细菌群体感应系统及其应用ppt课件
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
信号传递 及识别
种间交流
信号分子AI-2:呋喃酰硼酸二酯类化合物
细菌识别AI-2型信号分子的方式与G+中双组分激酶的识别系统 是完全一致的,即双组分激酶识别 AI-2分子后,把磷酸化基团
传递给受体蛋白并启动相关基因的表达
AI-2信号分子作用广泛,能够被多种微生物识别,是不同菌种之
间的共同语言,起着微生物种间交流的作用
LuxI 蛋白是AI合成酶, 能够合成信号wk.baidu.com子 N-酰 基高丝氨酸内酯(AHL)
种内交流:G- 的QS系统
费氏弧菌的AHL-LuxI/LuxR 型系统:
LuxI产生AHL,自由通过 细胞膜,分泌到胞外
AHL随菌体浓度上升在胞 外积累到阈值
AHL扩散入胞内与LuxR蛋 白结合,形成AI/LuxR 复 合体,并结合到 DNA上, 激活发光基因的启动子 转 录
群体感应
毒力因子的产生:
肠球菌的主要毒力因子是溶 细胞素,由 2 个亚单位CylLL 和CylLS组成,在胞外以具有 毒性的CylLL ″和CylLS″形式 存在。研究表明,CylLS″担 任了QS系统机制中信号分子 的作用。Coburn等发现, CylLL ″优先与靶细胞结合, 导致游离 CylLS″的积累并超 过诱导阈值,然后激活CylLS 表达,产生高水平的溶细胞 素
种内交流:G+ 的QS系统
AIP不能自由穿透细胞 壁,需要ABC(ATPbinding-cassette)转运 系统或其它膜通道蛋白 作用到达胞外行使功能 AIP浓度在胞外达到某 一阈值 膜上激酶识别信号分 子,并促进激酶中组 氨酸残基磷酸化 经过天冬氨酸残基的 传递,把磷酸基团传 递给受体蛋白 AIP前体肽经转录 后的一系列修饰加 工,在不同细菌内 形成长短不同、稳 定、特异的AIP 磷酸化的受体蛋白与 DNA 特定的靶位点结 合,调控基因表达
1994年Fuqua等提出了群体感应 (quorum sensing,QS)这一概念
群体感应的发现
细菌之间存在信息交流,许多细菌都能合成并释放一种 被称为自诱导物质(autoinducer,AI)的信号分子,胞外的AI 浓度能随细菌密度的增加而增加,当信号达到一定的浓度阈 值时,能启动菌体中相关基因的表达来适应环境的变化,如 芽胞杆菌中感受态与芽胞形成、病原细菌胞外酶与毒素产生、 生物膜形成、菌体发光、色素产生、抗生素形成等,我们将 这一现象称为群体感应(quorum sensing,QS)
对生物膜形成的控制:
铜绿假单胞菌QS系统有 lasI/lasR、rhlI/rhlR两个信号 系统,lasI、rhlI与lasR、rhlR 基因分别编码不同的信号分子 合成酶与信号分子受体。信号 分子随着细菌密度的增加而分 泌增加,当信号分子达到一定 阈值时,信号分子与相应的信 号分子受体结合并激活受体, 激活的受体再激活相关的转录 调节子,合成胞外多糖、毒性 因子及藻酸盐等,使细菌聚集 形成生物被膜
种内交流:G- 的QS系统
革兰氏阴性菌中,有超过70种的细菌利用 AHL作为胞 间交流的信号分子。有超过50种的革兰氏阴性菌都是利用这 种AHL-LuxI/LuxR 型系统进行细胞间的交流。费氏弧菌的 LuxI/Lux R双组分系统被视为革兰氏阴性菌群体感应的模式 系统。 不同的细菌产生不同的 AHL,差异只在于酰基侧链的 长度与结构,高丝氨酸内酯部分是相同的。这也造成了微生 物在利用AHL信号分子时具有一定的特异性。
细菌群体感应系统及其应用
目录
1.群体感应的发现及研究意义
2.群体感应系统的分类及机制
3.群体感应在控制病原菌中的应用
4.小结及展望
群体感应的发现
20世纪70年代,海洋细菌费氏弧菌 (Vibrio fiscberi)和哈氏弧菌(V . harveyi) 生物发光现象 Nealson等在1970年首次报道了该 菌菌体密度与生物发光呈正相关, 引发了关于群体感应的猜想
种内交流:G+ 的QS系统
种内交流:G+ 的QS系统
金黄色葡萄球菌的双组份QS系统:
种间交流
信号 分子
AI-1由LuxM 基因编码产物催化产 生,相应的感应分子为LuxN AI-2的分子本质是呋喃酰硼酸二 酯类化合物,感应分子为 LuxP 和 LuxQ LuxN 和 LuxQ 均通过LuxU 来实 现信号传递 ,LuxU 是一种磷酸转 移酶,活化后将信号传递至调节蛋 白LuxO,并在另一蛋白LuxR 的 协助下,启动基因的表达
群体感应的研究意义
• 了解单细胞微生物的信息交流与行为特性的关 系,建立起化学信号物质和生理行为之间的联系 • 通过人为地干扰或促进微生物的群体感应系统,
从而调控其某种功能,以达成实际意义上的应
用
群体感应系统的分类
QS 系统由自诱导分子 、 感应分子及下游调控蛋白组成。 从已有的研究成果看,大部分细菌一般均有两套群体感应系统,一套用于 种内信息交流,一套用于种间信息交流;根据细菌合成的自诱导分子和感 应机制不同,QS系统主要分为3 种:
G-菌QS系统 种内QS 系统 群体感应 种间QS 系统
N-酰基高丝氨酸内酯 (AHL) 寡肽类物质 (AIP)
G+菌QS系统
呋喃酰硼酸二酯
种内交流:G- 的QS系统
LuxR蛋白是细胞质内AI 感受因子,也是一种 DNA结合转录激活元件; 其 N-端与AHL结合,C端则参与寡聚化以及与 启动子DNA的结合
群体感应的抑制
1.产生可以使AHL分子灭活的AHL降解酶,使病原菌QS系统不 能启动它所调控的基因
内酯酶(AHL-1actonase) 和酰基转移酶(AHL-acylase) 目前都已经 在一些细菌中被发现。内酯酶可以水解AHL的内酯键,生成的N-酰基高
丝氨酸内酯的生物活性大大降低
群体感应在控制病原菌中的应用
微生物对宿主的致病过程复杂多样,包括以下几个可能相互交叉的 阶段:微生物对宿主的侵袭和定殖、毒力因子的产生和作用于宿主、对 宿主免疫和药物的抵抗。 在微生物群体感应控制的生命活动中,最引人关注的是对毒力因子产 生和生物膜形成的控制,如果抑制了这两个作用就可以防止致病菌产生 致病作用及增强抗生素的作用效果