导数的应用导学案
导学案016导数的应用(二)
导数的应用(二)考纲要求1.会求闭区间上函数的最大值、最小值(对多项式函数不超过三次).2.会利用导数解决某些实际问题.考情分析1.利用导数研究函数的最值以及解决生活中的优化问题,已成为近几年高考的考点且每年必考!2.选择题、填空题主要考查函数的最值,而解答题则考查函数综合问题,一般难度较大.教学过程基础梳理1.求函数y=f(x)在[a,b]上的最大值与最小值的步骤(1)求函数y=f(x)在(a,b)内的;(2)将函数y=f(x)的各极值与比较,其中最大的一个是最大值,最小的一个是最小值2.生活中的优化问题利用导数解决生活中的优化问题的一般步骤:双基自测1.函数f(x)=x3-3x(-1<x<1) ( )A.有最大值,但无最小值B.有最大值,也有最小值C.无最大值,也无最小值D.无最大值,但有最小值2.(教材习题改编)函数f(x)=12x-x3在区间[-3,3]上的最小值是()A.-9 B.-16C.-12 D.-113.已知某生产厂家的年利润y(单位:万元)与年产量x(单位:万件)的函数关系式为y=-13x3+81x-234,则使该生产厂家获取最大年利润的年产量为()A.13万件 B.11万件 C.9万件 D.7万件4.(教材习题改编)函数g(x)=ln(x+1)-x的最大值是______.5.面积为S的一矩形中,其周长最小时的边长是______.典例分析考点一、函数的最值与导数[例1] (2011·北京高考)已知函数f(x)=(x-k)e x(1)求f(x)的单调区间;(2)求f(x)在区间[0,1]上的最小值.变式1.[文](2012·济宁模拟)函数f(x)=x3+ax2+b的图象在点 p(1,0)处的切线与直线3x+y=0平行.(1)求a,b;(2)求函数f(x)在[0,t](t>0)内的最大值和最小值.方法总结:函数的最大(小)值是在函数极大(小)值基础上的发展.从函数图象上可以直观地看出:如果在闭区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值,只要把函数y=f(x)的所有极值连同端点处的函数值进行比较,就可以求出函数的最大(小)值.考点二、实际生活中的优化问题与导数例2. (2012·泰安模拟)某种产品每件成本为6元,每件售价为x元(x>6),年销售为u万件,若已知5858-u与⎝⎛⎭⎪⎫x-2142成正比,且售价为10元时,年销量为28万件.(1)求年销售利润y关于售价x的函数关系式;(2)求售价为多少时,年利润最大,并求出最大年利润.变式2.(2012·泰安模拟)某种产品每件成本为6元,每件售价为x元(x>6),年销售为u万件,若已知5858-u与⎝⎛⎭⎪⎫x-2142成正比,且售价为10元时,年销量为28万件.(1)求年销售利润y关于售价x的函数关系式;(2)求售价为多少时,年利润最大,并求出最大年利润.方法总结:利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,构造出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x),并根据实际意义确定定义域;(2)求函数y=f(x)的导数f′(x),解方程f′(x)=0得出定义域内的实根,确定极值点;(3)比较函数在区间端点和极值点处的函数值大小,获得所求的最大(小)值;(4)还原到实际问题中作答.考点三、利用导数解决不等式问题[例3] (2011·辽宁高考)设函数f (x )=x +ax 2+b ln x ,曲线y =f (x )过P (1,0),且在P 点处的切线斜率为2.(1)求a ,b 的值;(2)证明:f (x )≤2x -2.变式3. (2012·辽宁协作体联考)已知f (x )=x ln x .(1)求g (x )=f x +k x(k ∈R)的单调区间; (2)证明:当x ≥1时,2x -e≤f (x )恒成立.方法总结:利用导数证明不等式要考虑构造新的函数,利用新函数的单调性或最值解决不等式的证明问题.比如要证明对∀x ∈[a ,b ]都有f (x )≥g (x ),可设h (x )=f (x )-g (x )只要利用导数说明h (x )在[a ,b ]上的最小值为0即可.考点四、恒成立问题与导数例4.已知函数f (x )=x 3+ax 2+bx +c 在x =-23与x =1时都取得极值, (1)求a ,b 的值与函数f (x )的单调区间;(2)若对x ∈[-1,2],不等式f (x )<c 2恒成立,求c 的取值范围.方法总结:利用“要使a x f >)(成立,只需使函数的最小值a x f >min )(恒成立即可;要使a x f <)(成立,只需使函数的最大值a x f <max )(恒成立即可”.两个注意(1)注意实际问题中函数定义域的确定.(2)在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较.三个防范(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念.(2)f′(x0)=0是y=f(x)在x=x0取极值的既不充分也不必要条件.如①y=|x|在x=0处取得极小值,但在x=0处不可导;②f(x)=x3,f′(0)=0,但x=0不是f(x)=x3的极值点.(3)若y=f(x)可导,则f′(x0)=0是f(x)在x=x0处取极值的必要条件.本节检测1.函数f(x)=x e-x,x∈[0,4]的最大值是( )A.0 B.1 eC.4e4D.2e22.已知f(x)=12x2-cos x,x∈[-1,1],则导函数f′(x)是( )A.仅有最小值的奇函数B.既有最大值,又有最小值的偶函数C.仅有最大值的偶函数D.既有最大值,又有最小值的奇函数3.函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围为( ) A.0≤a<1 B.0<a<1C.-1<a<1 D.0<a<1 24.做一个圆柱形锅炉,容积为V,两个底面的材料每单位面积的价格为a元,侧面的材料每单位面积的价格为b元,当造价最低时,锅炉的底面直径与高的比为( )A.abB.a2bC.baD.b2a5.已知f(x)=2x3-6x2+3,对任意的x∈[-2,2]都有f(x)≤a,则a的取值范围为________.6.若a>3,则方程x3-ax2+1=0在(0,2)上恰有________个实根.自我反思。
高中数学 导数的应用导学案 苏教版选修2-2 学案
导数应用复习 NO.9【知识梳理】 ⑴常见函数的导数 ⑵导数的运算法则 ⑶复合函数的导数⑷导数的应用(单调性、极值、最值)注:0)(0='x f 是函数)(x f 在0x x =处取得极值的必要不充分条件 【自主学习】 例1. ⑴已知曲线31433y x =+,求过点()2,4P 的切线方程⑵已知曲线1:xC y e =与21:xC y e =-,若C 1,C 2分别在点P 1,P 2处的切线是同一条切线,试求出切线的方程例2.c x x x f +-=248)( 在]3,1[-的最小值为-14,求)(x f 的极大或极小值。
例3.已知函数ax x a x x f ++-=23)1(2131)( ⑴求)(x f 的单调区间;⑵方程0)(=x f 仅有一个零点,求实数a 的取值范围。
例4.当 0>x ,证明不等式x x xx<+<+)1ln(1.【课后作业】1. 曲线3231y x x =-+在点()1,1-处的切线方程为______________________2.函数3223125y x x x =--+在[]0,3上的最大值和最小值分别是______,_________3.设函()32f x ax bx cx =++在1x =和1x =-处均有极值,且()11f -=-,则a b c ++=4.已知()()221f x x xf '=+,则()0f '=5.函数231xy x =+在x=___________有极大值,极大值是____________6.函数()f x 的定义域为开区间(a ,b ),导函数()f x '在(a ,b )内的图象如图2所示,则函数()f x 在开区间(a ,b )内有极小值点有 个;7.点P 是曲线x x y ln 2-=上任意一点, 则点P 到直线2+=x y 的距离的最小值是 ;8.设函数()f x 在定义域内可导,()y f x =的图像如右图所示,则导函数()f x '的图像可以为A B C D9.设函数23252x y x x =--+,若对任意[]1,2x ∈-,都有()f x m >,则实数m 的取值范围是 ; 10.已知函数()32y f x x px qx ==++,图像与x 轴切于非原点的一点,且4y =-极小值,那么,p q 的值分别为 。
导数的实际应用导学案
主备人: 审核: 包科领导: 年级组长: 使用时间:3.2.1实际问题中导数的意义【学习目标】1. 结合生活中求利润最大、用料最省、效率最高等优化问题,对学生进行函数思想和方法的培养.2. 进一步培养发散思维能力和逐步形成运用导数知识分析为题和解决实际问题的能力.3. 提高用导数知识解决实际问题的思想方法和意识. 【学习重点】正确理解题意,确定适当的函数模型,用导数工具处理. 【学习难点】正确理解题意,确定适当的函数模型. 【使用说明与学法指导】1.通过阅读教材,自主学习,思考,交流,讨论和概括,完成本节课的学习目标。
2.用红笔勾勒出疑点,合作学习后寻求解决方案。
3.带*号的为选做题。
【自主探究】1.生活中经常遇到求_____________、_____________、_____________等问题,这些问题通常称为优化问题.2.利用导数解决优化问题的实质是____________________________. 3.解决优化问题的解题步骤是: (1)____________________________; (2)____________________________; (3)____________________________; (4)____________________________.【合作探究】1.某公司的盈利y (元)和时间x (天)的函数关系是)(x f y =,且1)100(-='f ,这个数据说明在100天时 ( ))(A 公司已经亏损. )(B 公司还在盈利只是盈利在逐渐减少.)(C 公司的盈利在增加. )(D 公司盈利在逐渐减少.2.函数2sin )(x x x f -=,则函数在1=x 时的瞬时变化率是( ) 21cos )(-A . 21sin )(-B . 21sin )(--C . 21cos )(+D .3.某人做功和时间的关系是t t W 223+=,则在2=t 时的瞬时功率是_____________.4.设一质点的位置(单位:m )和时间(单位:s )的关系是tt t S 3)(3+=,(1)求当t 从1s 到3s 时,位移S 关于t 的平均变化率,并解释它的实际意义; (2)求)3(S ',并解释它的实际意义. 5.用长为90㎝,宽为48㎝的长方形铁皮做一个无盖的容器,先在四个角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成,问该容器的高为多少时,容器的容积最大?最大容积是多少? 【巩固提高】1.设底为正三角形的直棱柱的体积为V ,那么其表面积最小时,底面边长为( )3.V A 32.V B 34.V C 32.V D2.在半径为R 的圆内,作内接等腰三角形,当底边上高为_____________时它的面积最大. ★3.已知二次函数c bx ax x f ++=2)(的导数为)(x f ',0)0(>'f ,对于任意实数x ,有0)(≥x f ,则)0()1(f f '的最小值为 ( ) A .3 B .25 C .2 D .234.一列火车在平直的铁轨上匀速行驶,由于遇到紧急情况,火车紧急刹车至停止,其位移和时间关系是)1ln(5525)(2++-=t tt t S (单位:s m ,),求: (1)从开始紧急刹车至火车完全停止所经过的时间;(2)紧急刹车后火车运行的路程比正常运行的路程少了多少米?★ 5.建造一栋面积为x ㎡的房屋需要成本y 万元,y 是x 的函数:3.01010)(++==x x x f y .(1) 当x 从100变到120时,建筑成本y 关于建筑面积x 的平均变化率是多少? 它代表什么实际意义?(2)求)100(f '并解释它的实际意义.。
