受弯构件的正截面承载力计算

合集下载

受弯构件正截面承载力计算

受弯构件正截面承载力计算

受弯构件正截面承载力计算受弯构件的正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。

在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。

下面将详细介绍受弯构件正截面承载力计算的过程。

在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。

弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。

弯矩的大小可以通过施加在构件上的外部荷载和构件的几何形状来计算。

有了弯矩的大小后,下一步就是确定截面形状。

截面形状是影响受弯构件强度的一个重要因素,常见的截面形状有矩形、圆形、T形等。

不同的截面形状对受弯构件的承载力有着不同的影响,因此需要根据实际情况选择合适的截面形状。

确定了弯矩和截面形状后,接下来就是计算材料的强度。

材料的强度是指材料在承受外部荷载作用下所能承受的最大应力。

常见的材料强度有抗拉强度、抗压强度和屈服强度等。

在进行正截面承载力计算时,需要根据材料的强度来确定构件的极限状态。

最后,根据弯矩、截面形状和材料的强度,可以计算出受弯构件的正截面承载力。

计算的过程包括确定应力分布、求解最大应力和计算承载力。

根据不同的截面形状和材料的特性,计算方法也有所不同。

总的来说,受弯构件正截面承载力计算是一项综合性的工作,需要考虑多个因素的综合作用。

在实际工程设计中,需要准确计算受弯构件的承载力,以确保结构的安全性和可靠性。

因此,在进行计算时,需要充分考虑强度设计的要求和计算方法,以保证计算结果的准确性。

受弯构件正截面承载力计算是工程设计中重要的一部分,它用于确定材料的弯曲承载力和设计中的极限状态。

在进行正截面承载力计算时,需要考虑材料的弯矩、截面形状、材料的强度和应力分布等因素。

下面将详细介绍受弯构件正截面承载力计算的过程。

在进行受弯构件正截面承载力计算时,首先需要确定该构件所受的弯矩大小。

弯矩是指作用于构件截面上的力矩,它产生了构件的弯曲变形。

第四章 受弯构件正截面承载力计算

第四章 受弯构件正截面承载力计算

因此得出
b

1
1
fy
cu E s
第四章 受弯构件正截面承载力计算
由平衡条件: 1 fcbxb= fyAs
可得出 1fcbbh0fyAs,max ---(4-15)
可推出适筋受弯构件最大配筋率max与 b
的表达式
maxAbs,m 0 hax b
1fc fy
---(4-16)
fy h0
360 465
0.2% h 0.2% 500 0.215%,可以。
h0
465
例题2
第四章 受弯构件正截面承载力计算
已知一单跨简支板,计算跨L0=2.34m,承受均 布荷载qk=3kN/m2(不包括板自重);混凝土 强度等级为C30;钢筋采用HPB235级钢筋。可
最小配筋率ρmin
第四章 受弯构件正截面承载力计算
4.2.2适筋受弯构件截面受力的几个阶段
第一阶段 —— 截面开裂前阶段。
第二阶段 —— 从截面开裂到纵向受拉钢筋屈服前阶段。
第三阶段 —— 钢筋屈服到破坏阶段。
第四章 受弯构件正截面承载力计算
各阶段和各特征点的截面应力 — 应变分析:
第四章 受弯构件正截面承载力计算
由式(4-16)可知,当构件按最大配筋率配筋时,由式
M1fcb(xh02 x) (4-9a)
可以求出适筋受弯构件所能承受的最大弯矩为
M m a1 x fc b 0 2b h ( 1 0 .5 b )sb b 0 2h 1 fc
其中, sb ----截面最大的抵抗矩系数,可查表。
坏。
第四章 受弯构件正截面承载力计算
受弯构件的配筋形式
P
P

受弯构件正截面承载力计算—单筋矩形截面受弯构件

受弯构件正截面承载力计算—单筋矩形截面受弯构件
根据公式
a1 f c bx f y As
直接求得所需的钢筋面积。
并应满足As ≥ minbh;
若≥出现As<minbh时,则应按minbh配筋。
计算步骤4
选择钢筋直径并进行截面布置,得
到实际配筋面积As、as和h0。
截面设计
控制截面
在等截面受弯构件中,指弯矩组合设
计值最大的截面;在变截面受弯构件中,
构件种类


纵向受力钢
筋层数
1层
2层
1层
混凝土强度等级
≤ 25
45mm
70mm
25mm
≥ 30
40mm
65mm
20mm
计算步骤2
根据公式
x
M a1 f c bx( h0 )
2
解一元二次方程求得截面受压区高度x,并满足
x b h0
否则应加大截面,或提高fc ,或改用双筋梁。
计算步骤3
单筋矩形截面受弯构件截面复核
(建筑规范)
截面复核:是指已知截面尺寸、混凝土和钢筋
强度级别以及钢筋在截面上的布置,要求计算截面
的承载力Mu或复核控制截面承受某个弯矩计算值M是
否安全。
截面尺寸
已知条件
材料强度级别
钢筋在截面上的布置
钢筋布置
复核内容
配筋率
截面的承载力Mu
复核步骤1
检查钢筋布置是否符合
M u f cd bh02 b 1 0.5 b
当由上式求得的Mu<M时,可采取提高混凝土
级别、修改截面尺寸,或改为双筋截面等措施;
复核步骤五
当x≤ξbh0时,由公式
x

M u f cd bxM u f sd As h0

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算

钢筋混凝土受弯构件正截面承载力简便计算摘要:一、引言二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念2.影响因素3.计算公式及步骤三、简便计算方法1.经验公式2.修正系数法3.截面分类法四、计算实例1.实例一2.实例二3.实例三五、结论与建议正文:一、引言钢筋混凝土受弯构件在我国建筑行业中有着广泛的应用,其正截面承载力计算一直是工程技术人员关注的问题。

