混凝土基本原理受弯构件正截面承载力计算
混凝土受弯构件正截面承载力计算
r As f y As a1 fcbx x a1 fc
bh0 bh0 f y bh0 f y h0 f y
令
x
h0
则
r
a1 fc
fy
令b为 = r max时的相对受压区高度,即
rmax
b
a1
f
fc
y
= r max时的破坏形态为受压区边缘混凝土达到极限压
c fc e0 e ecu
n
2
1 60
(
fcu,k
50)
2.0
各系数查表4-3
e0 0.002 0.5( fcu,k 50)105 0.002
ecu 0.0033 0.5( fcu,k 50)105 0.0033
4.钢筋应力—应变关系的假定(本构关系)
Ese e e y fy e ey
4.3钢筋混凝土受弯构件正截面试验研究
一、受弯构件正截面破坏过程
受弯构件正截面破坏分为三个阶段 • 第一阶段:裂缝开裂前 • 第二阶段:从开裂到钢筋屈服 • 第三阶段:从钢筋屈服到梁破坏
(1)第I阶段
当荷载比较小时,混凝土基本处 于弹性阶段,截面上应力分布为三 角形,荷载-挠度曲线或弯矩-曲率 曲线基本接近直线。截面抗弯刚度 较大,挠度和截面曲率很小,钢筋 的应力也很小,且都于弯矩近似成 正比。
My
Mu
Failure”,破坏前
可吸收较大的应变
能。
0
f
2.超筋梁(Over reinforced)破坏
钢筋配置过多,将发生这种破坏。 破坏特征:破坏时钢筋没有达到屈服强度,破坏是由 于压区混凝土被压碎引起,没有明显预兆,为脆性破 坏。
第三讲受弯构件正截面承载力计算精选全文
Mu
1.0
砼退出工作,拉力主要由钢筋 承担,单钢筋未屈服;
b. 受压区砼已有塑性变形,但 不充分;
c. 弯距-曲率关系为曲线,曲
0.8 My
0.6
0.4
II
M cr
0
f cr
fy
fu f
加载过程中弯矩-曲率关系
率与挠度增长加快。
(三)屈服阶段(钢筋屈服至破坏): 纵向受力钢筋屈服后,截面曲率
和梁的挠度也突然增大,裂缝宽度随 My 之扩展并沿梁高向上延伸,中和轴继 续上移,受压区高度进一步减小。弯 矩再增大直至极限弯矩实验值Mu时, 称为第Ⅲ阶段(Ⅲa)。
截面每排受力钢筋最好相同,不同时,直径差≥2mm,但 不超过4~6mm。
钢筋根数至少≥2,一排钢筋宜用3~4根,两排5~8根。 钢筋间的距离: ≥d,且≥30mm、且≥1.25倍最大骨料粒径。 自下而上布置钢筋,且要求上下对齐。
五.板内钢筋的直径和间距
❖钢筋直径通常为6~12mm;
板厚度较大时,直径可用16~25mm,特殊的用32、36mm ; 同一板中钢筋直径宜相差2mm以上,以便识别。
第二节 试验研究与分析
一、适筋受弯构件正截面的受力过程
1.梁的布置及特点 通常采用两点对称集中加荷,加载点位于梁跨度的
1/3处,如下图所示。这样,在两个对称集中荷载间的区 段(称“纯弯段”)上,不仅可以基本上排除剪力的影响 (忽略自重),同时也有利于在这一较长的区段上(L/3)布 置仪表,以观察粱受荷后变形和裂缝出现与开展的情况。 在“纯弯段”内,沿梁高两侧布置多排测点,用仪表量 测梁的纵向变形。
前无明显预兆,属脆性破坏。
第3种破坏情况——少筋破坏
配筋量过少: 拉区砼一出现裂缝,钢筋很快达到屈服,可能经
钢筋混凝土受弯构件正截面承载力计算
为保证钢筋混凝土结构的耐久性、防火性以及钢
筋与混凝土的粘结性能,钢筋的混凝土保护层厚
5度、一配般筋不率小于2A 5msm% ; ....4...2()
bh0
用下述公式表示
As bh0
%
公式中各符号含义:
As为受拉钢筋截面面积; b为梁宽;h0为梁的有效 高度,h0=h-as;as为所有受拉钢筋重心到梁底面 的距离,单排钢筋as= 35mm ,双排钢筋as= 55~60mm 。
M/ M u
Mu
1.0
0.8 My
0.6
II
0.4
III III a II a
M cr I a
I
0
f cr
fy
fu f
加载过程中弯矩-曲率关系
说明:
对于配筋合适的梁,在III
阶段,其承载力基本保持不 变而变形可以很大,在完全
M/ M u
Mu
1.0
破坏以前具有很好的变形能 力,破坏预兆明显,我们把
0.8 My
