (2)直接套用求回归直线系数的公式,求出b ,a ;(3)根据求出的回归直线方程,求当x =10时对应的y 值,即使用年限为10年时,维修费用的估计值.[规范解答] (1)作出散点图如图所示.(2)∑4i =1x i y i =66.5,∑4i =1x 2i =32+42+52+62=86, x -=4.5,y -=3.5, b =66.5-4×4.5×3.586-4×4.52=66.5-6386-81=0.7,a =y --b x -=3.5-0.7×4.5=0.35, 所以所求的回归方程为y ∧=0.7x +0.35. (3)当x =10时,y ∧=0.7×10+0.35=7.35,所以使用年限为10年,维修费用的估计值是7.35万元.【规律总结】求线性回归分析问题的方法(1)画出两个变量的散点图; (2)求回归直线方程; (3)用回归直线方程进行预报.其中求回归直线方程是关键.而求回归直线方程的最好方法是“最小二乘法”,即对于线性回归模型y ∧=a +bx 来说,估计模型中的未知参数a 和b 的最好方法就是用最小二乘法,其计算公式为b =∑ni =1(x i -x -)(y i -y -)∑ni =1(x i -x -)2=∑ni =1x i y i -n x - y -∑n i =1x 2i -n x -2,a=y --b x -.[易错提示] 虽然由任何一组不完全相同的数据都可以求出回归直线方程,但只有具有线性相关关系的一组数据才能得到有意义的回归直线方程,求出的方程才具有实际价值.线性相关系数可以是正、负或零,线性相关系数为正时是正相关,为负时是负相关,反之也成立.【变式训练】4.(2012·深圳模拟)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此进行了5次试验.根据收集到的数据(如下表),由最小二乘法求得回归方程y ∧=0.67x +54.9.现发现表中有一个数据模糊看不清,请你推断出该数据的值为________.解析 由表知x -=30,设模糊不清的数据为y , 则y -=15(62+y +75+81+89)=307+y 5, ∵y -=0.67 x -+54.9,即307+y5=0.67×30+54.9,解得y =68. 考点五:独立性检验【例4】有甲、乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下优秀 非优秀 总计甲班 10乙班30合计105已知在全部105人中随机抽取1人为优秀的概率为27. (1)请完成上面的列联表.(2)根据列联表中的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”?(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6号或10号的概率.[审题导引] 第(1)问由题易知成绩优秀的概率是27,则成绩优秀的学生数是30,成绩非优秀的学生数是75,据此即可以完成列联表;第(2)问按照独立性检验的原理进行判断;第(3)问列举基本事件个数和随机事件含有的基本事件个数,按照古典概型的概率公式进行计算. [规范解答] (1)列联表如表所示(2)根据列联表中的数据,得到k =105×(10×30-20×45)255×50×30×75≈6.109>3.841,因此有95%的把握认为“成绩与班级有关系”.(3)设“抽到6号或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ).所有的基本事件有(1,1),(1,2),…(6,6),共36个.事件A 包含的基本事件有(1,5),(2,4),(3,3),(4,2),(5,1),(4,6),(5,5),(6,4),共8个,故P (A )=836=29. 【规律总结】独立性检验的一般步骤(1)根据样本数据列出2×2列联表,假设两个变量无关系; (2)根据公式K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )计算K 2的值;(3)比较K 2与临界值的大小关系作统计推断. 【变式训练】5.(2012·南京模拟)某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2列联表,根据列联表的数据,可以有________%的把握认为该学校15至16周岁的男生的身高和体重超重 不超重 合计 偏高 4 1 5 不偏高 3 12 15 合计71320P (K 2≥k 0) 0.025 0.010 0.005 0.001 k 05.0246.6357.879 10.828独立性检验随机变量K 2值的计算公式: K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).解析 k =20(4×12-3×1)25×15×7×13=5.934,根据临界值表可知有97.5%的把握认为该学校15至16周岁的男生的身高和体重之间有关系.答案 97.5考点六:计算程序框图的输出结果【例1】(2012·西城二模)执行如图所示的程序框图,若输入如下四个函数:①f (x )=e x ;②f (x )=-e x ;③f (x )=x +x -1;④f (x )=x -x -1.则输出函数的序号为 A .① B .② C .③ D .④[审题导引] 首先依次判断所给四个函数是否存在零点,然后根据程序框图的意义选择输出的函数.[规范解答]易知函数①②③都没有零点,只有函数④f(x)=x-x-1存在零点x=±1.故选D.[答案] D【规律总结】程序框图问题的解法(1)解答程序框图的相关问题,首先要认清程序框图中每个“框”的含义,然后按程序框图运行的箭头一步一步向前“走”,搞清每走一步产生的结论.(2)要特别注意在哪一步结束循环,解答循环结构的程序框图,最好的方法是执行完整每一次循环,防止执行程序不彻底,造成错误.【变式训练】1.执行如图所示的程序框图,则输出的结果为A.49 B.511C.712 D.613解析第一次运行S=11×3,k=3;第二次运行S=11×3+13×5,k=5;第三次运行S=11×3+13×5+15×7,k=7;第四次运行S=11×3+13×5+15×7+17×9,k=9;第五次运行S=11×3+13×5+15×7+17×9+19×11,k=11.循环结束.故输出结果是S =12⎝ ⎛⎭⎪⎫1-111=511.答案 B考点七:判断程序框图中的条件【例2】若如图所示的程序框图输出的S 是126,则①应为________.[审题导引] 因为题干给出的数值不是很大,故可以逐步计算进行验证,也可以根据S 的意义,进行整体求解.[规范解答] 由程序框图,可知该程序框图输出的S 是数列{2n }的前n 项的和,即S =2+22+23+ (2),由等比数列的前n 项和公式,可得S =2(1-2n )1-2=2n +1-2,该题实质上就是解方程S =126,故有2n +1-2=126,即2n +1=128,故n =6, 即该数列的前6项和等于126,但在运算完S 后,n 变为n +1,故最后得到n =7. 所以判断框内的条件是n ≤6或n <7,故填n ≤6. [答案] n ≤6 【规律总结】判断条件的注意事项解决此类问题应该注意以下三个方面:一是搞清判断框内的条件由计数变量还是累加变量来表示;二是要注意判断框内的不等式是否带有等号,这直接决定循环次数的多少;三是要准确利用程序框图的赋值语句与两个变量之间的关系,把握程序框图的整体功能,这样可以直接求解结果,减少运算的次数.[易错提示]解此类题目,易犯的错误有:(1)在循环结构中,对循环次数确定有误;(2)在循环结构中,对判断条件不能正确确定.【变式训练】2.一个算法的程序框图如图所示,若该程序输出的结果为2 0122 013,则判断框内应填入的条件是A.i>2 011? B.i>2 012? C.i>2 013? D.i>2 014?解析这是一个计算11×2+12×3+13×4+…+1i(i+1)=1-1i+1=ii+1的程序,根据题意,该程序计算到i=2 012时结束,此时i+1=2 013,故判断框要保证此时终止程序,故填i>2 012?答案 B考点八:复数【例3】(1)(2012·西城二模)已知复数z满足(1-i)·z=1,则z=________.(2)(2012·济南模拟)复数z满足等式(2-i)·z=i,则复数z在复平面内对应的点所在的象限是A.第一象限B.第二象限C.第三象限D.第四象限[审题导引](1)变形计算即可;(2)求z并化为a+b i(a,b∈R)的形式,然后确定复数z在复平面内对应的点所在的象限.[规范解答] (1)z =11-i =1+i (1-i )(1+i )=12+i 2. (2)z =i 2-i =i (2+i )(2-i )(2+i )=-15+25i ,所以复数z 在复平面内的对应点在第二象限. [答案] (1)12+12i (2)B【规律总结】解决复数问题的两个注意事项(1)复数的四则运算类似于多项式的四则运算,但要注意把i 的幂写成最简单的形式.(2)只有把复数表示成标准的代数形式,即化为a +b i(a ,b ∈R )的形式,才可以运用复数的几何意义.【变式训练】3.(2012·湘潭模拟)复数10i 1-2i = A .-4+2iB .4-2iC .2-4iD .2+4i 解析 10i 1-2i =10i (1+2i )(1-2i )(1+2i )=15×10i(1+2i)=-4+2i.答案 A 4.(2012·邯郸模拟)复数a +i 1-i为纯虚数,则a =________. 解析 a +i 1-i =(a +i )(1+i )(1-i )(1+i )=a -12+a +12i. ∵复数a +i 1-i 是纯虚数,∴⎩⎪⎨⎪⎧ a -12=0a +12≠0,即a =1.小结:四个知识点都不难,但一定要在系统复习的基础下认真梳理,总结。
高中数学《统计与统计案例》课件
设施投资额的变化规律呈线性增长趋势,利用 2010 年至 2016 年的数据建立的线性模型y =99+17.5t 可以较好地描述 2010 年以后的环境基础设施投资额的变化趋势,因此利用 模型②得到的预测值更可靠.