为了简化计算过程,本文将介绍一种简便的计算方法,以提高工程实践中的工作效率。

二、钢筋混凝土受弯构件正截面承载力计算方法1.基本概念正截面承载力:指受弯构件在正截面上能承受的最大弯矩引起的内力。

影响因素:材料强度、截面尺寸、钢筋配置等。

2.影响因素(1)材料强度:包括混凝土抗压强度fc和钢筋抗拉强度fs。

(2)截面尺寸:截面宽度b、截面高度h。

(3)钢筋配置:包括钢筋直径d、钢筋间距s和钢筋数量n。

3.计算公式及步骤根据我国现行的设计规范,正截面承载力计算公式如下:c = fc * b * h * γcs = fs * d * (h - d / 2) * γs其中,Nc为混凝土截面承载力,Ns为钢筋截面承载力,γc和γs分别为混凝土和钢筋的截面折减系数。

三、简便计算方法1.经验公式根据工程实践经验,可得以下经验公式:c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)2.修正系数法针对不同钢筋直径和截面尺寸,采用修正系数进行计算。

3.截面分类法根据截面尺寸和钢筋配置,将受弯构件分为若干类别,各类别计算公式如下:(1)类别一:h / d ≤ 25c = 0.75 * fc * b * hs = 0.75 * fs * d * (h - d / 2)(2)类别二:25 < h / d ≤ 50c = 0.85 * fc * b * hs = 0.85 * fs * d * (h - d / 2)(3)类别三:h / d > 50c = 1.0 * fc * b * hs = 1.0 * fs * d * (h - d / 2)四、计算实例1.实例一某受弯构件,混凝土抗压强度fc = 20MPa,截面宽度b = 200mm,截面高度h = 300mm,钢筋直径d = 16mm,钢筋间距s = 200mm,钢筋数量n = 4。

受弯构件正截面受弯承载力计算

受弯构件正截面受弯承载力计算

受弯构件正截面受弯承载力计算
在进行受弯构件正截面受弯承载力计算时,首先需要了解构件的几何尺寸和材料特性。

几何尺寸包括构件的宽度、高度和长度,材料特性包括材料的抗弯强度和弹性模量等。

在进行受弯构件正截面受弯承载力计算时,一般采用等效应力法。

根据等效应力法,构件的正截面受弯承载力可以通过以下公式计算:M=σ×S
其中,M是受弯构件所受弯矩,σ是构件截面上的应力,S是截面的抵抗矩。

在计算截面上的应力时,可以使用以下公式:
σ=M×y/I
其中,M是受弯构件所受弯矩,y是距离截面中性轴距离,I是截面的惯性矩。

在计算截面的抵抗矩时,可以使用以下公式:
S=y×A×f
其中,y是距离截面中性轴距离,A是截面的面积,f是材料的抗弯强度。

综合以上公式,可以得到受弯构件的正截面受弯承载力公式:
N=σ×S=(M×y/I)×(y×A×f)
根据构件的几何尺寸和材料特性,可以计算出受弯构件的正截面受弯
承载力。

需要注意的是,在实际工程中,受弯构件的应力和截面的抵抗矩常常
不是均匀分布的,需要进行更加详细的计算和分析。

此外,由于材料的塑
性变形和结构的不完美性等因素的存在,实际承载能力可能小于理论计算值。

综上所述,受弯构件正截面受弯承载力计算是结构工程中的重要任务,它通过等效应力法来确定构件在受弯状态下的承载能力。

在实际工程中,
应该考虑到材料和结构的各种因素,进行更加精细的分析和计算。

第3章受弯构件正截面承载力计算

第3章受弯构件正截面承载力计算
第三章 受弯构件正截面承载力计算
Flexure Strength of RC Beams
基本概念
• 1. 受弯构件:主要是指各种类型的梁与板, 土木工程中应用最为广泛。
• 2. 正截面:与构件计算轴线相垂直的截面为 正截面。
• 3. 承载力计算公式:

M ≤Mu ,
• M 受弯构件正截面弯矩设计值,
一、板的一板构造要求
1.板的厚度:与的板的跨度及荷载有关,应满足截面最 大弯矩及刚度要求,《公路桥规》规定最小厚度:行人 板不宜小于80mm(现浇整体)和60mm(预制),空 心板的顶板和底板不宜小于80mm. 2.板的宽度:由实际情况决定。 3.钢筋配置:
板内钢筋有两种:受力钢筋和分布钢筋。 受力钢筋:承担弯矩,通过强度计算确定。
2.正常使用极限状态计算 变形验算(挠度验算),抗裂验算(裂缝宽度计算)
3.1.2 受弯构件的钢筋构造
1.受弯按配筋形式不同分为单筋受弯构件和双筋 受弯构件 单筋受弯构件:只在受拉区配受力钢筋。 双筋受弯构件:受拉区和受压区均配置受力钢筋。
2.配筋率 As %.......( 4 2)
bh0
4.板的受力筋保护层厚度:受力筋外边缘至混凝
土外表面的厚度,用c表示(cover) 。 作用:保护钢筋不生锈;保证钢筋与混凝土之间
的粘结力。 保护层厚度与环境类别和混凝土的强度等级有关,
查附表1-7。
二、梁的一般构造
1.截面尺寸:为方便施工截面尺寸应统一规格。 现浇矩形截面宽b(mm),120、150、180、200、220、 250、+50(h ≤ 800)或+100(h > 800).截面宽度:
应变ecu ,构件达到极限
承载力,此时截面上的弯 矩即为抗弯承载力Mu, 也称为第三阶段末“Ⅲa”。 第三阶段末为抗弯承载力 计算的依据。