导数及其应用导学案
导数及其应用导学案姓名: ;小组编号: ;自评: ;小组长评价: ;教师评价:【使用说明与学法指导】1.本导学案为导数复习学案,在做导学案之前需熟记导数的有关公式;2.自主高效完成导学案并总结规律方法;3.注意待定系数法在解题中的应用;4.带★的题C 层同学可选做。
【学习目标】1.熟练掌握导数有关的知识点。
2.掌握导数有关切线、极值、最值问题的应用。
【重点】 掌握导数有关切线、极值、最值问题的应用。
【知识点回顾】1.基本初等函数的导数公式:①='C ②=)'(n x ③=)'(sin x ④=)'(cos x⑤=')(x a ⑥=')(x e ⑦='][log x a ⑧=')(ln x2.导数的运算法则:①()()[]=±'x g x f ②()()[]='x g x f③()()=⎥⎦⎤⎢⎣⎡'x g x f ④ ()[]='x cf3.导数的应用:(1)切线斜率与导数的关系:(2)求极值的方法:(3)求最值得方法:【合作、探究、展示】例1、右图为)(x f y =的导函数的图像,则正确的判断是①()x f 在(-3,1)上是增函数。
②1-=x 是()x f 的极小值点。
③()x f 在(2,4)上是减函数,在(-1,2)上是增函数。
④2=x 是()x f 的极小值点。
规律方法总结:例2、设()bx ax x x f 3323+-=的图像与直线0112=-+y x 相切于点(1,-11) 求a,b 的值。
规律方法总结:例3、已知a 为实数,()()()a x x x f --=42(1)求()x f ' (2)若1-=x 是函数()x f 的一个极值点,求()x f 在[]2,2-上的最大值和最小值。
规律方法总结:★例4:已知函数()x x x f ln 22-=,求()x f 的单调区间与极值。
人教版高中数学导数的应用教案2023
人教版高中数学导数的应用教案2023教案:人教版高中数学导数的应用一、教学目标通过本节课的学习,使学生能够:1. 了解导数的概念及其在数学问题中的应用;2. 学习常见函数的导数求解方法;3. 掌握导数在函数图像的刻画中的应用;4. 运用导数解决实际问题。
二、教学重难点1. 重点:导数的概念及其应用;2. 难点:运用导数解决实际问题。
三、教学过程1. 导入(5分钟)通过引入一个简单的实际问题,激发学生对导数的兴趣和应用价值。
2. 提出问题(10分钟)通过一系列问题的提出与讨论,引出导数的概念,激发学生的思考。
3. 导数的定义与求解(20分钟)讲解导数的定义及其求解方法,并通过一些例题进行说明和练习。
4. 导数与函数图像(15分钟)介绍导数与函数图像的关系,如导数的正负值与函数的增减性、导数为零点与函数的极值等,并通过相关例题加深理解。
5. 导数的应用(30分钟)a. 最值问题:讲解如何通过导数求解函数的最值问题,并结合实际问题引导学生运用所学方法。
b. 曲线的切线与法线:引入曲线的切线与法线的概念,介绍切线斜率等于导数的方法,并通过例题进行演示和练习。
c. 变率问题:引导学生思考变率的概念与导数的联系,并通过具体问题引导学生应用导数解决变率问题。
6. 小结与拓展(5分钟)对本节课的内容进行小结,并提供一些延伸问题供学生进一步思考和拓展。
四、教学手段1. 板书:概念定义、例题解析、解题思路等重点内容;2. 图片展示:通过图示形象化地表达导数与函数图像的关系,激发学生的视觉感受;3. 实例演练:通过一些实际问题的演示和讨论,引导学生运用所学知识解决问题。
五、教学评价1. 课堂练习:针对每个环节,设置相应的练习题,检验学生对所学知识的掌握情况;2. 课堂互动:通过提问、讨论等方式,了解学生对导数概念的理解和应用能力。
六、教学反思本节课通过问题引入、理论讲解、例题练习等多种教学手段,使学生在掌握导数的概念的同时,能够将其应用于实际问题的解决中。
高中数学11.导数在实际生活中的应用导学案
导数在实际生活中的应用【学习任务】1.通过本课的教学,对学生进行函数思想和方法的培养.2.通过本课例题的分析与解答,培养学生的发散思维能力和逐步形成运用导数知识解决实际问题的能力.3.通过解决科技、经济、社会中的某些简单实际问题,体验导数求最大值与最小值的应用.【课前预习】1、 挖一个半圆柱形的水池,其池面为圆柱的轴截面,若池面周长为定值2a ,则水池的最大容积是【合作探究】例1在边长为60 cm 的正方形铁片的四角上切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底的边长是多少时,箱子的容积最大?最大容积是多少?例2用长为90cm,宽为48cm 的长方形铁皮做一个无盖的容器,先在四角分别截去一个小正方形,然后把四边翻转90°角,再焊接而成(如图),问该容器的高为多少时,容器的容积最大?最大容积是多少?例3某造船公司年最高造船量是20艘,已知造船x 艘的产值为23R(x)3700x 45x 10x =+-(万元),成本函数为C(x)460x 5000=+(万元)。
又在经济学中,函数f(x)的边际函数Mf(x)定义为Mf(x)f(x 1)f(x)=+-。
求:⑴利润函数p(x)及边际利润数Mp(x);⑵年造船量安排多少艘时,可使公司造船的年利润最大?例4某工厂拟建一座平面图(如图所示)为矩形且面积为200m 2 的三级污水处理池,由于地形限制,长、宽都不能超过16m.如果池外周壁建造单价为每米400元,中间两条隔墙建造单价为每米248元,池底建造单价为每平方米80元(池壁厚度忽略不计,且池无盖).(1)写出总造价y (元)与污水处理池长x (m)的函数关系式,并指出其定义域;(2)求污水处理池的长和宽各为多少时,污水处理池的总造价最低?并求出最低总造价.【自我检测】 1、图1,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器(图2).当这个正六棱柱容器的底面边长为 时,其容积最大.2、某工厂生产某种产品,已知该产品的月生产量x (吨)与每吨产品的价格p (元/吨)之间的关系式为:21242005p x =-,且生产x 吨的成本为50000200R x =+(元)。
导数及其应用导学案
导数及其应用导学案§3.1.1 变化率问题1.感受平均变化率广泛存在于日常生活之中,经历运用数学描述和刻画现实世界的过程. 体会数学的博大精深以及学习数学的意义;2.理解平均变化率的意义,为后续建立瞬时变化率和导数的数学模型提供丰富的背景.一、课前准备(预习教材P 78~ P 80,找出疑惑之处) 复习1:曲线221259x y +=与曲线221(9)259x yk k k+=<--的( )A .长、短轴长相等B .焦距相等C .离心率相等D .准线相同复习2:当α从0 到180 变化时,方程22cos 1x y α+=表示的曲线的形状怎样变化?二、新课导学 ※ 学习探究探究任务一:问题1:气球膨胀率,求平均膨胀率吹气球时,随着气球内空气容量的增加,气球的半径增加得越来越慢.从数学的角度如何描述这种现象?问题2:高台跳水,求平均速度 新知:平均变化率:2121()()f x f x fx x x-∆=-∆试试:设()y f x =,1x 是数轴上的一个定点,在数轴x 上另取一点2x ,1x 与2x 的差记为x ∆,即x ∆= 或者2x = ,x ∆就表示从1x 到2x 的变化量或增量,相应地,函数的变化量或增量记为y ∆,即y ∆= ;如果它们的比值yx∆∆,则上式就表示为 ,此比值就称为平均变化率.反思:所谓平均变化率也就是 的增量与 的增量的比值.※ 典型例题例1 过曲线3()y f x x ==上两点(1,1)P 和(1,1)Q x y +∆+∆作曲线的割线,求出当0.1x ∆=时割线的斜率.变式:已知函数2()f x x x =-+的图象上一点(1,2)--及邻近一点(1,2)x y -+∆-+∆,则yx∆∆=例2 已知函数2()f x x =,分别计算()f x 在下列区间上的平均变化率: (1)[1,3]; (2)[1,2]; (3)[1,1.1]; (4)[1,1.001] 小结:※ 动手试试练1. 某婴儿从出生到第12个月的体重变化如图所示,试分别计算从出生到第3个月与第6个月到第12个月该婴儿体重的平均变化率.练2. 已知函数()21f x x =+,()2g x x =-,分别计算在区间[-3,-1],[0,5]上()f x 及()g x 的平均变化率.(发现:y kx b =+在区间[m ,n]上的平均变化率有什么特点?三、总结提升 ※ 学习小结1.函数()f x 的平均变化率是2.求函数()f x 的平均变化率的步骤:(1)求函数值的增量 (2)计算平均变化率※ 知识拓展平均变化率是曲线陡峭程度的“数量化”,曲线陡峭程度是平均变化率“视觉化”.※ 当堂检测(时量:5分钟 满分:10分)计分:1. 21y x =+在(1,2)内的平均变化率为( ) A .3 B .2 C .1 D .02. 设函数()y f x =,当自变量x 由0x 改变到0x x +∆时,函数的改变量y ∆为( )A .0()f x x +∆B .0()f x x +∆C .0()f x x ∆D .00()()f x x f x +∆- 3. 质点运动动规律23s t =+,则在时间(3,3)t +∆中,相应的平均速度为( ) A .6t +∆ B .96t t+∆+∆ C .3t +∆ D .9t +∆4.已知212s gt =,从3s 到3.1s 的平均速度是_______ 5. 223y x x =-+在2x =附近的平均变化率是____1. 国家环保局对长期超标排污,污染严重而未进行治理的单位,规定出一定期限,强令在此期限内完成排污治理. 下图是国家环保局在规定的排污达标日期前,对甲、乙两家企业连续检测的结果(W 表示排污量),哪个企业治理得比较好?为什么?2. 水经过虹吸管从容器甲中流向容器乙,t s 后容器甲中水的体积0.1()52tV t -=⨯(单位:3cm ),计算第一个10s 内V 的平均变化率.§3.1.2 导数的概念1.掌握用极限给瞬时速度下的精确的定义;2.会运用瞬时速度的定义,求物体在某一时刻的瞬时速度.一、课前准备预习教材P 78~ P80,找出疑惑之处)T(月)3912复习1:气球的体积V 与半径r 之间的关系是()r V =V 从0增加到1时,气球的平均膨胀率.复习2:高台跳水运动中,运动员相对于水面的高度h 与起跳后的时间t 的关系为:2() 4.9 6.510h t t t =-++. 求在12t ≤≤这段时间里,运动员的平均速度.二、新课导学 ※ 学习探究探究任务一:瞬时速度问题1:在高台跳水运动中,运动员有不同时刻的速度是 新知:1. 瞬时速度定义:物体在某一时刻(某一位置)的速度,叫做瞬时速度.探究任务二:导数问题2: 瞬时速度是平均速度t s ∆∆当t ∆趋近于0时的 得导数的定义:函数()y f x =在0x x =处的瞬时变化率是0000()()limlimx x f x x f x fxx ∆→∆→+∆-∆=∆∆,我们称它为函数()y f x =在0x x =处的导数,记作0()f x '或0|x x y ='即000()()()limx f x x f x f x x∆→+∆-'=∆注意:(1)函数应在点0x 的附近有定义,否则导数不存(2)在定义导数的极限式中,x ∆趋近于0可正、可负、但不为0,而y ∆可以为0(3)xy∆∆是函数)(x f y =对自变量x 在x ∆范围内的平均变化率,它的几何意义是过曲线)(x f y =上点()(,00x f x )及点)(,(00x x f x x ∆+∆+)的割线斜(4)导数xx f x x f x f x ∆-∆+=→∆)()(lim)(0000/是函数)(x f y =在点0x 的处瞬时变化率,它反映的函数)(x f y =在点0x 处变化的快慢程度.