浙教版七年级数学下册总复习材料齐全

合集下载

浙教版七年级下数学复习提纲

浙教版七年级下数学复习提纲

2009学年七年级数学第二学期期末复习知识归纳第一章 认识三角形1、 由_________________的三条线段首尾顺次连结组成的图形叫三角形。

2、 三角形任何__________大于第三边,任何两边__________小于第三边。

共有3个不等式,可用两点之间______最短来解释说明。

3、 若三条线段中的两条小的线段的和大于第三边,就能组成三角形。

4、 三角形有两边为3、4,则第三边x 的范围为_________________。

若周长为偶数,第三边为_______________,若周长为奇数,则周长为________________.5、 三角形三个内角之和等于______.三角形的一个补角等于____________________之和,它们互为__________.6、 三角形按_________分类,可分为三类:____________、____________、____________。

7、 三角形有_____条角平分线,是_______.都在三角形_____部,相交于______点。

画图时都要经过三角形的一个______点.8、 三角形有_____条中线,是线段,都在三角形______部,相交于____点。

画图时都要经过三角形的一个______点。

9、 三角形的一条中线把三角形分成_______相等的两部分,但不把周长分成相等的两部分。

10、三角形有____条高,是线段,都从三角形的一个顶点出发画高。

11、高的位置:锐角三角形的三条高都在三角形的_____部。

交于内部的一点;直角三角形一条高在内部,另两条高在边上(就是直角边)相交于直角顶点;钝角三角形一条高在内部,夹_____角的两边上的高在外部。

高的________相交于外部的一点。

12、(面积法求RT △斜边上的高)。

已知直角三角形三边为 AB=3,AC=4,BC=5求BC 边上的高。

13、全等三角形的对应边_____,_______也相等。

2023年浙教版七年级数学下册各章知识点汇总

2023年浙教版七年级数学下册各章知识点汇总

新浙教版七年级下册数学各章知识点第一章:平行线与相交线一、知识构造⎧⎧⎧⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎧⎪⎪⎪⎪⎨⎨⎨⎪⎪⎩⎪⎪⎪⎪⎧⎪⎪⎨⎪⎪⎩⎪⎪⎪⎩⎪⎩同位角相等,两直线平行直线平行的判定内错角相等,两直线平行同旁内角相等,两直线平行两直线平行,同位角相等平行线直线平行的性质两直线平行,内错角相等平行线与相交线两直线平行,同旁内角互补作一条线段等于已知线段尺规作图作一个角等于已知角相交线:补角、余角、对顶角二、要点诠释1.两条直线旳位置关系(1)在同一平面内,两条直线旳位置关系只有两种:相交与平行。

(2)平行线:在同一平面内,不相交旳两条直线交平行线。

2.几种特殊关系旳角(1)余角和补角:①定义:假如两个角旳和是直角,称这两个角互为余角;假如两个角旳和是平角,称这两个角互为补角。

②性质:同角或等角旳余角相等,同角或等角旳补角相等。

(2)对顶角:①定义:两条直线相交所得有公共顶点、没有公共边旳两个角②性质:对顶角相等。

(3)同位角、内错角、同旁内角两条直线分别与第三条直线相交,构成八个角。

①在两条直线同一侧并且在第三条直线旳旁边旳两个角叫同位角。

②在两条直线之间并且在第三条直线旳两旁旳两个角叫做内错角。

③在两条直线之间并且在第三条直线旳同旁旳两个角叫做同旁内角。

三、重要内容(1)平行线旳鉴定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角相等,两直线平行;平行于同一直线旳两条直线平行;垂直于同一条直线旳两直线平行。

(2)平行线旳性质两直线平行,同位角相等;两直线平行,内错角相等;两直线平行,同旁内角互补;通过直线外一点有且只有一条直线与已知直线平行。

第二章:二元一次方程组2.1二元一次方程具有两个未知数,且具有未知数旳项旳次数都是一次旳方程叫做二元一次方程。

使二元一次方程两边旳值相等旳一对未知数旳值,叫做二元一次方程旳一种解。

2.2二元一次方程组由两个二元一次方程构成,并且具有两个未知数旳方程组,叫做二元一次方程组。

浙教版七年级数学下册知识点汇总

浙教版七年级数学下册知识点汇总

浙教版七年级数学下册知识点汇总七年级(下册)1.平行线1.1.平行线在同一个平面内,不相交的两条直线叫做平行线。

“平行”用符号“//”表示。

经过直线外一点,有且只有一条直线与这条直线平行。

1.2.同位角、内错角、同旁内角如图所示:同位角:∠1和∠5内错角:∠3和∠5同旁内角:∠4和∠51.3.平行线的判定两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行。

(同位角相等,两直线平行) 两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行。

(内错角相等,两直线平行) 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行。

(同旁内角互补,两直线平行) 在同一平面内,垂直于同一条直线的两条直线互相平行。

1.4.平行线的性质两条直线被第三条直线所截,同位角相等。

(两直线平行,同位角相等)两条直线被第三条直线所截,内错角相等。

(两直线平行,内错角相等)两条直线被第三条直线所截,同旁内角互补。

(两直线平行,同旁内角互补)1.5.图形的平移图形平移的定义:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相同的距离,这样的图形运动叫做图形的平移。

图形平移的性质:(1)图形平移不改变图形的形状和大小。

(2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。

图形平移的描述:要描述一个平移,必须先指出平移的方向和距离。

平移的方向和距离是决定平移的因素。

平移图形的画法:(1)找出原图形的关键点(如顶点或者端点)(2)按平移的方向和距离分别描出各个关键点平移后的对应点(3)按原图将各对应点顺次连接2.二元一次方程组2.1.二元一次方程像0.6x + 0.8y = 3.8这样,含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解。