受弯构件正截面承载力计算

受弯构件正截面承载力计算
破坏特征:一裂即坏
无明显预兆,脆性破坏,避免采用
目录
4.1
4.2
(a)适筋
4.3

4.4
4.5
(b) 超筋 梁
4.6
4.7
(c) 少筋 梁
钢筋混凝土梁正截面破坏形态
Back
目录
4.4 受弯构件正截面承载力计算基本规定 4.1 4.2
4.4.1 基 本 假
4.3

4.4
• 1. 平截面假定
4.5
图4.4 并筋
Back
目录
4.3 受弯构件正截面受力性能
4.1
4.2
4.3
4.3.1试验研究
4.4
4.5
4.6
4.7
(b) (a)
(a) 试验梁测点布置
(b) 截面及应变分 布
图4.5 钢筋混凝土简支梁受弯试验
目录
1 适筋梁受力过程的三个阶段 4.1 4.2 4.3 4.4 4.5 4.6 4.7
• (5) 梁最外层钢筋(从箍筋外皮算起)至混凝土表面的最小距 目录
离为钢筋的混凝土保护层厚度c,其值应满足《规范》规定的最 4.1
小保护层厚度中规定(见附表14),且不小于受力钢筋的直径d。
截面有效高度h0=h-c-dv-d/2,其中dv是箍筋直径。
4.2
(6) 钢筋的净间距:
4.3
• 水平方向的净间距:梁上部钢筋水平方向的净间距不应小于 4.4
目录 4.1 4.2 4.3 4.4 4.5 4.6 4.7
目录
4.1
例4.2 某钢筋混凝土矩形截面梁,混凝 4.2
土保护层厚为25mm(二a类环境),b=250mm, 4.3
h=500mm , 承 受 弯 矩 设 计 值 M=160 , 采 用 4.4

受弯构件正截面承载力计算计算详解

受弯构件正截面承载力计算计算详解

侧向约束:侧向支撑对受弯构件正截面承载力的影响
支撑刚度:支撑刚度对受弯构件正截面承载力的影响
侧向刚度:侧向刚度对受弯构件正截面承载力的影响
受弯构件正截面承载力计算方法
PART 03
经验公式法
适用范围:适用于梁、板等受弯构件
公式形式:根据不同的受弯构件形式,采用不同的经验公式进行计算
计算步骤:根据经验公式,确定相关参数,代入公式进行计算
确定截面有效高度
计算截面承载力
确定材料强度
进行承载力计算
计算截面内力
进行承载力计算
确定计算简图和截面尺寸
确定材料强度
结果分析和评价
计算结果的准确性分析
计算结果的优化建议和改进措施
计算结果与实验数据的对比分析
计算结果的可靠性评估
受弯构件正截面承载力计算的实践应用
PART 05
工程实例介绍
在某高速公路工程中,通过受弯构件正截面承载力计算,合理地选择了桥梁的跨度和配筋,有效降低了工程成本。
确定弯矩大小:根据梁的承载能力、跨度和荷载等参数,计算出梁所承受的最大弯矩值。
考虑弯矩的偏心影响:根据梁的截面尺寸和弯矩分布情况,确定弯矩的偏心距,以考虑其对梁截面承载力的影响。
考虑梁的剪切和扭转变形:在计算弯矩分布和大小的同时,还需考虑梁的剪切和扭转变形对承载力的影响。
选择合适的计算方法
确定计算简图和截面尺寸
PART 01
受弯构件的定义
受弯构件是指主要承受弯矩或剪力和扭矩共同作用的构件
受弯构件在桥梁、屋盖、板、梁等建筑中广泛应用
受弯构件的正截面承载力是指构件在垂直于轴线的截面上所能承受的最大正压力
受弯构件正截面承载力计算是结构设计中的重要内容,直接关系到建筑物的安全性和经济性

《混凝土结构基本原理》受弯构件正截面承载力计算

《混凝土结构基本原理》受弯构件正截面承载力计算
2)梁的高度采用h=250、300、350、750、800、900、 1000mm等尺寸。800mm以下的级差为50mm,以上的 为l00mm。
3) 现 浇 板 的 宽 度 一 般 较 大 , 设 计 时 可 取 单 位 宽 度 (b=1000mm)进行计算。
5.2 受弯构件的一般构造
(3)材料选择 1)混凝土强度等级:梁、板常用的混凝土强度等级是C20、
3)第Ⅲ阶段:弯矩由My增至极限弯矩Mu,该阶段结束 的标志是混凝土压应变达到其非均匀受压时的极限压应变, 而并非混凝土的应力达到其极限压应力。第Ⅲ阶段末是混凝 土构件极限承载力设计的依据。
5.3 受弯构件的正截面的受力分析
5.3.3 正截面受弯的三种破坏形态
1)延性破坏:配筋合适的构件,具有一定的承载力,同 时破坏时具有一定的延性,如适筋梁ρminh/h0≤ρ≤ρb 。(钢筋 的抗拉强度和混凝土的抗压强度都得到发挥)
4)板的分布钢筋,当按单向板设计时,除沿受力方向布置受 力钢筋外,还应在垂直受力方向布置分布钢筋。分布钢筋宜采用 HPB300级(Ⅰ级)和HRB335级(Ⅱ级)级钢筋,常用直径是6mm
5.2 受弯构件的一般构造
4)纵向受拉钢筋的配筋百分率
设正截面上所有纵向受拉钢筋的合力点至截面受拉边缘的
竖向距离为as,则合力点至截面受压区边缘的竖向距离h0=h-
2)受拉脆性破坏:承载力很小,取决于混凝土的抗拉强 度,破坏特征与素混凝土构件类似。虽然由于配筋使构件在 破坏阶段表现出很长的破坏过程,但这种破坏是在混凝土一 开裂就产生,没有预兆,也没有第二阶段,如少筋梁ρ<ρmin h/h0、少筋轴拉构件;(混凝土的抗压强度未得到发挥)
3)受压脆性破坏:具有较大的承载力,取决于混凝土受 压强度,延性能力较差,如超筋梁ρ>ρb和轴压构件。(钢筋 的受拉强度没有发挥)