13
考点整合
1.抽样方法 抽样方法包括简单随机抽样、系统抽样、分层抽样,三种抽样方法都是等概率抽样, 体现了抽样的公平性,但又各有其特点和适用范围.
位,则该校阅读过《西游记》的学生人数与该校学生总数比值的估计值为( )
A.0.5
B.0.6
C.0.7
D.0.8
解析 法一 设调查的 100 位学生中阅读过《西游记》的学生人数为 x,则 x+80-60
=90,解得 x=70,所以该校阅读过《西游记》的学生人数与该校学生总数比值的估计
值为17000=0.7.故选 C.
解 (1)由调查数据,男顾客中对该商场服务满意的比率为4500=0.8,因此男顾客对该商场
服务满意的概率的估计值为 0.8.女顾客中对该商场服务满意的比率为3500=0.6,因此女顾
客对该商场服务满意的概率的估计值为 0.6.
8
(2)K2 的观测值 k=100×5(0×405×0×207-0×303×010)2≈4.762. 由于4.762>3.841,故有95%的把握认为男、女顾客对该商场服务 的评价有差异.
^
利用模型②,该地区 2018 年的环境基础设施投资额的预测值为y=99+17.5×9=256.5(亿 元).
12
(2)利用模型②得到的预测值更可靠. 理由如下: 从折线图可以看出,2000 年至 2016 年的数据对应的点没有随机散布在直线 y=-30.4+ 13.5t 上下,这说明利用 2000 年至 2016 年的数据建立的线性模型①不能很好地描述环境 基础设施投资额的变化趋势.2010 年相对 2009 年的环境基础设施投资额有明显增加, 2010 年至 2016 年的数据对应的点位于一条直线的附近,这说明从 2010 年开始环境基础
统计学基础及应用-抽样推断
任务八 抽样推断任务描述与分析在A市自来水公司的客户满意度调查中,我们抽样调查了A市自来水公司的700个客户,从前面的调查分析中我们了解到这700户客户对A市自来水公司的产品和服务等方面的评价。
现在你需要思考的是:这700户客户的意见能在多大程度上反映所有客户的意见?误差的可能性有多大?为了保证调查的准确性,我们是否需要再追加调查?任务分析(1)如何判断我们抽样调查的700个客户够不够?(2)根据抽调客户的意见我们如何推断出所有客户的意见?(3)被调查客户的意见与所有客户的意见误差有多少?案例8-1:为了加强与顾客的沟通,深入了解客户需求,以解决客户遇到的问题,并在此基础上持续改进公司的产品质量,进一步优化供水服务,A市自来水公司决定进行客户满意度调查,要求在2个月时间内完成调查报告。
A市共有自来水用户200万户,在短短两个月时间内必须完成客户调查并出具调查报告,你如何完成这项工作?抽样调查抽样推断是按照随机原则从总体中抽取一部分总体单位作为样本单位,组成样本总体,并以样本的数量特征对总体的数量特征做出具有一定可靠程度的估计和推断的统计分析方法。
抽样推断具有以下特点:1.抽样推断是用样本指标值来估计总体指标值 2.抽样的随机原则是抽样推断的前提3.抽样推断的误差是可以事先计算并加以控制节省调查费调查速度快调查结果准确可靠应用范围广抽样调查抽样推断常用概念总体样本从总体中按照随机原则抽选出来的一部分单位称为样本,用n 表示 我们所要调查研究的事物或现象的全体,总体单位数通常用N表示总体指标样本指标总体指标又称参数,是反映总体数量特征的综合指标,总体指标主要有:总体平均数,总体方差σ 2,总体标准差σ、总体成数P 和Q。
样本指标又称统计量,是根据样本各单位的标志值或标志特征计算的、反映样本数量特征的综合指标。
样本指标主要有:样本平均数,样本方差s2,样本标准差s,样本成数p和q。
样本容量样本样本个数又称样本可能数目,是指在一个抽样方案中从总体中所有可能被抽取的样本总数。
2021年数学一轮复习考点与题型总结:第十章 统计与统计案例 (1)
第十章统计与统计案例第一节随机抽样一、基础知识1.简单随机抽样(1)定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.(2)常用方法:抽签法和随机数法.2.分层抽样(1)在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样方法是一种分层抽样.(2)分层抽样的应用范围:当总体是由差异明显的几个部分组成时,往往选用分层抽样.3.系统抽样(1)定义:当总体中的个体数较多时,可以将总体分成均衡的几部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需的样本,这种抽样的方法叫做系统抽样.(2)系统抽样的步骤假设要从容量为N 的总体中抽取容量为n 的样本.n 是样本容量)是整数时,取k=Nn当总体中的个体数不能被样本容量整除时,可先用简单随机抽样的方法从总体中剔除几个个体,使剩下的个体数能被样本容量整除,然后再按系统抽样进行.这时在整个抽样过程中每个个体被抽取的可能性仍然相等.;二、常用结论(1)不论哪种抽样方法,总体中的每一个个体入样的概率都是相同的.(3)分层抽样是按比例抽样,每一层入样的个体数为该层的个体数乘抽样比.(4)三种抽样方法的特点、联系及适用范围考点一简单随机抽样[典例] 下列抽取样本的方式属于简单随机抽样的个数有( )①从无限多个个体中抽取100 个个体作为样本;②盒子里共有80 个零件,从中选出5 个零件进行质量检验.在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③用抽签方法从10 件产品中选取3 件进行质量检验;④某班有56 名同学,指定个子最高的 5 名同学参加学校组织的篮球赛.A.0 个B.1 个C.2 个D.3 个[解析] ①不是简单随机抽样,因为被抽取样本的总体的个数是无限的,而不是有限的;②不是简单随机抽样,因为它是有放回抽样;③明显为简单随机抽样;④不是简单随机抽样,因为不是等可能抽样.[答案] B[解题技法] 应用简单随机抽样应注意的问题= (1)一个抽样试验能否用抽签法,关键看两点:一是抽签是否方便;二是号签是否易搅匀.一般地,当总体容量和样本容量都较小时可用抽签法.(2)在使用随机数法时,如遇到三位数或四位数,可从选择的随机数表中的某行某列的数字计起,每三个或四个作为一个单位,自左向右选取,有超过总体号码或出现重复号码的 数字舍去.[题组训练]A.08 C .02 D .012.利用简单随机抽样,从 n 个个体中抽取一个容量为 10 的样本.若第二次抽取时,余 下的每个个体被抽到的概率为1,则在整个抽样过程中,每个个体被抽到的概率为()3A.1 4C. 5 14解析:选 C 根据题意, 9 1,n -1 3B.1 3 D.10 27 解得 n =28.故在整个抽样过程中每个个体被抽到的概率为10= 5.28 14考点二 系统抽样[典例] (1)某校为了解 1 000 名高一新生的身体生长状况,用系统抽样法(按等距的规A .16B .17C .18D .19(2)中央电视台为了解观众对某综艺节目的意见,准备从 502 名现场观众中抽取 10%进行座谈,现用系统抽样的方法完成这一抽样,则在进行分组时,需剔除个个体,抽样间隔为 .