通常采用两点对称集中加荷,加载点位于梁跨度 的1/3处,如下图所示。这样,在两个对称集中荷载间 的区段(称“纯弯段”)上,不仅可以基本上排除剪力的 影响(忽略自重),同时也有利于在这一较长的区段上(L /3)布置仪表,以观察粱受荷后变形和裂缝出现与开 展的情况。在“纯弯段”内,沿梁高两侧布置多排测 点,用仪表量测梁的纵向变形。
梁破坏时的极限弯矩Mu小于在正常情况下的开
裂弯矩Mcr。梁配筋率越小, Mcr -Mu的差值越大; 越大(但仍在少筋梁范围内), Mcr -Mu的差值越小。
当Mcr -Mu =0时,它就是少筋梁与适筋梁的界限。这
时的配筋率就是适筋梁最小配筋率的理论值min。
混凝土结构设计原理第4章:钢筋混凝土受弯构件正截面承载力计算
◆判别条件:f y As 1 fcb'f h'f
第一类T形截面
满足:
0M 1 fcb'f h'f h0 h'f 2 否则为第二类截面
混凝土结构设计原理
第4章
■第一类T形截面的计算公式及适用条件
图4.13 第一类T形截面计算简图
◆计算公式: 1 fcbf x f y As
0M
1
f cbf x(h0
由式(4-27)可得:
x h0
h02
M 2
fyAs(h0
1 fcb
as)
As
fyAs 1 fcbx
fy
…4-34 …4-35
混凝土结构设计原理 情形2:已知条件
第4章
M1
0M
f
' y
As'
h0
as'
x h0
h02
M1
0.51 fcb
x h0 b N
Y
x 2as'
按 A未s' 知,重新计算 和As' As
x) 2
◆适用条件: 1.防止超筋破坏: x bh0 2.防止少筋破坏 : As minbh
按 bf h的单筋
矩形截面计算
混凝土结构设计原理
第4章
■第二类T形截面的计算公式及适用条件
图4.14 第二类T形截面计算简图
◆计算公式: 1 fcbx 1 fc (bf b)hf fy As
0M
② 由式(4-27)求 Mu
Mu
fyAs(h0 as) 1 fcbx(h0
x) 2
…4-37
③ 验算: Mu M ?
混凝土结构设计原理
[精华]混凝土结构的受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
(1)材料选用
▲混凝土:现浇梁板:常用C20~C30级混凝土; 预制梁板:常用C20~C35级混凝土。
(这是由于适筋梁的Mu主要取决于fyAs,因此RC受弯构 件的 fc 不宜较高)
▲钢筋:梁常用Ⅱ~Ⅲ级钢筋,板常用Ⅰ~Ⅱ级钢筋。 (RC受弯构件是带裂缝工作的,由于裂缝宽度和挠度变形
d
a'
0.5(1 ) 0.55
故取 x = xb
h0 即取 M1 s,max 1 fcbh02
(注:为提高破坏时的延性也可取x = 0.8xb)
第四章 受弯构件正截面承载力 (2)情况二:已知:M,b、h、fy、 fy ’、 fc、As’
求:As 未知数:x、 As
M f y As (h0 a)
x) 2
第四章 受弯构件正截面承载力 ▲基本公式的另一表达形式
基本公式 1 fcbx f y As
M
Mu
1 fcbx(h0
x) 2
f y As (h0
x) 2
当令 =x/h0
s=1-0.5
s= (1-0.5 ) 此两式可知: 、 s 、 s三个系
时
数只要知道其中一个,其余两个即可
其中M1 s,max1 fcbh02
第四章 受弯构件正截面承载力 ▲补充条件x= bh0或 = b的依据
由基本公式求得:
As
As
1 fc
fy
b h0
2
M
1 fcbh02 (1 0.5 )
f y (h0 a)
为使As 、 As’的总量最小,必须 使
d ( As As ) 0
混凝土结构设计原理-受弯构件正截面承载力精选全文
2.已知:矩形截面钢筋混凝土简支梁,计算跨度为6000mm, as=35mm, 作用均布荷载25 kN/m,混凝土强度等级C20,钢筋HRB335级。 ( fc =9.6 N/mm2 , ft =1.1 N/mm2 , fy =300 N/mm2 )
试设计此梁
3.已知:矩形截面梁尺寸b=200mm、h=450mm,as=35mm。混凝土 强度等级C70,钢筋HRB335级,实配4根20mm的钢筋。 ( fc =31.8 N/mm2 , ft =2.14 N/mm2 , fy =300 N/mm2 )