2.2.二元一次方程组由两个一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。

七年级下册浙教版知识点归纳总结

七年级下册浙教版知识点归纳总结

七年级下册浙教版知识点归纳总结【七年级下册浙教版知识点归纳总结】在七年级下册浙教版课本中,我们学习了许多重要的知识点。

本文将对这些知识点进行归纳总结,以便复习和回顾。

1. 数学知识点1.1 整数运算整数运算是数学中的基本操作,包括加法、减法、乘法和除法。

在运算过程中,需要注意正负数之间的关系以及运算法则的应用。

1.2 分数运算分数是数学中的一种表示方法,包括分数的化简、分数的加减乘除、分数与整数的运算等。

在分数运算中,需要掌握分子、分母的含义,灵活运用各种运算法则。

1.3 几何图形几何图形是我们研究空间形状和位置关系的基础。

包括点、线、面、多边形等基本几何概念,并学习了计算周长、面积等相关知识。

2. 语文知识点2.1 课文理解在七年级下册的语文课本中,有许多篇章和散文,我们需要学习如何理解课文的主题、情感色彩、人物形象等内容。

2.2 作文写作学习作文写作是培养语言表达和思维能力的重要环节。

可以通过写作练习,提高自己的写作水平和表达能力。

3. 英语知识点3.1 语法知识英语语法是理解和运用英语的基础,包括时态、语态、被动语态、直接引语和间接引语等。

掌握英语语法对于语言的正确和流利运用至关重要。

3.2 阅读与写作英语阅读是学习和理解英语文化和思维方式的重要途径,通过阅读可以学习新单词、新表达方式,并且可以提高自己的写作水平。

4. 科学知识点4.1 生物知识生物是我们身边生活的重要组成部分,包括植物的生长发育、动物的分类和特征等。

学习生物知识可以增加我们对生命的认知和理解。

4.2 物理知识物理是解释自然现象和探索科学规律的基础学科,包括力学、光学、电学等。

学习物理知识可以培养我们的观察力和实践动手能力。

5. 历史知识点5.1 古代文明学习历史可以了解人类社会的发展历程和文明的演进。

了解古代文明对于培养我们的历史意识和文化素养非常重要。

5.2 历史事件历史事件是我们学习历史的重要内容,包括中国古代历史、世界史等。

浙教版七年级数学下册期末复习总结

浙教版七年级数学下册期末复习总结

浙教版七年级数学下册期末复习总结1、相交线与平行线的基本概念:在同一平面内,两条直线的位置关系有相交和平行两种情况,垂直是相交的一种特殊情况。

不相交的两条直线叫平行线。

相交线所构成的四个角中,有公共顶点且有一条公共边的两个角是邻补角,邻补角互补。

2、平行线的判定和性质:平行线有四种判定方法,包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两直线平行。

平行线的性质包括同位角相等、内错角相等、同旁内角互补和平行于同一条直线的两直线平行。

3、平移性质和平行公理:平移前后两个图形中对应点的连线平行且相等,对应线段相等,对应角相等。

平行公理指出经过直线外一点有且只有一条直线与已知直线平行,且如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

4、二元一次方程组的基本概念和解法:二元一次方程组由两个二元一次方程组成,方程组的解是满足两个方程同时成立的一组未知数值。

解法包括代入法和加减法。

二元一次方程组可以用来解决实际问题。

三元一次方程组的解法与二元一次方程组类似。

1、方程是含有未知数的等式,方程的解是使方程左右两边的值相等的未知数的值。

2、含有两个未知数且未知数的项次数都为1的方程为二元一次方程,一般形式为ax+by=c(a、b、c为常数且a、b不等于0)。

二元一次方程的解是使方程左右两边的值相等的未知数的值,可能有无数解。

3、含有两个未知数且未知数的项次数都为1的方程组为二元一次方程组,每个方程的解是使该方程左右两边的值相等的未知数的值,一般只有一个解。

对于整式的乘除,有以下规则。

1、同底数幂的乘法法则:am * an = am+n(m、n为正整数,a为底数)。

2、幂的乘方法则:(am)n = amn(m、n为正整数,a为底数)。

3、积的乘方法则:(ab)n = an * bn(n为正整数)。

单项式是由数与字母的乘积构成的代数式,单独的一个数或一个字母也是单项式。

单项式的数字因数叫做单项式的系数,字母指数和叫单项式的次数。

浙教版七年级数学下册总复习材料齐全

浙教版七年级数学下册总复习材料齐全

七年级数学知识点总结第一章三角形的初步认识1.1认识三角形①由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

“三角形”用符号“△”表示,顶点是ABC的三角形记做“△ABC”读作“三角形ABC”。

由两点之间线段最短,可以得到如下性质:三角形任何两边的和大于第三边。

②三角形三个内角的和等于180°。

由三角形一条边的延长线和另一条相邻的边组成的角,叫做该三角形的外角。

三角形的一个外角等于和它不相邻两个内角的和。

1.2三角形的平分线和中线在三角形中,一个内角的角平分线与它对边相交,这个角的顶点与交点之间的线段叫做三角形的三角形的平分线。

在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。

1.3三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。

锐角三角形的三条高在三角形的内部,垂足在相应顶点的对边上。

直角三角形的直角边上的高分别与另一条直角边重合,垂足都是直角的顶点。

而在钝角三角形中,夹钝角两边上的高都在三角形的外部,它们的垂足都在相应顶点的对边的延长线上。

1.4全等三角形能够重合的两个图形称为全等图形。

能够重合的两个三角形称为全等三角形。

两个全等三角形重合时,能互相重合的顶点叫做全等三角形的对应顶点,互相重合的边叫做全等三角形的对应边,互相重合的角叫做全等三角形的对应角。

“全等”可用符号“≌”来表示。

全等三角形的性质:全等三角形对应边相等,对应角相等。

1.5三角形全等的条件①三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)。

当三角形三边长确定是,三角形的形状、大小完全被确定,这个性质叫做三角形的稳定性,这是三角形特有的性质。

②有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS”)。

垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。

线段垂直平分线上的点到线段两端点的距离相等。

新浙教版七年级下册数学知识点汇总复习提纲

新浙教版七年级下册数学知识点汇总复习提纲

新浙教版七年级下册数学知识点汇总复习
提纲
第一单元:有理数
- 有理数的定义
- 正数、零和负数的关系
- 有理数的比较和排序
- 有理数的加法和减法运算
- 有理数的乘法和除法运算
- 有理数的解集
第二单元:平方根与立方根
- 平方根的定义和性质
- 平方根的计算方法
- 平方根的应用问题
- 立方根的定义和性质
- 立方根的计算方法
- 立方根的应用问题
第三单元:比例与相似
- 比例的定义和性质
- 比例的画法和解法
- 相似的定义和性质
- 相似的判定和判定方法
- 相似的应用问题
第四单元:方程与方程应用
- 方程的定义和性质
- 一元一次方程的解法
- 一元一次方程的应用问题
- 二元一次方程组的解法
- 二元一次方程组的应用问题
第五单元:数据的收集、整理和分析- 调查和统计数据的收集方法
- 数据的整理和分类
- 直方图的绘制和解读
- 折线图的绘制和解读
- 数据的分析和总结
第六单元:三角形和四边形
- 三角形的定义和性质
- 各种特殊三角形的性质
- 三角形的画法和解法
- 四边形的定义和性质
- 各种特殊四边形的性质
- 四边形的画法和解法
第七单元:概率
- 事件和概率的定义
- 计算概率的方法
- 可能性的判断和比较
- 实际问题中的概率计算
- 互不影响事件的概率计算
以上是新浙教版七年级下册数学知识点的汇总复提纲。

