《导数的应用》教学设计

合集下载

导数的应用教案

导数的应用教案

导数的应用教案导数的应用教案导数是微积分中的重要概念,它在解决实际问题中起着至关重要的作用。

本文将介绍一份导数的应用教案,帮助学生更好地理解导数的应用。

一、引言在学习导数之前,我们首先要明确导数的定义和意义。

导数表示函数在某一点的变化率,它可以帮助我们理解函数的斜率、速度、加速度等概念。

在实际应用中,导数可以用来解决各种问题,如求最值、判断函数的增减性、求曲线的切线等。

二、导数的计算方法在教学中,我们首先要教授学生导数的计算方法。

这包括求常函数、幂函数、指数函数、对数函数、三角函数等函数的导数。

通过具体的例子和计算过程,学生可以更好地理解导数的计算方法。

三、导数的几何意义导数不仅有计算上的意义,还有几何上的意义。

在这一部分,我们可以通过绘制函数图像,让学生观察导数和函数图像之间的关系。

例如,当导数为正时,函数图像是上升的;当导数为负时,函数图像是下降的。

通过这种方式,学生可以更好地理解导数的几何意义。

四、导数的应用举例在实际应用中,导数有广泛的应用。

在这一部分,我们可以给学生提供一些具体的例子,让他们应用导数解决实际问题。

例如,求函数的最值、判断函数的增减性、求曲线的切线等。

通过实际问题的解决,学生可以更好地理解导数的应用。

五、导数的局限性尽管导数在解决实际问题中有很大的作用,但它也有一定的局限性。

在这一部分,我们可以讨论导数的局限性,并引导学生思考如何克服这些局限性。

例如,当函数不可导时,我们如何处理?当函数存在间断点时,我们如何求导?通过这种思考,学生可以更全面地理解导数的应用。

六、总结与展望在教学结束时,我们要对导数的应用进行总结,并展望其在更高级的数学学科中的应用。

例如,导数在微分学、积分学、微分方程等领域中都有重要的应用。

通过对导数的应用的总结和展望,学生可以更好地理解导数的重要性和广泛性。

以上是一份导数的应用教案的大致内容。

通过这份教案,我们可以帮助学生更好地理解导数的应用,并培养他们运用导数解决实际问题的能力。

人教版高中选修(B版)1-13.3导数的应用教学设计

人教版高中选修(B版)1-13.3导数的应用教学设计

人教版高中选修(B版)1-13.3导数的应用教学设计一、教学目标1.了解导数的定义及意义;2.能够求导函数,确定导数的应用;3.能够结合实际问题,运用导数解决问题。

二、教学重点和难点1.理解导数的概念及其应用;2.能够深入理解导数的性质及其应用。

三、教学内容和学时分配学时教学内容1学时导数的概念及定义2学时求函数的导数、导数的性质3学时利用导数解决实际问题四、教学方法本章将采用讲授法、示范法和练习相结合的方法进行教学。

在课堂上,首先讲解导数的概念及定义,然后结合具体的函数,对导数进行求解,并讲解导数的性质。

最后,通过实际问题的例子,引导学生掌握导数的应用。

五、教学过程设计第一学时1. 导入出示一道图形题,询问学生对图形的相关问题,并引导学生思考:•针对这个图形,我们能想到什么?•这个图形有什么特点?2. 逐步讲解导数的概念及定义教师通过介绍图形的相关信息,引导学生深入理解导数,包括导数的定义、符号和意义。

3. 练习设计一些导数的基本练习题,巩固学生对导数的概念和定义。

第二学时1. 导入出示一道函数题,让学生解析函数,并思考如何求导。

2. 求函数的导数,讲解导数的性质教师针对所给函数,逐步让学生求导,同时讲解导数的性质。

3. 引导学生运用导数通过不同的例题,引导学生掌握如何运用导数解决实际问题。

第三学时1. 导入出示一道例题,让学生思考如何用导数解决这个问题。

2. 运用导数解决实际问题教师引导学生通过导数,解决实际问题,包括最大值、最小值和拐点。

3. 水平测验出具有难度的导数练习题,对学生掌握的知识进行综合测验。

六、教学评估本章教学主要从导数的概念、求法、性质和应用四方面进行评估。

可以采用学生自评、互评和教师评价相结合的方法,针对不同方面进行评估。

七、教学资源•人教版高中数学B教材;•PowerPoint课件;•练习册。

八、拓展阅读•龚春华. 普通高中数学必修3. 高等教育出版社.2006•陈淑敏. 数学分析. 高等教育出版社.2007。

导数的应用教案

导数的应用教案

导数的应用教案一、教学目标1.了解导数的概念和性质;2.掌握导数的计算方法;3.理解导数在实际问题中的应用。

二、教学重点1.导数的概念和性质;2.导数的计算方法;3.导数在实际问题中的应用。

三、教学难点1.导数在实际问题中的应用;2.解决实际问题时如何运用导数。

四、教学内容1. 导数的概念和性质导数是微积分中的一个重要概念,它表示函数在某一点处的变化率。

导数的定义如下:f′(x)=limΔx→0f(x+Δx)−f(x)Δx其中,f′(x)表示函数f(x)在x处的导数。

导数的性质如下:1.导数存在的充分必要条件是函数在该点处连续;2.导数表示函数在该点处的变化率,即函数在该点处的切线斜率;3.导数的值可以为正、负或零,分别表示函数在该点处单调递增、单调递减或取极值。

2. 导数的计算方法导数的计算方法有以下几种:1.利用导数的定义进行计算;2.利用导数的四则运算法则进行计算;3.利用导数的链式法则进行计算;4.利用导数的隐函数求导法进行计算。

3. 导数在实际问题中的应用导数在实际问题中的应用非常广泛,下面介绍几个常见的应用:3.1 函数的极值函数的极值是指函数在某一点处取得最大值或最小值。

求函数的极值可以通过求导数来实现。

具体步骤如下:1.求出函数的导数;2.解方程f′(x)=0,求出导数为零的点;3.利用二阶导数判定法判断这些点是否为极值点。

3.2 函数的最大值和最小值函数的最大值和最小值是指函数在某一区间内取得的最大值或最小值。

求函数的最大值和最小值可以通过求导数和极值来实现。

具体步骤如下:1.求出函数在该区间内的导数;2.求出导数为零的点和导数不存在的点;3.将这些点代入原函数,求出函数在这些点处的函数值;4.比较这些函数值,得出函数的最大值和最小值。