b
max
b
1 fc
fy
受弯构件正截面承载力计算
最小配筋率ρmin
最小配筋率规定了少筋和适筋的界限
m in
As bh
0.45
ft fy
且同时不应小于0.2%
受弯构件正截面承载力计算
造价
总造价
混凝土
钢
经济配筋率
经济配筋率 板:0.4~0.8%
矩形梁:0.6~1.5% T形梁:0.9~1.8%
受弯构件正截面承载力计算
小相等; 2. 等效矩形应力图形与实际抛物线应力图形的形心位置相同,即合
力作用点不变。
受弯构件正截面承载力计算
表 5.1 混凝土受压区等效矩形应力图系数
≤C50 C55
C60
C65
C
0.8
0.99 0.98 0.97 0.96 0.95 0.94 0.79 0.78 0.77 0.76 0.73 0.74
钢筋与混凝土的材料强度比,是反映构件中两种材料配比的本质参数。
基本方程改为:
N 0, M 0,
1 fcb h0 s As M u 1 fcbh02 (1 0.5 )
《混凝土结构基本原理》受弯构件正截面承载力计算
3) 现 浇 板 的 宽 度 一 般 较 大 , 设 计 时 可 取 单 位 宽 度 (b=1000mm)进行计算。
5.2 受弯构件的一般构造
(3)材料选择 1)混凝土强度等级:梁、板常用的混凝土强度等级是C20、
3)第Ⅲ阶段:弯矩由My增至极限弯矩Mu,该阶段结束 的标志是混凝土压应变达到其非均匀受压时的极限压应变, 而并非混凝土的应力达到其极限压应力。第Ⅲ阶段末是混凝 土构件极限承载力设计的依据。
5.3 受弯构件的正截面的受力分析
5.3.3 正截面受弯的三种破坏形态
1)延性破坏:配筋合适的构件,具有一定的承载力,同 时破坏时具有一定的延性,如适筋梁ρminh/h0≤ρ≤ρb 。(钢筋 的抗拉强度和混凝土的抗压强度都得到发挥)
4)板的分布钢筋,当按单向板设计时,除沿受力方向布置受 力钢筋外,还应在垂直受力方向布置分布钢筋。分布钢筋宜采用 HPB300级(Ⅰ级)和HRB335级(Ⅱ级)级钢筋,常用直径是6mm
5.2 受弯构件的一般构造
4)纵向受拉钢筋的配筋百分率
设正截面上所有纵向受拉钢筋的合力点至截面受拉边缘的
竖向距离为as,则合力点至截面受压区边缘的竖向距离h0=h-
2)受拉脆性破坏:承载力很小,取决于混凝土的抗拉强 度,破坏特征与素混凝土构件类似。虽然由于配筋使构件在 破坏阶段表现出很长的破坏过程,但这种破坏是在混凝土一 开裂就产生,没有预兆,也没有第二阶段,如少筋梁ρ<ρmin h/h0、少筋轴拉构件;(混凝土的抗压强度未得到发挥)
3)受压脆性破坏:具有较大的承载力,取决于混凝土受 压强度,延性能力较差,如超筋梁ρ>ρb和轴压构件。(钢筋 的受拉强度没有发挥)
受弯构件正截面承载力计算混凝土结构设计原理
受弯构件正截面承载力计算混凝土结构设计原理受弯构件正截面承载力计算是混凝土结构设计中的关键内容之一、正截面承载力的计算原理主要涉及构件截面几何参数、混凝土材料特性、受力分析以及一系列的假设和假定条件。
下面对受弯构件正截面承载力计算的原理进行详细介绍。
一、截面几何参数受弯构件的承载力计算首先需要确定截面的几何参数,包括截面尺寸、形状和面积等。
常见的截面形状有矩形、T形、L形等,不同形状的截面在计算时需要根据其特点分别考虑。
截面的面积可以直接根据几何关系计算得到。
二、混凝土材料特性混凝土材料的特性对受弯构件的承载力计算有着重要影响。
主要包括混凝土的抗压强度、抗拉强度、弹性模量以及裂缝宽度等。
这些参数可以通过试验或经验公式得到。
三、受力分析受弯构件一般由弯矩和剪力共同作用,承载力计算需要分析受力状况,确定弯矩和剪力的大小和分布。
在受弯构件中,弯矩是主要的受力,承载力计算主要围绕弯矩展开。
四、假设和假定条件在受弯构件的承载力计算中,通常会做一系列的假设和假定条件来简化计算。
这些假设和假定条件包括:假定构件截面尺寸保持不变;假定混凝土是线弹性材料;假定受力状况是弯矩作用下的受弯构件等。
五、弯矩与应力的关系在混凝土结构中,弯矩与混凝土截面的应力分布之间存在紧密的关系。
一般情况下,在受弯构件的顶部和底部会产生最大应力,而截面中部应力较小。
通过应力分布的分析,可以确定截面中混凝土各个位置的应力大小。