小结:由导数定义,高度h 关于时间t 的导数就是运动员的瞬时速度,气球半径关于体积V 的导数就是气球的瞬时膨胀率.※ 典型例题例1 将原油精炼为汽油、柴油、塑胶等各种不同产品,需要对原油进行冷却和加热. 如果在第xh 时,原油的温度(单位:0c )为2()715(08)f x x x x =-+≤≤. 计算第2h 和第6h 时,原油温度的瞬时变化率,并说明它们的意义.总结:函数平均变化率的符号刻画的是函数值的增减;它的绝对值反映函数值变化的快慢.例2 已知质点M 按规律s =2t 2+3做直线运动(位移单位:cm ,时间单位:s), (1)当t =2,Δt =0.01时,求t s∆∆. (2)当t =2,Δt =0.001时,求ts ∆∆. (3)求质点M 在t =2时的瞬时速度 小结:利用导数的定义求导,步骤为:第一步,求函数的增量00()()y f x x f x ∆=+∆-; 第二步:求平均变化率0()f x x y x x+∆∆=∆∆; 第三步:取极限得导数00()lim x yf x x∆→∆'=∆.※ 动手试试练1. 在例1中,计算第3h 和第5h 时原油温度的瞬时变化率,并说明它们的意义.练2. 一球沿一斜面自由滚下,其运动方程是2()s t t =(位移单位:m ,时间单位:s),求小球在5t =时的瞬时速三、总结提升 ※ 学习小结这节课主要学习了物体运动的瞬时速度的概念,它是用平均速度的极限来定义的,主要记住公式:瞬时速度v =tt ∆→∆lim ※ 知识拓展导数存在⇒连续⇒有极限※ 当堂检测(时量:5分钟 满分:10分)计分:1. 一直线运动的物体,从时间t 到t t +∆时,物体的位移为s ∆,那么0lim t s t∆→∆∆为( )A.从时间t 到t t +∆时,物体的平均速度; B.在t 时刻时该物体的瞬时速度; C.当时间为t ∆时物体的速度; D.从时间t 到t t +∆时物体的平均速度2. 2y x =在 x =1处的导数为( ) A .2x B .2 C .2x +∆ D .13. 在0000()()()lim x f x x f x f x x∆→+∆-'=∆中,x ∆不可能( )A .大于0B .小于0C .等于0D .大于0或小于0 4.如果质点A 按规律23s t =运动,则在3t =时的瞬时速度为5. 若0()2f x '=-,则0001[]()2limk f x k f x k→--等于1. 高台跳水运动中,ts 时运动员相对于水面的高度是:2() 4.9 6.510h t t t =-++(单位: m),求运动员在1t s =时的瞬时速度,并解释此时的运动状况.2. 一质量为3kg 的物体作直线运动,设运动距离s(单位:cm)与时间(单位:s )的关系可用函数2()1s t t =+表示,并且物体的动能212U mv =. 求物体开始运动后第5s 时的动能.§3.1.3 导数的几何意义通过导数的图形变换理解导数的几何意义就是曲线在该点的切线的斜率,理解导数的概念并会运用概念求导数.一、课前准备(预习教材P 78~ P 80,找出疑惑之处)复习1:曲线上向上11111(,),(,)P x y P x x y y +∆+∆的连线称为曲线的割线,斜率yk x∆==∆复习2:设函数()y f x =在0x 附近有定义当自变量在0x x =附近改变x ∆时,函数值也相应地改变y ∆= ,如果当x ∆ 时,平均变化率趋近于一个常数l ,则数l 称为函数()f x 在点0x 的瞬时变化率.记作:当x ∆ 时, →l二、新课导学 ※ 学习探究探究任务:导数的几何意义问题1:当点(,())(1,2,3,4)n n n P x f x n =,沿着曲线()f x 趋近于点00(,())P x f x 时,割线的变化趋是什么?新知:当割线P n P 无限地趋近于某一极限位置PT 我们就把极限位置上的直线PT ,叫做曲线C 在点P 处的切线割线的斜率是:n k =当点n P 无限趋近于点P 时,n k 无限趋近于切线PT 的斜率. 因此,函数()f x 在0x x =处的导数就是切线PT 的斜率k ,即0000()()lim ()x f x x f x k f x x∆→+∆-'==∆新知:函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率.即k =000()()()lim x f x x f x f x x∆→+∆-'=∆※ 典型例题例1 如图,它表示跳水运动中高度随时间变化的函数2() 4.9 6.510h t t t =-++的图象.根据图象,请描述、比较曲线()h t 在012,,t t t 附近的变化情况.小结:例2 如图,它表示人体血管中药物浓度()c f t =(单位:/mg mL )随时间t (单位:min)变化的函数图象.根据图象,估计t =0.2,0.4,0.6,0.8时,血管中药物浓度的瞬时变化率(精确到0.1)※ 动手试试练1. 求双曲线1y x =在点1(,2)2处的切线的斜率,并写出切线方程.练2. 求2y x =在点1x =处的导数.三、总结提升 ※ 学习小结函数()y f x =在0x 处的导数的几何意义是曲线()y f x =在00(,())P x f x 处切线的斜率.即k =000()()()limx f x x f x f x x∆→+∆-'=∆其切线方程为 ※ 知识拓展导数的物理意义:如果把函数()y f x =看做是物体的运动方程(也叫做位移公式,自变量x 表示时间),那么导数0()f x '表示运动物体在时刻o x 的速度,,即在o x 的瞬时速度.即000()limx t yv f x x∆→∆'==∆而运动物体的速度()v t 对时间t 的导数,即0()limt vv t t∆→∆'=∆称为物体运动时的瞬时加速度.※ 当堂检测(时量:5分钟 满分:10分)计分:1. 已知曲线22y x =上一点,则点(2,8)A 处的切线斜率为( )A. 4B. 16C. 8D. 22. 曲线221y x =+在点(1,3)P -处的切线方程为( ) A .41y x =-- B .47y x =-- C .41y x =- D .47y x =+ 3. ()f x 在0x x =可导,则000()()limh f x h f x h→+-( )A .与0x 、h 都有关B .仅与0x 有关而与h 无关C .仅与h 有关而与0x 无关D .与0x 、h 都无关 4. 若函数()f x 在0x 处的导数存在,则它所对应的曲线在点00(,())x f x 的切线方程为 5. 已知函数()y f x =在0x x =处的导数为11,则 000()()limx f x x f x x∆→-∆-∆=1. 如图,试描述函数()f x 在x =5,4,2,0,1---附近的变化情况.2.已知函数()f x 的图象,试画出其导函数()f x '图象的大致形状.§3.2.1几个常用函数导数1.掌握四个公式,理解公式的证明过程;2.学会利用公式,求一些函数的导数;3.理解变化率的概念,解决一些物理上的简单问题.一、课前准备(预习教材P 88~ P 89,找出疑惑之处)复习1:导数的几何意义是:曲线)(x f y =上点()(,00x f x )处的切线的斜率.因此,如果)(x f y =在点0x 可导,则曲线)(x f y =在点()(,00x f x )处的切线方程为复习2:求函数)(x f y =的导数的一般方法: (1)求函数的改变量y ∆=(2)求平均变化率yx∆=∆ (3)取极限,得导数/y =()f x '=xy x ∆∆→∆0lim=二、新课导学 ※ 学习探究探究任务一:函数()y f x c ==的导数. 问题:如何求函数()y f x c ==的导数新知:0y '=表示函数y c =图象上每一点处的切线斜率为 .若y c =表示路程关于时间的函数,则y '= ,可以解释为即一直处于静止状态.试试: 求函数()y f x x ==的导数反思:1y'=表示函数y x=图象上每一点处的切线斜率为.若y x=表示路程关于时间的函数,则y'=,可以解释为探究任务二:在同一平面直角坐标系中,画出函数2,3,4y x y x y x===的图象,并根据导数定义,求它们的导数.(1)从图象上看,它们的导数分别表示什么?(2)这三个函数中,哪一个增加得最快?哪一个增加得最慢?(3)函数(0)y kx k=≠增(减)的快慢与什么有关?※典型例题例1 求函数1()y f xx==的导数变式:求函数2()y f x x==的导数小结:利用定义求导法是最基本的方法,必须熟记求导的三个步骤:作差,求商,取极限.例2 画出函数1yx=的图象.根据图象,描述它的变化情况,并求出曲线在点(1,1)处的切线方程.变式1:求出曲线在点(1,2)处的切线方程.变式2:求过曲线上点(1,1)且与过这点的切线垂直的直线方程.小结:利用导数求切线方程时,一定要判断所给点是否为切点,它们的求法是不同的.※动手试试练1. 求曲线221y x=-的斜率等于4的切线方程. (理科用)练2.求函数()y f x==三、总结提升※学习小结1. 利用定义求导法是最基本的方法,必须熟记求导的三个步骤:,,.2. 利用导数求切线方程时,一定要判断所给点是否为切点,一定要记住它们的求法是不同的.※知识拓展微积分的诞生具有划时代的意义,是数学史上的分水岭和转折点.关于微积分的地位,恩格斯是这样评价的:“在一切理论成就中,未必再有什么像17世纪下半叶微积分的发现那样被看作人类精神的纯粹的和惟一的功绩,那正是在这里.”※当堂检测(时量:5分钟满分:10分)计分:1.()0f x=的导数是()A.0 B.1 C.不存在D.不确定2.已知2()f x x=,则(3)f'=()A.0 B.2x C.6 D.93. 在曲线2y x=上的切线的倾斜角为4π的点为()A.(0,0)B.(2,4)C.11(,)416D.11(,)244. 过曲线1yx=上点(1,1)且与过这点的切线平行的直线方程是5. 物体的运动方程为3s t=,则物体在1t=时的速度为,在4t=时的速度为.1. 已知圆面积2S rπ=,根据导数定义求()S r'.2. 氡气是一种由地表自然散发的无味的放射性气体.如果最初有500克氡气,那么t 天后,氡气的剩余量为()5000.834t A t =⨯,问氡气的散发速度是多少?§3.2.2基本初等函数的导数公式及导数的运算法则1.理解两个函数的和(或差)的导数法则,学会用法则求一些函数的导数;2.理解两个函数的积的导数法则,学会用法则求乘积形式的函数的导数.一、课前准备(预习教材P 90~ P 92,找出疑惑之处) 复习1:常见函数的导数公式:0'=C ;1)'(-=n n nx x ;x x cos )'(sin =;x x sin )'(cos -=;()ln (0)x x a a a a '=>;()xx ee '=;1()(0,ln log ax a x a '=>且1)a ≠;1(ln )x x'=.复习2:根据常见函数的导数公式计算下列导数 (1)6y x = (2)y (3)21y x =(4)y =二、新课导学 ※ 学习探究探究任务:两个函数的和(或差)积商的导数新知:[()()]()()f x g x f x g x '''±=±[()()]()()()()f x g x f x g x f x g x '''=+2()()()()()[]()[()]f x f xg x f x g x g x g x ''-'=试试:根据基本初等函数的导数公式和导数运算法则,求函数323y x x =-+的导数.