3.3 函数的图像函数的图像可以通过求导数来确定函数的单调性和凸凹性。

具体步骤如下:1.求出函数的导数;2.判断导数的正负性,得出函数的单调性;3.求出导数的导数,即函数的二阶导数;4.判断二阶导数的正负性,得出函数的凸凹性。

导数的应用 教案

导数的应用 教案

导数的应用教案教案标题:导数的应用教案目标:1. 理解导数的概念及其在数学中的应用;2. 掌握导数的计算方法;3. 能够运用导数解决实际问题。

教案步骤:1. 引入导数的概念(10分钟)a. 通过简单的图形和实例引导学生思考函数的变化率;b. 解释导数的定义:导数表示函数在某一点的变化率,即函数曲线在该点的切线斜率。

2. 计算导数的方法(15分钟)a. 回顾求导法则,包括常数法则、幂法则、和差法则、乘积法则和商法则;b. 通过例题演示如何应用这些法则计算导数;c. 强调使用导数的基本运算规则简化计算过程。

3. 导数在函数图像上的应用(15分钟)a. 解释导数与函数图像的关系:导数为正表示函数递增,导数为负表示函数递减,导数为零表示函数存在极值点;b. 引导学生通过观察函数图像,确定函数在不同区间上的增减性和极值点。

4. 导数在最优化问题中的应用(20分钟)a. 介绍最优化问题的概念:通过求解导数为零的方程确定函数的最大值或最小值;b. 通过实际问题(如最大面积、最小成本等)引导学生运用导数解决最优化问题;c. 提醒学生在解决问题时考虑边界条件和实际意义。

5. 实践应用练习(20分钟)a. 提供一些练习题,包括计算导数、分析函数图像和解决最优化问题;b. 鼓励学生独立解答,并提供必要的指导和帮助;c. 针对学生容易出错的地方进行重点讲解和澄清。

6. 总结与反思(10分钟)a. 总结导数的应用领域和方法;b. 鼓励学生分享他们在实践应用中的体验和困惑;c. 解答学生提出的问题,并给予必要的指导和建议。

教案评估:1. 课堂参与度:观察学生在课堂上的积极参与程度;2. 练习题表现:评估学生在实践应用练习中的解题能力;3. 反馈问答:通过回答学生的问题,评估他们对导数应用的理解程度。

教案扩展:1. 深入研究导数的几何意义和物理应用;2. 引导学生进行导数的相关研究项目,如导数在经济学、工程学等领域的应用;3. 探索更高阶导数的概念和应用。

人教版高二《导数的应用》数学教案

人教版高二《导数的应用》数学教案

人教版高二《导数的应用》数学教案【小编寄语】查字典数学网小编给大家整理了人教版高二«导数的运用»数学教案,希望能给大家带来协助!第三章导数运用3.1 函数的单调性与极值3.1.1 导数与函数的单调性学习目的:1、了解导数正、负与函数单调性之间的关系;2、能应用导函数确定函数的单调区间重点、难点:应用导函数求单调性自主学习(1) 对恣意,有,那么在区间内(2) 对恣意,有,那么在区间内协作探求资源网例1、确定函数在哪个区间上是增函数,哪个区间上是减函数?例2、确定函数在哪些区间上是增函数。

例3、确定函数的单调区间。

例4、证明:当时,有。

练习反应1、确定以下函数的单调区间(1) (2)2、讨论函数的单调性:(1)(2)(3)3、用导数证明:(1) 在区间上是增函数;3.1.2 函数的极值学习目的:1、掌握函数极值点的定义与求解步骤;2、体会导数方法在研讨函数性质中的普通性与有效性。

重点、难点:应用导数求极大、极小值自主学习1、极大值2、极小值3、极值与导数之间的关系:(1)极大值与导数的关系:左侧右侧增加(2)极小值与导数的关系:左侧增加极小值添加例1、求函数的极值。

例2、求函数的极值。

练习反应1、求以下函数的极值:2、设函数有极小值、极大值,一定小于吗?试作图说明。

3、作出契合以下条件的函数图像(1) 时,时, ;3.2 导数在实践效果中的运用3.2.1 实践效果中导数的意义学习目的:1、掌握解运用题的思绪与方法,能剖析出变量间的关系,树立起函数模型,确定自变量的定义域。

2、能用导数的知识对实践效果求解。

重点、难点:1、树立起函数模型,确定自变量的定义域。

2、用导数的知识对实践效果求解自主学习解运用题的思绪与方法:1、审题:了解题意,剖析效果的主要关系2、建模:3、求解:求得数学效果的解4、反应:例1、在边长为60厘米的正方形铁皮的四角切去边长相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底铁皮箱,箱底边长为多少时,箱子容积最大?最大容积是多少?例2、某种圆柱形的饮料罐的容积一定时,如何确定它的高与底半径,使得所用资料最省?例3、在平面直角坐标系内,过点(1,4)引不时线,使它与两坐标轴上的截距都为正,且两截距之和最小,求这条直线的方程。

