第2章 递归与分治-3

合集下载

第2章 递归与分治_作业答案讲解

第2章 递归与分治_作业答案讲解

具体执行过程:求最大值
0 1 2 3 4 5 6 7 8 9 10 11 12 13 24 -13 29 113 87 65 -9 36 14 76 44 83 67 5 0 1 2 3 4 5 6 24 -13 29 113 87 65 -9 0 1 2 3 24 -13 29 113 0 1 24 -13 2 3 29 113 4 5 6 87 65 -9 7 8 9 10 11 12 13 36 14 76 44 83 67 5 7 8 9 10 36 14 76 44 7 8 36 14 7 36 9 10 76 44 11 12 13 83 67 5 11 12 83 67 11 83 12 67 13 5
课后练习
• 练习2:分析如下时间函数的复杂度,并说明 原因。 1. 利用递归树说明以下时间函数的复杂度:
O(1) T ( n) 3T ( n ) O( n) 4 n1 n1
2. 利用主定理说明以下时间函数的复杂度:
T(n) = 16T(n/4) + n
T(n) = T(3n/7) + 1
课后练习
• 练习1:给定数组a[0:n-1], 1. 试设计一个分治法算法,找出a[0:n-1]中元素最 大值和最小值; 2. 写出该算法时间函数T(n)的递推关系式; 3. 分析该算法的时间复杂度和空间复杂度。
0 1 2 3 4 5 6 7 8 9 10 11 12 13 24 -13 29 113 87 65 -9 36 14 76 44 83 67 5
• 递归公式:
– 设n个元素的集合可以划分为F(n,m)个不同的由 m个非空子集组成的集合。 F(n,m) = 1, when n=0, n=m, n=1, or m=1 F(n,m) = 0, when n<m 否则 F(n,m)=F(n-1,m-1)+m*F(n-1,m)

递归和分治法

递归和分治法

递归和分治法摘要:1.递归和分治法的定义2.递归和分治法的区别3.递归和分治法的应用实例4.递归和分治法的优缺点正文:递归和分治法是计算机科学中常用的两种算法设计技巧。

它们在解决问题时都采用了将问题分解成更小子问题的思路,但在具体实现上却有所不同。

下面,我们来详细了解一下递归和分治法。

1.递归和分治法的定义递归法是指在算法中调用自身来解决问题的方法。

递归函数在执行过程中,会将原问题分解成规模更小的相似子问题,然后通过调用自身的方式,解决这些子问题,最后将子问题的解合并,得到原问题的解。

分治法是指将一个大问题分解成若干个规模较小的相似子问题,然后分别解决这些子问题,最后将子问题的解合并,得到原问题的解。

分治法在解决问题时,通常需要设计一个主函数(master function)和一个子函数(subfunction)。

主函数负责将问题分解,子函数负责解决子问题。

2.递归和分治法的区别递归法和分治法在解决问题时都采用了将问题分解成更小子问题的思路,但它们在实现上存在以下区别:(1)函数调用方式不同:递归法是通过调用自身来解决问题,而分治法是通过调用不同的子函数来解决问题。

(2)递归法必须有递归出口,即必须有一个基线条件,而分治法不一定需要。

3.递归和分治法的应用实例递归法应用广泛,例如斐波那契数列、汉诺塔问题、八皇后问题等。

分治法也有很多实际应用,例如快速排序、归并排序、大整数乘法等。

4.递归和分治法的优缺点递归法的优点是代码简单易懂,但缺点是容易产生大量的重复计算,导致时间复杂度较高。

分治法的优点是时间复杂度较低,但缺点是代码实现相对复杂,需要设计主函数和子函数。

总之,递归和分治法都是解决问题的有效方法,具体应用需要根据问题的特点来选择。

计算机算法设计与分析(第5版)

计算机算法设计与分析(第5版)
该教材采用面向对象的C++语言作为算法描述手段,在保持C++优点的同时,尽量使算法描述简明、清晰。每 章的章首为学习要点提示,章末配有难易适度的习题,分为算法分析题和算法实现题两部分,以强化实践环节 。
作者简介
王晓东:男,1957年生,山东人,福建工程学院副院长,教授,博士生导师,福建省计算机学会理事长。主 讲课程:算法与数据结构、算法设计与分析、文献阅读与选题报告 。
目录
(注:目录排版顺序为从左列至右列 )
教学资源
《计算机算法设计与分析(第5版)》有配套教材——《计算机算法设计与分析习题解答(第5版)》 。
教材特色
《计算机算法设计与分析(第5版)》修正了第4版中发现的一些错误,并将各章的习题分为算法分析题和算 法实现题两部分,增加了算法实践性内容,增加了有关串和序列的算法内容。
《计算机算法设计与分析(第5版)》由王晓东担任主编;傅清祥教授、吴英杰教授、傅仰耿博士和朱达欣教 授参加了该教材有关章节的讨论,对该教材内容及各章节的编排提出了意见;田俊教授审阅了全书。该教材在编 写过程中,得到了全国高等学校计算机专业教学指导委员会的支持。福州大学“211工程”计算机与信息工程重 点学科实验室和福建工程学院为该教材的写作提供了设备和工作环境 。
该教材各章的论述中,首先介绍一种算法设计策略的基本思想,然后从解决计算机科学和应用中的实际问题 入手,描述几个算法。同时对每个算法所需的时间和空间进行分析,使读者既能学到一些常用的算法,也能通过 对算法设计策略的反复应用,牢固掌握这些算法设计的基本策略。该教材选择某些问题,通过对解同一问题的不 同算法的比较,使读者体会到每种算法的设计要点。
2018年8月,该教材由电子工业出版社出版 。

算法设计与分析课件--分治法-线性时间选择

算法设计与分析课件--分治法-线性时间选择
9
2.5 线性时间选择
这样找到的m*划分是否能达到O(n)的时间复杂度? |A| = |D| = 2r, |B| = |C| = 3r +2,n = 10r +5. |A| + |D| + |C| = 7r + 2 = 7(n-5)/10 +2 = 7n/10 -1.5 < 7n/10 表明子问题的规模不超过原问题的7/10(d)。
T(n) = T(cn) + T(dn) + tn
6
2.5 线性时间选择
Select(S, k) Input: n个数的数组S,正整数k
T(n) = T(cn) + T(dn) + tn
Output: S中的第k个小元素
1. 将S划分成5个元素一组,共[n/5]个组;
2. 每组寻找一个中位数,把这些中位数放到集合M中;
寻找一个分割点m*, 使得左边子表S1中的元素都小于m*, 右子表 S2中的元素都大于m*。 如果寻找m*的时间复杂度达到O(nlogn), 那就不如直接使用排序 算法了。 如果直接寻找m*, 时间复杂度是O(n). 假设选择算法的时间复杂度为T(n), 递归调用这个算法在S的一 个真子集M上寻找m*,应该使用T(cn)时间,这里c是小于1的常数, 反映了M的规模与S相比缩小许多。
✓ 不妨假设n是5的倍数,且n/5是奇数,即n/5 = 2r+1. 于是: |A| = |D| = 2r, |B| = |C| = 3r +2,n = 10r +5.
✓ 如果A和D中的元素都小于m*,那么把它们的元素都加入到S1, S1对应规约后子问题的上限。 类似的,若A和D中的元素都 大于m*, 则把他们的元素都加 入到S2,S2对应规约后子问题 的上限。