※ 典型例题例1 假设某国家在20年期间的年均通贷膨胀率为5%,物价p (单位:元)与时间t (单位:年)有如下函数关系0()(15%)t p t p =+,其中0p 为0t =时的物价.假定某种商品的01p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少(精确到0.01)?变式:如果上式中某种商品的05p =,那么在第10个年头,这种商品的价格上涨的速度大约是多少?例 2 日常生活中的饮用水通常是经过净化的. 随着水纯净度的提高,所需净化费用不断增加. 已知将1吨水净化到纯净度为%x 时所需费用(单位:元)为5284()(80100)100c x x x=<<-. 求净化到下列纯净度时,所需净化费用的瞬时变化率: (1)90%; (2)98%.小结:函数在某点处导数的大小表示函数在此点附近变化的快慢.※ 动手试试 练1. 求下列函数的导数:(1)2log y x =; (2)2x y e =;(3)522354y x x x =-+-; (4)3cos 4sin y x x =-.练2. 求下列函数的导数:(1)32log y x x =+;(2)n xy x e =;(3)31sin x y x-=三、总结提升※ 学习小结1.由常数函数、幂函数及正、余弦函数经加、减、乘运算得到的简单的函数均可利用求导法则与导数公式求导,而不需要回到导数的定义去求此类简单函数的导数.2.对于函数求导,一般要遵循先化简,再求导的基本原则.求导时,不但要重视求导法则的应用,而且要特别注意求导法则对求导的制约作用.在实施化简时,首先要注意化简的等价性,避免不必要的运算失误.※ 知识拓展1.复合函数的导数:设函数()u g x =在点x 处有导数()xu g x ''=,函数y =f (u )在点x 的对应点u 处有导数()uy f u ''=,则复合函数(())y f g x =在点x 处也有导数,且x u x u y y '''⋅=2.复合函数求导的基本步骤是:分解——求导——相乘——回代.※ 当堂检测(时量:5分钟 满分:10分)计分:1. 函数1y x x=+的导数是( )A .211x -B .11x -C .211x +D .11x+ 2. 函数sin (cos 1)y x x =+的导数是( ) A .cos2cos x x - B .cos2sin x x + C .cos2cos x x + D .2cos cos x x + 3. cos xy x=的导数是( ) A .2sin xx - B .sin x -C .2sin cos x x x x +-D .2cos cos x x xx +-4.函数2()138f x x =-+,且0()4f x '=, 则0x = 5.曲线sin xy x=在点(,0)M π处的切线方程为1.求描述气球膨胀状态的函数()r V =.2. 已知函数ln y x x =. (1)求这个函数的导数; (2)求这个函数在点1x =处的切线方程.理: §3.2.2 复合函数求导复合函数的分解,求复合函数的导数.一、课前准备(预习教材P 16~ P 17,找出疑惑之处) 复习1:求)4(23-=x x y 的导数复习2:求函数2(23)y x =+的导数二、新课导学 ※ 学习探究探究任务一:复合函数的求导法则 问题:求(sin 2)x '=?解答:由于(sin )cos x x '=,故(s i n 2)c o s2x x '=这个解答正确吗?新知:一般地,对于两个函数()y f u =和()u g x =,如果通过变量u ,y 可以表示成x 的函数,那么称这个函数为函数()y f u =和()u g x =的复合函数,记作:(())y f g x =复合函数的求导法则:两个可导函数复合而成的复合函数的导数等于函数对中间变量的导数乘上中间变量对自变量的导数.用公式表示为:x u x y y u '''=,其中u 为中间变量.即: y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积.试试:(sin 2)x '=反思:求复合函数的导数,关键在于分析清楚函数的复合关系,选好中间变量。
导数的应用教案
导数的应用教案教案标题:导数的应用教案教学目标:1. 了解导数在实际生活和各学科中的应用。
2. 掌握导数的应用方法,能够运用导数解决实际问题。
教学重点:1. 导数的定义和计算方法。
2. 在实际问题中应用导数解决特定的数学、物理或经济问题。
教学难点:1. 将实际问题转化为数学模型。
2. 运用导数解决实际问题。
教学准备:1. 教师准备:教学讲义、白板、投影仪、计算器。
2. 学生准备:笔、纸、计算器。
教学过程:一、导入(5分钟)1. 引入导数的概念,回顾导数的定义和计算方法。
2. 提问学生导数的应用场景,让学生思考导数在实际生活和各学科中的重要性。
二、理论讲解(15分钟)1. 介绍导数在数学中的应用:a. 导数用于求函数的变化率和极值点。
b. 导数可以求切线和法线的斜率。
2. 介绍导数在物理中的应用:a. 导数用于求速度、加速度和力的变化率。
b. 导数可以求曲线的切线和曲率。
3. 介绍导数在经济中的应用:a. 导数用于求边际成本、边际收益、边际利润。
b. 导数可以帮助优化生产和销售策略。
三、案例分析(20分钟)1. 选择一个实际问题,将其转化为数学模型。
2. 引导学生运用导数解决该实际问题。
3. 指导学生自主解决一个类似的实际问题。
四、拓展活动(15分钟)1. 分组讨论:学生分成小组,选择不同学科领域,探讨导数在该领域的应用。
2. 小组报告:每个小组派代表向全班介绍他们在探讨中得出的导数应用案例。
五、总结与反馈(5分钟)1. 教师总结导数的应用领域,并强调导数在不同学科中的重要性。
2. 学生回答教师提出的问题,进行课堂反馈。
六、作业布置(5分钟)1. 要求学生完成作业册上相关题目。
2. 鼓励学生在实际生活中寻找更多的导数应用案例,并写下思考和心得体会。
教学延伸:1. 鼓励学生参与数学建模竞赛,以提升他们在导数应用方面的能力。
2. 引导学生阅读相关经典著作,了解导数的更多应用领域和概念。
教学反思:本节课通过理论讲解和案例分析相结合的方式,使学生能够更深入地理解导数的应用。
导数公式表及应用导学案
导数公式表及应用导学案【学习要求】1.能根据定义求函数y =c ,y =x ,y =x 2,y =1x 的导数.2.能利用给出的基本初等函数的导数公式求简单函数的导数. 【学法指导】1.利用导数的定义推导简单函数的导数公式,类推一般多项式函数的导数公式,体会由特殊到一般的思想.通过定义求导数的过程,培养归纳、探求规律的能力,提高学习兴趣.2.本节公式是下面几节课的基础,记准公式是学好本章内容的关键.记公式时,要注意观察公式之间的联系.【知识要点】1【问题探究】探究点一求导函数 问题1 怎样利用定义求函数y =f (x )的导数?问题2 利用定义求下列常用函数的导数:(1) y =c ; (2)y =x ; (3)y =x 2; (4)y =1x ; (5)y =x .问题3 利用导数的定义可以求函数的导函数,但运算比较繁杂,有些函数式子在中学阶段无法变形,怎样解决这个问题?例1 求下列函数的导数:(1)y =sin π3; (2)y =5x ; (3)y =1x 3; (4)y =4x 3; (5)y =log 3x .跟踪训练1 求下列函数的导数:(1)y =x 8; (2)y =(12)x ; (3)y =x x ; (4)x y 31log =探究点二 求某一点处的导数例2 判断下列计算是否正确.求f (x )=cos x 在x =π3处的导数,过程如下:f ′⎝⎛⎭⎫π3=⎝⎛⎭⎫cos π3′=-sin π3=-32.跟踪训练2 求函数f (x )=13x在x =1处的导数.探究点三 导数公式的综合应用例3 已知直线x -2y -4=0与抛物线y 2=x 相交于A 、B 两点,O 是坐标原点,试在抛物线的弧 上求一点P ,使△ABP 的面积最大.跟踪训练3 点P 是曲线y =e x 上任意一点,求点P 到直线y =x 的最小距离. 【当堂检测】1.给出下列结论:①若y =1x 3,则y ′=-3x 4;②若y =3x ,则y ′=133x ;③若y =1x2,则y ′=-2x -3;④若f (x )=3x ,则f ′(1)=3.其中正确的个数是 ( )A .1B .2C .3D .42.函数f (x )=x ,则f ′(3)等于 ( )A .36B .0C .12x D .32 3.设正弦曲线y =sin x 上一点P ,以点P 为切点的切线为直线l ,则直线l 的倾斜角的范围是 ( ) A .[0,π4]∪[3π4,π) B .[0,π) C .[π4,3π4] D .[0,π4]∪[π2,3π4] 4.曲线y =e x 在点(2,e 2)处的切线与坐标轴所围三角形的面积为________【课堂小结】1.利用常见函数的导数公式可以比较简捷的求出函数的导数,其关键是牢记和运用好导数公式.解题时,能认真观察函数的结构特征,积极地进行联想化归.2.有些函数可先化简再应用公式求导.如求y=1-2sin2x2的导数.因为y=1-2sin2x2=cos x,所以y′=(cos x)′=-sin x.3.对于正、余弦函数的导数,一是注意函数的变化,二是注意符号的变化。
初中数学导数应用教案模板
一、课题:导数应用二、教学目标1. 知识与技能:(1)使学生理解导数的概念,掌握导数的计算方法;(2)引导学生学会利用导数解决实际问题,提高学生分析问题和解决问题的能力;(3)培养学生对数学学科的兴趣,激发学生探究数学问题的热情。
2. 过程与方法:(1)通过小组合作、讨论、探究等方式,培养学生的团队协作能力和创新思维;(2)引导学生通过实际问题引入导数概念,培养学生的实际应用能力。
3. 情感态度与价值观:(1)使学生认识到数学与生活的密切联系,增强学生运用数学知识解决实际问题的信心;(2)培养学生对数学学科的兴趣,激发学生对数学学科的热爱。
三、教学重难点1. 教学重点:导数的概念、导数的计算方法、导数在解决实际问题中的应用。
2. 教学难点:导数的计算方法、导数在解决实际问题中的应用。
四、教学方法1. 讲授法:讲解导数的概念、导数的计算方法;2. 案例分析法:通过实际问题引入导数概念,引导学生运用导数解决实际问题;3. 小组合作法:通过小组讨论、探究,培养学生的团队协作能力和创新思维。
五、教学过程1. 导入通过展示实际问题,如物体运动的速度问题、曲线的切线问题等,引导学生思考如何运用数学知识解决这些问题,从而引入导数概念。
2. 新授课(1)讲解导数的概念:导数是函数在某一点处的瞬时变化率,是函数增减变化的度量;(2)讲解导数的计算方法:运用导数的定义,通过极限的思想,求出函数在某一点的导数;(3)通过案例分析法,引导学生运用导数解决实际问题。
3. 小组合作探究将学生分成若干小组,每组选择一个实际问题,运用导数进行求解。
各小组讨论、探究,分享解题思路和方法。
4. 教师点评与总结教师对各小组的解题过程进行点评,总结解题思路和方法,强调导数在解决实际问题中的应用。
5. 课堂练习布置一些与导数相关的练习题,让学生巩固所学知识,提高解题能力。
6. 课堂小结对本节课的学习内容进行总结,强调导数的概念、计算方法以及在解决实际问题中的应用。
导数的应用导学案.doc
导数的应用(二):最值学案
学习目标:
1.掌握并熟练用导数法求函数的最值。
2.能熟练用求最值的工具解决不等式恒成立和零点存在性问题。
3.深刻领悟转化、分类讨论思想,提高解题能力。
4.能用一些常用的不等式结论灵活解决导数应用问题。
例:已知函数f(x) = ax+lnx,其中ae A
(1)当a = -l时,求函数f(x)最大值;
(2)若/'(x)在区间(0,e)上有最大值,求a的取值范围; (3)若/'⑴在区间(0, e]上的最大值为-3,求a的值;
⑷当a = -l时,试推断优⑴|=牛+ ?是否存在实数解?