[解析] (1)因为从 1 000 名学生中抽取一个容量为 40 的样本,所以系统抽样的分段间隔 为1 000=25,40设第一组随机抽取的号码为 x ,(2)把 502 名观众平均分成 50 组,由于 502 除以 50 的商是 10,余数是 2,所以每组有 10 名观众,还剩 2 名观众,采用系统抽样的方法抽样时,应先用简单随机抽样的方法从 502500,并均匀分成 50 段,每段含50010 个个体.所以需剔除 2 个个体,抽样间隔为 10. 50[答案] (1)C (2)2 10[变透练清]解析:从 1 000 名学生中抽取一个容量为 40 的样本,系统抽样分 40 组,每组1 000=2540 个号码,每组抽取一个,从 501 到 750 恰好是第 21 组到第 30 组,共抽取 10 人.答案:10本,若在第 1 组中随机抽取的号码为 5,则在第 6 组中抽取的号码为.解析:由题知分组间隔为64=8,又第 1 组中抽取的号码为 5,所以第 6 组中抽取的号8 码为 5×8+5=45.答案:45系统抽样又称等距抽样,所以依次抽取的样本对应的号码就是一个等差数列,首项就是 第 1 组所抽取样本的号码,公差为间隔数,根据等差数列的通项公式就可以确定每一组内所要抽取的样本号码.[提醒] 系统抽样时,如果总体中的个数不能被样本容量整除时,可以先用简单随机抽 样从总体中剔除几个个体,然后再按系统抽样进行.考点三 分层抽样=[典例] 某电视台在网上就观众对其某一节目的喜爱程度进行调查,参加调查的一共有20 000 人,其中各种态度对应的人数如下表所示:电视台为了了解观众的具体想法和意见,打算从中抽取100 人进行详细的调查,为此要进行分层抽样,那么在分层抽样时,每类人中应抽取的人数分别为( ) A.25,25,25,25 B.48,72,64,16C.20,40,30,10 D.24,36,32,8[ 解析] 法一:因为抽样比为100 = 1 ,所以每类人中应抽取的人数分别为20 000 2004 800×1=24,7 200×1=36,6 400×1=32,1 600×1=8. 200 200 200 200法二:最喜爱、喜爱、一般、不喜欢的比例为4 800∶7 200∶6 400∶1 600=6∶9∶8∶2,所以每类人中应抽取的人数分别为6×100=24,9×100=36,6+9+8+28 2×100=32,×100=8.6+9+8+26+9+8+2[答案] D6+9+8+2[解题技法] 分层抽样问题的类型及解题思路(1)求某层应抽个体数量:按该层所占总体的比例计算.(2)已知某层个体数量,求总体容量或反之求解:根据分层抽样就是按比例抽样,列比例式进行计算.(3) 分层抽样的计算应根据抽样比构造方程求解,其中“ 抽样比=样本容量=总体容量各层样本数量”.各层个体数量[题组训练]1.(2019·山西五校联考)某校为了解学生的学习情况,采用分层抽样的方法从高一1 000 人、高二1 200 人、高三n 人中抽取81 人进行问卷调查,若高二被抽取的人数为30,则n =( )A.860 B.720C.1 020 D.1 040解析:选D 由已知条件知抽样比为30=1,从而81=1,解得n=1 200 40 1 000+1 200+n 40= ,06 32 35 92 46 22 54 10 02 78 49 82 18 86 70 48 05 46 88 15 19 20 491 040,故选 D.2.(2018·广州高中综合测试)已知某地区中小学学生人数如图所示.为了解该区学生参加某项社会实践活动的意向,拟采用分层抽样的方法来进 行调查.若高中需抽取 20 名学生,则小学与初中共需抽取的学生人数为.解析:设小学与初中共需抽取的学生人数为 x ,依题意可得1 20020解得 x =85.答案:85[课时跟踪检测]2 700+2 400+1 200 x +201.从 2 019 名学生中选取 50 名学生参加全国数学联赛,若采用以下方法选取:先用简 单随机抽样法从 2 019 名学生中剔除 19 名学生,剩下的 2 000 名学生再按系统抽样的方法抽取,则每名学生入选的概率()A .不全相等B .均不相等C .都相等,且为 502 019解析:选 C 从 N 个个体中抽取 M名学生入选的概率都相等,且为 50.2 019D .都相等,且为 140个个体,则每个个体被抽到的概率都等于M,故每N2.福利彩票“双色球”中红球的号码可以从 01,02,03,…,32,33 这 33 个两位号码中选取,小明利用如下所示的随机数表选取红色球的 6 个号码,选取方法是从第 1 行第 9 列的数字开始,从左到右依次读取数据,则第四个被选中的红色球的号码为( )A.12 B .33 C .06D .16解析:选 C 被选中的红色球的号码依次为 17,12,33,06,32,22,所以第四个被选中的红色球的号码为 06.3.某班共有学生 52 人,现根据座号,用系统抽样的方法,抽取一个容量为 4 的样本.已知 5 号、18 号、44 号同学在样本中,那么样本中还有一个同学的座号是()A .23B .2781 47 23 68 63 93 17 90 12 69 86 81 62 93 50 60 91 33 75 85 61 39 85C .31D .33解析:选 C 分段间隔为52=13,故样本中还有一个同学的座号为 18+13=31.4 4.某工厂在 12 月份共生产了 3 600 双皮靴,在出厂前要检查这批产品的质量,决定采用分层抽样的方法进行抽取,若从一、二、三车间抽取的产品数分别为 a ,b ,c ,且 a ,b , c 构成等差数列,则第二车间生产的产品数为()A .800 双B .1 000 双C .1 200 双D .1 500 双解析:选 C 因为 a ,b ,c 成等差数列,所以 2b =a +c ,即第二车间抽取的产品数占抽样产品总数的三分之一,根据分层抽样的性质可知,第二车间生产的产品数占 12 月份生产 总数的三分之一,即为 1 200 双皮靴.5.(2018·南宁摸底联考)已知某地区中小学生人数和近视情况分别如图甲和图乙所示.为了了解该地区中小学生的近视形成原因,用分层抽样的方法抽取 2%的学生进行调查,则样本容量和抽取的高中生近视人数分别为( )A .100,20B .200,20C .200,10D .100,10解析:选 B 由题图甲可知学生总人数是 10 000,样本容量为 10 000×2%=200,抽取的高中生人数是 2 000×2%=40,由题图乙可知高中生的近视率为 50%,所以抽取高中生的近视人数为 40×50%=20,故选 B.=6,则在第 7 组中抽取的号码是() A .63 B .64 C .65D .66解析:选 A 若 m =6,则在第 7 组中抽取的号码个位数字与 13 的个位数字相同,而第A .7B .9C .10D .15解析:选 C 960÷32=30,故由题意可得抽到的号码构成以 9 为首项,以 30 为公差的等差数列,其通项公式为 a n =9+30(n -1)=30n -21.由 450<30n -21≤750,解得 15.7< n ≤25.7.又 n 为正整数,所以 16≤n ≤25,故做问卷 B 的人数为 25-16+1=10.故选 C.8.某企业三月中旬生产 A ,B ,C 三种产品共 3 000 件,根据分层抽样的结果,企业统计员制作了如下的统计表格:产品类别 A B C产品数量(件) 1 300 样本容量(件)130A 产品的样本容量比 C 产品的样本容量多 10,根据以上信息,可得 C 的产品数量是件.