信息工程系课程的介绍XXXX专业宣讲会

信息工程系课程的介绍XXXX专业宣讲会

文库贡献者物理与电子信息工程学院信息工程系课程介绍2013年11月目录1. 《算法设计与分析》课程介绍 (1)2. 《离散数学》课程介绍 (2)3. 《计算机组成原理》课程介绍 (3)4. 《网络应用终端开发》课程介绍 (4)5. 《数据结构》课程介绍 (5)6. 《面向对象程序设计(Java)》课程介绍 (6)7. 《嵌入式操作系统基础》课程介绍 (8)8. 《数据结构》课程介绍 (9)9. 《操作系统A》课程介绍 (11)10. 《多媒体技术A》课程介绍 (12)11. 《ARM原理与应用》课程介绍 (13)12. 《ERP系统实施及二次开发技术》课程介绍 (14)13. 《Internet开发基础(JSP)》课程介绍 (15)14. 《IP统一通信技术》课程介绍 (17)15. 《IT项目管理》课程介绍 (18)16. 《嵌入式系统软件开发》课程介绍 (19)17. 《面向对象程序设计A》课程介绍 (20)18. 《Web应用开发》课程介绍 (22)19. 《Xml与Web Service》课程介绍 (24)20. 《编译原理》课程介绍 (26)21. 《数据库原理与应用》课程介绍 (27)22. 《电子商务概论》课程介绍 (28)23. 《企业运作模拟》课程介绍 (29)24. 《信息系统分析与设计》课程介绍 (31)25. 《管理学原理》课程介绍 (32)26. 《会计学原理》课程介绍 (34)27. 《数字电路与逻辑设计》课程介绍 (35)28. 《程序设计基础》课程介绍 (36)29. 《计算机网络》课程介绍 (38)30. 《计算机网络安全》课程介绍 (39)31. 《计算机网络规划与设计》课程介绍 (40)32. 《路由与交换技术》课程介绍 (41)33. 《企业管理与ERP》课程介绍 (43)34. 《软件工程B》课程介绍 (44)35. 《软件质量与测试基础》课程介绍 (45)36. 《网络协议分析与设计》课程介绍 (46)37. 《物流与供应链管理》课程介绍 (47)38. 《网络性能测试与分析》课程介绍 (48)39. 《信息系统分析与设计》课程介绍 (49)40. 《现代通信技术》课程介绍 (50)41. 《计算机网络基础》课程介绍 (51)42. 《计算机组成与体系结构》课程介绍 (53)43. 《运筹学B》课程介绍 (54)44. 《大型数据库系统基础》课程介绍 (55)1.《算法设计与分析》课程介绍2)教学目的和要求算法设计与分析是计算机科学与技术专业的专业课程,在计算机科学与应用的理论研究中具有重要的地位。

递归与分治实验报告

递归与分治实验报告

竭诚为您提供优质文档/双击可除递归与分治实验报告篇一:实验一递归与分治算法编程-实验报告纸南京信息工程大学实验(实习)报告实验(实习)名称递归与分治算法编程实验(实习)日期得分指导教师院专业年级班次姓名学号1.实验目的:1)掌握递归与分治策略的基本思想2)掌握递归算法在阶乘函数、Ackerman函数、整数划分等问题上的应用3)掌握二分查找、合并排序、快速排序等问题的分治算法实现4)熟悉myeclipse或eclipse等Java开发工具的使用。

2.实验内容:1)采用myeclipse或eclipse编程实现基于分治策略的二分查找算法。

2)采用myeclipse或eclipse编程实现基于分治策略的合并排序算法。

3)采用myeclipse或eclipse编程实现基于分治策略的合并排序算法。

3.实验步骤二分查找publicclasssorting{publicstaticintbinarysearch(int[]a,intx,intn){intle ft=0;intright=n-1;while(left intmiddle=(left+right)/2;if(x==a[middle])returnmiddle;if(x>a[middle])left=middle+1;elseright=middle-1;}return-1;}publicstaticvoidmain(stringargs[]){intx,n;inta[]={1,3,4,5,6,13,25};x=6;n=7;ints;s=binarysearch(a,x,n);system.out.println(s);合并排序publicclassmergesort{publicstaticvoidmergesort(int[]a){}publicstaticvoid mergepass(int[]x,int[]y,ints){}publicstaticvoidmerg e(int[]c,int[]d,intl,intm,intr){inti=1,j=m+1,k=1;in ti=0;while(i }}if(c[i]-(c[j])m)for(intq=j;q快速排序publicclassQsort{privatestaticvoidqsort(inta[],intp,intr){}privatest aticintpartition(inta[],intp,intr){inti=p;intj=r+1; intx=a[p];inttemp;while(true){while((a[++i]-x)0);if (i>=j)break;temp=a[i];if(p }}}a[j]=temp;mymath.s wap(a,i,j);//a[p]=a[j];a[j]=x;returnj;publicstaticv oidmain(string[]args){}inta[]={4,2,7,9,1};qsort(a,0,4);for(inti=0;;i++){}s ystem.out.println(a[i]);4.实验分析和总结掌握了递归与分治策略的基本思想掌握了递归算法在阶乘函数、Ackerman函数、整数划分等问题上的应用掌握了二分查找、合并排序、快速排序等问题的分治算法实现熟悉了myeclipse或eclipse等Java开发工具的使用。

算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)

算法设计与分析:递归与分治法-实验报告(总8页)实验目的:掌握递归与分治法的基本思想和应用,学会设计和实现递归算法和分治算法,能够分析和评价算法的时间复杂度和空间复杂度。

实验内容:1.递归算法的设计与实现3.算法的时间复杂度和空间复杂度分析实验步骤:1)递归定义:一个函数或过程,在其定义或实现中,直接或间接地调用自身的方法,被成为递归。

递归算法是一种控制结构,它包含了解决问题的基础情境,也包含了递归处理的情境。

2)递归特点:递归算法具有以下特点:①依赖于递归问题的部分解被划分为若干较小的部分。

②问题的规模可以通过递推式递减,最终递归终止。

③当问题的规模足够小时,可以直接求解。

3)递归实现步骤:①确定函数的定义②确定递归终止条件③确定递归调用的过程4)经典实例:斐波那契数列递推式:f(n) = f(n-1) + f(n-2)int fib(int n) {if (n <= 0)return 0;else}5)优化递归算法:避免重复计算例如,上述斐波那契数列的递归算法会重复计算一些中间结果,影响效率。

可以使用动态规划技术,将算法改为非递归形式。

int f1 = 0, f2 = 1;for (int i = 2; i <= n; i++) {f1 = f2;使用循环避免递归,重复计算可以大大减少,提高效率。