六、受弯构件正截面承载力计算公式根据上述原理,可以推导出受弯构件正截面承载力计算的公式。
常用的计算公式有弯矩和应力的平衡条件公式、极限平衡条件公式和受拉区有效高度的计算公式等。
七、受弯构件正截面破坏模式根据受弯构件的截面形状和具体受力情况,破坏模式可以分为混凝土破坏和钢筋屈服。
混凝土破坏是指混凝土达到其抗拉极限后发生脆性断裂;钢筋屈服是指钢筋试件发生屈服破坏。
总之,受弯构件正截面承载力计算是混凝土结构设计中的重要环节。
混凝土结构原理 第4章第2次课 受弯构件正截面承载力计算基本假定
宁 建 波 工 筑 道 程 工 桥 学 程 黄 教 院 学 研 林 11 院 室 .3 .10
2 c f c 1 1 c 0 fc
4、界限相对受压区高度 界限破坏时的截面应变关系
4.2 受弯构件正截面承载力计算基本假定
xnb
cu y
cu
h0
简化计算界限受压区高度 压区高度
xb,界限破坏时的界限相对受
xb 1 x nb 1 cu b h0 cu y h0
1
cu E s C50及以下: cu 0.0033, 1 0.8
4.2 受弯构件正截面承载力计算基本假定
1、正截面承载力计算的基本假定 (1)平截面假定 截面平均应变保持为平面 (2)不考虑砼的抗拉强度 (3)砼受压应力—应变关系 抛物线上升段+水平直线段
c 0 0.002
C 50
0 c cu 0.0033
(4)钢筋受拉应力—应变关系
M u y yk As h0 0.5 x f yk bh h0 0.5 x
As f tk 0.327 bh f yk
min
ft max{0.2%,0.45 }(梁) fy f max{0.15%,0.45 t }(板) fy
N 0
f c bx As f y
M 0
相对受压区高度
x x M u f c bx h0 As f y h0 2 2
fy fy As x h0 bh0 1 f c 1 f c
钢筋混凝土受弯构件正截面承载力计算-混凝土结构设计原理
1 /171第四章 钢筋混凝土受弯构件正截面承载力计算本章学习要点:1、掌握单筋矩形截面、双筋矩形截面和T 形截面承载力的计算方法;2、了解配筋率对受弯构件破坏特征的影响和适筋受弯构件在各阶段的受力特点;3、熟悉受弯构件正截面的构造要求。
§4-1 概述一、受弯构件的定义同时受到弯矩M 和剪力V 共同作用,而轴力N 可以忽略的构件(图4—1). 梁和板是土木工程中数量最多,使用面最广的受弯构件。
梁和板的区别:梁的截面高度一般大于其宽度,而板的截面高度则远小于其宽度。
受弯构件常用的截面形状如图4-2所示。
图4-1二、受弯构件的破坏特性正截面受弯破坏:沿弯矩最大的截面破坏,破坏截面与构件的轴线垂直。
斜截面破坏:沿剪力最大或弯矩和剪力都较大的截面破坏。
破坏截面与构件轴线斜交。
进行受弯构件设计时,要进行正截面承载力和斜截面承载力计算。
2 /172图4—3 受弯构件的破坏特性§4—2 受弯构件正截面的受力特性一、配筋率对正截面破坏性质的影响配筋率:为纵向受力钢筋截面面积A s 与截面有效面积的百分比.sA bh 式中 s A —-纵向受力钢筋截面面积。
b -—截面宽度,0h —-截面的有效高度(从受压边缘至纵向受力钢筋截面重心的距离)。
构件的破坏特征取决于配筋率、混凝土的强度等级、截面形式等诸多因素,但配筋率的影响最大。
受弯构件依配筋数量的多少通常发生如下三种破坏形式: 1、 少筋破坏当构件的配筋率低于某一定值时,构件不但承载力很低,而且只要其一开裂,裂缝就急速开展,裂缝处的拉力全部由钢筋承担,钢筋由于突然增大的应力而屈服,构件立即发生破坏。
图4—4 受弯构件正截面破坏形态2、适筋破坏当构件的配筋率不是太低也不是太高时,构件的破坏首先是受拉区纵向钢筋屈服,然后压区砼压碎。
钢筋和混凝土的强度都得到充分利用.破坏前有明显的塑性变形和裂缝预兆。
3、超筋破坏当构件的配筋率超过一定值时,构件的破坏是由于混凝土被压碎而引起的。
钢筋混凝土受弯构件正截面承载力计算
根据钢筋混凝土受弯构件的正截面承载力计算公式, 计算出梁或板的承载力。
结果分析与讨论
结果分析
对比实际工程载荷和计算出的承载力,分析承载力的安全储备和可能存在的风险。
讨论
针对不同工程实例,讨论影响钢筋混凝土受弯构件正截面承载力的因素,如截面尺寸、 配筋、混凝土强度等。