解析:设样本容量为 x ,则 x ×1 300=130,∴x =300.3 000 ∴A 产品和 C 产品在样本中共有 300-130=170(件). 设 C 产品的样本容量为 y ,则 y +y +10=170,∴y =80.∴C 产品的数量为3 00080=800(件). 300 答案:8009.某企业三个分厂生产同一种电子产品,三个分厂产量分布如图所示,现在用分层抽样方法从三个分厂生产的该产品中共抽取 100 件做使用寿命的测试,则第一分厂应抽取的件数为;由所得样品的测试结果计算出一、二、三分厂取出的产品的使用寿命平均值分别为 1 020 小时、980 小时、1 030 小时,估计这个企业所生产的该产品的平均使用寿命为小时.解析:第一分厂应抽取的件数为 100×50%=50;该产品的平均使用寿命为 1 020×0.5 +980×0.2+1 030×0.3=1 015.答案:50 1 015×5 抽得的号码为 004,这 600 名选手穿着三种颜色的衣服,从 001 到 301 穿红色衣服,从 302 到 496 穿白色衣服,从 497 到 600 穿黄色衣服,则抽到穿白色衣服的选手人数为.2 5≤k ≤42,因此抽到穿白色衣服的选手人数为 42-25=17(人). 6答案:1711.某初级中学共有学生 2 000 名,各年级男、女生人数如下表:(1)求 x 的值;(2)现用分层抽样的方法在全校抽取 48 名学生,问应在初三年级抽取多少名? 解 :(1)∵ x=0.19,∴x =380.2 000(2)初三年级人数为 y +z =2 000-(373+377+380+370)=500,现用分层抽样的方法在 全校抽取 48 名学生,应在初三年级抽取的人数为 48×500=12(名).2 000第二节 用样本估计总体一、基础知识1.频率分布直方图(1)纵轴表示频率频率;(2),即小长方形的高= 组距 组距频率=频率; 小长方形的面积=组距×组距(3)各个小方形的面积总和等于 1 . 2.频率分布表的画法极差第一步:求极差,决定组数和组距,组距= ;组数第二步:分组,通常对组内数值所在区间取左闭右开区间,最后一组取闭区间; 第三步:登记频数,计算频率,列出频率分布表. 3.茎叶图茎叶图是统计中用来表示数据的一种图, 茎是指中间的一列数,叶就是从茎的旁 边生长出来的数.4.中位数、众数、平均数的定义 (1)中位数将一组数据按大小依次排列,处于最中间位置的一个数据(或最中间两个数据的平均数) 叫做这组数据的中位数.(2)众数一组数据中出现次数最多的数据叫做这组数据的众数. (3)平均数一组数据的算术平均数即为这组数据的平均数,n 个数据 x 1,x 2,…,x n 的平均数 x = 1(x 1+x 2+…+x n ). n5.样本的数字特征如果有 n 个数据 x 1,x 2,…,x n ,那么这 n 个数的(1)平均数 x =1(x 1+x 2+…+x n ).n(2)标准差 s =(3)方差s2=1-x )2+(x -x )2+…+(x -x )2].[(x1 2 nn二、常用结论1.频率分布直方图中的常见结论(1)众数的估计值为最高矩形的中点对应的横坐标.(2)平均数的估计值等于频率分布直方图中每个小矩形的面积乘以小矩形底边中点的横坐标之和.(3)中位数的估计值的左边和右边的小矩形的面积和是相等的.2.平均数、方差的公式推广(1)若数据x1,x2,…,x n的平均数为x ,则mx1+a,mx2+a,mx3+a,…,mx n+a 的平均数是m x +a.(2)若数据x1,x2,…,x n的方差为s2,则数据ax1+b,ax2+b,…,ax n+b 的方差为a2s2.考点一茎叶图[典例] (2017·山东高考)如图所示的茎叶图记录了甲、乙两组各5名工人某日的产量数据(单位:件).若这两组数据的中位数相等,且平均值也相等,则x 和y 的值分别为( )A.3,5 B.5,5C.3,7 D.5,7[解析] 由两组数据的中位数相等可得65=60+y,解得y=5,又它们的平均值相等,所以15×[56+62+65+74+(70+x)]=1×(59+61+67+65+78),解得x=3.5[答案] A[解题技法] 茎叶图的应用(1)茎叶图通常用来记录两位数的数据,可以用来分析单组数据,也可以用来比较两组数据.通过茎叶图可以确定数据的中位数,数据大致集中在哪个茎,数据是否关于该茎对称,数据分布是否均匀等.(2)给定两组数据的茎叶图,比较数字特征时,“重心”下移者平均数较大,数据集中者方差较小.甲 乙[题组训练]1.在如图所示一组数据的茎叶图中,有一个数字被污染后模糊不清, 但曾计算得该组数据的极差与中位数之和为 61,则被污染的数字为()A .1B .2C .3D .4解析:选 B 由图可知该组数据的极差为 48-20=28,则该组数据的中位数为 61-28 =33,易得被污染的数字为 2.2.甲、乙两名篮球运动员 5 场比赛得分的原始记录如茎叶图所示,若甲、乙两人的平均得分分别为 x 甲, x 乙,则下列结论正确的是()A. x 甲< x 乙;乙比甲得分稳定B. x 甲> x 乙;甲比乙得分稳定C. x 甲> x 乙;乙比甲得分稳定D. x 甲< x 乙;甲比乙得分稳定解析:选 A 因为 x =2+7+8+16+22=11, x 5 =8+12+18+21+25=16.8,所5以 x < x 且乙比甲成绩稳定.考点二 频率分布直方图[典例] 某城市 100 户居民的月平均用电量(单位:千瓦时),以[160,180),[180,200), [200,220),[220,240),[240,260),[260,280),[280,300]分组的频率分布直方图如图.(1)求直方图中 x 的值;(2)求月平均用电量的众数和中位数.[解] (1)由(0.002+0.009 5+0.011+0.012 5+x +0.005+0.002 5)×20=1,解得 x =0.007 5.即直方图中 x 的值为 0.007 5.甲乙=(2)月平均用电量的众数是220+240=230. 2∵(0.002+0.009 5+0.011)×20=0.45<0.5, (0.002+0.009 5+0.011+0.012 5)×20=0.7>0.5, ∴月平均用电量的中位数在[220,240)内.设中位数为 a ,则 0.45+0.012 5×(a -220)=0.5,解得 a =224,即中位数为 224. [变透练清]1.某校随机抽取 20 个班,调查各班有出国意向的人数,所得数据的茎叶图如图所示.以 5 为组距将数据分组为[0,5),[5,10),…,[30,35),[35,40],所作的频率分布直方图是()解析:选 A 以 5 为组距将数据分组为[0,5),[5,10),…,[30,35),[35,40],各组的频数依次为 1,1,4,2,4,3,3,2,可知画出的频率分布直方图为选项 A 中的图.2.(变结论)在本例条件下,在月平均电量为[220,240),[240,260),[260,280),[280,300] 的四组用户中,用分层抽样的方法抽取 11 户居民,则月平均用电量在[220,240)的用户中应抽取户.解析:月平均用电量在[220,240)的用户有 0.012 5×20×100=25(户).