(5)当f (x) +些+上V 0恒成立,求a的取值范围。
x 2
(6) f(x)+生史+ 1<0恒成立,求a的值范围。
X
课后思考题 1:设函= (x-(z)2 InX,(ZG 7?.
⑴若x = e为y = f⑴的极值点,求实数a.
(2)求实数a的取值范围,使得对任意的xc (0,3e],恒有了(x) < 4e2
课后思考题2:已知函数/(x) =—:---- 侬为常数,e = 2.71828...),曲线y = f(x)在点
e x
(l,f(l))处的切线与x轴平行。
(1)求A的值;
(2)求/'⑴的单调区间;
(3)设g(.r) = (.r2 + .r) f\x),其中f'(x)为f(x)的导函数。
证明:对任意x > O,g(x) < l + e、。
“导数的应用”学案
“导数的应用”学案蒋德亮(山东省临沭县第二中学)一、学习目标1.会用导数求函数的单调区间或者判断函数的单调性. 2.会用导数求函数给定区间上的极值和最值.二、诊断补偿2.思考:利用导数可以解决哪些问题?三、问题解决应用一:用导数求函数的单调区间或判断函数的单调性思考:尝试应用:典例析与练:'()()'()()f x f x y f x y f x ==设是函数的导函数,的图象如图所示,则的图象最有可能是( ).5223π(23)(2)ln(1)(3)(4)sin(2)3x y x y x y ey x --=+=+==+11.求下列函数的导数:();;;.()(,)f x a b 1.函数在区间内,'()0f x >⇒'()0f x <⇒()(,)f x a b 2、函数在区间内,()(,)f x a b ⇒在内单调递增()(,)f x a b ⇒在内单调递减提示:先求导函数,再求不等式'()0f x >或'()0f x <的解集.跟踪练习:应用二:用导数求函数给定区间上的极值和最值思考1:思考2:求函数f (x )在[a ,b ]上的最大值与最小值的步骤:典例析与练:3.()31(0),().f x x ax a f x =--≠例1已知函数求函数的单调区间cos sin .π3π3π5πA. (,) B. (π,2π) C. (,) D. (2π,3π)2222y x x x =-函数在下面哪个区间内是增函数( )()1,,,,,,,2()3()456y f x a b d e fghi y f x y f x ===如图,()函数在等点的函数值与这些点附近的函数值有什么关系?()在这些点的导数值是多少?()在这些点附近,的导数的符号有什么规律?()极小值是不是就是最小值?()极大值是不是就是最大值?()极小值一定比极大值小吗?提示:先求'()0f x =的解0x ,再判断0x 两侧的导函数的正负,确定极值,再求端点值,最后比较极值和端点值. 跟踪练习:()()()[]3239122,220,f x x x x a f x f x =-+++-2、已知函数,()求的单调递减区间;()若在区间上的最大值为求它在该区间上的最小值.四、能力提高3222()()1:310,3(),,()f x x ax bx c y f x x l x y x y f x a b c f x =++==-+===例.已知函数+,曲线在点处的切线为若时,有极值.(1)求的值;(2)求在[-3,1]上的最大值和最小值.()()y f x y f x '==1.如果函数的图象如图所以,那么导函数的图象可能是( ).1.()0,()y f x y f x ==函数在一点的导数值为是函数在这点取极值的( ).A.充分条件 B.必要条件 C.充要条件 D.必要不充分条件2.以下四图,都是同一坐标系中三次函数及其导函数的图象,其中一定不正确的序号是( ).A .①、②B .①、③C .③、④D .①、④322.(),1,4()3.2s t t bt ct d t s t d d =+++⎡⎤∈<⎢⎥⎣⎦4已知某质点的运动方程为下图是其运动轨迹的一部分,若时,恒成立,求的取值范围五、知识网络构建六、分层作业(一)基础作业3()3(0)62()f x x ax b a f x =-+>3.函数的极大值为,极小值为,则的减区间是( ).A.(-1,1) B.(0,1) C.(-1,0) D.(-2,-1)32()91(0)()12612()f x x ax x a y f x x y a f x =+--<=+=1.设函数,若曲线的斜率最小的切线与直线平行,求:()的值;()函数的单调区间.(二)能力作业0023()2ln ,1()1,,21[,2]()0.4()(0,)7.389,20.08)bf x ax x x f x x x x f x c c b a f x a e e =-+==-≤=+∞≈≈2.设函数(1)若在处取得极值求a,b 的值;在存在,使得不等式成立,求的最小值(2)当时,若在上是单调函数,求的取值范围.(参考数据① ②。
初中数学导数应用教案
初中数学导数应用教案教学目标:1. 理解导数的定义和意义;2. 学会使用导数求解函数的极值和单调性;3. 能够应用导数解决实际问题。
教学重点:1. 导数的定义和意义;2. 导数的求解方法;3. 导数在实际问题中的应用。
教学难点:1. 导数的符号判断;2. 导数在实际问题中的应用。
教学准备:1. 教师准备PPT或黑板,展示导数的定义和求解方法;2. 准备一些实际问题,用于引导学生应用导数解决。
教学过程:一、导入(5分钟)1. 引导学生回顾函数的概念,复习函数图像;2. 提问:函数图像上某一点的切线斜率是什么?二、导数的定义和意义(15分钟)1. 介绍导数的定义:函数在某一点的导数是其图像在该点切线的斜率;2. 解释导数的意义:导数反映了函数在某一点的增减性,即函数值的变化率;3. 举例说明导数的符号判断:正导数表示函数单调递增,负导数表示函数单调递减,导数为0表示函数取得极值。
三、导数的求解方法(15分钟)1. 介绍导数的求解方法:导数的基本运算法则和导数的四则运算法则;2. 演示如何求解函数的导数:求解常见函数的导数,如幂函数、指数函数、对数函数等;3. 练习求解函数的导数:让学生独立求解一些给定函数的导数。
四、导数在实际问题中的应用(15分钟)1. 介绍实际问题中导数的应用:如最优化问题、运动物体的速度与加速度等;2. 演示如何应用导数解决实际问题:给出一个实际问题,引导学生运用导数求解;3. 练习应用导数解决实际问题:让学生独立解决一些给定的实际问题。
五、总结与反思(5分钟)1. 回顾本节课所学内容,让学生总结导数的定义、意义和求解方法;2. 提问:你们认为导数在数学和实际生活中有什么作用?教学延伸:1. 深入学习导数的应用:如曲线的凹凸性、拐点等;2. 学习多元函数的导数:函数的多个变量之间的导数关系。
教学反思:本节课通过导入、讲解、演示和练习等环节,让学生掌握了导数的定义、意义和求解方法,并能够应用导数解决实际问题。
导数的应用教案
导数的应用教案导数的应用教案一、教学目标:1.了解导数的概念及其意义;2.掌握导数的计算方法;3.能够应用导数解决实际问题。
二、教学内容:1.导数的概念及其意义;2.导数的计算方法;3.导数的应用实例。
三、教学过程:1.导入导数概念:教师通过提问方式引导学生回顾前面学习的知识,了解函数的极限与导数之间的关系,并引入导数的概念。
教师可以通过举例说明导数的概念,如汽车行驶距离与时间的关系等。
2.导数的计算方法:教师介绍导数的计算方法,包括极限定义、导数公式和导数性质等,并通过具体的例子进行讲解,如多项式函数的导数计算等。
3.导数的应用实例:教师通过实际问题让学生应用导数解决实际问题,如求函数的最值、判定函数的增减性、判定函数的凸凹性等。
教师可以先进行概念讲解,然后给出具体的应用实例,让学生进行分析和解答。
4.教学巩固与拓展:教师进行导数的应用拓展,让学生了解导数在其他领域的应用,如物理学中的速度与加速度、经济学中的边际产量与边际成本等,并进行讲解和讨论。
四、教学方法:1.导入法:通过导入问题或例子引发学生思考,激发学生学习兴趣。
2.讲解法:通过讲解导数的概念和计算方法,使学生掌握相关知识。
3.示范法:通过示范具体例题,帮助学生理解和掌握导数的应用方法。
4.讨论法:通过学生的互动讨论,加深对导数应用的理解和掌握。
五、教学资源:1.课件:包括导数的概念、计算方法及应用实例的课件。
2.习题集:提供导数的应用习题,帮助学生巩固和拓展知识。
六、教学评价:1.课堂练习:提供一定数量的导数应用题,检查学生的掌握情况。
2.作业:布置一定数量的导数应用题,供学生进行复习和巩固。
3.学生评价:通过学生对教学过程的反馈和教师的观察,对教学效果进行评价。
七、教学反思:通过开展导数的应用教学,学生能够进一步理解导数的概念、计算方法及其在实际问题中的应用,从而提高学生的数学思维能力和解决实际问题的能力。
同时,教师应根据学生的实际情况和兴趣,合理安排教学内容和方法,提高教学效果。