导数的应用课程设计

导数的应用课程设计

导数的应用课程设计一、教学目标本节课的教学目标是让学生掌握导数的应用,包括求函数的切线方程、单调性、极值和最值等。

学生应能理解导数的基本概念,并能运用导数解决实际问题。

在技能目标方面,学生应能熟练运用导数求解函数的切线方程、单调区间、极值和最值等问题。

在情感态度价值观目标方面,学生应能体验到数学的实用性和趣味性,培养对数学的热爱和兴趣。

二、教学内容本节课的教学内容主要包括导数的定义、导数的几何意义、导数的运算规则以及导数在实际问题中的应用。

首先,引导学生回顾函数的极限概念,进而引入导数的定义,通过几何直观解释导数的概念。

然后,介绍导数的运算规则,包括求导法则和复合函数的导数。

最后,结合实际问题,讲解导数在求解函数的切线方程、单调性、极值和最值等方面的应用。

三、教学方法为了提高学生的学习兴趣和主动性,本节课采用多种教学方法。

首先,运用讲授法,系统地讲解导数的定义、几何意义和运算规则。

其次,采用案例分析法,通过具体例子引导学生运用导数解决实际问题。

此外,小组讨论,让学生互相交流学习心得,提高合作能力。

最后,利用实验法,让学生亲自动手操作,加深对导数概念的理解。

四、教学资源为了支持教学内容和教学方法的实施,本节课准备了一系列教学资源。

教材方面,选用《高等数学导数应用》教材,系统地讲解导数的理论和应用。

参考书方面,推荐学生阅读《导数及其应用》等书籍,以拓宽知识面。

多媒体资料方面,制作了导数的动画演示和案例分析的PPT,增强课堂的趣味性和直观性。

实验设备方面,准备了计算机和投影仪,以便进行课堂演示和讲解。

五、教学评估本节课的评估方式包括平时表现、作业和考试三个部分。

平时表现主要评估学生在课堂上的参与程度、提问回答和小组讨论的表现。

作业方面,布置与课程内容相关的练习题,要求学生在规定时间内完成,培养学生的自主学习能力。

考试则分为期中考试和期末考试,期中考试主要评估学生对导数知识的掌握情况,期末考试则综合评估学生对导数应用的理解和运用能力。

【教案】校级公开课--导数的应用(教案)

【教案】校级公开课--导数的应用(教案)

《导数的应用》教学设计开课班级:高二(1)开课教师:教学设计背景本节是高中数学人教A版选修2-2第一章“导数在研究函数中的应用”内容基础上,进一步拓展延伸应用的内容。

导数除了在函数的单调性及函数的极值、最值等方面应用外,还可以应用于探究函数的零点或方程的解问题,以及应用于不等式证明问题,既灵活多变,又具有一定的综合能力要求,基于教材和学生知能背景及前期教学状况,相应作此导数的应用教学设计,以帮助学生进一步树立联系的观点利用导数处理问题的意识.学情分析学生前期已经学习导数在研究函数中的应用等内容,体会了导数的思想,初步感受了导数应用价值,初步具备了利用导数处理问题的意识和能力。

教学目标通过变式教学过程,用联系的观点,进一步探究导数在方程实根(或函数零点)问题、不等式问题、函数的极值或最值问题中的应用,培养运用函数与方程、化归与转化、数形结合及分类讨论等数学思想方法解决问题的能力。

培养学生综合思考问题的能力,以及克服困难解决问题的信心与毅力。

教学重点、难点重点应用导数导数在方程实根(或函数零点)问题、不等式问题、函数的极值或最值问题中的应用难点利用联系的观点,运用函数与方程、化归与转化、数形结合及分类讨论等数学思想解决问题教法变式教学、学生探究、引导讲授教学用具:多媒体教学过程一、复习回顾知识点一:导数的几何意义函数y=f (x) 在点x0导数的几何意义,就是曲线y=f (x) 在点P(x, f(x))处的切线的斜率,曲线y=f (x) 在P (x0, f (x))处的切线方程为y-y=f′(x) (x-x)知识点二:函数的单调性当函数y=f(x)在某个区间(),a b 内可导如果'()0f x >,则函数y=f(x)在这个区间上为增函数;如果'()0f x <,则函数y=f(x)在这个区间上为减函数.知识点三:函数的极值对于可导函数f(x)判断其极值的方法为如果在0x 附近的左侧'()0f x >,右侧'()0f x <,那么,0()f x 是极大值;如果在0x 附近的左侧'()0f x <,右侧'()0f x >,那么,0()f x 是极小值.知识点四:函数的最值闭区间[a ,b]上连续函数f(x)必有最大值与最小值,其求法为:○1求函数f(x)在(a ,b)内的极值;○2将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值。

初中数学导数应用教案

初中数学导数应用教案

初中数学导数应用教案教学目标:1. 理解导数的定义和意义;2. 学会使用导数求解函数的极值和单调性;3. 能够应用导数解决实际问题。

教学重点:1. 导数的定义和意义;2. 导数的求解方法;3. 导数在实际问题中的应用。

教学难点:1. 导数的符号判断;2. 导数在实际问题中的应用。

教学准备:1. 教师准备PPT或黑板,展示导数的定义和求解方法;2. 准备一些实际问题,用于引导学生应用导数解决。

教学过程:一、导入(5分钟)1. 引导学生回顾函数的概念,复习函数图像;2. 提问:函数图像上某一点的切线斜率是什么?二、导数的定义和意义(15分钟)1. 介绍导数的定义:函数在某一点的导数是其图像在该点切线的斜率;2. 解释导数的意义:导数反映了函数在某一点的增减性,即函数值的变化率;3. 举例说明导数的符号判断:正导数表示函数单调递增,负导数表示函数单调递减,导数为0表示函数取得极值。

三、导数的求解方法(15分钟)1. 介绍导数的求解方法:导数的基本运算法则和导数的四则运算法则;2. 演示如何求解函数的导数:求解常见函数的导数,如幂函数、指数函数、对数函数等;3. 练习求解函数的导数:让学生独立求解一些给定函数的导数。

四、导数在实际问题中的应用(15分钟)1. 介绍实际问题中导数的应用:如最优化问题、运动物体的速度与加速度等;2. 演示如何应用导数解决实际问题:给出一个实际问题,引导学生运用导数求解;3. 练习应用导数解决实际问题:让学生独立解决一些给定的实际问题。

五、总结与反思(5分钟)1. 回顾本节课所学内容,让学生总结导数的定义、意义和求解方法;2. 提问:你们认为导数在数学和实际生活中有什么作用?教学延伸:1. 深入学习导数的应用:如曲线的凹凸性、拐点等;2. 学习多元函数的导数:函数的多个变量之间的导数关系。

教学反思:本节课通过导入、讲解、演示和练习等环节,让学生掌握了导数的定义、意义和求解方法,并能够应用导数解决实际问题。

《导数的应用》教学设计

《导数的应用》教学设计

《导数的应用》教学设计一、教学目标:1.通过导数的应用,能够应用导数求函数的极值;2.能够应用导数求函数的最大值和最小值;3.了解导数在经济学、物理学和生物学中的应用。