07 结论与展望
研究结论
钢筋混凝土受弯构件正 截面承载力计算
目录
Contents
• 引言 • 钢筋混凝土受弯构件的基本理论 • 钢筋混凝土受弯构件正截面承载力
的计算公式 • 钢筋混凝土受弯构件正截面承载力
的影响因素
目录
Contents
• 钢筋混凝土受弯构件正截面承载力 的试验研究
• 工程实例分析 • 结论与展望
01 引言
采用现有的钢筋混凝土受弯构件 正截面承载力的计算公式或软件 ,如SAP2000、Midas等。
对比分析
将试验结果与理论计算结果进行 对比,分析两者的差异和原因, 验证理论模型的准确性和适用性 。
结论与建议
根据对比结果,得出结论并提出 相应的建议,为实际工程中的钢 筋混凝土受弯构件设计提供参考 。
06 工程实例分析
试验表明,当构件达到承载力极限状 态时,其破坏形态与理想化的脆性破 坏形态相符,因此可以基于这种破坏 形态推导出承载力计算公式。
承载力计算公式的应用
承载力计算公式可用于各种类型的钢筋混凝土受弯构件,如 梁、板、拱等。
根据构件的截面尺寸、配筋率、混凝土强度等级等参数,使 用承载力计算公式可以快速准确地计算出构件的正截面承载 力。
工程概况
要点一
某桥梁工程
主梁采用钢筋混凝土结构,跨度为30米,宽度为10米,设 计载荷为20吨。
[工学]钢筋混凝土受弯构件正截面承载力计算
发生条件: ρmin.h/h0≤ρ≤ρb
c
c
c
c
MI
Mcr
MII
My
(Mu) MIII
t<ft
sAs
sAs t=ft(t =tu)
s<y
sAs
s= fyAs
y
(c=cu) c
fyAs s>y
1.适筋梁特点:
min.h/h0 max
• 一开裂, 砼应力由裂缝截面处的钢筋承担, 荷 载继续增加, 裂缝不断加宽。受拉钢筋屈服, 压区砼压碎
主页 目录 上一章 下一章 帮助
ห้องสมุดไป่ตู้
混凝土结构设计原理
第4章
§4.1 概 述
4.1.1几个基本概念
1.受弯构件:主要指各种类型的梁和板。 内力特点:截面上通常有弯矩和剪力共同作用。
2. 正截面:与构件计算轴线相垂直的截面。
3. 承载力计算公式: M ≤Mu
M —— 受弯构件正截面弯矩设计值; Mu——受弯构件正截面受弯承载力设计值。
宽度 :b = 120、150、(180)、200、(220)、 250、300、350、…(mm)
高度:h=250、300、350、400、……、750、800、 900、…(mm)。
二、 截面尺寸和配筋构造
2. 板
c15mm d
分布钢筋
h0
h
d 6 ~ 12mm
h0 h 20
板厚的模数为10mm
主页 目录 上一章 下一章 帮助
混凝土结构设计原理
第4章
§4.3 正截面受弯承载力计算原则
4.3.1 基本假设
截面应变保持平面; 不考虑混凝土抗拉强度; 钢筋的应力-应变具有以下关系:
混凝土结构设计原理PPT课件第3章 受弯构件正截面承载力计算
3.5.3计算方法 1)截面计算
情况1:已知截面尺寸、材料的强度类别,弯 矩计算值,求 As和As 。
(1)假设 as和as ,求得h0 has。
(2)验算是否需要双筋截面。
M M ufcb d02 hb(1.5b)
(3)补充条件xbh0 ,求得 As和As 。
(4)分别选择受压及受拉钢筋的直径和根数,进 行截面布置。
第三章
受弯构件正截面承载力计算
受弯构件的主要破坏形态:
3.1受弯构件的截面形式与构造 3.1.1截面的形式和尺寸
板
受压区
现浇板宽度 比较大,计算 时可取单位宽 度的矩形截面 计算。
b 整体式板
受拉钢筋
钢筋混凝土简支板的标准跨径不宜大于13m,连 续板桥的标准跨径不宜大于25m,预应力连续板桥 的标准跨径不宜大于30m。
As
M fsd(h0 as)
(4)当 xbh0且 x2as时,由基本公式求 A s 。
(5)选择钢筋的直径和根数,布置截面钢筋。
2)截面复核 (1)检查钢筋布置是否符合要求。 (2)按双筋截面求受压区高度x。
(3)当 xbh0且 x2as时,由下式求受拉钢筋面积。
As
M fsd(h0 as)
箍筋直径不小于8mm或受压钢筋直径的1/4倍。
受压钢筋的应力 由图可得:
cu 0.0033
x c xc as s
a s