高中数学《导数在实际生活中的应用》导学案
第39课时导数在实际生活中的应用(2)自主导学导数在实际生活中的应用主要在、、等方面,用于解决有关最大值或最小值问题,一般地,应该先建立目标函数,再转化成前面用导数求函数最值问题.合作探究1.某工厂每天生产某种产品最多不超过40件,并且在生产过程中产品的正品率P与每日生产量x(x∈N*)件之间的关系为P=4200-x24500,每生产一件正品盈利4000元,每出现一件次品亏损2000元.(注:正品率=产品中的正品件数÷产品总件数×100%)(1)将日利润y(元)表示成日产量x(件)的函数;(2)求该厂的日产量为多少件时,日利润最大?并求出日利润的最大值.2.在经济学中,生产x单位产品的成本称为成本函数,记为C(x),出售x单位产品的收益称为收益函数,记为R(x),R(x)-C(x)称为利润函数,记为P(x).(1)如果C(x)=10-6x3-0.003x2+5x+1000,那么生产多少单位产品时,边际成本C´(x)最低?(2)如果C(x)=50x+10000,产品单价为p(x)=100-0.01x,那么怎样定价可使利润最大?3.甲、乙两地相距100km ,汽车从甲地以速度v (km/h )匀速行驶到乙地,已知汽车每小时的运输成本由固定成本和可变成本组成,固定成本为80000元,可变成本与速度v 的平方成正比,比例系数为k(k>0).(1)当k=12.5时,为使全程运输成本最小,汽车应以多大的速度行驶?(2)在条件(1)下,由于甲、乙两地间的道路需要维护,车速v 不得超过60(km/h ),为使全程运输成本最小,汽车应以多大的速度行驶?(3)甲、乙两地间的道路需要维护,车速v 被限制在[40,60](km/h )内,为使全程运输成本最小,汽车应以多大的速度行驶?回顾反思1.体会建构函数模型解决实际问题的基本思路;2.对于函数()(0,0)a f x x a x x=+>>,设其定义域为[m ,n],求函数最小值时,(1[,]m n ,则可直接使用基本不等式求得最小值;(2[m,n]不能确定,则需分类讨论,且用导数证明单调性.当堂检测1.一杯80o C 的热茶值置于桌面上,热茶的温度T (o C )随着时间t 的增加而逐渐下降,设T 与t 的函数关系为T=f(t),则f ´(3)=-3的实际意义是.2.某市在一次降雨过程中,降雨量()y mm 与时间(min)t 的函数关系可近似地表示为()y f t ==则在时刻40min t =的降雨强度为.3.(2010江苏卷第14题)将边长为1m 正三角形薄片,沿一条平行于底边的直线剪成两块,其中一块是梯形,记2(S =梯形的周长)梯形的面积,则S 的最小值是.1。
导数的实际应用导学案
导数的实际应用导学案【学习要求】1.了解导数在解决实际问题中的作用.2.掌握利用导数解决简单的实际生活中的优化问题.【学法指导】1.在利用导数解决实际问题的过程中体会建模思想.2.感受导数知识在解决实际问题中的作用,自觉形成将数学理论与实际问题相结合的思想,提高分析问题、解决问题的能力.【知识要点】1.在经济生活中,为使经营利润最大、生产效率最高,或为使用力最省、用料最少、消耗最省等,需要寻求相应的_____或.这些都是最优化问题.2.求实际问题的最大(小)值,导数是解决方法之一.要建立实际问题的.写出实际问题中变量之间的函数关系y=f(x),然后再利用导数研究函数的【问题探究】题型一面积、体积的最值问题例1如图所示,现有一块边长为a的正方形铁板,如果从铁板的四个角各截去一个相同的小正方形,做成一个长方体形的无盖容器.为使其容积最大,截下的小正方形边长应为多少?跟踪训练1已知矩形的两个顶点位于x轴上,另两个顶点位于抛物线y=4-x2在x轴上方的曲线上,求这个矩形面积最大时的边长.题型二强度最大、用料最省问题例2横截面为矩形的横梁的强度同它的断面高的平方与宽的积成正比.要将直径为d的圆木锯成强度最大的横梁,断面的宽度和高度应是多少?跟踪训练2挖一条隧道,截面拟建成矩形上方加半圆,如果截面积为20 m2,当宽为多少时,使截面周长最小,用料最省?题型三省时高效、费用最低问题例3如图所示,一海岛驻扎一支部队,海岛离岸边最近点B的距离是150 km.在岸边距点B 300 km的点A处有一军需品仓库.有一批军需品要尽快送达海岛.A与B之间有一铁路,现用海陆联运方式运送.火车时速为50 km,船时速为30 km,试在岸边选一点C,先将军需品用火车送到点C,再用轮船从点C运到海岛,问点C选在何处可使运输时间最短?跟踪训练3如图所示,设铁路AB=50,BC=10,现将货物从A运往C,已知单位距离铁路费用为2,公路费用为4,问在AB上何处修筑公路至C,可使运费由A至C最省?跟踪训练4某商场销售某种商品的经验表明,该商品每日的销售量y(单位:千克)与销售价格x(单位:元/千克)满足关系式y=ax-3+10(x-6)2,其中3<x<6,a为常数.已知销售价格为5元/千克时,每日可售出该商品11千克.(1)求a的值;(2)若该商品的成本为3元/千克,试确定销售价格x的值,使商场每日销售该商品所获得的利润最大.【当堂检测】1.方底无盖水箱的容积为256,则最省材料时,它的高为()A.4 B.6 C.4.5 D.82.某银行准备新设一种定期存款业务,经预算,存款量与存款利率的平方成正比,比例系数为k(k>0).已知贷款的利率为0.048 6,且假设银行吸收的存款能全部放贷出去.设存款利率为x,x∈(0,0.048 6),若使银行获得最大收益,则x的取值为多少?3.统计表明:某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/时)的函数解析式可以表示为y=1128 000x3-380x+8(0<x≤120).已知甲、乙两地相距100千米,当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?【课堂小结】1.利用导数解决生活中优化问题的一般步骤(1)找关系:分析实际问题中各量之间的关系;(2)列模型:列出实际问题的数学模型;(3)写关系:写出实际问题中变量之间的函数关系y=f(x);(4)求导:求函数的导数f′(x),解方程f′(x)=0;(5)比较:比较函数在区间端点和使f′(x)=0的点的数值的大小,最大(小)者为最大(小)值;(6)结论:根据比较值写出答案.2.在求实际问题的最大(小)值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.例如,长度、宽度应大于零,销售价格应为正数,等等.。
导数的实际应用教案
导数的实际应用教案第一章:导数的基本概念1.1 引入导数的概念解释导数的定义:函数在某一点的导数是其在该点的切线斜率。
强调导数的重要性:导数可以帮助我们理解函数的增减性、极值等性质。
1.2 导数的计算方法介绍导数的计算规则:常数函数的导数为0,幂函数的导数等。
讲解导数的运算法则:导数的四则运算、复合函数的导数等。
1.3 导数的应用解释导数在实际应用中的意义:例如,求解物体的速度、加速度等问题。
举例说明导数在实际问题中的应用:如优化问题、物理运动问题等。
第二章:导数与函数的增减性2.1 引入增减性的概念解释函数的单调递增和单调递减:函数在某一段区间内,如果导数大于0,则函数单调递增;如果导数小于0,则函数单调递减。
2.2 利用导数判断函数的极值解释函数的极值概念:函数在某一点的导数为0,且在该点附近导数符号发生变化的点。
讲解如何利用导数判断函数的极值:通过导数的正负变化来确定函数的极大值和极小值。
2.3 应用实例分析举例说明如何利用导数判断函数的增减性和极值:如函数f(x) = x^3的增减性和极值分析。
第三章:导数与曲线的切线3.1 切线方程的导数表示解释切线的概念:函数在某一点的导数即为该点处的切线斜率。
推导切线方程的一般形式:y y1 = m(x x1),其中m为切线斜率,(x1, y1)为切点坐标。
3.2 利用导数求解曲线的切线讲解如何利用导数求解曲线的切线:求出切点坐标,求出切线的斜率,写出切线方程。
3.3 应用实例分析举例说明如何利用导数求解曲线的切线:如函数f(x) = x^2的切线求解。
第四章:导数与函数的单调性4.1 单调性的定义与性质解释函数的单调性:函数在某一段区间内,如果导数大于0,则函数单调递增;如果导数小于0,则函数单调递减。
强调单调性的重要性:单调性可以帮助我们理解函数的变化趋势。
4.2 利用导数判断函数的单调性讲解如何利用导数判断函数的单调性:通过导数的正负来确定函数的单调递增或递减区间。
北师大版3.2.5 导数的实际应用导学案
1 3 x2 x 8 (0<x≤120).已知甲、乙两地相距 100 千米。 128000 80
(Ⅰ)当汽车以 40 千米/小时的速度匀速行驶时,从甲地到乙地要耗油多地耗油最少?最少为 多少升?