1)分治算法的定义:将原问题分解成若干个规模较小且类似的子问题,递归求解子问题,然后合并各子问题得到原问题的解。

2)分治算法流程:②将问题分解成若干个规模较小的子问题。

③递归地解决各子问题。

④将各子问题的解合并成原问题的解。

3)分治算法实例:归并排序归并排序是一种基于分治思想的经典排序算法。

排序流程:②分别对各子数组递归进行归并排序。

③将已经排序好的各子数组合并成最终的排序结果。

实现源代码:void mergeSort(int* arr, int left, int right) {if (left >= right)while (i <= mid && j <= right)temp[k++] = arr[i] < arr[j] ? arr[i++] : arr[j++];temp[k++] = arr[i++];1) 时间复杂度的概念:指完成算法所需的计算次数或操作次数。

计算机专业课《算法》_第二章 递归与分治策略

计算机专业课《算法》_第二章 递归与分治策略

“Hanoi 塔”问题演示 a 初始 a 步骤1 a
c
b
c
“Hanoi 塔”问题程序
void hanoi(int n,a,b,c)
{ if n == 1 move( 1, a, b );
else { hanoi( n-1, a, c, b );
move(n, a, b ); hanoi( n-1, c,b, a) ;
• 递归优点:结构清晰,可读性强
• 递归缺点:递归算法的运行效率较低,无论是耗 费的计算时间还是占用的存储空间都比非递归算 法要多。
整数划分问题的递归关系q(n,m)
如设p(n)为正整数n的划分数,则难以找到递归关系 • q(n,m):正整数n的不同的划分中,最大加数不 大于m的划分个数个数 q(n,m)=
1 q(n,n) 1+q(n,n-1) q(n,m-1)+q(n-m,m) n=1, m=1 n<m n=m n>m>1
递归函数举例(5)
学习要点
理解递归的概念。 掌握设计有效算法的分治策略。
通过典型范例,学习分治策略设计技巧。
2.1 递归的概念
• 递归算法:一个直接或间接地调用自身的算法 • 递归方程:对于递归算法,一般可把时间代 价表示为一个递归方程 • 递归函数:使用函数自身给出定义的函数 • 解递归方程最常用的方法是进行递归扩展
递归函数举例(1)
• 阶乘函数 n !=
1 n(n-1)! n=1 n>1
• Fibonacci数列
1 n=0
F(n)=
1 F(n-1)+F(n-2)
n=1 n>1
初始条件与递归方程是递归函数的二个要素

算法之2章递归与分治

算法之2章递归与分治

算法分析(第二章):递归与分治法一、递归的概念知识再现:等比数列求和公式:1、定义:直接或间接地调用自身的算法称为递归算法。

用函数自身给出定义的函数称为递归函数。

2、与分治法的关系:由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。

在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。

这自然导致递归过程的产生。

分治与递归经常同时应用在算法设计之中,并由此产生许多高效算法。

3、递推方程:(1)定义:设序列01,....na a a简记为{na},把n a与某些个()ia i n<联系起来的等式叫做关于该序列的递推方程。

(2)求解:给定关于序列{n a}的递推方程和若干初值,计算n a。

4、应用:阶乘函数、Fibonacci数列、Hanoi塔问题、插入排序5、优缺点:优点:结构清晰,可读性强,而且容易用数学归纳法来证明算法的正确性,因此它为设计算法、调试程序带来很大方便。

缺点:递归算法的运行效率较低,无论是耗费的计算时间还是占用的存储空间都比非递归算法要多。

二、递归算法改进:1、迭代法:(1)不断用递推方程的右部替代左部(2)每一次替换,随着n的降低在和式中多出一项(3)直到出现初值以后停止迭代(4)将初值代入并对和式求和(5)可用数学归纳法验证解的正确性2、举例:-----------Hanoi塔算法----------- ---------------插入排序算法----------- ()2(1)1(1)1T n T nT=−+=()(1)1W n W n nW=−+−(1)=021n-23()2(1)12[2(2)1]12(2)21...2++2 (121)n n n T n T n T n T n T −−=−+=−++=−++==++=−(1)2 ()(1)1((n-2)+11)1(2)(2)(1)...(1)12...(2)(1)(1)/2W n W n n W n n W n n n W n n n n =−+−=−−+−=−+−+−==++++−+−=−3、换元迭代:(1)将对n 的递推式换成对其他变元k 的递推式 (2)对k 进行迭代(3)将解(关于k 的函数)转换成关于n 的函数4、举例:---------------二分归并排序---------------()2(/2)1W n W n n W =+−(1)=0(1)换元:假设2kn =,递推方程如下()2(/2)1W n W n n W =+−(1)=0 → 1(2)2(2)21k k k W W W−=+−(0)=0(2)迭代求解:12122222321332133212()2(2)212(2(2)21)212(2)22212(2)2*2212(2(2)21)2212(2)222212(2)3*2221...2(0)*2(22...21)22k k k k k k k k k k k k k k k k k k k k k k k k W n W W W W W W W W k k −−−−−−−+−+−−−=+−=+−+−=+−+−=+−−=+−+−−=+−+−−=+−−−==+−++++=−1log 1n n n +=−+(3)解的正确性—归纳验证: 证明递推方程的解是()(1)/2W n n n =−()(1)1W n W n n W =−+−(1)=0,(n 1)=n +n=n(n-1)/2+n =n[(n-1)/2+1]=n(n+1)/2n W W +方法:数学归纳法证 n=1,W(1)=1*(1-1)/2=0假设对于解满足方程,则()---------------快速排序--------------------->>>平均工作量:假设首元素排好序在每个位置是等概率的112()()()(1)0n i T n T i O n n T −==+=∑ >>>对于高阶方程应该先化简,然后迭代(1)差消化简:利用两个方程相减,将右边的项尽可能消去,以达到降阶的目的。

使用递归与分治法求解3.strassen矩阵乘法

使用递归与分治法求解3.strassen矩阵乘法

一、概述1.介绍矩阵乘法的概念和意义2.引出递归与分治法在矩阵乘法中的应用二、传统矩阵乘法算法1.介绍传统的矩阵乘法算法原理2.分析传统算法的时间复杂度和空间复杂度3.讨论传统算法在大规模矩阵计算中的局限性三、Strassen矩阵乘法算法原理1.介绍Strassen算法的基本思想和原理2.引出递归与分治法在Strassen算法中的运用3.分析Strassen算法的时间复杂度和空间复杂度四、递归与分治法在Strassen算法中的运用1.详细解释递归与分治法在Strassen算法中的具体应用过程2.分析递归与分治法对算法性能的影响3.讨论递归与分治法在其他算法中的推广应用五、实例分析1.通过具体实例演示Strassen算法和传统算法的计算过程2.对比分析两种算法的计算效率和精度3.总结实例分析结果,展示递归与分治法在Strassen算法中的优势六、改进和优化1.讨论现有Strassen算法的局限性和不足2.提出改进和优化的方案,探讨递归与分治法在算法优化中的作用3.展望递归与分治法在矩阵计算领域的未来发展方向七、结论1.总结文中讨论的内容,强调递归与分治法在Strassen算法中的重要性和价值2.展望递归与分治法在矩阵计算领域的广阔应用前景3.对读者提出建议,鼓励更多的研究者投身于这一领域的研究和探索。