希望这份提纲能帮助你系统地复七年级下册的数学知识。

浙教版数学七年级下册知识点汇总复习

浙教版数学七年级下册知识点汇总复习

浙教版数学七年级下册知识点汇总复习第一章平行线一、三线八角在三线八角中,同位角、内错角和同旁内角都是成对的,每一对角都有一条公共边,在截线上。

同位角包括∠1与∠5,∠2与∠6,∠3与∠7,∠4与∠8;内错角包括∠3与∠5,∠4与∠6;同旁内角包括∠4与∠5,∠3与∠6.这些角的位置关系可以通过描线法来判断。

二、平行线在同一平面内,两条不相交的直线叫做平行线。

平行线的距离是同时垂直于这两条平行线的垂线段的长度。

画平行线的方法有一贴、二靠、三推、四画。

同位角、内错角和同旁内角的位置关系可以用角平分线来判断。

如果两个角的两边分别平行,则这两个角相等或互补。

三、平行线的判定及性质平行线的判定定理是同位角相等、内错角相等或同旁内角互补。

平行线的性质定理是同位角相等的两条直线平行,内错角相等的两条直线平行,同旁内角互补的两条直线平行。

根据这些定理可以推论出垂直于同一条直线的两条直线互相平行,平行于同一条直线的两条直线互相平行。

四、图形的平移平移不改变图形的形状和大小。

每组对应点的连线平行且相等。

平移的距离是对应点连线的长度。

画平移后的图形需要定方向、画方向、定距离和描点连线。

第二章二元一次方程组一元一次方程只有一个未知数,二元一次方程有两个未知数。

解二元一次方程组的方法有代入法和加减法。

如果未知数系数是1或-1,可以使用代入法。

如果未知数系数不是1或-1,则需要使用加减法。

在解题时,如果方程组中有括号或分数,需要先整理,将未知数放在左边,常数放在右边。

二元一次方程组可以应用在行程问题、工程问题、调配问题、配套问题、利润问题、利率问题、几何问题和集合问题等方面。

对于有多个未知数的问题,需要建立多层关系。

第三章整式的乘除在整式的乘除中,有各种各样的运算法则,如同底数幂的乘法、幂的乘方、积的乘方、同底数幂除法、零次幂和负次幂。

这些法则可以通过条件描述、数学语言和例子来理解。

例如,同底数幂相乘时,底数不变,指数相加;幂的乘方中,底数不变,指数相乘;积的乘方等于乘方的积。

浙教版七年级数学下册知识点汇总假期预习必备

浙教版七年级数学下册知识点汇总假期预习必备

浙教版七年级数学下册知识点汇总七年级(下册)平行线1.1. 平行线在同一个平面内,不订交的两条直线叫做平行线。

“平行”用符号“//”表示。

经过直线外一点,有且只有一条直线与这条直线平行。

1.2. 同位角、内错角、同旁内角以下图:同位角:∠1和∠5内错角:∠3和∠5同旁内角:∠4和∠51.3. 平行线的判断两条直线被第三条直线所截,假如同位角相等,那么这两条直线平行。

(同位角相等,两直线平行 )两条直线被第三条直线所截,假如内错角相等,那么这两条直线平行。

(内错角相等,两直线平行 )两条直线被第三条直线所截,假如同旁内角互补,那么这两条直线平行。

(同旁内角互补,两直线平行)在同一平面内,垂直于同一条直线的两条直线相互平行。

1.4. 平行线的性质两条直线被第三条直线所截,同位角相等。

(两直线平行,同位角相等 ) 两条直线被第三条直线所截,内错角相等。

(两直线平行,内错角相等 )两条直线被第三条直线所截,同旁内角互补。

(两直线平行,同旁内角互补)1.5. 图形的平移图形平移的定义:一个图形沿某个方向挪动,在挪动的过程中,原图形上全部的点都沿同一个方向挪动同样的距离,这样的图形运动叫做图形的平移。

图形平移的性质:1)图形平移不改变图形的形状和大小。

2)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。

图形平移的描绘:要描绘一个平移,一定先指出平移的方向和距离。

平移的方向和距离是决定平移的要素。

平移图形的画法:1)找出原图形的重点点(如极点或许端点)2)按平移的方向和距离分别描出各个重点点平移后的对应点3)按原图将各对应点按序连结二元一次方程组2.1. 二元一次方程像+=这样,含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的解。

2.2.二元一次方程组由两个一次方程构成,而且含有两个未知数的方程组,叫做二元一次方程组。

浙教版七下数学总结复习知识点

浙教版七下数学总结复习知识点

七(下)数学知识点整理( 简案 )第一章平行线1.1 平行线的观点、表示(选、填:平行线表示,难度★;解:平行线作图,难度★★)常有结论:过直线外一点有且只有一条直线和已知直线平行。

1.2 同位角、内错角、同旁内角、“三线八角”的辨别(选、填,难度★★)1.3 平行线的判断(解:几何语言,难度★★★)①同位角相等,两条直线平行;推论:在同一平面内,垂直于同一条直线的两条直线相互平行;②内错角相等.两条直线平行;③同旁内角互补,两条直线平行。

重点:正确地找到或辨别出同位角,内错角或同旁内角。

常有结论:假如两条直线都与第三条直线平行,那么这两条直线相互平行。

1.4 平行线的性质(选、填:求角度,难度★★;解:几何语言,难度★★★)①两直线平行,同位角相等;②两直线平行,内错角相等;③两直线平行,同旁内角互补。

两条平行线之间的距离是指在一条直线上随意找一点向另一条直线作垂线,垂线段的长度就是两条平行线之间的距离。

1.5 图形的平移(选、填:难度★;解:作出平移后的图形,难度★★)一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等。

第二章二元一次方程组2.1 二元一次方程(选、填:难度★)含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。

使二元一次方程两边的值相等的一对未知数的值,叫做二元一次方程的一个解。

2.2 二元一次方程组(选、填:难度★)由两个一次方程构成,而且含有两个未知数的方程组,叫做二元一次方程组。

同时知足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解。

2.3 解二元一次方程组(解:难度★★—★★★)① 代入消元法,简称代入法。

② 加减消元法,简称加减法。

2.4 二元一次方程组的应用(解:难度★★★★)列方程的重点:经过重点词找等量关系。

第三章整式的乘除3.1 同底数幂的乘除法(选、填:正用难度★★,逆用难度★★★)①同底数幂乘法法例:同底数幂相乘,底数不变,指数相加。

新浙教版七年级下数学知识点汇总(期末复习宝典)

新浙教版七年级下数学知识点汇总(期末复习宝典)