cs uxcx cas (1a xc s)(10.8 xas)
A s
As
s
0.00(1303.8as) x
取 x 2as
C0bx0bxc 0bch0 yc 2x12xc 12ch0
x = βxc
混凝土结构设计原理 第四章 受弯构件正截面承载力的计算
3.2 梁板结构的一般构造
第4章 受弯构件正截面承载力
分布钢筋的作用:
抵抗混凝土收缩和温度变化所引起的内力; 浇捣混凝土时,固定受力钢筋的位置; 将板上作用的局部荷载分散在较大的宽度上,以便 使更多的受力钢筋参与工作; 对四边支撑的单向板,可承受在计算中没有考虑的 长跨方向上实际存在的弯矩。
板中单位长度上的分布钢筋,其截面面积不应小于 单位长度上受力钢筋截面面积的15%,且配筋率不宜小于 0.15%。间距不应大于250mm,直径不宜小于6mm。
4.2 梁板结构的一般构造
第4章 受弯构件正截面承载力
弯起钢筋 架立钢筋
腰筋
箍筋
纵向钢筋
梁的钢筋构造
梁中钢筋由纵向受力钢筋、弯起钢筋、箍筋和架立钢筋组 成,纵向受力钢筋的作用是承受由弯矩在梁内产生的拉力。 常用直径:10~32mm。 当h ≥ 300mm,直径不小于10mm;当h<300mm,直径 不小于8mm。
第4章 受弯构件正截面承载力
梁的配筋率ρ 很小,梁拉区开裂后,钢筋 应力趋近于屈服强度,即开裂弯矩Mcr趋近于拉 区钢筋屈服时的弯矩 My,这意味着第Ⅱ阶段的 缩短,当ρ 减少到当 Mcr=My 时,裂缝一旦出现,
钢筋应力立即达到屈服强度,这时的配筋百分
率ρ 称为最小配筋率ρ
min。
min b max
h0
h
第4章 受弯构件正截面承载力
正截面受弯的三种破坏形态
(1) 适筋破坏形态——破坏始自受拉区 钢筋的屈服
受拉钢筋先屈服,受压区混凝土后 压坏,破坏前有明显预兆——裂缝、变 形急剧发展,为“塑性破坏”。
(2) 超筋破坏形态——破坏始自受压混 凝土的压碎
受压区混凝土先压碎,钢筋不屈服, 破坏前没有明显预兆,为“脆性破坏”。 钢筋的抗拉强度没有被充分利用。
混凝土结构基本原理_第3章_受弯构件的正截面受弯承载力讲解
•
一般取2.0~4.0
•
梁宽度多为150、200、250、300、350mm等
b. 板
a) 设计时通常取单位宽度(b=1000mm)进行计算
b) 板厚除应满足各项功能要求外,尚应满足最小厚度要求
4.1.2 材料选择与一般构造
① 混凝土强度等级
•
工程中常用的梁、板混凝土强度等级是:C20、C25、C30、C35、
Mu的计算、应用是本章的中心问题
截面破坏形式 • 破坏通常有正截面和斜截面
两种形式
V V
•M
受弯构件设计的内容
正截面受弯承载力计算(按已知弯矩设计值M确定截 面尺寸和纵向受力钢筋);
斜截面受剪承载力计算(按剪力设计值V计算确定箍 筋和弯起钢筋的数量);
钢筋布置(为保证钢筋与混凝土的粘结,并使钢筋充 分发挥作用,根据荷载产生的弯矩图和剪力图确定钢 筋沿构件轴线的布置);
梁的截面尺寸主要应根据所承受的外部作用决
定,同时也需考虑模板尺寸、构件的截面尺寸符合模数、
方便施工。
现浇梁、板的截面尺寸可参考下述原则 选a. 取梁:
a) 高度h
•
较为常见的取值为:300、350、400、450、500、
550、600、650、700、750、800、900、1000mm等
b) 梁的高宽比(h/b)
根数:不少于2根,同时应满足图4-2所示对纵筋净距的要求(便于 浇注混凝土,保证钢筋周围混凝土的密实性)
b) 梁内箍筋
强度等级:常采用HPB300级、HRB400级 直径:常采用6mm、8mm、10mm和12mm等
c) 梁内纵向构造钢筋
架立钢筋:梁上部无受压计算钢筋时,仍需配置2根架立筋,以便与 箍筋和梁底部纵筋形成钢筋骨架,直径一般不小于10mm 纵向构造(腰筋): 梁的腹板高度hw≥450mm时,在梁的两个侧面 应沿高度配置纵向构造钢筋以减小梁腹部的裂缝宽度。每侧纵向构 造钢筋(不包括梁上、下部受力钢筋及架立钢筋)的截面面积不应 小于腹板截面面积bhw的0.1%,且其间距不宜大于200mm 梁的腹板高度hw:对矩形截面,取有效高度h0;对T形截面,取有效 高度h0减去翼缘高度;对I形截面,取腹板净高。
钢筋混凝土受弯构件正截面承载力简便计算