【检测反馈】 一.单项选择题 1 圆柱形金属饮料罐容积一定时,要使材料最省,则它的高与半径的比应 为( ) A 答案 B. 2 面积为 S 的一切矩形中,其周长 c 最小值是( A. 4 c B. ) D
2
3
安边中学 高三 年级 上 学期
备课组长签字:
数学 学科导学稿 执笔人:王广青 总第 20 课时
学生: 上课时间:2013.9 个人空间
包级领导签字: 集体备课
一、课题:3.4 导数的实际应用 二、学习目标 1.理解函数的单调性、最大值、最小值及其几何意义. 2.会用定义判断函数的单调性, 会求函数的单调区间及会用单调性求函数 的最值. 三、教学过程 1.优化问题:社会经济生活、 生产实践与科学研究等实际问题中有关利润最 大,用料最省,效率最高等问题通常称为优化问题. 2.利用导数解决实际问题中的最值问题的一般步骤: (1)阅读,审题,将冗长的叙述抽象为简单的、本质性的内容,分析各量之间 的关系,以及实际问题的数学模型, ,写出实际问题中变量之间的函数关 系式 y=f(x); (2)求函数的导数 f '( x), 解方程 f '( x) 0 (3)求出函数的极值点,比较函数在区间端点和极值点函数值大小,确定函 数的最大(小)值. (4)回归,根据数学问题的答案回答实际问题中的优化问题. 3.利用导数解决实际问题中的优化问题应注意的几点: (1)在求实际问题的最值时,一定要注意考虑实际问题的意义,不符合实际 意义的值应舍去。 (2)在实际问题中,有时会遇到函数在区间内只有一个点使 f ( x) 0 的情 形,如果函数在这点有极大值(小)值,那么不与端点值比较,也可以知道这就 是最大(小)值。 (3)在解决实际优化问题中,不仅要注意将问题中涉及的变量关系是用函数 关系式给予表示,还应该确定出函数关系式中自变量的定义区间。 【导学释疑】 例1.某工厂生产某种产品,已知该产品的月生产量 x (吨)与每吨产品 的价格 p (元/吨)之间的关系式为: p 24200
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学案14导数在研究函数中的应用0导学目标:1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件,会用导数求函数的极大值、极小值(多项式函数一般不超过三次)及最大(最小)值.自主梳理1.导数和函数单调性的关系:(1)若f′(x)>0在(a,b)上恒成立,则f(x)在(a,b)上是______函数,f′(x)>0的解集与定义域的交集的对应区间为______区间;(2)若f′(x)<0在(a,b)上恒成立,则f(x)在(a,b)上是______函数,f′(x)<0的解集与定义域的交集的对应区间为______区间;(3)若在(a,b)上,f′(x)≥0,且f′(x)在(a,b)的任何子区间内都不恒等于零⇔f(x)在(a,b)上为______函数,若在(a,b)上,f′(x)≤0,且f′(x)在(a,b)的任何子区间内都不恒等于零⇔f(x)在(a,b)上为______函数.2.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧________,右侧________,那么f(x0)是极大值;②如果在x0附近的左侧________,右侧________,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程________的根;③检查f′(x)在方程________的根左右值的符号.如果左正右负,那么f(x)在这个根处取得________;如果左负右正,那么f(x)在这个根处取得________.自我检测1.已知f(x)的定义域为R,f(x)的导函数f′(x)的图象如图所示,则()A.f(x)在x=1处取得极小值B.f(x)在x=1处取得极大值C.f(x)是R上的增函数D.f(x)是(-∞,1)上的减函数,(1,+∞)上的增函数2.(2009·广东)函数f(x)=(x-3)e x的单调递增区间是()A.(-∞,2) B.(0,3)C.(1,4) D.(2,+∞)3.(2011·济宁模拟)已知函数y=f(x),其导函数y=f′(x)的图象如图所示,则y=f(x)()A .在(-∞,0)上为减函数B .在x =0处取极小值C .在(4,+∞)上为减函数D .在x =2处取极大值4.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥43,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 5.(2011·福州模拟)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处取极值10,则f (2)=________.探究点一 函数的单调性例1 已知a ∈R ,函数f (x )=(-x 2+ax )e x (x ∈R ,e 为自然对数的底数). (1)当a =2时,求函数f (x )的单调递增区间;(2)若函数f (x )在(-1,1)上单调递增,求a 的取值范围;(3)函数f (x )能否为R 上的单调函数,若能,求出a 的取值范围;若不能,请说明理由.变式迁移1 (2009·浙江)已知函数f (x )=x 3+(1-a )x 2-a (a +2)x +b (a ,b ∈R ). (1)若函数f (x )的图象过原点,且在原点处的切线斜率是-3,求a ,b 的值; (2)若函数f (x )在区间(-1,1)上不单调,求a 的取值范围.探究点二 函数的极值例2 若函数f (x )=ax 3-bx +4,当x =2时,函数f (x )有极值-43.(1)求函数f (x )的解析式;(2)若关于x 的方程f (x )=k 有三个零点,求实数k 的取值范围.变式迁移2 设x =1与x =2是函数f (x )=a ln x +bx 2+x 的两个极值点. (1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f (x )的极大值点还是极小值点,并说明理由.探究点三 求闭区间上函数的最值 例3 (2011·六安模拟)已知函数f (x )=x 3+ax 2+bx +c ,曲线y =f (x )在点x =1处的切线为l :3x -y +1=0,若x =23时,y =f (x )有极值.(1)求a ,b ,c 的值;(2)求y =f (x )在[-3,1]上的最大值和最小值.变式迁移3 已知函数f (x )=ax 3+x 2+bx (其中常数a ,b ∈R ),g (x )=f (x )+f ′(x )是奇函数.(1)求f (x )的表达式;(2)讨论g (x )的单调性,并求g (x )在区间[1,2]上的最大值和最小值.分类讨论求函数的单调区间例 (12分)(2009·辽宁)已知函数f (x )=12x 2-ax +(a -1)ln x ,a >1.(1)讨论函数f (x )的单调性;(2)证明:若a <5,则对任意x 1,x 2∈(0,+∞),x 1≠x 2,有f (x 1)-f (x 2)x 1-x 2>-1.多角度审题 (1)先求导,根据参数a 的值进行分类讨论;(2)若x 1>x 2,结论等价于f (x 1)+x 1>f (x 2)+x 2,若x 1<x 2,问题等价于f (x 1)+x 1<f (x 2)+x 2,故问题等价于y =f (x )+x 是单调增函数.【答题模板】(1)解 f (x )的定义域为(0,+∞).f ′(x )=x -a +a -1x =x 2-ax +a -1x =(x -1)(x +1-a )x .[2分]①若a -1=1,即a =2时,f ′(x )=(x -1)2x .故f (x )在(0,+∞)上单调递增.②若a -1<1,而a >1,故1<a <2时,则当x ∈(a -1,1)时,f ′(x )<0;当x ∈(0,a -1)及x ∈(1,+∞)时,f ′(x )>0,故f (x )在(a -1,1)上单调递减,在(0,a -1),(1,+∞)上单调递增.③若a -1>1,即a >2时,同理可得f (x )在(1,a -1)上单调递减, 在(0,1),(a -1,+∞)上单调递增.[6分] (2)证明 考虑函数g (x )=f (x )+x =12x 2-ax +(a -1)ln x +x . 则g ′(x )=x -(a -1)+a -1x≥2x ·a -1x-(a -1)=1-(a -1-1)2.由于1<a <5,故g ′(x )>0, 即g (x )在(0,+∞)上单调递增, 从而当x 1>x 2>0时,有g (x 1)-g (x 2)>0, 即f (x 1)-f (x 2)+x 1-x 2>0, 故f (x 1)-f (x 2)x 1-x 2>-1.[10分]当0<x 1<x 2时,有f (x 1)-f (x 2)x 1-x 2=f (x 2)-f (x 1)x 2-x 1>-1.综上,若a <5,对任意x 1,x 2∈(0,+∞),x 1≠x 2有f (x 1)-f (x 2)x 1-x 2>-1.[12分]【突破思维障碍】(1)讨论函数的单调区间的关键是讨论导数大于0或小于0的不等式的解集,一般就是归结为一个一元二次不等式的解集的讨论,在能够通过因式分解得到导数等于0的根的情况下,根的大小是分类的标准;(2)利用导数解决不等式问题的主要方法就是构造函数,通过函数研究函数的性质进而解决不等式问题.1.求可导函数单调区间的一般步骤和方法: (1)确定函数f (x )的定义域;(2)求f ′(x ),令f ′(x )=0,求出它在定义域内的一切实根;(3)把函数f (x )的间断点(即f (x )的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f (x )的定义区间分成若干个小区间;(4)确定f ′(x )在各个开区间内的符号,根据f ′(x )的符号判定函数f (x )在每个相应小开区间内的增减性.2.可导函数极值存在的条件:(1)可导函数的极值点x 0一定满足f ′(x 0)=0,但当f ′(x 1)=0时,x 1不一定是极值点.如f (x )=x 3,f ′(0)=0,但x =0不是极值点.(2)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同.3.函数的最大值、最小值是比较整个定义区间的函数值得出来的,函数的极值是比较极值点附近的函数值得出来的.函数的极值可以有多有少,但最值只有一个,极值只能在区间内取得,最值则可以在端点取得,有极值的未必有最值,有最值的未必有极值,极值可能成为最值,最值只要不在端点必定是极值.4.求函数的最值以导数为工具,先找到极值点,再求极值和区间端点函数值,其中最大的一个是最大值,最小的一个是最小值.(满分:75分)一、选择题(每小题5分,共25分) 1.(2011·大连模拟)设f (x ),g (x )是R 上的可导函数,f ′(x )、g ′(x )分别为f (x )、g (x )的导函数,且f ′(x )·g (x )+f (x )g ′(x )<0,则当a <x <b 时,有 ( )A .f (x )g (b )>f (b )g (x )B .f (x )g (a )>f (a )g (x )C .f (x )g (x )>f (b )g (b )D .f (x )g (x )>f (a )g (a )2.函数f (x )的定义域为开区间(a ,b ),导函数f ′(x )在(a ,b )内的图象如图所示,则函数f (x )在开区间(a ,b )内有极小值点 ( )A .1个B .2个C .3个D .4个3.