六、改进和优化1. Strassen算法的局限性和不足尽管Strassen算法在理论上具有较低的时间复杂度,但实际应用中也存在一些局限性和不足。

Strassen算法中涉及到的矩阵分块操作会引入额外的运算开销和存储开销,使得在小规模矩阵计算中,并不能体现出明显的优势。

Strassen算法要求矩阵的维度必须为2的幂次方,而实际场景中的矩阵往往难以满足这一条件,限制了算法的适用范围。

另外,由于Strassen算法引入了额外的递归调用,对于小规模矩阵,递归调用会使得算法的性能反而不如传统的矩阵乘法算法。

2. 改进和优化的方案针对Strassen算法的局限性和不足,可以考虑一些改进和优化的方案。

算法设计与分析(霍红卫)-第2章-分治法

算法设计与分析(霍红卫)-第2章-分治法

第2章 分 治 法
我们可以很容易解决这个问题。利用这样一个事实:渐近 表示法只要求对n≥n0,T(n)≤cn lb n成立,其中n0是一个可以选择 的常数。由于对于n>3,递归方程并不直接依赖T(1),因此可设 n0=2,选择T(2)和T(3)作为归纳证明中的边界条件。由递归方程 可得T(2)=4和T(3)=5。此时只要选择c≥2,就会使得T(2)≤c·2·lb 2 和 T(3)≤c·3·lb 3 成 立 。 因 此 , 只 要 选 择 n0=2 和 c≥2 , 则 有 T(n)≤cn lb n成立。
3ic(n/4i)2=(3/16) icn2 i=0,1,…,log4n-1
深度为log4n的最后一层有3log4 n nlog4 3 个结点,每个结点的
开销为T(1),该层总开销为 nlog4 3T (1) ,即 Θ(nlog4 3)。
第2章 分 治 法
将所有层的开销相加得到整棵树的开销:
T (n) cn2
T(n)=2T(n/2)+n ≤2(c[n/2]lb[n/2])+n =cn lb n/2+n =cn lb n-cn lb 2+n =cn lb n-cn+n =cn lb n-(c-1)n
最后一步在c≥1时成立。≤cn lb n
第2章 分 治 法
下面证明猜测对于边界条件成立, 即证明对于选择的常 数c,T(n)≤cn lb n对于边界条件成立。 这个要求有时会产生 一些问题。 假设T(1)=1是递归方程的惟一边界条件,那么对 于n=1,T(1)≤c·1·lb 1=0与T(1)=1发生矛盾。因此,归纳法中 的归纳基础不成立。
3
cn2
3
2
cn2
3

算法设计与分析习题第二章分治与递归

算法设计与分析习题第二章分治与递归

2010-12-28
12
2.11 编写针对链表的快速排序程序。
需要保存指针信息。下面给出双向链表的快速排序算法 void fast_sort( Sdata *a, Sdata *f, Sdata *t ) { Sdata *i,*j,k,p; i = f; j = t; if ( t->lnext != f ) { k = a->data; //用于比较的基准数值 i = f; j = t; p = -1; while ( j != i )
7
2.7 按2.2.4节的描述,编写从二叉树中删除一个结点 的C语言程序 二叉树节点删除有三种情况: (1)*p是叶子(即它的孩子数为0):无须连接*p的子树, 只需将*p的双亲*parent中指向*p的指针域置空即可。 (2)*p只有一个孩子*child:只需将*child和*p的双亲直接 连接后,即可删去*p。注意:*p既可能是*parent的左孩 子也可能是其右孩子,而*child可能是*p的左孩子或右孩 子,故共有4种状态。 (3)*p有两个孩子:先令q=p,将被删结点的地址保存在q 中;然后找*q的中序后继*p,并在查找过程中仍用parent 记住*p的双亲位置。*q的中序后继*p一定是 *q的右子树 中最左下的结点,它无左子树。因此,可以将删去*q的 操作转换为删去的*p的操作,即在释放结点*p之前将其 数据复制到*q中,就相当于删去了*q.
算法设计与分析习题
第二章 分治与递归
2010-12-28
1
2.1 对于顺序查找算法,分析目标值存在于数组中的 概率p趋于0的含义,这种情况下平均查找次数有什么 样的变化?当p趋于1时呢? 见教材P12。平均比较次数为 n - p(n-1)/2。 p趋于0,平均次数趋于n;p趋于1时,平均次数趋于 (n+1)/2。(求极限)

算法分析与设计(习题答案)

算法分析与设计(习题答案)

算法分析与设计教程习题解答第1章 算法引论1. 解:算法是一组有穷的规则,它规定了解决某一特定类型问题的一系列计算方法。

频率计数是指计算机执行程序中的某一条语句的执行次数。

多项式时间算法是指可用多项式函数对某算法进行计算时间限界的算法。

指数时间算法是指某算法的计算时间只能使用指数函数限界的算法。

2. 解:算法分析的目的是使算法设计者知道为完成一项任务所设计的算法的优劣,进而促使人们想方设法地设计出一些效率更高效的算法,以便达到少花钱、多办事、办好事的经济效果。

3. 解:事前分析是指求出某个算法的一个时间限界函数(它是一些有关参数的函数);事后测试指收集计算机对于某个算法的执行时间和占用空间的统计资料。

4. 解:评价一个算法应从事前分析和事后测试这两个阶段进行,事前分析主要应从时间复杂度和空间复杂度这两个维度进行分析;事后测试主要应对所评价的算法作时空性能分布图。

5. 解:①n=11; ②n=12; ③n=982; ④n=39。

第2章 递归算法与分治算法1. 解:递归算法是将归纳法的思想应用于算法设计之中,递归算法充分地利用了计算机系统内部机能,自动实现调用过程中对于相关且必要的信息的保存与恢复;分治算法是把一个问题划分为一个或多个子问题,每个子问题与原问题具有完全相同的解决思路,进而可以按照递归的思路进行求解。

2. 解:通过分治算法的一般设计步骤进行说明。

3. 解:int fibonacci(int n) {if(n<=1) return 1;return fibonacci(n-1)+fibonacci(n-2); }4. 解:void hanoi(int n,int a,int b,int c) {if(n>0) {hanoi(n-1,a,c,b); move(a,b);hanoi(n-1,c,b,a); } } 5. 解:①22*2)(−−=n n f n② )log *()(n n n f O =6. 解:算法略。

递归和分治法

递归和分治法

递归和分治法摘要:一、递归与分治法的概念1.递归:函数调用自身的思想2.分治法:把一个大问题分解成若干个小问题二、递归与分治法的联系与区别1.递归通常作为分治法的实现方式2.分治法不一定要用递归实现三、递归与分治法的应用实例1.快速排序算法2.归并排序算法3.汉诺塔问题正文:递归和分治法是两种在计算机科学中经常使用的解决问题的方法。