受弯构件正截面承载能力计算

受弯构件正截面承载能力计算

其特点有: (1)只能沿 弯矩作用方 向,绕中和 轴单向转动 (2)只能在 从受拉钢筋 开始屈服到 受压区混凝 土压坏的有 限范围内转 动φy-φu。
(3)转动的同时,能传递一定的弯矩,即截面的极限弯矩 Mu 塑性铰出现后,简支梁即形成三铰在一直线上的破坏机构。
3.《规范》采用的正截面极限受弯承载力计算方法
2.适筋梁正截面的受力性能 (1)适筋梁的受力阶段
第Ⅰ阶段(弹性工作阶段) 加载→开裂 开裂弯矩Mcr
第Ⅱ阶段(带裂缝工作阶段) 开裂→屈服 屈服弯矩My
第Ⅲ阶段(破坏阶段) 屈服→压碎 极限弯矩Mu
不同阶段截面应力分布图的应用
Ⅰa阶段的应力状态是抗裂验算的依据。 Ⅱ 阶段的应力状态是裂缝宽度和变形验算的依据。 Ⅲa阶段的应力状态作为构件承载力计算的依据
有柱帽 无柱帽
1/32~1/40 1/30~1/35
注:表中l0为梁的计算跨度。当l0≥9m时,表中数值宜乘以1.2。
(2)板的最小厚度
按构造要求,现浇板的厚度不应小于下表的数值。现 浇板的厚度一般取为10mm的倍数。
(3)板的配筋
①受力钢筋 用来承受弯矩产生的拉力 ②分布钢筋
作用,一是固定受力钢筋的位置,形成钢筋网;二是 将板上荷载有效地传到受力钢筋上去;三是防止温度或混 凝土收缩等原因沿跨度方向的裂缝。
ecu
a’
A
’ s
e s
x
M
h0
Cs=ss’As’ Cc=fcbx
As
a
>ey
T=fyAs
双筋截面在满足构造要求的条件下,截面达到Mu 的标志仍然是受压边缘混凝土应变达到εcu。 受压区 混凝土的应力仍可按等效矩形应力考虑。当相对受压

受弯正截面承载力计算

受弯正截面承载力计算

第四章 受弯构件正截面承载力
ecu
as’ h0 As as >ey A s’ ¢ es
Cs=s’As’
M
x
Cc= a1f cbx
T=fyAs
为使受压钢筋的强度能充分发挥,其应变不应小于0.002。 由平截面假定可得,
' as ecu=0.0033 ¢ e s e cu(1 ) 0.002 x
第四章 受弯构件正截面承载力
4.4.2 计算方法 ★截面设计
已知:弯矩设计值M 求:截面尺寸b,h(h0)、截面配筋As,以及材料强度fy、fc 未知数:受压区高度x、 b,h(h0)、As、fy、fc
基本公式:两个
没有唯一解
设计人员应根据受力性能、材料供应、施工条件、使用
要求等因素综合分析,确定较为经济合理的设计。
● 简支梁可取h=(1/10 ● 简支板可取h ●
= (1/30 ~ 1/35)L
但截面尺寸的选择范围仍较大,为此需从经济角度
进一步分析。
4.4 单筋矩形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
经济配筋率
•板:(0.4~0.8)%; •矩形截面梁:(0.6~1.5)%; •T形截面梁:(0.9~1. 8)%。
1 l0 3
1 l0 3

1 l0 6 b 1 Sn 2
b Sn

按翼缘高度
b 12 h ¢f b 6h ¢f
b

h ¢f 考虑
b 12 h ¢f b 12 h ¢f
b 5h ¢f b 5h ¢f
4.6 T形截面受弯构件正截面承载力计算
第四章 受弯构件正截面承载力
4.6.2 基本公式 两类T形截面的判别 第一类T形截面 界限情况 第二类T形截面

受弯构件正截面承载力计算

受弯构件正截面承载力计算

现浇矩形梁宽b的模数:12、15、18、20、 22、25cm;
高h的模数: h≤80cm:5cm为一级差; h>80cm:10cm为一级差。
(三)梁钢筋的种类及作用 梁钢筋包括:主筋、弯起钢筋、箍筋、架
立钢筋及纵向水平钢筋,如P44图3-5。
架立钢筋
箍筋
弯起钢筋
纵向钢筋
绑扎钢筋骨架
1、钢筋的种类

主筋弯折处。
单向板内的钢筋
分布筋
主筋 a)顺板 跨方向 主筋 b)垂直板跨方向
③ 间距:S≯20cm
直径: d行≮8mm 分布筋
主筋

d人≮6mm
布筋 A行≮0.1%A板。
分布筋
主筋
主筋
★在所有主筋弯折处, 均应设分布钢筋。
单向板内的钢筋 a)顺板跨方向 b)垂直板跨方向
(二)梁截面形式及尺寸:
架立筋
箍筋 主钢筋

箍筋 ≥
净距

≥ (三层及三层以下)
净距
≥ (三层以上)
水平纵向钢筋

梁主钢筋净距和 混凝土保护层
主钢筋
a)绑扎钢筋骨架
b)焊接钢筋骨架
钢筋骨架形式: 绑扎(绑扎不紧,仍可能发生错动); 焊接(有焊缝长度限制,见P44图3-6)
架立钢筋
斜筋
弯起钢筋
斜筋
纵向钢筋
焊接钢筋骨架示意图
3、受弯构件可能发生的两种主要破坏形式 正截面破坏:沿弯矩最大的截面破坏; 斜截面破坏:沿剪力最大或弯矩和剪力都较
大的截面破坏。
二、受弯构件的构造 1、构造的作用:解决现时不能控制的因
素(如计算上的),控制结构尺寸,便于施工。 2、混凝土保护层厚度c:钢筋外边缘到