第1章平行线1.在同一平面内,两条直线的位置关系只有两种:相交与平行.2.平行线的定义:在同一平面内......,不相交的两条直线叫做平行线.“平行”用符号“∥”表示.思考:定义中为什么要有“在同一平面内”这个条件?3.平行线基本事实:经过直线外...一点,有且只有一条直线与这条直线平行.思考:为什么要经过“直线外”一点?4.用三角尺和直尺画平行线方法:一贴,二靠,三推,四画.(注意:作图题要写结论)5.★★★★★同位角、内错角、同旁内角判断过程:①画出给定的两个角的边(共三条边),公共边就是截线,剩下两条边就是被截线;②根据同位角、内错角、同旁内角的概念判断.同位角:在截线的同旁,被截线的同一侧.内错角:在截线的异侧,被截线之间.同旁内角:在截线的同旁,被截线之间.练习:如图,∠1和∠2是一对___________;∠2和∠3是一对___________;∠1和∠5是一对___________;∠1和∠3是一对___________;∠1和∠4是一对___________;∠4和∠5是一对___________;6.★★★★★平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行;(4)平行线的定义:在同一平面内......,不相交的两条直线平行;(5)平行于同一条直线的两条直线平行;(不必在同一平面内)(6)在同一平面内......,垂直于同一条直线的两条直线互相平行.练习:如图,要得到AB∥CD,那么可添加条件______________________________.(写出全部)7.★★★★★平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.练习:如图,已知∠1=58°,∠3=42°,∠4=138°,则∠2=________°.8.★★★★★图形的平移(1)概念:一个图形沿某个方向移动,在移动的过程中,原图形上所有的点都沿同一个方向移动相等的距离,这样的图形运动叫做图形的平移.(2)性质:平移不改变图形的形状、大小和方向;一个图形和它经过平移所得的图形中,两组对应点的连线平行(或在同一条直线上)且相等.(3)描述一个图形的平移时,必须指出平移的方向..!..和距离练习:如图,已知△ABC和其平移后的△DEF.①点A的对应点是________,点B的对应点是________;②线段AC的对应线段是________;线段AB的对应线段是________;③平移的方向是__________,平移的距离是______________________.④若AC=AB=5,BC=4,平移的距离是3,则CF=________,DB=________,AE=________,四边形AEFC的周长是_________.9.★★★折叠问题方法:(1)找到折叠后和折叠前的图形,若折叠前的图形没有画出,自己必须补画上去;(2)找到折叠前后能重合的角,它们的度数相等;(3)利用平行线的性质、对顶角的性质、三角形的内角和、邻补角的性质、平角等计算出角度.练习:(1)如图,将一张纸条ABCD 沿EF 折叠,若折叠角∠FEC =64°,则∠1=________.(2)如图,有一条直的宽纸带,按图折叠,则∠α=_______.(3)如图,将一条两边沿互相平行的纸带折叠,①写出图中所有与∠6相等的角;②若∠6=x °,请用含x 的代数式表示∠4的度数.第2章 二元一次方程组1.★★★二元一次方程的概念三个条件:(1)含有两个未知数;(2)未知数的项的次数是一次;(3)都是整式.练习:方程①x - 1 y+2=0,②xy =-2,③x 2-5x =5,④2x =1-3y 中,为二元一次方程的是____________. 2.★★★★把二元一次方程变形成用关于一个未知数的代数式表示另一个未知数的形式(1)用含x 的代数式表示y ,则应变形为“y =…”的形式;(2)用含y 的代数式表示x ,则应变形为“x =…”的形式.练习:(1)已知方程2x -3y =7,用关于x 的代数式表示y 得_______________.(2)已知方程3x +2y =6,用关于y 的代数式表示x 得_______________.3.★二元一次方程的整数解方程3x +2y =21的正整数解是_________________________.4.二元一次方程组的概念三个条件:(1)两个一次方程;(2)两个方程共有两个未知数;(3)都是整式.5.★★★★★解二元一次方程组基本思路:消元消元方法:(1)代入消元;(2)加减消元.(注意:一定要把解代入原方程组检验,保证正确)练习:(1)⎩⎨⎧x -2y =23x +2y =10 (2)⎩⎨⎧y =3x 3x +y =126.★★★★常考题型练习:(1)已知代数式kx +b ,当x =2时值为-1,当x =3时值为-3,则a +b =_________.(2)若方程组⎩⎨⎧ax -2y =12x +by =5的解是⎩⎨⎧x =1y =a,则b =________. (3)已知关于x ,y 的二元一次方程组⎩⎨⎧2x +3y =k x +2y =-1的解互为相反数,则k 的值是_______. (4)请你写出一个以⎩⎨⎧x =3y =-1为解的二元一次方程组:_______________. (5)已知方程组⎩⎨⎧2x +y =5x +3y =5,则x +y 的值为___________. 7.某公司有甲、乙两个工程队.(1)两队共同完成一项工程,乙队先单独做1天后,再由两队合做2天完成了全部工程.已知甲队单独完成此项工程所需天数是乙队单独完成所需的天数的三分之二,则甲、乙两队单独完成各需多少天?(2)甲工程队工作5天和乙工程队工作1天的费用和为34000元;甲工程队工作3天和乙工程队工作2天的费用和为26000元,则两队每天工作费用各多少元?(3)该公司现承接一项(1)中2倍的工程由两队去做,且甲、乙两队不在同一天内合做,又必须各自做整数天,试问甲、乙两队各需做多少天?若按(2)中的付费,你认为哪种方式付费最少?8.某企业承接了一批礼盒的制作业务,该企业进行了前期的试生产,如图1 所示的长方形和正方形纸板(长方形的宽与正方形的边长相等)加工成如图2 所示的竖式与横式两种无盖的长方形纸箱.(加工时接缝材料不计)(1)该企业原计划用若干天加工纸箱300 个,后来由于提升工作效率,实际加工时每天加工速度为原计划的1.5 倍,这样提前3 天超额完成了任务,且总共比原计划多加工15 个,问原计划每天加工礼盒多少个;(2)若该企业购进正方形纸板550 张,长方形纸板1200 张.问竖式纸盒,横式纸盒各加工多少个,恰好能将购进的纸板全部用完;(3)该企业某一天使用的材料清单上显示,这天一共使用正方形纸板100 张,长方形纸板a张,全部加工成上述两种纸盒,且150<a<168,试求在这一天加工两种纸盒时a 的所有可能值.(请直接写出结果)第3章整式的乘除1.★★★★★公式与法则(1)同底数幂的乘法:底数不变,指数相加.a m·a n=a m+n(m,n都是正整数)(2)幂的乘方:底数不变,指数相乘.(a m) n=a mn(m,n都是正整数)(3)积的乘方:等于把积每一个因式分别乘方,再把所得幂相乘.(ab) n=a n b n(n都是正整数)(4)乘法公式:①平方差公式:(a+b)(a-b)=a2-b2②完全平方公式:(a+b)2=a2+b2+2ab(a-b)2=a2+b2-2ab(5)同底数幂的除法:底数不变,指数相减.a m÷a n=a m-n(a≠0)(6)a0=1(a≠0)(7)a-p=1a p(a≠0),当a是整数时,先指数变正,再倒数.当a是分数时,先把底数变倒数,再指数变正.(8)单项式乘单项式:系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式.