(2011·嘉兴模拟)若函数y =a (x 3-x )在区间⎝⎛⎭⎫-33,33上为减函数,则a 的取值范围是 ( )A .a >0B .-1<a <0C .a >1D .0<a <14.已知函数f (x )=12x 4-2x 3+3m ,x ∈R ,若f (x )+9≥0恒成立,则实数m 的取值范围是()A .m ≥32B .m >32C .m ≤32D .m <325.设a ∈R ,若函数y =e ax+3x ,x ∈R 有大于零的极值点,则 ( )A .a >-3B .a <-3C .a >-13D .a <-13题号 1 2 3 4 5 答案 6.(2009·辽宁)若函数f (x )=x 2+ax +1在x =1处取极值,则a =________.7.已知函数f (x )的导函数f ′(x )的图象如右图所示,给出以下结论: ①函数f (x )在(-2,-1)和(1,2)上是单调递增函数;②函数f (x )在(-2,0)上是单调递增函数,在(0,2)上是单调递减函数; ③函数f (x )在x =-1处取得极大值,在x =1处取得极小值; ④函数f (x )在x =0处取得极大值f (0).则正确命题的序号是________.(填上所有正确命题的序号).8.已知函数f (x )=x 3+mx 2+(m +6)x +1既存在极大值又存在极小值,则实数m 的取值范围为________.三、解答题(共38分)9.(12分)求函数f (x )=2x +1x 2+2的极值.10.(12分)(2011·秦皇岛模拟)已知a 为实数,且函数f (x )=(x 2-4)(x -a ). (1)求导函数f ′(x );(2)若f ′(-1)=0,求函数f (x )在[-2,2]上的最大值、最小值.11.(14分)(2011·汕头模拟)已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),且函数g (x )=f ′(x )+6x 的图象关于y 轴对称.(1)求m ,n 的值及函数y =f (x )的单调区间;(2)若a >0,求函数y =f (x )在区间(a -1,a +1)内的极值.答案 自主梳理1.(1)增 增 (2)减 减 (3)增 减 2.(1)①f ′(x )>0 f ′(x )<0 ②f ′(x )<0 f ′(x )>0 (2)②f ′(x )=0 ③f ′(x )=0 极大值 极小值 自我检测1.C 2.D 3.C 4.C 5.18解析 f ′(x )=3x 2+2ax +b ,由题意⎩⎪⎨⎪⎧ f (1)=10,f ′(1)=0,即⎩⎪⎨⎪⎧1+a +b +a 2=10,3+2a +b =0,得a =4,b =-11或a =-3,b =3.但当a =-3时,f ′(x )=3x 2-6x +3≥0,故不存在极值, ∴a =4,b =-11,f (2)=18. 课堂活动区例1 解题导引 (1)一般地,涉及到函数(尤其是一些非常规函数)的单调性问题,往往可以借助导数这一重要工具进行求解.函数在定义域内存在单调区间,就是不等式f ′(x )>0或f ′(x )<0在定义域内有解.这样就可以把问题转化为解不等式问题.(2)已知函数在某个区间上单调求参数问题,通常是解决一个恒成立问题,方法有①分离参数法,②利用二次函数中恒成立问题解决.(3)一般地,可导函数f (x )在(a ,b )上是增(或减)函数的充要条件是:对任意x ∈(a ,b ),都有f ′(x )≥0(或f ′(x )≤0),且f ′(x )在(a ,b )的任何子区间内都不恒等于零.特别是在已知函数的单调性求参数的取值范围时,要注意“等号”是否可以取到.解 (1)当a =2时,f (x )=(-x 2+2x )e x ,∴f ′(x )=(-2x +2)e x +(-x 2+2x )e x =(-x 2+2)e x . 令f ′(x )>0,即(-x 2+2)e x >0, ∵e x >0,∴-x 2+2>0,解得-2<x < 2. ∴函数f (x )的单调递增区间是(-2,2). (2)∵函数f (x )在(-1,1)上单调递增, ∴f ′(x )≥0对x ∈(-1,1)都成立. ∵f ′(x )=[-x 2+(a -2)x +a ]e x∴[-x 2+(a -2)x +a ]e x ≥0对x ∈(-1,1)都成立. ∵e x >0,∴-x 2+(a -2)x +a ≥0对x ∈(-1,1)都成立, 即x 2-(a -2)x -a ≤0对x ∈(-1,1)恒成立. 设h (x )=x 2-(a -2)x -a只须满足⎩⎨⎧h (-1)≤0h (1)≤0,解得a ≥32.(3)若函数f (x )在R 上单调递减,则f ′(x )≤0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≤0对x ∈R 都成立. ∵e x >0,∴x 2-(a -2)x -a ≥0对x ∈R 都成立. ∴Δ=(a -2)2+4a ≤0,即a 2+4≤0,这是不可能的. 故函数f (x )不可能在R 上单调递减.若函数f (x )在R 上单调递增,则f ′(x )≥0对x ∈R 都成立,即[-x 2+(a -2)x +a ]e x ≥0对x ∈R 都成立.∵e x >0,∴x 2-(a -2)x -a ≤0对x ∈R 都成立. 而x 2-(a -2)x -a ≤0不可能恒成立, 故函数f (x )不可能在R 上单调递增. 综上可知函数f (x )不可能是R 上的单调函数.变式迁移1 解 (1)由题意得f ′(x )=3x 2+2(1-a )x -a (a +2),又⎩⎪⎨⎪⎧f (0)=b =0f ′(0)=-a (a +2)=-3, 解得b =0,a =-3或a =1.(2)由f ′(x )=0,得x 1=a ,x 2=-a +23.又f (x )在(-1,1)上不单调,即⎩⎨⎧-1<a <1,a ≠-a +23或⎩⎪⎨⎪⎧-1<-a +23<1,a ≠-a +23.解得⎩⎪⎨⎪⎧ -1<a <1,a ≠-12,或⎩⎪⎨⎪⎧-5<a <1,a ≠-12.所以a 的取值范围为(-5,-12)∪(-12,1).例2 解题导引 本题研究函数的极值问题.利用待定系数法,由极值点的导数值为0,以及极大值、极小值,建立方程组求解.判断函数极值时要注意导数为0的点不一定是极值点,所以求极值时一定要判断导数为0的点左侧与右侧的单调性,然后根据极值的定义判断是极大值还是极小值.解 (1)由题意可知f ′(x )=3ax 2-b .于是⎩⎪⎨⎪⎧ f ′(2)=12a -b =0f (2)=8a -2b +4=-43,解得⎩⎪⎨⎪⎧a =13,b =4 故所求的函数解析式为f (x )=13x 3-4x +4.(2)由(1)可知f ′(x )=x 2-4=(x -2)(x +2). 令f ′(x )=0得x =2或x =-2,x (-∞,-2)-2 (-2,2) 2 (2,+∞)f ′(x ) + 0 - 0 + f (x ) 单调递增极大值单调递减极小值单调递增因此,当x =-2时,f (x )有极大值283,当x =2时,f (x )有极小值-43,所以函数的大致图象如图, 故实数k 的取值范围为 (-43,283). 变式迁移2 解 (1)f ′(x )=ax+2bx +1,∴⎩⎪⎨⎪⎧f ′(1)=a +2b +1=0f ′(2)=a 2+4b +1=0.解得a =-23,b =-16. (2)f ′(x )=-23x +(-x3)+1=-(x -1)(x -2)3x .x (0,1) 1 (1,2) 2 (2,+∞)f ′(x ) - 0 + 0 - f (x )单调递减极小值单调递增极大值单调递减例3 解题导引 设函数f (x )在[a ,b ]上连续,在(a ,b )内可导,求f (x )在[a ,b ]上的最大值和最小值的步骤:(1)求函数y =f (x )在(a ,b )内的极值.(2)将函数y =f (x )的各极值与端点处的函数值f (a )、f (b )比较,其中最大的一个是最大值,最小的一个是最小值.解 (1)由f (x )=x 3+ax 2+bx +c , 得f ′(x )=3x 2+2ax +b ,当x =1时,切线l 的斜率为3,可得2a +b =0;①当x =23时,y =f (x )有极值,则f ′⎝⎛⎭⎫23=0, 可得4a +3b +4=0.② 由①②解得a =2,b =-4, 又切点的横坐标为x =1,∴f (1)=4. ∴1+a +b +c =4.∴c =5.(2)由(1),得f (x )=x 3+2x 2-4x +5, ∴f ′(x )=3x 2+4x -4.令f ′(x )=0,得x =-2或x =23,∴f ′(x )<0的解集为⎝⎛⎭⎫-2,23,即为f (x )的减区间. [-3,-2)、⎝⎛⎦⎤23,1是函数的增区间.又f (-3)=8,f (-2)=13,f ⎝⎛⎭⎫23=9527,f (1)=4,∴y =f (x )在[-3,1]上的最大值为13,最小值为9527.变式迁移3 解 (1)由题意得f ′(x )=3ax 2+2x +b . 因此g (x )=f (x )+f ′(x )=ax 3+(3a +1)x 2+(b +2)x +b . 因为函数g (x )是奇函数,所以g (-x )=-g (x ),即对任意实数x , 有a (-x )3+(3a +1)(-x )2+(b +2)(-x )+b =-[ax 3+(3a +1)x 2+(b +2)x +b ],从而3a +1=0,b =0,解得a =-13,b =0,因此f (x )的表达式为f (x )=-13x 3+x 2.(2)由(1)知g (x )=-13x 3+2x ,所以g ′(x )=-x 2+2,令g ′(x )=0, 解得x 1=-2,x 2=2,则当x <-2或x >2时,g ′(x )<0,从而g (x )在区间(-∞,-2),(2,+∞)上是减函数; 当-2<x <2时,g ′(x )>0,从而g (x )在区间(-2,2)上是增函数.由前面讨论知,g (x )在区间[1,2]上的最大值与最小值只能在x =1,2,2时取得, 而g (1)=53,g (2)=423,g (2)=43.因此g (x )在区间[1,2]上的最大值为g (2)=423,最小值为g (2)=43.课后练习区1.C 2.A 3.A 4.A 5.B 6.3解析 ∵f ′(x )=(x 2+ax +1)′=(x 2+a )′·(x +1)-(x 2+a )(x +1)′(x +1)2=x 2+2x -a (x +1)2,又∵x =1为函数的极值,∴f ′(1)=0. ∴1+2×1-a =0,即a =3.7.②④解析 观察函数f (x )的导函数f ′(x )的图象,由单调性、极值与导数值的关系直接判断. 8.(-∞,-3)∪(6,+∞)解析 f ′(x )=3x 2+2mx +m +6=0有两个不等实根,则Δ=4m 2-12×(m +6)>0,∴m >6或m <-3.9.解 f ′(x )=(2x +1x 2+2)′=-2(x +2)(x -1)(x 2+2)2,由f ′(x )=0得x =-2,1.………………(4分) 当x ∈(-∞,-2)时f ′(x )<0,当x ∈(-2,1)时f ′(x )>0,故x =-2是函数的极小值点,故f (x )的极小值为f (-2)=-12;…………………………………………………………………(8分)当x ∈(-2,1)时f ′(x )>0,当x ∈(1,+∞)时f ′(x )<0, 故x =1是函数的极大值点,所以f (x )的极大值为f (1)=1.……………………………………………………………(12分) 10.解 (1)由f (x )=x 3-ax 2-4x +4a ,得f ′(x )=3x 2-2ax -4.…………………………………………………………………(4分)。