受弯构件正截面承载力计算混凝土结构设计原理

受弯构件正截面承载力计算混凝土结构设计原理

受弯构件正截面承载力计算混凝土结构设计原理受弯构件正截面承载力计算是混凝土结构设计中的关键内容之一、正截面承载力的计算原理主要涉及构件截面几何参数、混凝土材料特性、受力分析以及一系列的假设和假定条件。

下面对受弯构件正截面承载力计算的原理进行详细介绍。

一、截面几何参数受弯构件的承载力计算首先需要确定截面的几何参数,包括截面尺寸、形状和面积等。

常见的截面形状有矩形、T形、L形等,不同形状的截面在计算时需要根据其特点分别考虑。

截面的面积可以直接根据几何关系计算得到。

二、混凝土材料特性混凝土材料的特性对受弯构件的承载力计算有着重要影响。

主要包括混凝土的抗压强度、抗拉强度、弹性模量以及裂缝宽度等。

这些参数可以通过试验或经验公式得到。

三、受力分析受弯构件一般由弯矩和剪力共同作用,承载力计算需要分析受力状况,确定弯矩和剪力的大小和分布。

在受弯构件中,弯矩是主要的受力,承载力计算主要围绕弯矩展开。

四、假设和假定条件在受弯构件的承载力计算中,通常会做一系列的假设和假定条件来简化计算。

这些假设和假定条件包括:假定构件截面尺寸保持不变;假定混凝土是线弹性材料;假定受力状况是弯矩作用下的受弯构件等。

五、弯矩与应力的关系在混凝土结构中,弯矩与混凝土截面的应力分布之间存在紧密的关系。

一般情况下,在受弯构件的顶部和底部会产生最大应力,而截面中部应力较小。

通过应力分布的分析,可以确定截面中混凝土各个位置的应力大小。

六、受弯构件正截面承载力计算公式根据上述原理,可以推导出受弯构件正截面承载力计算的公式。

常用的计算公式有弯矩和应力的平衡条件公式、极限平衡条件公式和受拉区有效高度的计算公式等。

七、受弯构件正截面破坏模式根据受弯构件的截面形状和具体受力情况,破坏模式可以分为混凝土破坏和钢筋屈服。

混凝土破坏是指混凝土达到其抗拉极限后发生脆性断裂;钢筋屈服是指钢筋试件发生屈服破坏。

总之,受弯构件正截面承载力计算是混凝土结构设计中的重要环节。

_第三章 受弯构件的正截面承载力计算(

_第三章  受弯构件的正截面承载力计算(

二.截面尺寸
为统一模板尺寸、便于施工,通常采用梁
宽度b=120、150、180、200、220、 250mm, 250mm以上者以50mm为模数递增。 梁高度h=250、300、350、 400 、…800mm ,800mm以上者以100mm为 模数递增。
h
b
简支梁的高跨比h/l0一般为1/8 ~ 1/16。 矩形截面梁高宽比h/b=2.0~ 3.5,T形截面
B F 5 0 0 , H P B 3 0 0 、 B 4 0 0
H
R
H
R
截面尺寸确定
● 截面应有一定刚度,使正常使用阶段的验算能满足 挠度变形的要求。 ● 根据工程经验,常按高跨比h/l0 来估计截面高度: ● 简支梁可取h=(1/8 ~ 1/16)l 2~1/ 3. 5)h ; 0 ,b=(1/ ● 简支板可取h = (1/25 ~ 1/40) l0 。


2种破坏情况—超筋破坏
..\..\混凝土结构设计原理录像\超筋梁的破坏.wmv
配筋量过多: 受拉钢筋未达到屈服,受压砼先达到极限压应
变而被压坏。 承载力控制于砼压区,钢筋未能充分发挥作 用。 裂缝根数多、宽度细,挠度也比较小,砼压坏 前无明显预兆,属脆性破坏。
(三)第3种破坏情况——少筋破坏 ..\..\混凝土结构设计原理录像\少筋梁的破坏.wmv
M u 2 f bh 1 c 0 b
(1 0.5 b )
⒊承载力复核 如果 如果
M ≤ Mu M > Mu
安全 不安全
方法二、查表法 ⒈验算配筋率: 如果 ≥ min 则按步骤2. 进行。
< min 则按素混凝土梁计算Mu。
⒉由①式计算

受弯构件正截面承载力计算

受弯构件正截面承载力计算
压区砼被压碎,梁破坏。属 “脆性破坏”
P
P
P
P
..
(a) P P P P
...
P P (b) P P
..
(c)
2、适筋梁跨中弯矩-挠度(M/Mu~f)曲线
第一阶段 —— 截面开裂前阶段。
第二阶段 —— 从截面开裂到纵向受拉钢筋
到屈服阶段。
第三阶段 —— 破坏阶段。
3、 各阶段截面应力 - 应变分析:
1. 截面平均应变符合平截面假定; 2. 不考虑受拉区未开裂砼的抗拉强度; 3. 假定受压区砼的应力-应变曲线 ( — 关系见下图); 4. 假定受拉钢筋的应力-应变曲线 ( — 关系见下图)。

fc

fy
0
0

cu
0
fy 钢筋

c 0时, c f c 1 1 c 0 0 c cu 时, c f c
1 1 2a s 2
工程实践表明, 当在适当的比例时, 梁、板 的综合经济指标较好, 故梁、板的经济配筋率: 实心板 矩形板 T形梁
= (0.4~0.8)% = (0.6~1.5)% = (0.9~1.8)%
4.4.3
基本公式的应用
在实际工程设计中通常有两类设计问题:
1、截面设计:
(2)配筋率适量—— 适筋梁
适当, 截面开裂以后钢筋承担拉力,刚开裂时 s<fy,随 着荷载增大,裂缝开展、 s增加,当 s =fy 时钢筋屈服,
荷载继续增加钢筋应力保持fy不变,当压区最外边缘砼应 变达c=cu 时,砼被压碎。“延性破坏”
(3)配筋率大——超筋梁
过大 , 出现许多细而密的裂缝,但 s<fy, 当 c=cu,