同理可得月平均 用电量在[240,260)的用户有 15 户,月平均用电量在[260,280]的用户有 10 户,月平均用电 量在[280,300]的用户有 5 户,故抽取比例为111.25+15+10+5 5所以月平均用电量在[220,240)的用户中应抽取 25×1=5(户).5 答案:53.我国是世界上严重缺水的国家,某市为了制定合理的节水方案,对居民用水情况进行了调查,通过抽样,获得了某年 100 位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),…,[4,4.5]分成9 组,制成了如图所示的频率分布直方图.(1) 求直方图中 a 的值;(2)设该市有30 万居民,估计全市居民中月均用水量不低于3 吨的人数,说明理由.解:(1)由频率分布直方图可知,月均用水量在[0,0.5)的频率为0.08×0.5=0.04.同理,在[0.5,1),[1.5,2),[2,2.5),[3,3.5),[3.5,4),[4,4.5]6组的频率分别为0.08,0.21,0.25,0.06,0.04,0.02.由1-(0.04+0.08+0.21+0.25+0.06+0.04+0.02)=0.5×a+0.5×a,解得a=0.30.(2)估计全市居民中月均用水量不低于3 吨的人数为3.6 万.理由如下:由(1)知,100 位居民中月均用水量不低于3 吨的频率为0.06+0.04+0.02=0.12.由以上样本的频率分布,可以估计30 万居民中月均用水量不低于 3 吨的人数为300 000×0.12=36 000=3.6(万).考点三样本的数字特征考法(一) 样本的数字特征与频率分布直方图交汇[典例] (2019·辽宁师范大学附属中学模拟)某校初三年级有400 名学生,随机抽查了40 名学生测试1 分钟仰卧起坐的成绩(单位:次),将数据整理后绘制成如图所示的频率分布直方图.用样本估计总体,下列结论正确的是( )A.该校初三学生1 分钟仰卧起坐的次数的中位数为25B.该校初三学生1 分钟仰卧起坐的次数的众数为24C.该校初三学生1 分钟仰卧起坐的次数超过30 的人数约有80D.该校初三学生1 分钟仰卧起坐的次数少于20 的人数约为8[解析] 第一组数据的频率为0.02×5=0.1,第二组数据的频率为0.06×5=0.3,第三.组数据的频率为 0.08×5=0.4,∴中位数在第三组内,设中位数为 25+x ,则 x ×0.08=0.5 -0.1-0.3=0.1,∴x =1.25,∴中位数为 26.25,故 A 错误;第三组数据所在的矩形最高, 第三组数据的中间值为 27.5,∴众数为 27.5,故 B 错误;1 分钟仰卧起坐的次数超过 30 的频率为 0.2,∴超过 30 次的人数为 400×0.2=80,故 C 正确;1 分钟仰卧起坐的次数少于20 的频率为 0.1,∴1 分钟仰卧起坐的次数少于 20 的人数为 400×0.1=40,故 D 错误.故选 C.[答案] C [解题技法]频率分布直方图与众数、中位数、平均数的关系(1)最高的小长方形底边中点的横坐标为众数; (2)中位数左边和右边的小长方形的面积和是相等的; (3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积 乘以小长方形底边中点的横坐标之和.考法(二) 样本的数字特征与茎叶图交汇[典例] 将某选手的 9 个得分去掉 1 个最高分,去掉 1 个最低分,7 个剩余分数的平均分为 91.现场作的 9 个分数的茎叶图后来有 1 个数据模糊,无法辨认,在图中以 x 表示,则7 个剩余分数的方差为.[解析] 由茎叶图可知去掉的两个数是 87,99,所以 87+90×2+91×2+94+90+x =91×7,解得 x =4.故 s 2=1[(87-91)2+(90-91)2×2+(91-91)2×2+(94-91)2×2]=36 [答案] 367 [解题技法]7 7样本的数字特征与茎叶图综合问题的注意点(1)在使用茎叶图时,一定要观察所有的样本数据,弄清楚这个图中数字的特点,不要漏掉了数据,也不要混淆茎叶图中茎与叶的含义.(2)茎叶图既可以表示两组数据,也可以表示一组数据,用它表示的数据是完整的数据, 因此可以从茎叶图中看出数据的众数(数据中出现次数最多的数)、中位数(中间位置的一个数,或中间两个数的平均数)等.考法(三) 样本的数字特征与优化决策问题交汇[典例] (2018·周口调研)甲、乙两人在相同条件下各射击 10 次,每次中靶环数情况如图所示.(1)请填写下表(写出计算过程):平均数 方差命中 9环及 9 环以上的次数甲 乙(2)①从平均数和方差相结合看(分析谁的成绩更稳定);②从平均数和命中 9 环及 9 环以上的次数相结合看(分析谁的成绩好些); ③从折线图上两人射击命中环数的走势看(分析谁更有潜力). [解] 由题图,知甲射击 10 次中靶环数分别为 9,5,7,8,7,6,8,6,7,7. 将它们由小到大排列为 5,6,6,7,7,7,7,8,8,9. 乙射击 10 次中靶环数分别为 2,4,6,8,7,7,8,9,9,10. 将它们由小到大排列为 2,4,6,7,7,8,8,9,9,10.(1) x = 1 ×(5+6×2+7×4+8×2+9)=7(环), 10x = 1 ×(2+4+6+7×2+8×2+9×2+10)=7(环), 10 s 2 = 1 ×[(5-7)2+(6-7)2×2+(7-7)2×4+(8-7)2×2+(9-7)2]= 1 ×(4+2+0+2+4) 10 10 =1.2,s 2 = 1 ×[(2-7)2+(4-7)2+(6-7)2+(7-7)2×2+(8-7)2×2+(9-7)2×2+(10-7)2] 10 = 1×(25+9+1+0+2+8+9)=5.4. 10 填表如下:平均数 方差 命中 9 环及 9 环以上的次数甲乙甲乙(2)甲乙∴甲成绩比乙稳定.②∵平均数相同,命中9 环及9 环以上的次数甲比乙少,∴乙成绩比甲好些.③∵甲成绩在平均数上下波动,而乙处于上升势头,从第三次以后就没有比甲少的情况发生,∴乙更有潜力.[解题技法]利用样本的数字特征解决优化决策问题的依据(1)平均数反映了数据取值的平均水平;标准差、方差描述了一组数据围绕平均数波动的大小.标准差、方差越大,数据的离散程度越大,越不稳定;标准差、方差越小,数据的离散程度越小,越稳定.(2)用样本估计总体就是利用样本的数字特征来描述总体的数字特征.[题组训练]1.对某商店一个月内每天的顾客人数进行统计,得到样本的茎叶图(如图所示),则该样本中的中位数、众数、极差分别是( )A.46,45,56 B.46,45,53C.47,45,56 D.45,47,53解析:选A 样本共3045+47个,中位数为=46;显然样本数据出现次数最多的为45,2故众数为45;极差为68-12=56,故选A.2.甲、乙、丙、丁四人参加某运动会射击项目选拔赛,四人的平均成绩和方差如下表所示:平均环数x8.3 8.88.8 8.7方差s2 3.5 3.6 2.2 5.4) A.甲B.乙C.丙D.丁解析:选C 由表格中数据可知,乙、丙平均环数最高,但丙方差最小,说明成绩好,且技术稳定,选C.3.