钢筋混凝土受弯构件正截面承载力简便计算正文:在钢筋混凝土结构设计中,受弯构件是一种常见的结构元素,其正截面承载力是设计中的关键参数之一。
正截面承载力的计算是评估构件的抗弯能力和安全性的基础,因此在设计中起着重要的作用。
本文将介绍钢筋混凝土受弯构件正截面承载力的简便计算方法,帮助读者更好地理解和应用。
1. 承载力计算的基本原理钢筋混凝土受弯构件的正截面承载力可以通过极限状态计算方法来评估。
其基本原理是根据构件的几何形状、材料性质和荷载作用下的应力分布,计算出构件的抗弯承载力。
在计算过程中,一般采用等效矩形应力分布假设来简化计算。
2. 等效矩形应力分布假设等效矩形应力分布假设是钢筋混凝土受弯构件计算的基础。
该假设认为在受弯构件的截面内,混凝土的应力分布可以近似为一个矩形。
在矩形应力分布中,混凝土的应力是一个线性递减的函数,而钢筋的应力则保持不变。
3. 正截面抗弯承载力计算公式根据等效矩形应力分布假设,可以得到钢筋混凝土受弯构件正截面的抗弯承载力计算公式。
常见的计算公式有多种,其中最常用的是弯矩-曲率法和应力-应变法。
- 弯矩-曲率法:根据截面的几何特性、材料特性和荷载情况,可以通过弯矩-曲率关系来计算截面的抗弯承载力。
具体计算公式如下:M = σs * As * d + σc * Ac * (d - x)其中,M为截面的弯矩,σs为钢筋应力,As为钢筋面积,d为截面的有效高度,σc为混凝土应力,Ac为混凝土面积,x为等效矩形应力分布中混凝土应力变为零的距离。
- 应力-应变法:根据混凝土和钢筋的应力-应变关系,可以分别计算出混凝土和钢筋的应力,然后将二者叠加得到截面的总应力。
具体计算公式如下:σ = σc + σs其中,σ为截面的总应力,σc和σs分别为混凝土和钢筋的应力。
4. 工程实例分析为了更好地理解和应用正截面承载力的简便计算方法,我们将通过一个具体的工程实例来进行分析。
假设有一根钢筋混凝土梁,截面尺寸为200mm×400mm,混凝土强度等级为C30,钢筋强度等级为HRB400。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
◆ 梁上部无受压钢筋时,需配置2根架立筋(hanger bars),
以便与箍筋和梁底部纵筋形成钢筋骨架,直径一般不小
于10mm;
◆ 梁高度h>450mm时,要求在梁两侧沿高度每隔200设置
一根纵向构造钢筋(skin reinforcement),以减小梁腹部
第
的裂缝宽度,直径≥10mm;
混凝土结构设计原理
(a)
(b)
(c)
(d)
(e)
(f)
(g)
图4-3
第
混凝土结构设计原理
四 章
2.现浇梁、板的截面尺寸
► 矩形截面梁的高宽比h/b 一般取2.0 ~ 3.5;
T 形截面梁的 h/b 一般取2.5 ~ 4.0
►梁肋宽b 一般取为100、120、150、(180)、
200、(220)、250、300、350mm,300mm以下
四 章
应变图
c max
应力图 M
t max
Mcr
M
y
My
M
xf D
Mu Z
sAs
I
ftk sAs
Ia
sAs
II
fyAs IIa
fyAs III
fyAs=Z IIIa
图4-6 梁在各受力阶段的应力、应变图
第
混凝土结构设计原理
四 章
c d11.5d 、 30mm
c
c c
h0 h
d2d 25mm
h0 h
d2
c
60
d2
b
c––保护层厚 c
d
35 c b
图4-2 梁配筋净距、保护层及有效高度
混凝土结构设计原理
第 四 章
• 板: 板内钢筋一般有纵向受力钢筋和分布钢筋;
h s
分布钢筋 受力钢筋
图4-6 板的配筋
混凝土结构设计原理
混凝土结构设计原理
第 四 章
现浇钢筋混凝土板的最小厚度(mm)
板的类别
表4-2
厚
度
屋面 板
60
单向 板
民用建筑楼板
60
工业建筑楼板
70
行车道下的楼板
80
双向板
80
肋间距小于或等于700mm
40
密肋 板
肋间距大于700mm
50
板的悬臂长度小于或等于500mm
60
悬臂 板
板的悬臂长度大于500mm
80
的级差为50mm。;括号中的数值仅用于木模。
► 梁 的 高 度 采 用 h=250 、 300 、 350 、 750 、 800 、