(9)单项式乘多项式:用单项式去乘多项式的每一项,再把所得的积相加.m(a+b)=ma+mb(10)多项式乘多项式:先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加.(a+n)(b+m)=ab+am+nb+nm(11)单项式除以单项式:把系数、同底数幂分别相除,作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式.(12)多项式除以单项式:先把这个多项式的每一项除以这个单项式,再把所得的商相加.(a+b+c)÷m=a÷m+b÷m+c÷m(m≠0)练习:(1)(2a2)3=___________;3y·(-2x2y3)=___________;(9x3-3x)÷(3x)=___________;(-2)0=___________;(-3)-3=___________;(-23)-2=___________;(2a-1)2=_______________;(a3)2•a-2a3• a4=______________;(1-2a)2-(2-a)(1+a)=_______________;(x-2)(x+2)-(1-2x)2=_________________.2.★★★★★用科学记数法表示较小的数:a×10-n(1≤|a|<10)方法:第一个不为零的数前面有几个零就是负几次方.练习:(1)科学记数法表示0.0000103=_________________.(2)1纳米=0.000000001米,则0.33纳米=________米.(用科学计数法表示)(3)把用科学记数法表示的数7.2×10-4写成小数形式为___________________.3.★★★★常考题型(1)已知a+b=3,ab=-1,则a2+b2=___________.(2)若多项式x2-(x-a)(x+2b)+4的值与x的取值大小无关,那么a,b一定满足_____________.(3)关于x的代数式(3-ax)(x2+2x-1)的展开式中不含x2项,则a=___________.(4)若代数式x2+3x+2可以表示为(x-1)2+a(x-1)+b的形式,则a+b的值是.(5)若(x-m)(2x+3)=2x2-nx+3,则m-n=__________.(6)若(2x-5y)2=(2x+5y)2+M,则代数式M应是__________________.(7)如图,一块砖的外侧面积为a,那么图中残留部分的墙面的面积为_______________.(8)如图所示,某住宅小区内有一长方形地块,想在长方形地块内修筑同样宽的两条“之”字路,余下部分绿化,道路的宽为a米,则绿化的面积为________________m2.(9)定义一种对正整数n的“F运算”:①当n为奇数时,结果为3n+5;②当n为偶数时,结果为n2k(其中k是使n2k为奇数的正整数),并且运算重复进行.例如,取n=26,则:若n=449,则第449次“F运算”的结果是_________.第4章因式分解1.★★★★因式分解的概念:把一个多项式...化成几个整式的积....的形式,叫做因式分解,也叫分解因式.因式分解和整式乘法是互逆关系.练习:下列从左到右边的变形,是因式分解的是()A.(3-x)(3+x)=9-x2B.(y+1)(y-3)=-(3-y)(y+1)C.4yz-2y2z+z=2y(2z-yz)+z D.-8x2+8x-2=-2(2x-1)22.★★★★★因式分解的方法(1)提公因式法:先确定应提取的公因式,然后用公因式去除这个多项式,所得的商作为另一个因式,最后把多项式写成这两个因式的积的形式.ma+mb+mc=m(a+b+c)确定公因式的方法:系数的最大公因数和相同字母的最低次幂.(2)用乘法公式因式分解:①平方差公式:a2-b2=(a+b)(a-b)即:(□)2-(△)2=(□+△)(□-△)②完全平方公式:a2+2ab+b2=(a+b)2a2-2ab+b2=(a-b)2即:(□)2±2(□)(△)+(△)2=(□±△)2练习:(1)下列多项式能用完全平方公式分解因式的是()A.x2-4 B.x2+2x+4 C.4x2+4x+1 D.x2+y2(2)下列多项式能用平方差公式分解因式的是()A.x2+4 B.x2+2x+1 C.x2-4x D.-x2+9(3)因式分解:①a3-9a=_____________________. ②x-xy2=_____________________.③x2-8x+16=_________________. ④3ax2-6axy+3ay2=________________.⑤a3-4a(a-1)=_________________.⑥(x-2y)2-x+2y=________________.3.★★★★完全平方式:我们把多项式a2+2ab+b2和a2-2ab+b2叫做完全平方式.即:(□)2±2(□)(△)+(△)2练习:(1)若x2+(2p-3)x+9是完全平方式,则p的值等于=____________.(2)多项式9x2-x+1加上一个单项式后成为一个整式的平方,请写出3个满足条件的单项式:_____________________________.第5章分式1.★★分式的概念:表示两个整式相除,且除式中含有字母的代数式.两个条件:①字母不在根号里;②分母上有字母.2.★★★★★分式有意义的条件:分母不为0.练习:(1)当x________时,分式x+2x-2有意义.(2)当a_______时,分式12a+3没有意义.3.★★★★★分式的值为0的条件:①分子等于0;②分母不等于0.这里的“□”和“△”可以是单项式,也可以是多项式.练习:(1)当x ________时,分式a +3a -3的值为0. (2)当x ________时,分式x 2-4x -2的值为0.4.★★★★★分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变.A B = A ×M B ×M , A B = A ÷M B ÷M(其中M 是不等于零的整式) 分式的约分:把一个分式的分子和分母的公因式约去,叫做分式的约分.最简分式:分子、分母没有公因式的分式叫做最简分式.练习:(1)下列分式为最简分式的是( )A . 1-a a -1B .a 2+b 2 a -bC . m +n n 2-m 2D .2xy -3y 5xy (2)化简:① 12a 3b 9ab 3=_________;②2m 2-10m m 2-10m +25=___________. (3)若x -3y =0,则分式x 2+3xy +y 2x 2-y 2的值是__________. 5.★★★★★分式的乘除:分式乘分式,用分子积做积的分子,分母的积做积分母;分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.a b · c d = ac bd ; a b ÷ c d = a b · d c = ad bc. 练习:计算:① 3a 4b 2· 16b 3 9a 2=___________. 6.★★★分式的加减:(1)同分母的分式相加减,分式的分母不变,把分子相加减. a c ± b c = a ±b c. (2)异分母分式相加减,先通分化成同分母分式,再用同分母分式的加减法计算.7.★★★通分的方法:取各分母的系数的最小公倍数和各分母所有字母的最高次幂的积为公分母.8.★★★★★分式的化简求值.(1)先化简,再求值:a 2-4a 2-4a +4÷a +2a +1-1,并选择一个自己喜欢的数代入求值.(2)先化简,再求值:⎝ ⎛⎭⎪⎫x -1x -x -2x +1÷2x 2-x x 2+2x +1,其中x =-3.(3)先化简,再求值:⎝⎛⎭⎫1+1x -2÷x -1x 2-4x +4,然后x 在1,2,3三个数中选一个合适的数代入求值.9.