某仪器厂从新生产的一批零件中随机抽取40 个进行检测,如图是根据抽样检测得到的零件的质量(单位:克)绘制的频率分布直方图,样本数据按照[80,82),[82,84),[84,86),[86,88),[88,90),[90,92),[92,94),[94,96]分成8 组,将其按从左到右的顺序分别记为第一组,第二组,……,第八组.则样本数据的中位数在第组.解析:由题图可得,前四组的频率为(0.037 5+0.062 5+0.075 0+0.100 0)×2=0.55,则其频数为40×0.55=22,且第四组的频数为40×0.100 0×2=8,故中位数在第四组.答案:四[课时跟踪检测]A 级1.一个频数分布表(样本容量为30)不小心被损坏了一部分,只记得样本中数据在[20,60) 上的频率为0.8,则估计样本在[40,60)内的数据个数为( )A.14 B.15C.16 D.17解析:选B 由题意,样本中数据在[20,60)上的频数为30×0.8=24,所以估计样本在[40,60)内的数据个数为24-4-5=15.2.(2019·长春质检)如图所示是某学校某年级的三个班在一学期内的六次数学测试的平均成绩 y 关于测试序号 x 的函数图象,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图象,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好; ②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升. 其中正确结论的个数为()A .0B .1C .2D .3解析:选 D ①由图可知一班每次考试的平均成绩都在年级平均成绩之上,故①正确.② 由图可知二班平均成绩的图象高低变化明显,可知成绩不稳定,波动程度较大,故②正确.③ 由图可知三班平均成绩的图象呈上升趋势,并且图象的大部分都在年级平均成绩图象的下方,故③正确.故选 D.3.(2018·贵阳检测)在某中学举行的环保知识竞赛中,将三个年级参赛学生的成绩进行 整理后分为 5 组,绘制如图所示的频率分布直方图,图中从左到右依次为第一、第二、第三、第四、第五小组,已知第二小组的频数是 40,则成绩在 80~100 分的学生人数是()A .15B .18C .20D .25解析:选 A 根据频率分布直方图,得第二小组的频率是 0.04×10=0.4,∵频数是 40, ∴样本容量是40=100,又成绩在 80~100 分的频率是(0.01+0.005)×10=0.15,∴成绩在0.4 80~100 分的学生人数是 100×0.15=15.故选 A.4.2017 年 4 月,泉州有四处湿地被列入福建省首批重要湿地名录,某同学决定从其中 A ,B 两地选择一处进行实地考察.因此,他通过网站了ABA B A B解上周去过这两个地方的人对它们的综合评分,并将评分数据记录为右图的茎叶图,记 A ,B 两地综合评分数据的均值分别为 x A , x B ,方差分别为 s 2 ,s 2 .若以备受好评为依据,则AB下述判断较合理的是( )A .因为 x A > xB ,s 2 >s 2,所以应该去A 地B .因为 x > x ,s 2 <s 2 ,所以应该去 A 地ABABC .因为 x < x ,s 2 >s 2 ,所以应该去 B 地ABABD .因为 x A < x B ,s 2 <s 2 ,所以应该去 B 地解析:选 B 因 为 x A =1×(72+86+87+89+92+94)≈86.67,x B =1×(74+73+88 6 6 +86+95+94)=85,s 2 ≈1[(72-86.67)2+(86-86.67)2+(87-86.67)2+(89-86.67)2+(92-86.67)2+(94- 6 86.67)2]≈50.56,s 2 =1[(74-85)2+(73-85)2+(88-85)2+(86-85)2+(95-85)2+(94-85)2]=76, 6所以 x > x ,s 2 <s 2 (A 数据集中,B 数据分散),ABAB所以 A 地好评分高,且评价稳定.故选 B.5.(2018·青岛三中期中)已知数据 x 1,x 2,…,x n 的平均数 x =5,方差 s 2=4,则数据 3x 1+7,3x 2+7,…,3x n +7 的平均数和标准差分别为()A .15,36B .22,6C .15,6D .22,36解析:选 B ∵x 1,x 2,x 3,…,x n 的平均数为 5, x 1+x 2+…+x n 3x 1+3x 2+…+3x n 3(x 1+x 2+…+x n ) ∴ =5,∴ n +7= n n +7=3×5+7=22.∵x 1,x 2,x 3,…,x n 的方差为 4,∴3x 1+7,3x 2+7,3x 3+7,…,3x n +7 的方差是 32×4 =36,故数据 3x 1+7,3x 2+7,…,3x n +7 的平均数和标准差分别为 22,6,故选 B.6.(2018·江苏高考)已知5 位裁判给某运动员打出的分数的茎叶图如图所示那么这 5 位裁判打出的分数的平均数为 .解析:这 5 位裁判打出的分数分别是 89,89,90,91,91,因此这 5 位裁判打出的分数的平89+89+90+91+91均数为 5答案:90=90.7.为了了解某校高三美术生的身体状况,抽查了部分美术生的体重,将所得数据整理 后,作出了如图所示的频率分布直方图.已知图中从左到右的前 3 个小组的频率之比为 1∶ 3∶5,第 2 个小组的频数为 15,则被抽查的美术生的人数是.解析:设被抽查的美术生的人数为n ,因为后2 个小组的频率之和为(0.037 5+ 0.0125)×5=0.25,所以前 3 个小组的频率之和为 0.75.又前 3 个小组的频率之比为 1∶3∶5,第 2个小组的频数为 15,所以前 3 个小组的频数分别为 5,15,25,所以 n =5+15+25 60.0.75答案:608.某人 5 次上班途中所花的时间(单位:分钟)分别为 x ,y,10,11,9.已知这组数据的平均数为 10,方差为 2,则|x -y |的值为.解析:由题意知这组数据的平均数为 10,方差为 2, 可得 x +y =20,(x -10)2+(y -10)2=8,设 x =10+t ,y =10-t ,由(x -10)2+(y -10)2=8 得 t 2=4, 所以|x -y |=2|t |=4.答 案 :4 9.某班 100 名学生期中考试语文成绩的频率分布直方图如图所示,其中成绩分组区间 是[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中 a 的值;(2)根据频率分布直方图,估计这 100 名学生语文成绩的平均分;(3)若这 100 名学生语文成绩某些分数段的人数(x )与数学成绩相应分数段的人数(y )之比如表所示,求数学成绩在[50,90)之外的人数.分数段 [50,60) [60,70) [70,80) [80,90) x ∶y1∶12∶13∶44∶5(2)因为55×0.05+65×0.4+75×0.3+85×0.2+95×0.05=73.所以这100 名学生语文成=。
高考数学考点二十《统计与统计案例》课件
100
200
则 K2=2001×00(×6100×0×601-004×0×10400)2=8>6.635,
所以有 99%以上的把握认为是否持乐观态度与国内外差异有关.