二、教学重点和难点:1.函数极值的应用;2.函数最大值和最小值的应用;3.导数在实际问题中的应用。

三、教学资源:1.教材:高中数学教材;2.教学工具:黑板、彩色粉笔、计算器等。

四、教学步骤:1.导入(10分钟)通过提问带入情境,引导学生思考导数的概念和作用,例如:如果已知汽车的速度恒定为60公里/小时,是否能够推断出汽车行驶了多少时间?如果已知汽车的位置随时间的变化规律,能否推断出汽车的速度?针对这些问题,引导学生理解导数的概念并介绍导数的定义。

2.讲解(30分钟)根据教材内容,系统讲解导数的基本概念和性质,包括导数的定义、导数的几何意义、导数的计算方法等。

重点讲解导数在函数极值和函数最大值最小值中的应用,引导学生理解导函数的意义和应用方法。

3.实例讲解(30分钟)通过多个实际问题的讲解,引导学生掌握导数在实际问题中的应用。

例如:(1)已知物体从起点出发的运动方程为$s(t)=4t^3-6t^2+2t+1$,求物体运动的速度函数和加速度函数,并分析物体的运动状态。

(2)房子的月租金是租期的函数,已知房租每年递增2%,如果租期为5年,求房租的最低值和最高值。

通过实例讲解,让学生对导数的应用有更深刻的理解,并能灵活运用导数解决问题。

4.练习(30分钟)分发练习题,让学生独自完成。

练习题包括各类导数应用题,如求函数的极值、最大值和最小值等。

在练习中,教师可设置多道思维拓展题,培养学生的创新思维。

5.汇总(10分钟)将练习题的解答进行汇总,对学生的解答进行点评,纠正错误和解释相关知识点。

总结导数的应用,强调导数的重要性,并展示导数在其他学科中的应用,激发学生对导数的兴趣。

五、教学反思:通过本节课的教学,学生对导数的应用问题有了初步了解,能够应用导数解决实际问题。

《导数的应用——切线问题》教教学设计

《导数的应用——切线问题》教教学设计

《导数的应用——切线问题》教案【教学目标】:1、知识与技能 :理解导数的几何意义;会用导数解决与切线相关的问题。

2、过程与方法:经历用导数几何意义求切线学习过程,体会导数的几何意义在求曲线切线问题方面的应用。

3、情感态度与价值观: 体会导数与曲线的联系,初步认识数学的科学价值,发展理性思维能力。

【教学重点】:利用导数的几何意义解决切线问题; 【教学难点】:理解函数的导数就是在某点处的切线的斜率及曲线的切线。

【教学过程】 知识回顾:一、求切线1、求过曲线上某个定点处的切线例1(2009全国卷Ⅱ理)曲线y =x 2x -1在点(1,1)处的切线方程。

(学生自己完成)解 点(1,1)在曲线上.因为y ′=-1(2x -1)2,在点(1,1)处的切线斜率k =-1,所以切线方程为x +y -2=0总结:求过曲线上某个定点处的切线的步骤: i )求导函数)('x f ii )算斜率)(0'x f k ='00()()f x x x f x =函数在处的导数就是:00'0(),())(),y f x P x f x k f x P ==曲线在点(处的切线PT 的斜率。

即在点处的切线方程为000()()y y f x x x '-=-iii )由点斜式写出直线方程 2、曲线的切线经过某个定点例2 已知函数f (x )=x 3-3x (x ∈R )的图像为曲线C ,曲线C 的切线l 经过点A (2,2),求切线l 的方程.解 设切点为(t ,t 3-3t ),切线l 的斜率为k =3t 2-3, 切线方程为y -(t 3-3t )=(3t 2-3)(x -t ). 因为l 过点A (2, 2),所以2-(t 3-3t )=(3t 2-3)(2-t ), 即t 3-3t 2+4=0,解得t =2或t =-1. ①当t =2时,l :9x -y -16=0; ②当t =-1时,l :y =2.综上,切线l 的方程为y =2或9x -y -16=0 总结:求过某个定点的切线的步骤: i )设切点))(,(00x f xii )求导函数)('x f ,写出直线方程 iii )把已知点带入切线方程,解出切点坐标。