第3章受弯构件的正截面承载力计算

第3章受弯构件的正截面承载力计算

1)承载力计算基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y 、钢筋面积A s ,确定需用的计算参数α1、h 0、ξb 。

计算步骤:(1)验算bh A min s ρ≥,满足要求则进入下一步。

此处,%)/4520.0max(y t min f f ,=ρ (2)求受压区高度x ,由s y c 1A f bx f =α得到bf αA f x c 1s y =(3)验算受压区高度x ,此时x 可能出现如下两种情况: 若0b h ξx ≤,则转入(4)—①) 若0b h ξx >,则转入(4)—②) (4)确定受弯承载力M u①由)2(0c 1xh bx f M -≤α,求出受弯受弯承载力M u 。

②求受弯承载力M u 。

取0b h ξx =。

得到)5.01(b b 20c 1u ξξα-=bh f M2) 配筋计算基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y ,确定需用的计算参数α1、h 0、ξb ; 荷载效应M 。

计算步骤:(1) 求受压区高度x ,由)2(0c 1xh bx f M -≤α得到bf Mh h x c 12002--α= (2) 验算受压区高度0b h ξx <,如满足要求则进入下一步. (3) 求受拉钢筋面积A s ,由s y c 1A f bx f =α,得到yc 1s f bxf A α=(4) 验算bh A min s ρ≥,当bh A min s ρ<时取bh A min s ρ=此处%)/4520.0max(y t min f f ,=ρ1)承载力计算基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y 、f ’y 、钢筋面积A ’s 、A s ,确定需用的计算参数α1、h 0、ξb 。

计算步骤:(1)求受压区高度x , 由'y s y c 1-s A f A f bx f ‘=α得b f αA f xc 1s y =(2)验算受压区高度x ,此时x 可能出现如下三种情况:若'2s a x <,则转入①; 若0'≤≤2h x a b s ξ,则转入②若0>h x b ξ,则转入③ (3)确定受弯承载力M u①'2s a x <,由)-('0s s y u a h A f M =求得受弯承载力M u②0'≤≤2h x a b s ξ,由)-()2-('0''01s s y c u a h A f x h bx f M +=α求得受弯承载力M u ③0>h x b ξ,求得受弯承载力M u ,取0h x b ξ=得)-()0.5-1('0''b 201s s y b c u a h A f bh f M +=ξξα2)配筋计算(1)已知M ,求A ’s 、A s基本资料:已知截面尺寸b 、h 、材料强度f c 、f t 、f y ,确定需用的计算参数α1、h 0、ξb ;荷载效应M 。

受弯构件的正截面承载力计算

受弯构件的正截面承载力计算

1 x xc 2(1 k2 )
1
k1
1
k1 2(1 k2 )
系数α1和β1仅与混凝土应力-应变曲线有关,称为等效矩形应力图 形系数。
混凝土受压区等效矩形应力图系数
≤C50 C55 C60 C65 C70 C75 C80
1
1.0
0.99 0.98 0.97 0.96 0.95 0.94
1 0.8
1
f
c bh02
b
(1
0.5 b
)
防止少筋脆性破坏
A bh
s
min 0
min
经济配筋率的概念
1、为保证明显的预兆和足够的延性,要求
max
b
2、在经济配筋率范围波动时,对总造价影响不大,如板的
经济配筋率约为0.3%~0.8%,单筋矩形梁的经济配筋率约为 0.6%~1.5%。
4.4.2 截面承载力计算的两类问题
M0u
f0y As
Ⅲa阶段截面应力和应变分布
第Ⅲ阶段特点:a. 纵向受拉钢筋屈服,拉力保持为常值;b. 裂 缝截面处,受拉区大部分混凝土已退出工作,受压区砼压应力 曲线图形比较丰满,有上升段,也有下降段;c. 压区边缘砼压 应变达到其极限压应变εcu,混凝土被压碎,截面破坏;d. 弯距 -曲率关系为接近水平的曲线。
(4) 正常使用阶段的裂缝宽度和挠度变形验算; (5) 绘制施工图。
满足承载能力极 限状态的要求
0S
1
d
R
1
M d Mu
M指结构上的作用所产 生的内力设计值;Mu 是受弯构件正截面受弯 承载力的设计值。
第一节受弯构件的 截面形式和构造
一、截面形式 梁
矩形
T形
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章受弯构件的正截面承载力计算1.具有正常配筋率的钢筋混凝土梁正截面受力过程可分为哪三个阶段,各有何特点?答:第Ⅰ阶段:混凝土开裂前的未裂阶段当荷载很小,梁内尚未出现裂缝时,正截面的受力过程处于第Ⅰ阶段。

由于截面上的拉、压应力较小,钢筋和混凝土都处于弹性工作阶段,截面曲率与弯矩成正比,应变沿截面高度呈直线分布(即符合平截面假定),相应的受压区和受拉区混凝土的应力图形均为三角形。

随着荷载的增加,截面上的应力和应变逐渐增大。

受拉区混凝土首先表现出塑性特征,因此应力分布由三角形逐渐变为曲线形。

当截面受拉边缘纤维的应变达到混凝土的极限拉应变时,相应的拉应力也达到其抗拉强度,受拉区混凝土即将开裂,截面的受力状态便达到第Ⅰ阶段末,或称为Ⅰa阶段。

此时,在截面的受压区,由于压应变还远远小于混凝土弯曲受压时的极限压应变,混凝土基本上仍处于弹性状态,故其压应力分布仍接近于三角形。

第Ⅱ阶段:混凝土开裂后至钢筋屈服前的裂缝阶段受拉区混凝土一旦开裂,正截面的受力过程便进入第Ⅱ阶段。

在裂缝截面中,已经开裂的受拉区混凝土退出工作,拉力转由钢筋承担,致使钢筋应力突然增大。

随着荷载继续增加,钢筋的应力和应变不断增长,裂缝逐渐开展,中和轴随之上升;同时受压区混凝土的应力和应变也不断加大,受压区混凝土的塑性性质越来越明显,应力图形由三角形逐渐变为较平缓的曲线形。