★★★★★分式方程:只含分式,或分式和整式,并且分母里含有未知数的方程.解分式方程的一般步骤:(1)去分母:方程两边同乘公分母,公分母为分母的系数的最小公倍数和各分母所有字母的最高次幂的积.注意:①不要漏乘单独的数字.②分子是多项式的要用括号括起来.(2)去括号:注意符号和不要漏乘.(3)移项,合并同类项:注意移项要变号.(4)两边同时除以未知数的系数:注意不要颠倒分子分母.(5)检验:把所求的根代入原分式方程,或者代入公分母,判断方程中的分式有无意义.若无意义,则是増根.(6)写出结论.一般写法:经检验,x=___是原方程的根;或者:经检验,x=___是原方程的增根,所以原方程无解.练习:(1)解分式方程:①31-y=2yy-1-1 ②2x+1=3x-3(2)若商品的买入价为a,售出价为b,则毛利率p=b-aa(b>a).若已知p,b,则a=__________.(3)对于非零的实数a、b,规定a⊕2⊕(2x-1)=1,则x=___________.(4)若关于x的分式方程2+1-kxx-2=________,此时k=_________.(5)若关于x的分式方程2+1-kxx-2=12-x无实数解,则k=____________.(6)张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是x米/分,则可列得方程为()A.3000x-30001.2x=5 B.3000x-30001.2x=5×60C.30001.2x-3000x=5 D.3000x+30001.2x=5×60(7)甲、乙两个工程队共同承包某一城市美化工程,已知甲队单独完成这项工程需要30天,若由甲队先做10天,剩下的工程由甲、乙两队合作8天完成.问乙队单独完成这项工程需要多少天?若设乙队单独完成这项工程需要x天.则可列方程为()A.1030+8x=1B.10+8+x=30C.1030+8(130+1x)=1D.(1-1030)+x=8第6章数据与统计图表1.数据收集的方法:(1)直接途径:直接观察、测量、调查、实验;(2)间接途径:查阅文献资料、使用互联网查询.2.数据整理的方法:分类、排序、分组、编码.3.★★★★调查方式:(1)全面调查(普查):人们根据研究自然现象或社会现象的需要,对所有的考察对象作调查.(2)抽样调查:人们在研究某个自然现象或社会现象时,因为不方便、不可能或不必要对所有对象进行调查,于是从中抽取一部分对象作调查分析.注意:抽取的样本中的个体要有代表性,样本容量要合适.总体:所要考察的对象的全体;个体:组成总体的每一个考察对象;样本:从总体中取出的一部分个体;样本容量:样本中个体的数目.练习:(1)PM2.5指数是测控空气污染程度的一个重要指数.在一年中最可靠一种观测方法是()A.随机选择5天进行观测B.选择某个月进行连续观测C.选择在春节7天期间连续观测D.每个月都随机选中5天进行观测(2)下面的调查中,适宜采用全面调查方式的是()A.了解居民对废电池的处理情况B.为了制作校服,了解某班同学的身高情况C.检测杭州的空气质量D.了解某市居民的阅读情况(3)下面调查中,适合抽样调查的是()A.对全班同学的身高情况的调查B.登机前对旅客的安全检查C.对我县食品合格情况的调查D.学校组织学生进行体格检查4.★★★★★条形统计图:能清楚表示出每个项目的具体数目;折线统计图:能清楚反映事物的变化情况;扇形统计图:能清楚地表示出各部分在总体中所占的百分比.练习:(1)要反映嘉兴市一天内气温的变化情况宜采用()A.折线统计图B.扇形统计图C.频数直方图D.条形统计图(2)如图是某手机店今年1-5月份音乐手机销售额统计图.根据图中信息,可以判断相邻两个月音乐手机销售额变化最大的是()A.1月至2月B.2月至3月C.3月至4月D.4月至5月(3)为了解某一路口某一时段的汽车流量,小明同学10天中在同一时段统计通过该路口的汽车数量(单位:辆),将统计结果绘制成如下折线统计图:由此估计一个月(30天)该时段通过该路口的汽车数量超过200辆的天数为()A.9B.10C.12D.15(4)如图分别是某班全体学生上学时乘车、步行、骑车人数的分布直方图和扇形统计图(两图都不完整),下列结论错误的是()A.该班总人数为50人B.步行人数为30人C.乘车人数是骑车人数的2.5倍D.骑车人数占20%(5)某校根据去年初三学生参加中考的数学成绩的等级,绘制成如图的扇形统计图,则图中表示A等级的扇形的圆心角的大小为___________.5.列频数统计表的一般步骤:(1)选取组距,确定组数.组数=最大值-最小值组距的整数部分+1.(2)确定各组的边界值.第一组的起始边界值通常取得比最小数据要小一些,一般的做法是边界值比实际数据多取一位小数.(3)列表,填写组别和统计各组频数.6.★★★★★样本容量(数据个数)、频数、频率之间的相互关系样本容量=频数÷频率频数=样本容量×频率频率=频数÷样本容量练习:(1)一组数据的样本容量是50,若某一小组的频率是0.24,则该组的频数为__________.(2)在全国初中数学希望杯竞赛中,某校有40名同学进入复赛,把他们的成绩分为六组,第一组至第四组的人数分别为10,5,7,6,第五组的频率是0.2,则第六组的频率是________.7.频数直方图:由若干个宽等于组距.....,面积表示每一组频数.........的长方形组成的统计图.注意:当各组组距都相等时,我们可以把组距看成“1”,那么各个小长方形的面积与它的高度在数值上相等,所以我们通常把小长方形的高度当成频数.8.组中值:每一组的两个边界值的平均数.后一组的组中值减去前一组的组中值=组距.9.2017年3月28日是全国中小学生安全教育日,某学校为加强学生的安全意识,组织了全校1500名学生参加安全知识竞赛,从中抽取了部分学生成绩(得分取正整数,满分为100分)进行统计.请根据尚未完成的频率分布表和频数分布直方图,解答下列问题:(1)这次抽取了_______名学生的竞赛成绩进行统计,其中:m=_______,n=_______;(2)补全频数分布直方图;(3)若成绩在70分以下(含70分)的学生为安全意识不强,有待进一步加强安全教育,则该校安全意识不强的学生约有多少人?10.某市在2017年义务教育质量监测过程中,为了解学生的家庭教育情况,就八年级学生平时主要和谁在一起生活进行了抽样调查.下面是根据这次调查情况制作的不完整的频数分布表和扇形统计图.请根据上述信息,回答下列问题:(1)a=_______,b=_______;(2)在扇形统计图中,和外公外婆一起生活的学生所对应扇形圆心角的度数是_______;(3)若该市八年级学生共有3万人,估计不与父母一起生活的学生有_______人.11.中学生带手机上学的现象越来越受到社会的关注,为此某记者随机调查了某市城区若干名中学生家长对这种现象的态度(态度分为:A.无所谓;B.基本赞成;C.赞成;D.反对).并将调查结果绘制成频数折线统计图1和扇形统计图2(不完整).请根据图中提供的信息,解答下列问题:(1)此次抽样调查中,共调查了______名中学生家长;(2)将图1补充完整;(3)根据抽样调查结果,请你估计该市城区6000名中学生家长中有多少名家长持反对态度?12.为了了解学生在一年中的课外阅读量,九(1)班对九年级800名学生采用随机抽样的方式进行问卷调查,调查的结果分为四种情况:A.10本以下;B.10~15本;C.16~20本;D.20本以上.根据调查结果统计整理并制作了如图所示两幅统计图表:各种情况人数统计频数分布表课外阅读情况 A B C D频数20 x y40(1)在这次调查中一共抽查了______名学生;(2)表中x,y的值分别为:x=______,y=______;(3)在扇形统计图中,C部分所对应的扇形的圆心角是________度;(4)根据抽样调查结果,请估计九年级学生一年阅读课外书20本以上的学生人数.。