递归是一种函数调用自身的思想,即函数在执行过程中,会调用自身来完成某些操作。

而分治法则是把一个大问题分解成若干个小问题,然后逐个解决这些小问题,最后再把它们的解合并,得到大问题的解。

这两种方法在某些情况下可以相互转化,递归通常作为分治法的实现方式,但分治法不一定要用递归实现。

递归与分治法之间的联系在于,递归通常是分治法的实现方式。

在分治法中,我们会把一个大问题分解成若干个小问题,然后通过递归的方式,逐个解决这些小问题。

最后,再把它们的解合并,得到大问题的解。

在这个过程中,递归函数的调用栈会随着问题规模的减小而减小,最终回到原点,从而完成问题的求解。

然而,分治法并不一定要用递归实现。

在一些情况下,我们可以通过迭代的方式,逐个解决小问题,然后把它们的解合并。

这种方式虽然不是通过递归函数调用自身来实现的,但它仍然符合分治法的思想,即把大问题分解成小问题,逐个解决。

递归和分治法在实际问题中有很多应用。

例如,快速排序算法和归并排序算法都是基于分治法的思想设计的。

在快速排序算法中,我们选择一个基准元素,然后把数组中小于基准的元素放在左边,大于基准的元素放在右边,再对左右两个子数组递归地执行相同的操作,直到数组有序。

而在归并排序算法中,我们同样把数组分成左右两个子数组,然后递归地对它们进行排序,最后再把排序好的子数组合并成一个有序的数组。

另一个例子是汉诺塔问题。

在这个问题中,有三个柱子和一个大小不同的圆盘。

要求把圆盘从第一个柱子移动到第三个柱子,每次只能移动一个圆盘,并且大盘不能放在小盘上。

算法设计与分析习题解答(第2版)

算法设计与分析习题解答(第2版)