四、解答题 13.(2021·全国乙卷)某厂研制了一种生产高精产品的设备,为检验新设 备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了 10 件产品,得到各件产品该项指标数据如下:
考点二十 统计与统计案例
一、选择题(在每小题给出的四个选项中,只有一项符合题目要求) 1.(2021·河北张家口第三次模拟)某中学春季运动会上,12 位参加跳高 半决赛同学的成绩各不相同,按成绩从高到低取前 6 位进入决赛,如果小明 知道了自己的成绩后,则他可根据其他 11 位同学成绩的哪个数据判断自己 能否进入决赛( )
A.r2<r4<0<r3<r1 C.r4<r2<0<r3<r1
B.r4<r2<0<r1<r3 D.r2<r4<0<r1<r3
答案 A 解析 易知题中图(1)和图(3)是正相关,图(2)与图(4)是负相关,且图(1) 与图(2)中的样本点集中分布在一条直线附近,则 r2<r4<0<r3<r1.故选 A.
5.通过随机询问 110 名性别不同的大学生是否爱好某项运动,得到如
下列联表:
男
女
总计
爱好
40
20
60
不爱好
20
30
50
总计
60
50
110
由
K2
=
n(ad-bc)2 (a+b)(c+d)(a+c)(b+d)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题8 第1讲统计与统计案例一、选择题1.(2011·湛江测试)某学校进行问卷调查,将全校4200名同学分为100组,每组42人按1~42随机编号,每组的第34号同学参与调查,这种抽样方法是() A.简单随机抽样B.分层抽样C.系统抽样D.分组抽样[答案] C[解析]一般地,要从容量为N的总体中抽取容量为n的样本,可将总体分成均衡的若干部分,然后按照预先制定的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样的方法叫做系统抽样.2.(文)(2011·重庆文,4)从一堆苹果中任取10只,称得它们的质量如下(单位:克):12512012210513011411695120134则样本数据落在[114.5,124.5)内的频率为()A.0.2 B.0.3C.0.4 D.0.5[答案] C[解析]在[114.5,124.5]范围内的频数m=4,样本容量n=10,∴所求频率410=0.4. (理)(2011·四川理,1)有一个容量为66的样本,数据的分组及各组的频数如下:[11.5,15.5)2[15.5,19.5) 4[19.5,23.5)9[23.5,27.5)18[27.5,31.5)11[31.5,35.5)12[35.5,39.5)7[39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是()A.16B.13C.12D.23[答案] B[解析]因为[31.5,35.5)12[35.5,39.5)7[39.5,43.5)3故[31.5,43.5)的概率为12+7+366=13,故选B.3.(2011·山东理,7)某产品的广告费用x与销售额y的统计数据如下表根据上表可得回归方程y =b x +a 中的b 为9.4,据此模型预报广告费用为6万元时销售额大约为( )A .63.6万元B .65.5万元C .67.7万元D .72.0万元[答案] B[解析] 依题意:x =3.5,y =42, 又b ^=9.4,∴42=9.4×3.5+a ^. 而a ^=9.1,∴y ^=9.4x +9.1, 当x =6时,y ^=65.5,故选B.4.(2011·大连模拟)某养兔场引进了一批新品种,严格按照科学配方进行喂养,四个月后管理员称其体重(单位:kg),将有关数据进行整理后分为五组,并绘制频率分布直方图(如图所示).根据标准,体重超过6kg 属于超重,低于5kg 的不够分量.已知图中从左到右第一、第三、第四、第五小组的频率分别为0.25,0.20,0.10,0.05,第二小组的频数为400,则该批兔子的总数和体重正常的频率分别为( )A .1000,0.50B .800,0.50C .800,0.60D .1000,0.60[答案] D[解析] 第二组的频率为1-0.25-0.20-0.10-0.05=0.40,所以兔子总数为4000.40=1000只,体重正常的频率为0.40+0.20=0.60.故选D.5.(文)(2011·江西文,7)为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分值的中位数为m e ,众数为m 0,平均值为x ,则( )A .m e =m 0=xB .m e =m 0<xC .m e <m 0<xD .m 0<m e <x[答案] D[解析] 由图可以不难发现众数为5.中位数为5+62=5.5,平均值x =2×3+4×3+5×10+6×6+7×3+8×2+9×2+10×230=17930(理)(2011·江西理,6)变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5);变量U 与V 相对应的一组数据为(10,5),(11.3,4),(11.8,3),(12.5,2),(13,1),r 1表示变量Y 与X 之间的线性相关系数,r 2表示变量V 与U 之间的线性相关系数,则( )A .r 2<r 1<0 B. 0<r 2<r 1 C. r 2<0<r 1 D .r 2=r 1[答案] C[解析] 对于第一组数据x -=10+11.3+11.8+12.5+135=11.75,y -=1+2+3+4+55=3.∑i =15(x i -x -)(y i -y -)=(x 1-x -)(y 1-y -)+(x 2-x -)(y 2-y -)…(x 5-x -)(y 5-y -)=1.75×(-2)+(-0.45)×(-1)+0.05×0+0.75×1+1.25×2=0.2. ∑i =15(x i -x -)2=(x 1-x -)2+(x 2-x -)2+…+(x 5-x -)2=1.752+(-0.45)2+0.052+0.752+1.252=5.3925.∑i =15(y i -y -)2=(y 1-y -)2+(y 2-y -)2+…+(y 5-y -)2=(-2)2+(-1)2+02+12+22=10, 代入公式中有r 1=0.25.3925×10=0.27.09≈0.0282.同理r 2中∑i =15(x i -x -)(y i -y -)=-4.36<0,故r 2<0,∴r 2<0<r 1,故选C.6.(2011·湖南理,4)通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:由K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )算得,K 2=110×(40×30-20×20)260×50×60×50≈7.8.附表:A .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B .在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C .有99%以上的把握认为“爱好该项运动与性别有关”D .有99%以上的把握认为“爱好该项运动与性别无关” [答案] C[解析] ∵6.635<K 2=7.8<10.828,∴我们有99%的把握认为二者有关,或者说在犯错的概率不超过1%的前提下二者有关. 7.(2011·合肥二检)甲、乙两名学生的六次数学测验成绩(百分制)的茎叶图如图所示.①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低;④甲同学成绩的方差小于乙同学成绩的方差. 上面说法正确的是( ) A .③④ B .①②④ C .②④ D .①③④[答案] A[解析] 由茎叶图知甲同学的成绩为72,76,80,82,86,90;乙同学的成绩为69,78,87,88,92,96.故甲同学成绩的中位数小于乙同学成绩的中位数,①错;计算得甲同学的平均分为81,乙同学的平均分为85,故甲同学的平均分比乙同学的平均分低,因此②错、③对;计算得甲同学成绩的方差小于乙同学成绩的方差,故④对.所以说法正确的是③④,选A.8.(2011·东北四市联考)在2011年5月1日,某市物价部门对本市的5家商场的某商品的一天销售量及其价格进行调查,5家商场的售价x 元和销售量y 件之间的一组数据如下表所示:y ^=-3.2x +a (参考公式:回归方程y ^=bx +a ,a =y --b x -),则a =( )A .