导数的应用教案

导数的应用教案

导数的应用教案导数的应用教案一、教学目标:1.了解导数的概念及其意义;2.掌握导数的计算方法;3.能够应用导数解决实际问题。

二、教学内容:1.导数的概念及其意义;2.导数的计算方法;3.导数的应用实例。

三、教学过程:1.导入导数概念:教师通过提问方式引导学生回顾前面学习的知识,了解函数的极限与导数之间的关系,并引入导数的概念。

教师可以通过举例说明导数的概念,如汽车行驶距离与时间的关系等。

2.导数的计算方法:教师介绍导数的计算方法,包括极限定义、导数公式和导数性质等,并通过具体的例子进行讲解,如多项式函数的导数计算等。

3.导数的应用实例:教师通过实际问题让学生应用导数解决实际问题,如求函数的最值、判定函数的增减性、判定函数的凸凹性等。

教师可以先进行概念讲解,然后给出具体的应用实例,让学生进行分析和解答。

4.教学巩固与拓展:教师进行导数的应用拓展,让学生了解导数在其他领域的应用,如物理学中的速度与加速度、经济学中的边际产量与边际成本等,并进行讲解和讨论。

四、教学方法:1.导入法:通过导入问题或例子引发学生思考,激发学生学习兴趣。

2.讲解法:通过讲解导数的概念和计算方法,使学生掌握相关知识。

3.示范法:通过示范具体例题,帮助学生理解和掌握导数的应用方法。

4.讨论法:通过学生的互动讨论,加深对导数应用的理解和掌握。

五、教学资源:1.课件:包括导数的概念、计算方法及应用实例的课件。

2.习题集:提供导数的应用习题,帮助学生巩固和拓展知识。

六、教学评价:1.课堂练习:提供一定数量的导数应用题,检查学生的掌握情况。

2.作业:布置一定数量的导数应用题,供学生进行复习和巩固。

3.学生评价:通过学生对教学过程的反馈和教师的观察,对教学效果进行评价。

七、教学反思:通过开展导数的应用教学,学生能够进一步理解导数的概念、计算方法及其在实际问题中的应用,从而提高学生的数学思维能力和解决实际问题的能力。

同时,教师应根据学生的实际情况和兴趣,合理安排教学内容和方法,提高教学效果。

《导数的应用》优质课比赛教学设计

《导数的应用》优质课比赛教学设计

导数的应用一、教材依据:本节课是北京师范大学出版社出版的《普通高中课程标准试验教科书数学(选修2-2)》第三章第二节2.2导数的应用.二、设计思想:1、设计理念:以学生为主体,强调学生对知识的主动探索、发现,以及对所学知识的主动建构,采用自主式教学,倡导“自主、合作、探究”的学习方式.2、教材分析:本节课是在学习了导数概念及利用导数求函数单调性等内容的基础上,进一步利用导数研究函数的最值并研究利用导数解决实际问题.通过导数为解决函数问题提供了更广阔的天地,体现了导数在处理函数问题中的工具作用.是本节乃至本章的教学重点.3、学情分析:学生已经学习了函数以及导数的基础知识,知道了利用导数研究函数的基本性质,用导数来处理函数单调性、极值等问题的基本思路,但如何利用导数来解决最值和一些具体的问题,学生的能力还比较薄弱,这都造成了本节课的困难,需要进行问题的引导.三、教学目标:知识与技能: 1、了解导数常见应用;2、掌握利用求导方法求函数的最值;3、学会利用求导求函数最值的具体应用问题.过程与方法:通过教师思路上的引导,经历用求导的方法求极值到求最值的过程,通过探究交流澄清对问题的认识,在过程中获得思维的发展.情感态度价值观:培养学生主动学习、合作交流的意识,发挥学习过程中的主观能动性,感受导数在函数中的应用,激发学生学习的兴趣.四、教学重点:利用导数求函数的最值.五、教学难点:利用导数求函数最值的应用.六、教学准备:学生预习,教师制作幻灯片.七、教学方法:自主性学习.八、教学过程:九、教学流程图:十、教学反思:1、整个教学思路符合学生认知规律,学生参与教育教学活动的热情高涨,体现了学生的主体作用和教师的主导作用,学生作业情况很好,教学效果好.2、本节课我认为最大的亮点是对例2的处理,虽然花了很多时间,显得时间有点紧张,但学生对这类问题的认识很有深度.3、自主性学习这种方法值得推广,它能充分调动所有学生学习的兴趣,整个课堂学生参与意识很强,主动性和创造性得以很好发挥,真正学会了学习的方法.4、自主性学习对教师要求更高,要充分挖掘教材,考虑学生的实际情况,处理好“导”,不是简单的学生看书自学,所以教师要在备课上下大功夫.5、本节课的败笔是拖堂,时间控制不太好,练习处理匆忙,主要是例2花时间太长,但我认为值得,如果在例1处理上再紧凑一些,让学生练习时不忙不乱,又能熟练掌握求函数最值过程的准确表达就更好了.。

导数的应用教案

导数的应用教案

导数的应用教案教案1: 导数的应用——相关变化率教学目标:1. 理解导数的意义,能够解释导数代表相关变化率的含义。

2. 能够在实际问题中应用导数求解相关变化率。

3. 能够在实际问题中应用导数解决最优化问题。

教学准备:1. 教师准备相关变化率和最优化问题的实际应用例题,如某物体运动的速度和加速度问题,总收益和销售量的关系问题等。

2. 准备计算导数和求解最优化问题的手段和方法。

教学过程:引入:1. 导入相关变化率的概念,引导学生思考在我们日常生活中有哪些变量之间存在相关变化的情况,并了解相关变化率的重要性。

2. 引入导数的概念,解释导数代表相关变化率的含义,即导数表示因变量相对于自变量的变化速率。

探究:1. 通过实例和图形直观理解导数的概念,包括斜率、切线、变化率等。

2. 让学生进行实际问题的探究,如给定一个函数表达式,利用导数求解相关变化率的具体问题。

3. 引导学生通过具体实例,进一步理解导数的应用,如速度和加速度的关系问题。

拓展:1. 引导学生应用导数解决最优化问题,比如通过导数求解某函数的最大值、最小值等问题。

2. 引导学生思考一些实际问题,如制作某个产品的成本、利润与销售量的关系,利用导数求解最优销售量等实际问题。

实践:1. 组织学生分组完成一些实际问题的探究和求解,让学生练习运用导数求解实际问题。

2. 学生通过小组展示和分享,互相学习和交流,提高对导数应用的理解和掌握程度。

总结:1. 归纳和总结导数的应用领域,通过概念总结和案例分析,强化学生对导数应用的理解。

2. 提醒学生导数应用的实际意义和重要性,鼓励学生在日常生活中运用导数的方法和思想解决问题。

课后作业:1. 完成课后练习题,巩固导数应用的知识和技能。

2. 搜集相关应用实例,了解和探究更多的导数应用领域。

3. 思考导数应用的局限性和拓展方向,形成个人的思考和见解。

导数的应用(精品教案)

导数的应用(精品教案)