在这一阶段,截面曲率与弯矩不再成正比,而是截面曲率比弯矩增加得更快。

还应指出,当截面的受力过程进入第Ⅱ阶段后,受压区的应变仍保持直线分布。

但在受拉区由于已经出现裂缝,就裂缝所在的截面而言,原来的同一平面现已部分分裂成两个平面,钢筋与混凝土之间产生了相对滑移。

这与平截面假定发生了矛盾。

但是试验表明,当应变的量测标距较大,跨越几条裂缝时,就其所测得的平均应变来说,截面的应变分布大体上仍符合平截面假定,即变形规律符合“平均应变平截面假定”。

因此,各受力阶段的截面应变均假定呈三角形分布。

第Ⅲ阶段:钢筋开始屈服至截面破坏的破坏阶段随着荷载进一步增加,受拉区钢筋和受压区混凝土的应力、应变也不断增大。

当裂缝截面中的钢筋拉应力达到屈服强度时,正截面的受力过程就进入第Ⅲ阶段。

这时,裂缝截面处的钢筋在应力保持不变的情况下将产生明显的塑性伸长,从而使裂缝急剧开展,中和轴进一步上升,受压区高度迅速减小,压应力不断增大,直到受压区边缘纤维的压应变达到混凝土弯曲受压的极限压应变时,受压区出现纵向水平裂缝,混凝土在一个不太长的范围内被压碎,从而导致截面最终破坏。

我们把截面临破坏前(即第Ⅲ阶段末)的受力状态称为Ⅲa阶段。

在第Ⅲ阶段,受压区混凝土应力图形成更丰满的曲线形。

在截面临近破坏的Ⅲa阶段,受压区的最大压应力不在压应变最大的受压区边缘,而在离开受压区边缘一定距离的某一纤维层上。

这和混凝土轴心受压在临近破坏时应力应变曲线具有“下降段”的性质是类似的。

至于受拉钢筋,当采用具有明显流幅的普通热轧钢筋时,在整个第Ⅲ阶段,其应力均等于屈服强度。

2.钢筋混凝土梁正截面受力过程三个阶段的应力与设计有何关系?答:Ⅰa阶段的截面应力分布图形是计算开裂弯矩M cr的依据;第Ⅱ阶段的截面应力分布图形是受弯构件在使用阶段的情况,是受弯构件计算挠度和裂缝宽度的依据;Ⅲa阶段的截面应力分布图形则是受弯构件正截面受弯承载力计算的依据。

3.何谓配筋率?配筋率对梁破坏形态有什么的影响?答:配筋率ρ是指受拉钢筋截面面积A s与梁截面有效面积bh0之比(见图题3-1),即bh A s=ρ 式中A s —— 受拉钢筋截面面积; b —— 梁截面宽度;h 0 —— 梁截面有效高度,h 0=h-a ; h —— 梁截面高度;a —— 纵向受拉钢筋合力点至截面受拉边缘的距离。

随着配筋率不同,钢筋混凝土梁可能出现下面三种不同的破坏形态: 1) 适筋破坏形态适筋梁从开始加荷直至破坏,面所能承担的弯矩增加甚微,时裂缝开展较宽,挠度较大,题4-2a )都能得到充分利用,符合安全、经济的要求,故在实际工程中,受弯构件都应设计成适筋梁。

2) 超筋破坏形态配筋率过大的梁称为“超筋梁”。

试验表明,由于超筋梁内钢筋配置过多,抗拉能力过强,当荷载加到一定程度后,在钢筋的拉应力尚未达到屈服强度之前,受压区混凝土已先被压碎,致使构件破坏(图4-4b )。

由于超筋梁在破坏前钢筋尚未屈服而仍处于弹性工作阶段,裂缝开展不宽,延伸不高,梁的挠度较小,如图题3-2b 所示。

由于它在没有明显预兆的情况下突然破坏,故其破坏类型属脆性破坏。

超筋梁虽然配置有很多受拉钢筋,但其强度不能充分利用,这是不经济的,同时破坏前又无明显预兆,所以在实际工程中应避免设计成超筋梁。

3) 少筋破坏形态配筋率过低的梁称为“少筋梁”。

这种梁在开裂以前受拉区的拉力主要由混凝土承担,钢筋承担的拉力占很少一部分。

到了第Ⅰ阶段末,受拉区一旦开裂,拉力就几乎全部转由钢筋承担。

由于钢筋数量太少,使裂缝截面的钢筋拉应力突然剧增至超过屈服强度而进入强化阶段,此时钢筋塑性伸长已很大,裂缝开展过宽,梁将严重下垂,即使受压区混凝土暂未压碎,但过大的变形及裂缝已经不适于继续承载,从而标志着梁的破坏(图题3-2c ),在个别情况题-3-1配筋率题3-2 梁正截面的三种破坏形式 a )适筋梁b )超筋梁c )少筋梁下,钢筋甚至可能被拉断。