-24B .35.6C .40.5D .40[答案] D[解析] 价格的平均数是x -=9+9.5+10+10.5+115=10,销售量的平均数是y -=11+10+8+6+55=8,由y ^=-3.2x +a 知b =-3.2,所以a =y --b x -=8+3.2×10=40,故选D.二、填空题9.(2011·湖北文,11)某市有大型超市200家、中型超市400家、小型超市1400家.为掌握各类超市的营业情况,现按分层抽样方法抽取一个容量为100的样本,应抽取中型超市________家.[答案] 20[解析] 属简单题,关键是清楚每一层的抽取比例都一样是n N.由于所有超市共计200+400+1400=2000家,需抽取100家,则抽取比例为1002000所以中型超市抽取400×1002000=20家.10.(文)(2011·广东文,13)为了解篮球爱好者小李的投篮命中率与打篮球时间之间的关系,下表记录了小李某月1号到5号每天打篮球时间x (单位:小时)与当天投篮命中率y 之间的关系:小李这56号打6小时篮球的投篮命中率为________.[答案] 0.5 0.53[解析] 小李这5天的平均投篮命中率y =0.4+0.5+0.6+0.6+0.45=0.5,可求得小李这5天的平均打篮球时间x =3.根据表中数据可求得b ^=0.01,a ^=0.47,故回归直线方程为y ^=0.47+0.01x ,将x =6代入得6号打6小时篮球的投篮命中率约为0.53.(理)(2011·广东理,13)某数学老师身高176cm ,他爷爷、父亲和儿子的身高分别是173cm 、170cm 和182cm.因儿子的身高与父亲的身高有关,该老师用线性回归分析的方法预测他孙子的身高为________cm.[答案] 185[解析] 设儿子身高y 与父亲身高x 有关系,列表如下:∵x =13(173+170+176)=173,y =13+176+182)=176,∑i =13x i y i =173×170+170×176+176×182=91362,∑i =13x 2i =1732+1702+1762=89805, ∴b ^=91362-3×173×17689805-3×1732=1,a ^=y -b ^x =176-173=3 ∴回归直线方程为y ^=x +3, ∴x =182时,y ^=182+3=185(cm).11.(文)(2011·西城抽样)某区高二年级的一次数学统考中,随机抽取200名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成5组:第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……第五组,成绩大于等于90分且小于等于100分,据此绘制了如图所示的频率分布直方图.则这200名同学中成绩大于等于80分且小于90分的学生有________名.[答案] 40[解析] 由题知,成绩大于等于80分且小于90分的学生所占的频率为1-(0.005×2+0.025+0.045)×10=0.2,所以这200名同学中成绩大于等于80分且小于90分的学生有200×0.2=40名.(理)(2011·福州二检)若样本a 1,a 2,a 3,a 4,a 5的方差是3,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的方差是________.[答案] 12[解析] 若a -表示样本a 1,a 2,a 3,a 4,a 5的均值,则样本2a 1+3,2a 2+3,2a 3+3,2a 4+3,2a 5+3的均值为2a -+3.又15∑i =15 (a i -a -)2=3,∴15∑i =15[(2a i +3)-(2a -+3)]2=15∑i =15 (2a i -2a -)2=12. 12.把容量为1000的某个样本数据分为10组,并填写频率分布表.若前3组的频率依次构成公差为0.05的等差数列,且后7组的频率之和是0.79.则前3组中频率最小的一组的频数是________.[答案] 20[解析] 设前3组中频率最小的一组的频率是x .由题意得前3组的频率之和是1-0.79=0.21,则x +(x +0.05)+(x +0.05×2)=0.21,由此解得x =0.02,即前3组中频率最小的一组的频率是0.02,相应的频数是0.02×1000=20.三、解答题13.(2010·广东文,17)某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:(1)(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.[解析](1)由于大于40岁的42人中有27人收看新闻节目,而20至40岁的58人中,只有18人收看新闻节目,故收看新闻节目的观众与年龄有关.(2)27×545=3,∴大于40岁的观众应抽取3名.(3)由题意知,设抽取的5名观众中,年龄在20岁至40岁的为a1,a2,大于40岁的为b1,b2,b3,从中随机取2名,基本事件有:(a1,a2),(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),(b1,b2),(b1,b3),(b2,b3)共十个,设恰有一名观众年龄在20至40岁为事件A,则A中含有基本事件6个:(a1,b1),(a1,b2),(a1,b3),(a2,b1),(a2,b2),(a2,b3),∴P(A)=610=3 5.14.(文)(2011·郑州二次质检)某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:(1)试分析估计两个班级的优秀率;(2)由以上统计数据填写下面2×2列联表,并问是否有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.参考公式及数据:K2=(a+b)(c+d)(a+c)(b+d),[解析] 甲班优秀人数为30人,优秀率为3050=60%,乙班优秀人数为25人,优秀率为2550=50%,所以甲、乙两班的优秀率分别为60%和50%. (2)因为K 2=100×(50×50×55×45=99≈1.010,所以由参考数据知,没有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.(理)(2011·广东广州)某校高三(1)班的一次数学测试成绩的茎叶图如图所示和频率分布直方图如图所示,都受到不同程度的破坏,但可见部分如下,据此回答如下问题:(1)求全班人数;(2)求分数在[80,90)之间的人数;并计算频率分布直方图中[80,90)间的矩形的高; (3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.[解析] (1)由茎叶图知,分数在[50,60)之间的频数为2,由频率分布直方图知,分数在[50,60)之间的频率为0.008×10=0.08,所以,全班人数为20.08=25(人).(2)分数在[80,90)之间的人数为25-2-7-10-2=4人,分数在[80,90)之间的频率为425=0.16,所以频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(3)将[80,90)之间的4个分数编号为1,2,3,4;[90,100]之间的2个分数编号为5,6. 则在[80,100)之间的试卷中任取两份的基本事件为:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)共15个,其中至少有一个在[90,100]之间的基本事件有(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6),(5,6)共9个,故至少有一份分数在[90,100]之间的概率是915=35.15.(2011·安徽文,20)某地最近十年粮食需求量逐年上升,下表是部分统计数据:(1)利用所给数据求年需求量与年份之间的回归直线方程y =b x +a ; (2)利用(1)中所求的直线方程预测该地2012年的粮食需求量.[解析] 由所给数据分析,年需求量与年份之间近似直线上升,可对数据进行预处理如下表对预处理后的数据,容易算出x =0,y =3.2∑i =15x i y i =-4×(-21)+(-2)×(-11)+2×19+4×29=260∑i =15x 2i =16+4+0+4+16=40∴b ^=∑i =15x i y i -5x y∑i =15x 2i -5x 2=26040=6.5,∴a ^=y -b ^x =3.2 ∴所求回归直线方程y -257=6.5(x -2006)+3.2即y =6.5(x -2006)+260.2(2)当x =2012时,y =6.5(2012-2006)+260.2=299.2万吨=300万吨 故预测2012年粮食需求量约为300万吨.。