浙教版七年级(下册)数学知识点复习共51页

浙教版七年级(下册)数学知识点复习共51页

26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇

30、意志是Байду номын сангаас个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
51
浙教版七年级(下册)数学知识点复习

46、寓形宇内复几时,曷不委心任去 留。

47、采菊东篱下,悠然见南山。

48、啸傲东轩下,聊复得此生。

49、勤学如春起之苗,不见其增,日 有所长 。

50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学知识点总结第一章三角形的初步认识1.1认识三角形①由不在同一条直线上的三条线段首尾顺次相接所组成的图形叫做三角形。

“三角形”用符号“△”表示,顶点是ABC的三角形记做“△ABC”读作“三角形ABC”。

由两点之间线段最短,可以得到如下性质:三角形任何两边的和大于第三边。

②三角形三个内角的和等于180°。

由三角形一条边的延长线和另一条相邻的边组成的角,叫做该三角形的外角。

三角形的一个外角等于和它不相邻两个内角的和。

1.2三角形的平分线和中线在三角形中,一个内角的角平分线与它对边相交,这个角的顶点与交点之间的线段叫做三角形的三角形的平分线。

在三角形中,连结一个顶点与它对边中点的线段,叫做这个三角形的中线。

1.3三角形的高从三角形的一个顶点向它的对边所在的直线作垂线,顶点和垂足之间的线段叫做三角形的高。

锐角三角形的三条高在三角形的内部,垂足在相应顶点的对边上。

直角三角形的直角边上的高分别与另一条直角边重合,垂足都是直角的顶点。

而在钝角三角形中,夹钝角两边上的高都在三角形的外部,它们的垂足都在相应顶点的对边的延长线上。

1.4全等三角形能够重合的两个图形称为全等图形。

能够重合的两个三角形称为全等三角形。

两个全等三角形重合时,能互相重合的顶点叫做全等三角形的对应顶点,互相重合的边叫做全等三角形的对应边,互相重合的角叫做全等三角形的对应角。

“全等”可用符号“≌”来表示。

全等三角形的性质:全等三角形对应边相等,对应角相等。

1.5三角形全等的条件①三边对应相等的两个三角形全等(简写成“边边边”或“SSS”)。

当三角形三边长确定是,三角形的形状、大小完全被确定,这个性质叫做三角形的稳定性,这是三角形特有的性质。

②有一个角和夹这个角的两边对应相等的两个三角形全等(简写成“边角边”或“SAS”)。

垂直于一条线段,并且平分这条线段的直线叫做这条线段的垂直平分线,简称中垂线。

线段垂直平分线上的点到线段两端点的距离相等。

③有两个角和这两个角的夹边对应相等的两个三角形全等(简写成“角边角”或“ASA”)。

有两个角和其中一个角的对边对应相等的两个三角形全等(简写成“角角边”或“AAS”)。

角平分线上的一点到角两边的距离相等。

1.6作三角形在几何作图中,我们把用没有刻度的直尺和圆规作图,简称尺规作图。

练习:例1.如图,在三角形ABC中,∠B=∠C,D是BC上一点,且FD⊥BC,DE⊥AB,∠AFD=140°,你能求出∠EDF的度数吗?例2.如图,有甲、乙、丙、丁四个小岛,甲、乙、丙在同一条直线上,而且乙、丙在甲的正东方,丁岛在丙岛的正北方,甲岛在丁岛的南偏西52°方向,乙岛在丁岛的南偏东40°方向.那么,丁岛分别在甲岛和乙岛的什么方向?例3.如图,在三角形ABC中,AD⊥BC,BE⊥AC,CF⊥AB,BC=16,AD=3,BE=4,CF=6,你能求出三角形ABC 的周长吗?自测:1、下列图形中,不具有稳定性的是( ).2、将一副三角形按如图2—7的方式叠放,那么∠α= 。

3.以长为13cm 、10cm 、5cm 、7cm 的四条线段中的三条线段为边,可以画出三角形的个数是( )A .1个B .2个C .3个D .4个4.如图,∠1=750,∠A=∠BCA,∠CBD=∠CDB,∠DCE=∠DEC, ∠EDF=∠EFD.则∠A 的度数为……………( )A. 150B. 200C .250 D. 300第二章 图形的变换2.1轴对称图形如果把一个图形沿着一条直线折起来,直线两侧的部分能够重合那么这个图形叫做轴对称图形。

这条直线叫做对称轴。

轴对称图形的性质:对称轴垂直平分两个对称点之间的线段。

2.2轴对称变换图2—7450300αA 、 B 、 C 、 D 、(第1题图)由一个图形变为另一个图形,并使这两个图形关于某一条直线成轴对称,这样的图形改变叫做图形的轴对称变换,也叫反射变换,简称反射。