900mm。800mm以下的级差为50mm, 800mm以
上的为100mm。
►现浇板的宽度一般较大,设计时可取单位宽度
(b=1000mm)进行计算,还应满足下表要求:
无 梁 楼板
150
第
混凝土结构设计原理
四 章
4.1.2 钢筋布置
1.梁的钢筋布置要求
►梁中纵向受力钢筋宜采用HRB400或RRB400级(Ⅲ 级)和HRB335级(Ⅱ级);
►常用直径12、14、16、18、20、22和25mm ;
►根数不少于3(或4)根; ►梁箍筋宜采用HPB300(Ⅰ级)、 HRB335级(Ⅱ级) 和HRB400级(Ⅲ级)钢筋,常用直径6、8、10mm。
第四章 钢筋混凝土受弯构件正截面承载力计算
第四章 钢筋混凝土受弯构件正截面承载力计算
§4.1 受弯构件的一般构造要求 4.1.1 受弯构件 4.1.2 材料的选择与一般构造
§4.2 受弯构件正截面受力全过程和破坏特征 4.2.1 正截面受弯的三种破坏形态 4.2.2 适筋受弯构件截面受力的几个阶段
在弯矩和剪力共同作用下发生斜截面受剪或受弯破坏。
图4-2 本章要求掌握:单筋矩形截面、双筋矩形截面、单
筋T形截面正截面承载力计算。
第
混凝土结构设计原理
四 章
受弯构件的配筋形式
P
P
剪力引起的 斜裂缝
架立
箍筋
弯矩引起的 垂直裂缝
弯筋
纵筋
第
混凝土结构设计原理
四 章
4.1.1 截面形状及尺寸
1. 受弯构件梁、板的截面类型
►单位长向上分布筋表面面积不宜小于单位宽度上受力
钢筋截面面积的15%,分布筋的间距不宜大于250mm,直
径不宜小于6mm;
►作用:均匀传力;固定受力钢筋位置;
抵抗温度和收缩应力。
第
混凝土结构设计原理
四 章
2.混凝土保护层厚度及作用
►保护层厚度是指纵向受力钢筋的外表面至截
面边缘的垂直距离,用c表示,见附表14; ►室内环境下:
本节思考题
第
混凝土结构设计原理
四 章
§4.1 受弯构件的一般构造要求
受弯构件
pp
同时受到弯矩M和 剪力V共同作用, 而N可以 忽略的构件。
主要是指各种类型 的梁与板。
lll
M
pl
V p
图4-1
第
混凝土结构设计原理
四 章
• 受弯构件的破坏情况
在弯矩作用下发生正截面(与构件的计算轴线相垂直 的截面)受弯破坏;
四 章
§4. 2 受弯构件正截面受力全过程和破坏特征
4.21..1 适正筋截梁面的工试作验的三个阶段
(1 ~ 1)L 34
应变测点P (1 ~ 1)L
P
34
百分表 L
弯矩M图
剪力V图
图4-4试验梁
第
混凝土结构设计原理
四 章
可绘出适筋梁跨中弯矩M/Mu~f点的曲线如图:
图4-5 M0-φ0图
第
混凝土结构设计原理
混凝土保护层厚度一般不小于15mm和钢筋直径d;
垂直于受力钢筋的方向应布置分布钢筋,以便将
荷载均匀地传递给受力钢筋,并便于在施工中固定
受力钢筋的位置,同时也可抵抗温度和收缩等产生
的应力。
第
混凝土结构设计原理
四 章
• 板的分布筋
►采用HPB300(Ⅰ级)和 HRB335级(Ⅱ级)钢筋; ►常用直径6和8 mm;
பைடு நூலகம்
第
混凝土结构设计原理
四 章
◆为保证RC结构的耐久性、防火性以及钢筋与混凝土的 粘结性能,钢筋的混凝土保护层(cover)厚度一般不小于 25mm;
◆为保证混凝土浇注的密实性(consolidation),梁底部钢 筋的净距(clear spacing)不小于25mm及钢筋直径d,梁上 部钢筋的净距不小于 30mm及1.5 d;
第 四 章
• 板的纵向受拉钢筋
►采用HPB300(Ⅰ级)、 HRB335级(Ⅱ级)和 HRB400级(Ⅲ级)钢筋;
►常用直径6、8、10和12mm,现浇板的板面钢筋 直径不宜小于8mm;
►板钢筋的间距一般为(70~200mm); ►当采用绑扎钢筋时,板厚h≤150mm,筋间距 ≤200mm;
h>150mm,筋间距≤1.5h且≤300mm。
梁的最小砼保护层厚度cmin=25mm; 板的最小砼保护层厚度cmin=15mm; ► 纵向受力钢筋的混凝土保护层厚度不应小
于钢筋的公称直径;
第
混凝土结构设计原理
四 章
保护层作用 :
►保护纵向钢筋不被锈蚀; ►在火灾等情况下使钢筋的温度上升缓慢; ►使纵向受力钢筋和混凝土有较好的粘结;
第
混凝土结构设计原理