导数的应用(一)【课前小测】1. 曲线y =x 3+11在点P (1,12)处的切线与y 轴交点的纵坐标是( ). A .-9 B .-3 C .9 D .152. 函数f (x )=x 2-2ln x 的递减区间是( ). A .(0,1]B .[1,+∞)C .(-∞,-1),(0,1)D .[-1,0),(0,1]3. 若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,则ab 的最大值等于( ). A .2 B .3 C .6 D .94. 已知函数f (x )=14x 4-43x 3+2x 2,则f (x )( ).A .有极大值,无极小值B .有极大值,有极小值C .有极小值,无极大值D .无极小值,无极大值 5. 已知x >-1,则函数y =x +1x +1的最小值为( ).A .-1B .0C .1D .2【知识梳理】(一)利用导数研究函数单调性①()0f x '>⇒()f x 为增函数(()0f x '<⇒()f x 为减函数). ②()f x 在区间(),a b 上是增函数⇒()x f `≥0在(),a b 上恒成立;③在区间(),a b 上为减函数⇒()x f `≤0在(),a b 上恒成立.利用导数研究多项式函数单调性的一般步骤: ①求()f x ',讨论()f x '的零点问题; ②确定()f x '在(),a b 内符号;③若()0f x '>在(),a b 上恒成立,则()f x 在(),a b 上是增函数;若()0f x '<在(),a b 上恒成立,则()f x 在(),a b 上是减函数(二)利用导数研究函数的极值极值的判别方法:(极值是在0x 附近所有的点,都有)(x f <)(0x f ,则)(0x f 是函数)(x f 的极大值,极小值同理)当函数)(x f 在点0x 处连续时(何为函数在点上连续?),①如果在0x 附近的左侧)('x f >0,右侧)('x f <0,那么)(0x f 是极大值; ②如果在0x 附近的左侧)('x f <0,右侧)('x f >0,那么)(0x f 是极小值. 求函数()y f x =在某个区间上的极值的步骤: ①先留意下)(x f 的定义域,再求导函数()f x ';②求方程()0f x '=的根0x ,判定0x 是否落在所关注的区间内;③检查()f x '在方程()0f x '=的根0x 的左右的符号:“左正右负”⇔()f x 在0x 处取极大值;“左负右正”⇔()f x 在0x 处取极小值。

《 导数应用》全部教案

《 导数应用》全部教案

北师大版高中数学选修2-2第三章《 导数应用》全部教案扶风县法门高中 姚连省 §1 函数的单调性与极值第一课时 导数与函数的单调性(一)一、教学目标:1、知识与技能:⑴理解函数单调性的概念;⑵会判断函数的单调性,会求函数的单调区间。

2、过程与方法:⑴通过具体实例的分析,经历对函数平均变化率和瞬时变化率的探索过程;⑵通过分析具体实例,经历由平均变化率及渡到瞬时变化率的过程。

3、情感、态度与价值观:让学生感悟由具体到抽象,由特殊到一般的思想方法。

二、教学重点:函数单调性的判定 教学难点:函数单调区间的求法 三、教学方法:探究归纳,讲练结合 四、教学过程 (一).创设情景函数是客观描述世界变化规律的重要数学模型,研究函数时,了解函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.下面,我们运用导数研究函数的性质,从中体会导数在研究函数中的作用. (二).新课探究1.问题:图3.3-1(1),它表示跳水运动 2() 4.9 6.510h t t t =-++中高度h 随时间t 变化的函数的图像,图3.3-1(2)表示高台跳水运动员的速度v 随时间t 变化的函数'()()9.8 6.5v t h t t ==-+的图 像.运动员从起跳到最高点,以及从最高点到入 水这两段时间的运动状态有什么区别?通过观察图像,我们可以发现:(1)运动员从起点到最高点,离水面的高度h 随时间t 的增加而增加,即()h t 是增函数.相应地,'()()0v t h t =>.(2)从最高点到入水,运动员离水面的高度h 随时间t 的增加而减少,即()h t 是减函数.相应地,'()()0v t h t =<. 2.函数的单调性与导数的关系观察下面函数的图像,探讨函数的单调性与其导数正负的关系.如图3.3-3,导数'()f x表示函数()f x在点00(,)x y处的切线的斜率.在x x=处,'()0f x>,切线是“左下右上”式的,这时,函数()f x在x附近单调递增;在1x x=处,'()0f x<,切线是“左上右下”式的,这时,函数()f x在1x附近单调递减.结论:函数的单调性与导数的关系在某个区间(,)a b内,如果'()0f x>,那么函数()y f x=在这个区间内单调递增;如果'()0f x<,那么函数()y f x=在这个区间内单调递减.说明:(1)特别的,如果'()0f x=,那么函数()y f x=在这个区间内是常函数.3.求解函数()y f x=单调区间的步骤:(1)确定函数()y f x=的定义域;(2)求导数''()y f x=;(3)解不等式'()0f x>,解集在定义域内的部分为增区间;(4)解不等式'()0f x<,解集在定义域内的部分为减区间.(三).典例探析例1、已知导函数'()f x的下列信息:当14x <<时,'()0f x >; 当4x >,或1x <时,'()0f x <; 当4x =,或1x =时,'()0f x = 试画出函数()y f x =图像的大致形状.解:当14x <<时,'()0f x >,可知()y f x =在此区间内单调递增;当4x >,或1x <时,'()0f x <;可知()y f x =在此区间内单调递减; 当4x =,或1x =时,'()0f x =,这两点比较特殊,我们把它称为“临界点”. 综上,函数()y f x =图像的大致形状如图3.3-4所示. 例2、判断下列函数的单调性,并求出单调区间.(1)3()3f x x x =+; (2)2()23f x x x =-- (3)()sin (0,)f x x x x π=-∈; (4)32()23241f x x x x =+-+ 解:(1)因为3()3f x x x =+,所以,'22()333(1)0f x x x =+=+> 因此,3()3f x x x =+在R 上单调递增,如图3.3-5(1)所示.(2)因为2()23f x x x =--,所以, ()'()2221f x x x =-=-当'()0f x >,即1x >时,函数2()23f x x x =--单调递增; 当'()0f x <,即1x <时,函数2()23f x x x =--单调递减; 函数2()23f x x x =--的图像如图3.3-5(2)所示.(3)因为()sin (0,)f x x x x π=-∈,所以,'()cos 10f x x =-< 因此,函数()sin f x x x =-在(0,)π单调递减,如图3.3-5(3)所示. (4)因为32()23241f x x x x =+-+,所以.当'()0f x>,即时,函数2()23f x x x=--;当'()0f x<,即时,函数2()23f x x x=--;函数32()23241f x x x x=+-+的图像如图3.3-5(4)所示.注:(3)、(4)生练例3.如图3.3-6,水以常速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中,请分别找出与各容器对应的水的高度h与时间t的函数关系图像.分析:以容器(2)为例,由于容器上细下粗,所以水以常速注入时,开始阶段高度增加得慢,以后高度增加得越来越快.反映在图像上,(A)符合上述变化情况.同理可知其它三种容器的情况.解:()()()()()()()()1,2,3,4B A D C→→→→思考:例3表明,通过函数图像,不仅可以看出函数的增减,还可以看出其变化的快慢.结合图像,你能从导数的角度解释变化快慢的情况吗?一般的,如果一个函数在某一范围内导数的绝对值较大,那么函数在这个范围内变化的快,这时,函数的图像就比较“陡峭”;反之,函数的图像就“平缓”一些.如图3.3-7所示,函数()y f x=在()0,b或(),0a内的图像“陡峭”,在(),b+∞或(),a-∞内的图像“平缓”.例4、求证:函数3223121y x x x=+-+在区间()2,1-内是减函数.证明:因为()()()'22661262612y x x x x x x=+-=+-=-+当()2,1x ∈-即21x -<<时,'0y <,所以函数3223121y x x x =+-+在区间()2,1-内是减函数.说明:证明可导函数()f x 在(),a b 内的单调性步骤:(1)求导函数()'f x ;(2)判断()'f x 在(),a b 内的符号;(3)做出结论:()'0f x >为增函数,()'0f x <为减函数. (四).课堂练习:课本P59页练习1(1);2(五).回顾总结:(1)函数的单调性与导数的关系;(2)求解函数()y f x =单调区间;(3)证明可导函数()f x 在(),a b 内的单调性(六).布置作业:课本P62页习题3-1A 组1、2 五、教后反思:第二课时 导数与函数的单调性(二)一、教学目标:1、知识与技能:⑴理解函数单调性的概念;⑵会判断函数的单调性,会求函数的单调区间。