经变换所得的新图形叫做原图形的像。

轴对称变换的性质:轴对称变换不改变原图形的形状和大小。

2.3平移变换由一个图形改变为另一个图形,在改变的过程中,原图形上所有的点都沿一个方向运动,且运动相等的距离,这样的图形改变叫做图形的平移变换,简称平移。

平移变换的性质:平移变换不改变图形的形状、大小和方向。

连结对应点的线段平行(或在同一直线上)而且相等。

2.4旋转变换由一个图形改变为另一个图形,在改变的过程中,原图形上所有的点都绕一个固定的点,按同一个方向,转同一个角度,这样的图形改变叫做图形的旋转变换,简称旋转。

这个固定的点叫做旋转中心。

旋转变换的性质:旋转变换不改变图形的形状和大小。

对应点到旋转中心的距离相等。

对应点与旋转中心连线所成的角度等于旋转的角度。

2.5相似变换由一个图形改变为另一个图形,在改变的过程中保持形状不变(大小可以改变),这样的图形改变叫做图形的相似变换。

图形的放大和缩小都是相似变换,原图形和经过相似变换后的像,我们称它们为相似图形。

相似变换的性质:图形的相似变换不改变图形中每一个角的大小;图形中的每条线段都扩大(或缩小)相同的倍数。

2.6图形变换的简单应用利用图形变换可以将基本图形巧妙地组合起来,就能形成美丽的图案。

图形变换的思想还可以用来帮助进行有关图形的计算。

第三章 事件的可能性1. 在教学中我们把事件发生的可能性的大小也称为事件发生的概率,一般用P 表示。

事件A 发生的概率也记为()A P ,事件B 发生的概率记为()B P ,依此类推。

2. 如果我们知道事件发生的可能性相同的各种结果的总数,并且知道其中事件A 发生的可能的结果总数,那么就可用以下式子表示事件A 发生的概率:()所有可能的结果总数发生的可能的结果总数事件A A P =3.一般地,必然事件发生的概率为100%,即()1=必然事件P 。

不可能事件发生的概率为0,即()0=不可能事件P 。

而不确定事件发生的概率介于0与1之间,即()10<<不确定事件P 。

例. 甲、乙两位同学玩掷飞镖的游戏,他们分别用如图所示的两个靶子,甲用的等边三角形的靶子被其三条角平分线分割成A 、B 、C 三部分;乙用的圆形靶子被互相垂直的直径和半径也分割成A 、B 、C 三部分。

试问(1)在三角形靶子中飞镖随机地掷在区域A 、B 、C 的概率是多少?(2)在圆形靶子中,飞镖没有投在区域C 中的概率是多少?自测:1、笼子里关着一只小动物,笼子的主任决定把它放归大自然,小动物要先经过第一道门(A ,B 或C ),再经过第二道门(D 或E ),才能出去,问小动物走出笼子的路线(经过的两道门)有多少种不同的可能?AB C D E A BCA B C2、有的同学认为:抛掷两枚均匀硬币,硬币落地后,朝上一面只可能有一下三种情况:①全是正面;②一正一反;③全是反面,因此这三个事件发生的可能性是相等的。

你同意这种说法吗?若不同意,你认为哪一个事件发生的可能性最大?为什么?3、一个袋中装有4个红球、2个黄球、2个白球、1个黑球,它们除颜色外都相同。

任意摸出一个球,摸到哪种颜色球的可能性最大?摸到哪种颜色球的可能性最小?摸到哪两种颜色球的可能性相等?第四章二元一次方程组4.1.含有两个未知数,且含有未知数的项的次数都是一次的方程叫做二元一次方程。

4.2.由两个二元一次方程组成,并且含有两个未知数的方程组,叫做二元一次方程组。

同时满足二元一次方程组中各个方程的解,叫做这个二元一次方程组的解。

4.3解二元一次方程组①消元就是把二元一次方程组化为一元一次方程。

消元的方法是代入,这种解方程组的方法称为代入消元法,简称代入法。

②通过将两个方程的两边进行相加或相减,消去其中一个未知数转化为一元一次方程。

这种解二元一次方程组的方法叫做加减消元法,简称加减法。

练习:1.方程组1325x yx y-=⎧⎨-=⎩的解是()A.3510...2 1.80215 x x x xB C Dy y y y====⎧⎧⎧⎧⎨⎨⎨⎨====⎩⎩⎩⎩10.已知方程ax+by=10的两个解为1105x xy y=-=⎧⎧⎨⎨==⎩⎩与,则a、b的值为()A.10101010...4410a a a aB C Db b b b==-==-⎧⎧⎧⎧⎨⎨⎨⎨=-===⎩⎩⎩⎩2.如果2151x xy y==⎧⎧⎨⎨=-=-⎩⎩和是方程mx+ny=15的两个解,求m,n的值.3.已知方程组31242x yx ay+=⎧⎨+=⎩有正整数解(a为整数),求a的值.应用:1.巍巍古寺在山林,不知寺内几多僧,三百六十四只碗,看看用尽不差争,•三人共食一碗饭,四人共吃一碗羹,请问先生明算者,算来寺内几多僧.2.某电脑公司现有A、B、C三种型号的甲品牌电脑和D、E两种型号的乙品牌电脑,希望中学要从甲、乙两种品牌电脑中各选购一种型号的电脑.(1)写所有选购方案(利用树状图或列表方法表示);(2)已知希望中学购买甲、乙两种品牌电脑共36台(价格如图所示)恰好用10•万元人民币,其中甲品牌电脑为A型电脑,求该学校购买了A型电脑几台?自测:1、有一个商店把某件商品按进价加20%作为定价,可是总卖不出去;后来老板按定价减价20%以96元出售,很快就卖掉了,则这次买卖的盈亏情况为〔〕A、赚6元B、不亏不赚C、亏4元D、亏24元2、一张试卷只有25道选择题,做对一道得4分,不做或做错一题倒扣1分,某学生做了全部试题,共得70分,他做对了的题数是〔〕A、17B、18C、19D、203、某市出租车的收费标准是:起步价5元(行驶距离不超过3千米,都需付5元车费),超过3千米,每增加1千米,加收1.2元。

某人乘出租车到达目的地后共支付车费11元,那么此人坐车行驶的路程最多是多少?4、某商品售价为每件900元,为了参与市场竞争,商店按售价的9折再让利40元销售,此时仍可获得10%,此商品的进价是每件多少元?第五章整式的乘除5.1同底数幂的乘法①同底数幂的乘法法则:同底数幂相乘,指数相加。

②幂的乘法法则:幂的乘方,底数不变,指数相乘。

③积的乘法法则:积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。

5.2单项式的乘法单项式与单项式相乘的法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。

单项式与多项式相乘的法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。

5.3多项式的乘法多项式与多项式相乘的法则:多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加。

5.4乘法公式①平方差公式:即两数和与这两数差的积等于这两数的平方差。

②两数和的完全平方公式:即两数和的平方,等于这两个数的平方和,加上这两数积的2倍。

相关文档
最新文档