第1章算法引论11.1 算法与程序11.2 表达算法的抽象机制11.3 描述算法31.4 算法复杂性分析13小结16习题17第2章递归与分治策略192.1 递归的概念192.2 分治法的基本思想262.3 二分搜索技术272.4 大整数的乘法282.5 Strassen矩阵乘法302.6 棋盘覆盖322.7 合并排序342.8 快速排序372.9 线性时间选择392.10 最接近点对问题432.11 循环赛日程表53小结54习题54第3章动态规划613.1 矩阵连乘问题62目录算法设计与分析(第2版)3.2 动态规划算法的基本要素67 3.3 最长公共子序列713.4 凸多边形最优三角剖分753.5 多边形游戏793.6 图像压缩823.7 电路布线853.8 流水作业调度883.9 0-1背包问题923.10 最优二叉搜索树98小结101习题102第4章贪心算法1074.1 活动安排问题1074.2 贪心算法的基本要素1104.2.1 贪心选择性质1114.2.2 最优子结构性质1114.2.3 贪心算法与动态规划算法的差异1114.3 最优装载1144.4 哈夫曼编码1164.4.1 前缀码1174.4.2 构造哈夫曼编码1174.4.3 哈夫曼算法的正确性1194.5 单源最短路径1214.5.1 算法基本思想1214.5.2 算法的正确性和计算复杂性123 4.6 最小生成树1254.6.1 最小生成树性质1254.6.2 Prim算法1264.6.3 Kruskal算法1284.7 多机调度问题1304.8 贪心算法的理论基础1334.8.1 拟阵1334.8.2 带权拟阵的贪心算法1344.8.3 任务时间表问题137小结141习题141第5章回溯法1465.1 回溯法的算法框架1465.1.1 问题的解空间1465.1.2 回溯法的基本思想1475.1.3 递归回溯1495.1.4 迭代回溯1505.1.5 子集树与排列树1515.2 装载问题1525.3 批处理作业调度1605.4 符号三角形问题1625.5 n后问题1655.6 0\|1背包问题1685.7 最大团问题1715.8 图的m着色问题1745.9 旅行售货员问题1775.10 圆排列问题1795.11 电路板排列问题1815.12 连续邮资问题1855.13 回溯法的效率分析187小结190习题191第6章分支限界法1956.1 分支限界法的基本思想1956.2 单源最短路径问题1986.3 装载问题2026.4 布线问题2116.5 0\|1背包问题2166.6 最大团问题2226.7 旅行售货员问题2256.8 电路板排列问题2296.9 批处理作业调度232小结237习题238第7章概率算法2407.1 随机数2417.2 数值概率算法2447.2.1 用随机投点法计算π值2447.2.2 计算定积分2457.2.3 解非线性方程组2477.3 舍伍德算法2507.3.1 线性时间选择算法2507.3.2 跳跃表2527.4 拉斯维加斯算法2597.4.1 n 后问题2607.4.2 整数因子分解2647.5 蒙特卡罗算法2667.5.1 蒙特卡罗算法的基本思想2667.5.2 主元素问题2687.5.3 素数测试270小结273习题273第8章 NP完全性理论2788.1 计算模型2798.1.1 随机存取机RAM2798.1.2 随机存取存储程序机RASP2878.1.3 RAM模型的变形与简化2918.1.4 图灵机2958.1.5 图灵机模型与RAM模型的关系297 8.1.6 问题变换与计算复杂性归约299 8.2 P类与NP类问题3018.2.1 非确定性图灵机3018.2.2 P类与NP类语言3028.2.3 多项式时间验证3048.3 NP完全问题3058.3.1 多项式时间变换3058.3.2 Cook定理3078.4 一些典型的NP完全问题3108.4.1 合取范式的可满足性问题3118.4.2 3元合取范式的可满足性问题312 8.4.3 团问题3138.4.4 顶点覆盖问题3148.4.5 子集和问题3158.4.6 哈密顿回路问题3178.4.7 旅行售货员问题322小结323习题323第9章近似算法3269.1 近似算法的性能3279.2 顶点覆盖问题的近似算法3289.3 旅行售货员问题近似算法3299.3.1 具有三角不等式性质的旅行售货员问题330 9.3.2 一般的旅行售货员问题3319.4 集合覆盖问题的近似算法3339.5 子集和问题的近似算法3369.5.1 子集和问题的指数时间算法3369.5.2 子集和问题的完全多项式时间近似格式337 小结340习题340第10章算法优化策略34510.1 算法设计策略的比较与选择34510.1.1 最大子段和问题的简单算法34510.1.2 最大子段和问题的分治算法34610.1.3 最大子段和问题的动态规划算法34810.1.4 最大子段和问题与动态规划算法的推广349 10.2 动态规划加速原理35210.2.1 货物储运问题35210.2.2 算法及其优化35310.3 问题的算法特征35710.3.1 贪心策略35710.3.2 对贪心策略的改进35710.3.3 算法三部曲35910.3.4 算法实现36010.3.5 算法复杂性36610.4 优化数据结构36610.4.1 带权区间最短路问题36610.4.2 算法设计思想36710.4.3 算法实现方案36910.4.4 并查集37310.4.5 可并优先队列37610.5 优化搜索策略380小结388习题388第11章在线算法设计39111.1 在线算法设计的基本概念39111.2 页调度问题39311.3 势函数分析39511.4 k 服务问题39711.4.1 竞争比的下界39711.4.2 平衡算法39911.4.3 对称移动算法39911.5 Steiner树问题40311.6 在线任务调度40511.7 负载平衡406小结407习题407词汇索引409参考文献415习题1-1 实参交换1习题1-2 方法头签名1习题1-3 数组排序判定1习题1-4 函数的渐近表达式2习题1-5 O(1) 和 O(2) 的区别2习题1-7 按渐近阶排列表达式2习题1-8 算法效率2习题1-9 硬件效率3习题1-10 函数渐近阶3习题1-11 n !的阶4习题1-12 平均情况下的计算时间复杂性4算法实现题1-1 统计数字问题4算法实现题1-2 字典序问题5算法实现题1-3 最多约数问题6算法实现题1-4 金币阵列问题8算法实现题1-5 最大间隙问题11第2章递归与分治策略14 习题2-1 Hanoi 塔问题的非递归算法14习题2-2 7个二分搜索算法15习题2-3 改写二分搜索算法18习题2-4 大整数乘法的 O(nm log(3/2))算法19习题2-5 5次 n /3位整数的乘法19习题2-6 矩阵乘法21习题2-7 多项式乘积21习题2-8 不动点问题的 O( log n) 时间算法22习题2-9 主元素问题的线性时间算法22习题2-10 无序集主元素问题的线性时间算法22习题2-11 O (1)空间子数组换位算法23习题2-12 O (1)空间合并算法25习题2-13 n 段合并排序算法32习题2-14 自然合并排序算法32习题2-15 最大值和最小值问题的最优算法35习题2-16 最大值和次大值问题的最优算法35习题2-17 整数集合排序35习题2-18 第 k 小元素问题的计算时间下界36习题2-19 非增序快速排序算法37习题2-20 随机化算法37习题2-21 随机化快速排序算法38习题2-22 随机排列算法38习题2-23 算法qSort中的尾递归38习题2-24 用栈模拟递归38习题2-25 算法select中的元素划分39习题2-26 O(n log n) 时间快速排序算法40习题2-27 最接近中位数的 k 个数40习题2-28 X和Y 的中位数40习题2-29 网络开关设计41习题2-32 带权中位数问题42习题2-34 构造Gray码的分治算法43习题2-35 网球循环赛日程表44目录算法设计与分析习题解答(第2版)算法实现题2-1 输油管道问题(习题2-30) 49算法实现题2-2 众数问题(习题2-31) 50算法实现题2-3 邮局选址问题(习题2-32) 51算法实现题2-4 马的Hamilton周游路线问题(习题2-33) 51算法实现题2-5 半数集问题60算法实现题2-6 半数单集问题62算法实现题2-7 士兵站队问题63算法实现题2-8 有重复元素的排列问题63算法实现题2-9 排列的字典序问题65算法实现题2-10 集合划分问题(一)67算法实现题2-11 集合划分问题(二)68算法实现题2-12 双色Hanoi塔问题69算法实现题2-13 标准二维表问题71算法实现题2-14 整数因子分解问题72算法实现题2-15 有向直线2中值问题72第3章动态规划76习题3-1 最长单调递增子序列76习题3-2 最长单调递增子序列的 O(n log n) 算法77习题3-7 漂亮打印78习题3-11 整数线性规划问题79习题3-12 二维背包问题80习题3-14 Ackermann函数81习题3-17 最短行驶路线83习题3-19 最优旅行路线83算法实现题3-1 独立任务最优调度问题(习题3-3) 83算法实现题3-2 最少硬币问题(习题3-4) 85算法实现题3-3 序关系计数问题(习题3-5) 86算法实现题3-4 多重幂计数问题(习题3-6) 87算法实现题3-5 编辑距离问题(习题3-8) 87算法实现题3-6 石子合并问题(习题3-9) 89算法实现题3-7 数字三角形问题(习题3-10) 91算法实现题3-8 乘法表问题(习题3-13) 92算法实现题3-9 租用游艇问题(习题3-15) 93算法实现题3-10 汽车加油行驶问题(习题3-16) 95算法实现题3-11 圈乘运算问题(习题3-18) 96算法实现题3-12 最少费用购物(习题3-20) 102算法实现题3-13 最大长方体问题(习题3-21) 104算法实现题3-14 正则表达式匹配问题(习题3-22) 105算法实现题3-15 双调旅行售货员问题(习题3-23) 110算法实现题3-16 最大 k 乘积问题(习题5-24) 111算法实现题3-17 最小 m 段和问题113算法实现题3-18 红黑树的红色内结点问题115第4章贪心算法123 习题4-2 活动安排问题的贪心选择123习题4-3 背包问题的贪心选择性质123习题4-4 特殊的0-1背包问题124习题4-10 程序最优存储问题124习题4-13 最优装载问题的贪心算法125习题4-18 Fibonacci序列的Huffman编码125习题4-19 最优前缀码的编码序列125习题4-21 任务集独立性问题126习题4-22 矩阵拟阵126习题4-23 最小权最大独立子集拟阵126习题4-27 整数边权Prim算法126习题4-28 最大权最小生成树127习题4-29 最短路径的负边权127习题4-30 整数边权Dijkstra算法127算法实现题4-1 会场安排问题(习题4-1) 128算法实现题4-2 最优合并问题(习题4-5) 129算法实现题4-3 