勾股定理知识点常见题型总结

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

勾股定理复习

一•知识归纳

1•勾股定理:直角三角形两直角边的平方和等于斜边的平方;

表示方法:如果直角三角形的两直角边分别为

a ,

b ,斜边为

c ,那么a 2 b 2 c 2

2 •勾股定理的证明,常见的是拼图的方法

① 图形进过割补拼接后,只要没有重叠,没有空隙,面积不会改变 ② 根据同一种图形的面积不同的表示方法,列出等式,推导出勾股定理 常见方法如下:方法一: 4S

S 正方形EFGH s 正方形ABCD , 4 1 ab (b a)2 c 2,化简可证.

2

方法二:四个直角三角形的面积与小正方形面积的和等于大正方形的面积. 四个直角三角形的面积与小正方形面积的和为 s 4 1ab c 2 2ab c 2 2

大正方形面积为 S (a b)2 a 2 2ab b 2所以a 2 b 2 c 2

A

A

A

方法三:S 梯形

(a b) (a b) , S 弟形2S ADE S ABE 2 ab c ,化简得证 2 2

2

3 •勾股定理的适用范围:勾股定理揭示了直角三角形三条边之间所存在的数量关系,它只适

用于直角三角形,因而在应用勾股定理时,必须明了所考察的对象是直角三角形

4 •勾股定理的应用:勾股定理能够帮助我们解决直角三角形中的边长的计算或直角三角形中线段之间的关系的证明问

题•在使用勾股定理时,必须把握直角三角形的前提条件,了解直角三角形中,斜边和直角边各是什么,以便运用勾 股定理进行计算,应设法添加辅助线(通常作垂线)

,构造直角三角形,以便正确使用勾股定理进行求解.

① 已知直角三角形的任意两边长,求第三边。在

ABC 中, C 90,则c a 2 b 2 , b . c 2 a 2 , a c 2 b 2

② 知道直角三角形一边,可得另外两边之间的数量关系 ③ 可运用勾股定理解决一些实际问题

5 .勾股定理的逆定理

如果三角形三边长a , b , c 满足a 2 b 2 c 2,那么这个三角形是直角三角形,其中 c 为斜边。

① 勾股定理的逆定理是判定一个三角形是否是直角三角形的一种重要方法,它通过 数转化为形”来确定三角形的可

能形状,在运用这一定理时,可用 两小边的平方和a 2 b 2与较长边的平方c 2作比较,若它们相等时,以a , b , c

为三边的三角形是直角三角形;若

a 2

b 2

c 2,时,以a , b , c 为三边的三角形是钝角三角形;若

a 2

b 2

c 2,时,

以a , b , c 为三边的三角形是锐角三角形;

② 定理中a , b , c 及a 2 b 2 c 2只是一种表现形式,不可认为是唯一的,如若三角形三边长 a ,b , c 满足a 2 c 2 b 2, 那么以a , b , c 为三边的三角形是直角三角形,但是

b 为斜边

③ 勾股定理的逆定理在用问题描述时,不能说成:当斜边的平方等于两条直角边的平方和时,这个三角形是直角三 角形

6 .勾股数

① 能够构成直角三角形的三边长的三个正整数称为勾股数,即 a 2 b 2 c 2中,a , b , c 为正整数时,称a , b , c 为

一组勾股数

② 记住常见的勾股数可以提高解题速度 ,如3,4,5 ; 6,8,10 ; 5,12,13 ; 7,24,25等 ③

用含字母的代数式表示勾股数: n 2 1,2n,n 2 1 ( n 2, n 为正整数);m 2 n 2,2mn,m 2 n 2 ( m n,

m , n 为正整数) 常见图形:

b

a

b

a

类型一:勾股定理的直接用法

1、在Rt A ABC中,/ C=90°(1)已知a=6, c=10,求b, (2)已知a=40, b=9,求c;

2. __________________________________________________________ 已知直角三角形两边的长为3和4,则此三角形的周长为_________________________________________

【变式】:如图/ B=Z ACD=90° , AD=13,CD=12, BC=3则AB的长是多少?

类型二:勾股定理的构造应用

1. 若一个三角形的边长分别是12、16和20,则这个三角形最长边上的高长是___________ 。

2. 如图,△ ABC中,有一点P在AC上移动.若AB=AC=5 , BC=6,贝U AP+BP+CP 的最小

值为( )A. 8 B. 8.8 C. 9.8 D. 10

3•在ABC中,AB 15, AC 13 , BC边上的高AD 12,贝V ABC的周长为( )

A、42 B 32 C、42 或32 D、37 或33

4. 等腰三角形的底边长为6,底边上的中线长为4,它的腰长为_________ .

5. 等边三角形的边长为2,求它的面积。

【变式】:△ ABC中,BC=a, AC=b, AB=c,若/ 0=90°,如图1,根据勾股定理,

则a2 b2 c2。若△ ABC不是直角三角形,如图2和3,请你类比勾股定理,

试猜想a2 b2与c2的关系,并证明你的结论。

类型三:勾股定理的实际应用

1•如图,梯子AB靠在墙上,梯子的底端A到墙根0的距离为2m,梯子的顶端B到地面的距离为7m, 现将梯子的底端A向外移动到A',使梯子的底端A'到墙根0的距离等于3m.同时梯子的顶端 B 下降至B',那么BB'(

).

A.小于1m

B.大于1m

C.等于1m

D.小于或等于1m

2•将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如图所示,设筷子露在杯子外面的长度为hem ,则h的取值范围是( ).

A. h< 17cm

B. h > 8cm

C. 15cm < h< 16cm

D. 7cm < h< 16cm A r A 0

/ T

f h

(一)用勾股定理求两点之间的距离问题

3、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了

达B点,然后再沿北偏西30°方向走了500m到达目的地C点。

(1)求A、C两点之间的距离。(2)确定目的地C在营地A的什么方向。

【变式】一辆装满货物的卡车,其外形高 2.5米,宽1.6米,要开进厂门形状如图的某工厂,问

这辆卡车能否通过该工厂的厂门?

如图,公路MN和公路PQ在P点处交汇,点A处有一所中学,AP=160米,点A到公路MN

距离为80米,假使拖拉机行驶时,周围100米以内会受到噪音影响,那么拖拉机在公路MN

上沿PN方向行驶时,学校是否会受到影响,请说明理由;如果受到影响,已知拖拉机的速度

是18千米/小时,那么学校受到影响的时间为多少?

(二)用勾股定理求最短问题

4、国家电力总公司为了改善农村用电电费过高的现状,目

前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、

D,且正好位于一个正方形的四个顶点,现计划在四个村庄联

相关文档
最新文档