上述破坏过程一般是在梁出现第一条裂缝后突然发生,所以也属脆性破坏。

因此,少筋梁也是不安全的。

少筋梁虽然配了钢筋,但不能起到提高纯混凝土梁承载能力的作用,同时,混凝土的抗压强度也不能充分利用,因此在实际工程设计中也应避免。

不同配筋量梁的M 0—Ø0关系如图题3-3所示。

4.正截面承载力计算有哪些基本假定? 答:正截面承载力计算的基本假定有:1)平截面假定:在构件受荷以后,截面应变沿截面高度保持线性分布。

是指梁的变形规律符合“平均应变平截面假定”。

2)不考虑混凝土的抗拉强度。

对处于承载能力极限状态下的正截面,其受拉区混凝土的绝大部分因开裂已经退出工作,而中和轴以下可能残留很小的未开裂部分,其合力小且离中和轴较近,作用相对很小,为简化计算,完全可以忽略其抗拉强度的影响。

3)混凝土的压应力与压应变之间的关系曲线按抛物线上升段和水平段取用,对于正截面处于非均匀受压时的混凝土,极限压应变的取值最大不超过0.0033。

如图题4-1所示。

混凝土受压应力-应变关系曲线方程为: 当εc ≤ε0时(上升段)⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛--=n cc c f 011εεσ 当ε0<εc ≤εcu 时(水平段)c c f =σ4)钢筋应力取钢筋应变与其弹性模量的乘积,但不大于其强度设计值。

受拉钢筋的极限应变取0.01。

这一假定对钢筋的应力应变曲线采用了简化的理想化曲线,如图题4-2所示。

曲线亦分两段组成: 第一段,当0≤εs ≤εy 时σs =εs E s第二段,当εs >εy 时σs = f y5.适筋梁与超筋梁破坏的本质区别是什么?什么是“界限破坏”?单筋矩形截面梁防止超筋破坏的公式有哪些?答:适筋梁与超筋梁破坏的本质区别在于:前者受拉钢筋首先屈服,经过一段塑性变形后,受压区混凝土才被压碎;后者在钢筋屈服前,受压区混凝土首先达到弯曲受压极限压应变,导致构件破坏。

具有某个特定配筋率的梁,当其受拉钢筋开始屈服时,受压区边缘也刚好达到混凝土弯曲受压时的极限压应变。

也就是说,钢筋屈服与受压区混凝土被压碎同时发生。

我们把梁的这种破坏特征称为“界限破坏”。

不难看出,这个特定的配筋率就是适筋梁的界限。

设计时,为使所设计的梁保持在适筋范围内而不致成为超筋梁,单筋矩形截面梁基本公式的适用条题4-1 混凝土应力-应变关系曲线题4-2 理想化的钢筋应力应变关系曲线件为:⎪⎪⎪⎪⎭⎪⎪⎪⎪⎬⎫⎪⎭⎫ ⎝⎛-=≤=≤=≤≤2 01max 10b bc u yc b b b b bx h bx f M M f f h x x ααξρρξξξ或或或上式中的第四个表达式意味着超过最大配筋率的用钢量并不能提高梁的承载力,M umax 为单筋矩形截面受弯承载力的上限值,这表明超筋梁是不经济的。

6.确定适筋梁的最小配筋率的原则是什么?单筋矩形截面梁防止少筋破坏的公式有哪些? 答:原则上可以用M u =M cu 的条件来确定适筋梁的最小配筋率ρmin ,即按最小配筋率配筋的梁,用基本公式所算得的破坏弯矩不应小于同截面、同强度等级的素混凝土梁所能承担的弯矩。

设计时,为避免设计成少筋梁,单筋矩形截面梁基本公式的适用条件为:A s ≥A s,min =ρmin bh当A s <A s,min 时,应按A s =A s,min 配筋。

7.梁的截面尺寸与纵向受力钢筋有哪些构造要求? 答:(1)梁的截面尺寸的构造要求矩形截面梁的高宽比h/b 一般取2.0~3.5;T 形截面梁的h/b 一般取2.5~4.0(此处b 为梁肋宽)。

为了统一模板尺寸便于施工,建议梁的宽度采用b150、180、200、250、300、350mm 度采用h =250、300、350……750、800、900、等尺寸。

(2)梁的纵向受力钢筋的构造要求梁中常用的纵向受力钢筋直径为根数最好不少于3(或4)根。

同直径的钢筋,钢筋直径相差至少取2mm ,施工中能用肉眼识别。

密实性,纵筋的净间距应满足图题6(a )若钢筋必须排成两排时,上、下两排钢筋应当对齐。

为了保证钢筋不被锈蚀,同时保证钢筋与混凝土紧密粘结,梁内钢筋的两侧和近边都应设有保护层。

梁、板、柱的混凝土保护层厚度与环境类别和混凝土强度等级有关,见附表18。

由该表知,当环境类别为一类时,即在室内正常环境下,其最小厚度应不小于钢筋的公称直径和25mm 。

在梁截面选择配筋计算时,若环境类别为一类,一般可取h 0=h-35mm (一排钢筋时,图题6(b );或h 0=h-60mm (两排钢筋时,图题6(a ))。

此外,为了固定箍筋并与受力钢筋连成钢筋骨架,在梁内应设置架立钢筋,当跨度小于4m 时,其直径不宜小于8mm ;当跨度为4m~6m 时,不宜小于10mm ;当跨度大于6m 时,不宜小于12mm 。

8.板的截面尺寸、受力钢筋与分布钢筋有哪些构造要求?题6 净距、保护层及有效高度答: 1)板的截面尺寸构造要求现浇板的宽度一般较大,设计时可取单位宽度(b=1000mm)进行计算。

其最小厚度除应满足各项功能要求外,尚应满足下表的要求。

现浇板厚度以10mm为模数。

2)板的受力钢筋的构造要求题8 板的配筋为了便于浇注混凝土,保证钢筋周围混凝土的密实性,板内钢筋间距不宜太密;为了正常地分担内力,也不宜过稀。

钢筋的间距一般在70mm~200mm内;当h>150mm时,间距不应大于1.5h,在板的每米宽度内也不得少于3根。

相关文档
最新文档