磁带最优存储问题(习题4-6) 130算法实现题4-4 磁盘文件最优存储问题(习题4-7) 131算法实现题4-5 程序存储问题(习题4-8) 132算法实现题4-6 最优服务次序问题(习题4-11) 133算法实现题4-7 多处最优服务次序问题(习题4-12) 134算法实现题4-8 d 森林问题(习题4-14) 135算法实现题4-9 汽车加油问题(习题4-16) 137算法实现题4-10 区间覆盖问题(习题4-17) 138算法实现题4-11 硬币找钱问题(习题4-24) 138算法实现题4-12 删数问题(习题4-25) 139算法实现题4-13 数列极差问题(习题4-26) 140算法实现题4-14 嵌套箱问题(习题4-31) 140算法实现题4-15 套汇问题(习题4-32) 142算法实现题4-16 信号增强装置问题(习题5-17) 143算法实现题4-17 磁带最大利用率问题(习题4-9) 144算法实现题4-18 非单位时间任务安排问题(习题4-15) 145算法实现题4-19 多元Huffman编码问题(习题4-20) 147算法实现题4-20 多元Huffman编码变形149算法实现题4-21 区间相交问题151算法实现题4-22 任务时间表问题151第5章回溯法153习题5\|1 装载问题改进回溯法(一)153习题5\|2 装载问题改进回溯法(二)154习题5\|4 0-1背包问题的最优解155习题5\|5 最大团问题的迭代回溯法156习题5\|7 旅行售货员问题的费用上界157习题5\|8 旅行售货员问题的上界函数158算法实现题5-1 子集和问题(习题5-3) 159算法实现题5-2 最小长度电路板排列问题(习题5-9) 160算法实现题5-3 最小重量机器设计问题(习题5-10) 163算法实现题5-4 运动员最佳匹配问题(习题5-11) 164算法实现题5-5 无分隔符字典问题(习题5-12) 165算法实现题5-6 无和集问题(习题5-13) 167算法实现题5-7 n 色方柱问题(习题5-14) 168算法实现题5-8 整数变换问题(习题5-15) 173算法实现题5-9 拉丁矩阵问题(习题5-16) 175算法实现题5-10 排列宝石问题(习题5-16) 176算法实现题5-11 重复拉丁矩阵问题(习题5-16) 179算法实现题5-12 罗密欧与朱丽叶的迷宫问题181算法实现题5-13 工作分配问题(习题5-18) 183算法实现题5-14 独立钻石跳棋问题(习题5-19) 184算法实现题5-15 智力拼图问题(习题5-20) 191算法实现题5-16 布线问题(习题5-21) 198算法实现题5-17 最佳调度问题(习题5-22) 200算法实现题5-18 无优先级运算问题(习题5-23) 201算法实现题5-19 世界名画陈列馆问题(习题5-25) 203算法实现题5-20 世界名画陈列馆问题(不重复监视)(习题5-26) 207 算法实现题5-21 部落卫队问题(习题5-6) 209算法实现题5-22 虫蚀算式问题211算法实现题5-23 完备环序列问题214算法实现题5-24 离散01串问题217算法实现题5-25 喷漆机器人问题218算法实现题5-26 n 2-1谜问题221第6章分支限界法229习题6-1 0-1背包问题的栈式分支限界法229习题6-2 用最大堆存储活结点的优先队列式分支限界法231习题6-3 团顶点数的上界234习题6-4 团顶点数改进的上界235习题6-5 修改解旅行售货员问题的分支限界法235习题6-6 解旅行售货员问题的分支限界法中保存已产生的排列树237 习题6-7 电路板排列问题的队列式分支限界法239算法实现题6-1 最小长度电路板排列问题一(习题6-8) 241算法实现题6-2 最小长度电路板排列问题二(习题6-9) 244算法实现题6-3 最小权顶点覆盖问题(习题6-10) 247算法实现题6-4 无向图的最大割问题(习题6-11) 250算法实现题6-5 最小重量机器设计问题(习题6-12) 253算法实现题6-6 运动员最佳匹配问题(习题6-13) 256算法实现题6-7 n 后问题(习题6-15) 259算法实现题6-8 圆排列问题(习题6-16) 260算法实现题6-9 布线问题(习题6-17) 263算法实现题6-10 最佳调度问题(习题6-18) 265算法实现题6-11 无优先级运算问题(习题6-19) 268算法实现题6-12 世界名画陈列馆问题(习题6-21) 271算法实现题6-13 骑士征途问题274算法实现题6-14 推箱子问题275算法实现题6-15 图形变换问题281算法实现题6-16 行列变换问题284算法实现题6-17 重排 n 2宫问题285算法实现题6-18 最长距离问题290第7章概率算法296习题7-1 模拟正态分布随机变量296习题7-2 随机抽样算法297习题7-3 随机产生 m 个整数297习题7-4 集合大小的概率算法298习题7-5 生日问题299习题7-6 易验证问题的拉斯维加斯算法300习题7-7 用数组模拟有序链表300习题7-8 O(n 3/2)舍伍德型排序算法300习题7-9 n 后问题解的存在性301习题7-11 整数因子分解算法302习题7-12 非蒙特卡罗算法的例子302习题7-13 重复3次的蒙特卡罗算法303习题7-14 集合随机元素算法304习题7-15 由蒙特卡罗算法构造拉斯维加斯算法305习题7-16 产生素数算法306习题7-18 矩阵方程问题306算法实现题7-1 模平方根问题(习题7-10) 307算法实现题7-2 集合相等问题(习题7-17) 309算法实现题7-3 逆矩阵问题(习题7-19) 309算法实现题7-4 多项式乘积问题(习题7-20) 310算法实现题7-5 皇后控制问题311算法实现题7-6 3-SAT问题314算法实现题7-7 战车问题315算法实现题7-8 圆排列问题317算法实现题7-9 骑士控制问题319算法实现题7-10 骑士对攻问题320第8章NP完全性理论322 习题8-1 RAM和RASP程序322习题8-2 RAM和RASP程序的复杂性322习题8-3 计算 n n 的RAM程序322习题8-4 没有MULT和DIV指令的RAM程序324习题8-5 MULT和DIV指令的计算能力324习题8-6 RAM和RASP的空间复杂性325习题8-7 行列式的直线式程序325习题8-8 求和的3带图灵机325习题8-9 模拟RAM指令325习题8-10 计算2 2 n 的RAM程序325习题8-11 计算 g(m,n)的程序 326习题8-12 图灵机模拟RAM的时间上界326习题8-13 图的同构问题326习题8-14 哈密顿回路327习题8-15 P类语言的封闭性327习题8-16 NP类语言的封闭性328习题8-17 语言的2 O (n k) 时间判定算法328习题8-18 P CO -NP329习题8-19 NP≠CO -NP329习题8-20 重言布尔表达式329习题8-21 关系∝ p的传递性329习题8-22 L ∝ p 330习题8-23 语言的完全性330习题8-24 的CO-NP完全性330习题8-25 判定重言式的CO-NP完全性331习题8-26 析取范式的可满足性331习题8-27 2-SAT问题的线性时间算法331习题8-28 整数规划问题332习题8-29 划分问题333习题8-30 最长简单回路问题334第9章近似算法336习题9-1 平面图着色问题的绝对近似算法336习题9-2 最优程序存储问题336习题9-4 树的最优顶点覆盖337习题9-5 顶点覆盖算法的性能比339习题9-6 团的常数性能比近似算法339习题9-9 售货员问题的常数性能比近似算法340习题9-10 瓶颈旅行售货员问题340习题9-11 最优旅行售货员回路不自相交342习题9-14 集合覆盖问题的实例342习题9-16 多机调度问题的近似算法343习题9-17 LPT算法的最坏情况实例345习题9-18 多机调度问题的多项式时间近似算法345算法实现题9-1 旅行售货员问题的近似算法(习题9-9) 346 算法实现题9-2 可满足问题的近似算法(习题9-20) 348算法实现题9-3 最大可满足问题的近似算法(习题9-21) 349 算法实现题9-4 子集和问题的近似算法(习题9-15) 351算法实现题9-5 子集和问题的完全多项式时间近似算法352算法实现题9-6 实现算法greedySetCover(习题9-13) 352算法实现题9-7 装箱问题的近似算法First Fit(习题9-19) 356算法实现题9-8 装箱问题的近似算法Best Fit(习题9-19) 358算法实现题9-9 装箱问题的近似算法First Fit Decreasing(习题9-19) 360算法实现题9-10 装箱问题的近似算法Best Fit Decreasing(习题9-19) 361算法实现题9-11 装箱问题的近似算法Next Fit361第10章算法优化策略365 习题10-1 算法obst的正确性365习题10-2 矩阵连乘问题的 O(n 2) 时间算法365习题10-6 货物储运问题的费用371习题10-7 Garsia算法371算法实现题10-1 货物储运问题(习题10-3) 374算法实现题10-2 石子合并问题(习题10-4) 374算法实现题10-3 最大运输费用货物储运问题(习题10-5) 375算法实现题10-4 五边形问题377算法实现题10-5 区间图最短路问题(习题10-8) 381算法实现题10-6 圆弧区间最短路问题(习题10-9) 381算法实现题10-7 双机调度问题(习题10-10) 382算法实现题10-8 离线最小值问题(习题10-11) 390算法实现题10-9 最近公共祖先问题(习题10-12) 393算法实现题10-10 达尔文芯片问题395算法实现题10-11 多柱Hanoi塔问题397算法实现题10-12 线性时间Huffman算法400算法实现题10-13 单机调度问题402算法实现题10-14 最大费用单机调度问题405算法实现题10-15 飞机加油问题408第11章在线算法设计410习题11-1 在线算法LFU的竞争性410习题11-4 多读写头磁盘问题的在线算法410习题11-6 带权页调度问题410算法实现题11-1 最优页调度问题(习题11-2) 411算法实现题11-2 在线LRU页调度(习题11-3) 414算法实现题11-3 k 服务问题(习题11-5) 416参考文献422。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:
1 4 5 7 8 9 10 22 12 15 23 27 35 22 32 23 35 27 32 35
12 15
27 32
35
→i=14
时间复杂性
二分搜索算法的时间复杂性满足:
n 1 1 n T ( n) 1 T( ) n 1 2
二分搜索算法的时间复杂度为 O(log n)
算法设计1
对金块逐个的进行比较查找。先拿出两块比较重量, 留下重的一个与下一块进行比较,直到全部比较完 毕,就找到了最重的金子。
1
2
3