《导数的应用》教学设计

《导数的应用》教学设计

导数一、考纲要求1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).3.会利用导数解决某些实际问题.二、知识梳理1.函数的单调性与导数在某个区间(a,b)内,如果,那么函数y=f(x)在这个区间内单调递增;如果,那么函数y=f(x)在这个区间内单调递减.如果,那么函数y=f(x)在这个区间上是常数函数.问题探究:若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0吗?f′(x)>0是否是f(x)在(a,b)内单调递增的充要条件?2.函数的极值与导数(1)函数的极小值若函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值,且f′(a)=0,而且在点x=a附近的左侧,右侧,则a点叫做函数的极小值点,f(a)叫做函数的极小值.(2)函数的极大值若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值,且f′(b)=0,而且在点x=b附近的左侧,右侧,则b点叫做函数的极大值点,f(b)叫做函数的极大值,和统称为极值.3.函数的最值与导数函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条的曲线,那么它必有最大值和最小值.三,考点探究考点一:函数的单调性与导数【例1】设函数f(x)=x3—3x2-9x-1.求函数f(x)的单调区间.对点练习:1、x x y ln 632-=的单调增区间为________,单调减区间为________.2、若函数x a x y ln 2-=在(1,+∞)上递增,则实数a 的取值范围为________.考点二:函数的极值与导数【例2】 设x =1与x =2是函数x bx x a y ++=2ln 的两个极值点.(1)试确定常数a 和b 的值;(2)试判断x =1,x =2是函数f(x)的极大值点还是极小值点,并求相应极值.练习:已知函数f(x)=x2-2lnx.求函数f(x)的单调区间和极值.考点三:函数的最值与导数【例3】 设函数f (x )=12x 2+e x -x e x . (1)求f (x )的单调区间;(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围;(3)(理)若关于x 的方程f (x )=e x -x e x +ln x +a 在区间[1e ,e]上恰好有两个相异的实根,求实数a 的取值范围.练习:已知函数xa x x f -=ln )((a ∈R ,a ≠0).若a =-1,求f (x )在[1e ,e]上的最大值和最小值.四、课堂小结,总结规律。

导数的实际应用教案

导数的实际应用教案

导数的实际应用教案第一章:导数的基本概念1.1 引入导数的概念解释导数的定义:函数在某一点的导数是其在该点的切线斜率。

强调导数的重要性:导数可以帮助我们理解函数的增减性、极值等性质。

1.2 导数的计算方法介绍导数的计算规则:常数函数的导数为0,幂函数的导数等。

讲解导数的运算法则:导数的四则运算、复合函数的导数等。

1.3 导数的应用解释导数在实际应用中的意义:例如,求解物体的速度、加速度等问题。

举例说明导数在实际问题中的应用:如优化问题、物理运动问题等。

第二章:导数与函数的增减性2.1 引入增减性的概念解释函数的单调递增和单调递减:函数在某一段区间内,如果导数大于0,则函数单调递增;如果导数小于0,则函数单调递减。

2.2 利用导数判断函数的极值解释函数的极值概念:函数在某一点的导数为0,且在该点附近导数符号发生变化的点。

讲解如何利用导数判断函数的极值:通过导数的正负变化来确定函数的极大值和极小值。

2.3 应用实例分析举例说明如何利用导数判断函数的增减性和极值:如函数f(x) = x^3的增减性和极值分析。

第三章:导数与曲线的切线3.1 切线方程的导数表示解释切线的概念:函数在某一点的导数即为该点处的切线斜率。

推导切线方程的一般形式:y y1 = m(x x1),其中m为切线斜率,(x1, y1)为切点坐标。

3.2 利用导数求解曲线的切线讲解如何利用导数求解曲线的切线:求出切点坐标,求出切线的斜率,写出切线方程。

3.3 应用实例分析举例说明如何利用导数求解曲线的切线:如函数f(x) = x^2的切线求解。

第四章:导数与函数的单调性4.1 单调性的定义与性质解释函数的单调性:函数在某一段区间内,如果导数大于0,则函数单调递增;如果导数小于0,则函数单调递减。

强调单调性的重要性:单调性可以帮助我们理解函数的变化趋势。

4.2 利用导数判断函数的单调性讲解如何利用导数判断函数的单调性:通过导数的正负来确定函数的单调递增或递减区间。

高二数学导数的应用教案

高二数学导数的应用教案

高二数学导数的应用教案
教学目标:
1. 理解导数的概念和性质;
2. 掌握导数的计算方法;
3. 熟练应用导数解决实际问题。

教学步骤:
一、导入(10分钟)
1. 引入导数的概念,与学生讨论导数的意义和应用;
2. 提出今天的学习目标:掌握导数的计算方法,并能够在实际问题中灵活应用。

二、理论讲解与示范(15分钟)
1. 介绍导数的定义:函数在某一点的切线斜率;
2. 解释导数的符号表示和计算方法,如使用极限的概念计算导数;
3. 给出一些导数计算的例题,并详细讲解解题思路和步骤。