(n-1)
n
(2n-3)
(n-2)最轻
算法设计2
用分治法(二分法)可以用较少的比较次数解决上述问题。




在含 n 个元素的集合中寻找最大元素和最小元素。
1)将数据等分为两组,目的是分别选取其中的最大(小)元素;
分治过程:
n n n T (n) T ( ) T ( ) T ( k ) T (1) 2 4 2
练习:金块问题
老板有一袋金块(共 n 块, n 是 2 的幂 (n 2) ) ,最优秀的 雇员得到其中最重的一块,最差的雇员得到其中最轻的 一块。假设有一台比较重量的仪器,希望用最少的比较 次数找出最重和最轻的金块。
时间复杂性
算法分析:设 T (k ) 为覆盖 2 k 2 k 残缺棋盘的时间,
1) 2)
k 0 k 0
覆盖它需要常数时间O(1)
测试哪个子棋盘残缺以及形成3个残缺子棋盘需要O(1) 覆盖4个残缺子棋盘需四次递归调用,共需时间
4T (k 1)
算法的时间复杂性递推式为:
O(1) k 0 T (k ) 4T (k 1) O(1) k 0
作业
P38
2-3
是否能将问题分治为2个子问题?
2) 棋盘上有一个残缺方格
分解后的子问题中应该有一个残缺方格。
a) k=2时的棋盘
b)分解后
c)分治后
分治算法:
1) 当 k 0 时,将 2 k 2 k 棋盘分割为 4 个 2 k 1 2 k 1 子棋盘;
2k 1 2k 1
2k 1 2k 1
2)递归分解直到每组元素的个数,可以简单地找到
最大(小)元素; 3)回溯时合并子问题的解,在两个子问题的解中大者取大, 小者取小,即合并为当前问题的解。
时间复杂性满足递归关系式:
0 n 1 T ( n) 1 n2 2T ( n ) 2 n 2 2
解: (n) 2 k 1 T ( T
§2.6 棋盘覆盖
复习
1)分解:把原问题分解为若干个规模较小、相互独立, 与原问题相同的子问题,并尽量使这 k 个子问题的 规模大致相等; 2)求解 3)合并
问题
在一个 2k 2k 个方格组成的棋盘中,若恰有一残缺 方格(该方格与其它方格不同) (如下图) 。
图2-4 k=2时的一个特殊棋盘
解: (k ) 4T (k 1) O(1) T
4 k T (0) O(1) 4i 4 k O(1) O(1)( 4 k 1) / 3
i 0
k 1
T (k ) O(4 )
k
分治过程
n n n T (n) T ( ) T ( 2 ) T ( k ) T (1) 4 4 4
n 2
) 2i k 1
i 1
k 1
2
k 1
3 (2 2) n 2 2
k

算法的时间复杂性满足如下的递归关系式:
0 n 1 T ( n) 1 n2 n n T ( 2 ) T ( 2 ) 2 n 2
2k 1 2k 1 2k 1 2k 1
残缺方格必位于4个子棋盘之一其余3个子棋盘中无残缺方格。
2) 用一个L型骨牌覆盖这3个较小棋盘的结合处。
2k 1 2k 1
2k 1 2k 1
2k 1 2k 1 2k 1 2k 1
这3个子棋盘上被L型骨牌覆盖的方格就成为该棋盘上的残缺方 格,原问题转化为4个较小规模的棋盘覆盖问题。递归地使用这 种分割,直至棋盘简化为11棋盘。
棋盘覆盖问题:要求用4种不同形态的L型骨牌覆盖该棋盘上
除残缺方格外的所有方格且任何2个L型骨牌不得重叠覆盖。
(a)
(b)
(c)
(d)
** 2k 2k的棋盘覆盖中,用到的骨牌数为(4k-1)/3。
图2-4 k=2时的一个特殊棋盘
图2-4 覆盖后
对 2k 2k 的棋盘有如下的特点:
1)是正方形
二分搜索
amid
a1
x amid


an
x a mid
a1


an
二分搜索算法的基本思想
将 n 个元素分成个数大致相同的两半,取 amid 与 x 作比较。
1) x a mid 2)
算法终止 在数组的左半部继续搜索 在数组的右半部继续搜索
x a mid
3) x a mid
例2:设a=[1 4 5 7 8 9 10 12 15 22 23 27 32 35],搜索x=35。
§2.3 二分搜索技术
问题:
给定已按升序排好序的n个元素a[0:n-1],现要在这n个
元素中找出一特定元素x。
例 1、设 n 6, a [1 3 5 6 7 9] ,要找出特定元素 x 9 。
顺序查找
1
3
5
6
7
9
用顺序搜索方法,逐个比较 a[0 : n 1] 中元素,直至找 出元素 x 或搜遍整个数组后确定 x 不在其中。 在最坏情况下,顺序搜索方法需要 O(n) 次比较。
相关文档
最新文档