三、练习与巩固(20分钟)
1. 给学生分发练习题,并要求他们独立完成;
2. 针对练习题中的难点和疑惑,进行答疑和解释;
3. 鼓励学生互相交流和讨论,加深对导数的理解和应用。

四、拓展应用(15分钟)
1. 引导学生思考导数在实际问题中的应用;
2. 分组讨论,找到不同领域中可以使用导数解决的问题,并汇报给全班;
3. 提出一些挑战性的导数应用问题,激发学生的思维和创造力。

五、综合评价(10分钟)
1. 进行简单的导数应用综合评价;
2. 针对学生的表现,给予及时的反馈和指导;
3. 总结本节课的重点内容和学习方法。

总结:
通过本节课的学习,学生应该对导数的概念和应用有了更深入的理解,能够熟练计算导数,并能够应用导数解决实际问题。

在后续的学习中,我们将进一步拓展导数的应用领域,并提高解题的灵活性和创造性。

人教版高中选修(B版)2-21.3导数的应用教学设计

人教版高中选修(B版)2-21.3导数的应用教学设计

人教版高中选修(B版)2-21.3导数的应用教学设计一、教学目标1.掌握导函数的定义,能够求出函数在某一点的导数;2.了解导数的几何意义,能够解决相关的几何问题;3.掌握概率密度函数的概念,能够求出连续随机变量的期望值与方差;4.能够据题目建立数学模型,使用导数的相关知识求解问题。

二、教学重点1.导数的定义与计算;2.导数与函数图像的几何关系;3.概率密度函数的概念与计算;4.导数在实际问题中的应用。

三、教学难点1.概率密度函数的概念与计算;2.导数在实际问题中的应用。

四、教学方法通过讲授、举例、练习、讨论等教学方式,以帮助学生掌握导数及其应用知识。

五、教学过程与设计1. 导数的定义与计算1.引入:回顾函数的极限概念,引出导数需要的先决条件——单侧导数;2.定义:正式介绍导数的定义,即导数是函数在某一点的单侧导数中的极限,讲解极限的概念与计算方法;3.计算:学习计算导数的方法,特别是基本函数与常数函数的导数,让学生独立完成练习。

2. 导数与函数图像的几何关系1.引入:通过几个函数图像的例子,呈现导数与函数图像的几何关系;2.概念:讲解导数的几何意义——在曲线上某点的导数为该点切线的斜率;3.特点:呈现导数的单调性可刻画函数的增减性等特点;4.练习:通过让学生求出几个函数在某一点的导数以及图像的切线方程等练习,让学生深刻理解导数与函数图像的几何关系。

3. 概率密度函数的概念与计算1.引入:通过实例引导学生了解离散随机变量与连续随机变量的区别,引入概率密度函数;2.概念:正式定义概率密度函数,讲解为连续随机变量求取概率的方法;3.计算:讲解连续随机变量的期望值与方差的概念与计算方法。

4. 导数在实际问题中的应用1.引入:通过实际例子与学生交流热点话题,让学生了解导数的实际应用;2.模型:通过讲解模型建立方法,让学生了解如何根据题目建立数学模型;3.计算:以实例为例,通过让学生运用导数的相关知识求解问题,加深其对导数的理解与应用能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

导数
一、考纲要求
1.了解函数单调性和导数的关系,能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).
2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).
3.会利用导数解决某些实际问题.
二、知识梳理
1.函数的单调性与导数
在某个区间(a,b)内,如果,那么函数y=f(x)在这个区间内单调递增;如果,那么函数y=f(x)在这个区间内单调递减.如果,那么函数y=f(x)在这个区间上是常数函数.
问题探究:若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0吗?f′(x)>0是否是f(x)在(a,b)内单调递增的充要条件?
2.函数的极值与导数
(1)函数的极小值
若函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点的函数值,且f′(a)=0,而且在点x=a附近的左侧,右侧,则a点叫做函数的极小值点,f(a)叫做函数的极小值.
(2)函数的极大值
若函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点的函数值,且f′(b)=0,而且在点x=b附近的左侧,右侧,则b点叫做函数的极大值点,f(b)叫做函数的极大值,和统称为极值.
3.函数的最值与导数
函数f(x)在[a,b]上有最值的条件
如果在区间[a,b]上函数y=f(x)的图象是一条的曲线,那么它必有最大值和最小值.
三,考点探究
考点一:函数的单调性与导数
【例1】设函数f(x)=x3—3x2-9x-1.求函数f(x)的单调区间.
对点练习:
1、x x y ln 632-=的单调增区间为________,单调减区间为________.
2、若函数x a x y ln 2-=在(1,+∞)上递增,则实数a 的取值范围为________.
考点二:函数的极值与导数
【例2】 设x =1与x =2是函数x bx x a y ++=2ln 的两个极值点.
(1)试确定常数a 和b 的值;
(2)试判断x =1,x =2是函数f(x)的极大值点还是极小值点,并求相应极值.
练习:已知函数f(x)=x2-2lnx.求函数f(x)的单调区间和极值.
考点三:函数的最值与导数
【例3】 设函数f (x )=12
x 2+e x -x e x . (1)求f (x )的单调区间;
(2)若当x ∈[-2,2]时,不等式f (x )>m 恒成立,求实数m 的取值范围;
(3)(理)若关于x 的方程f (x )=e x -x e x +ln x +a 在区间[1e ,e]上恰好有两个相异的实根,求实数a 的取值范围.
练习: 已知函数x
a x x f -=ln )((a ∈R ,a ≠0).
若a =-1,求f (x )在[1e ,e]上的最大值和最小值.
四、课堂小结,总结规律。

五、课后练习
1、设函数 )1ln()1()(2x x x f +-+= .求 )(x f 的单调区间和极值
2、求函数 612)(3++-=x x x f 在区间 ⎥⎦⎤⎢⎣⎡-3,31 上的值域和零点个数.。

相关文档
最新文档