2010年齐齐哈尔(中考数学试题及答案word)
历年黑龙江省齐齐哈尔市中考数学试卷(含答案)
2017年黑龙江省齐齐哈尔市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×10124.(3分)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b 5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣17.(3分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.8.(3分)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.139.(3分)一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A.120°B.180°C.240° D.300°10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是班.12.(3分)在函数y=+x﹣2中,自变量x的取值范围是.13.(3分)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)14.(3分)因式分解:4m2﹣36=.15.(3分)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.16.(3分)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.17.(3分)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.18.(3分)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于.19.(3分)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为.三、解答题(共63分)20.(7分)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.21.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.22.(8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.24.(10分)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.25.(10分)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.26.(12分)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2017年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•齐齐哈尔)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.【分析】根据绝对值的定义即可解题.【解答】解:∵|﹣2017|=2017,∴答案C正确,故选C.【点评】本题考查了绝对值的定义,绝对值是指一个数在数轴上所对应点到原点的距离.2.(3分)(2017•齐齐哈尔)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)(2017•齐齐哈尔)作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:185亿=1.85×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•齐齐哈尔)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,即可解题.【解答】解:A、(2x5)2=4x10,故A错误;B、(﹣3)﹣2==,故B正确;C、(a+1)2=a2+2a+1,故C错误;D、a﹣(a﹣b)=a﹣a+b=b,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.(3分)(2017•齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)(2017•齐齐哈尔)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k 的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1【分析】讨论:当k=0时,方程化为﹣3x﹣=0,方程有一个实数解;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,然后求出两个中情况下的k的公共部分即可.【解答】解:当k=0时,方程化为﹣3x﹣=0,解得x=;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,解得k≥﹣1,所以k的范围为k≥﹣1.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•齐齐哈尔)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选D.【点评】本题考查了一次函数图象,三角形的三边关系,等腰三角形的性质,难点在于利用三角形的三边关系求自变量的取值范围.8.(3分)(2017•齐齐哈尔)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.13【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块,a+b=12,故选:C.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.9.(3分)(2017•齐齐哈尔)一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的3倍得到圆锥底面半径和母线长的关系,根据圆锥侧面展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数.【解答】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S=πr2,底面面积l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=解得n=120°.故选A.【点评】本题考查了圆锥的计算,通过圆锥的底面和侧面,结合有关圆、扇形的一些计算公式,重点考查空间想象能力、综合应用能力.熟记圆的面积和周长公式、扇形的面积和两个弧长公式并灵活应用是解答本题的关键.10.(3分)(2017•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个【分析】根据抛物线的对称轴可判断①,由抛物线与x轴的交点及抛物线的对称性可判断②,由x=﹣1时y>0可判断③,由x=﹣2时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线x=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a﹣2b+c≥at2+bt+c,即4a﹣2b≥at2+bt(t为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y1<y3<y2,故⑤错误;故选:B.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)(2017•齐齐哈尔)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是甲班.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2<s乙2,∴成绩相对稳定的是甲,故答案为:甲.【点评】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.(3分)(2017•齐齐哈尔)在函数y=+x﹣2中,自变量x的取值范围是x ≥﹣4且x≠0.【分析】根据二次根是有意义的条件:被开方数大于等于0进行解答即可.【解答】解:由x+4≥0且x≠0,得x≥﹣4且x≠0;故答案为x≥﹣4且x≠0.【点评】本题考查了函数自变量的取值范围问题,掌握二次根是有意义的条件:被开方数大于等于0是解题的关键.13.(3分)(2017•齐齐哈尔)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).【点评】本题考查了矩形的性质,菱形的判定,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.14.(3分)(2017•齐齐哈尔)因式分解:4m2﹣36=4(m+3)(m﹣3).【分析】原式提取4,再利用平方差公式计算即可得到结果.【解答】解:原式=4(m2﹣9)=4(m+3)(m﹣3),故答案为:4(m+3)(m﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)(2017•齐齐哈尔)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为80°.【分析】根据切线的性质得出∠C=90°,再由已知得出∠ABC,由外角的性质得出∠COD的度数.【解答】解:∵AC是⊙O的切线,∴∠C=90°,∵∠A=50°,∴∠B=40°,∵OB=OD,∴∠B=∠ODB=40°,∴∠COD=2×40°=80°,故答案为80°.【点评】本题考查了切线的性质,掌握切线的性质、直角三角形的性质以及外角的性质是解题的关键.16.(3分)(2017•齐齐哈尔)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10cm,2cm,4cm.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解答】解:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10cm,BC=12cm,∴BD=DC=6cm,∴AD=8cm,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10cm,如图②所示:AD=8cm,连接BC,过点C作CE⊥BD于点E,则EC=8cm,BE=2BD=12cm,则BC=4cm,如图③所示:BD=6cm,由题意可得:AE=6cm,EC=2BE=16cm,故AC==2cm,故答案为:10cm,2cm,4cm.【点评】此题主要考查了图形的剪拼以及勾股定理和等腰三角形的性质等知识,利用分类讨论得出是解题关键.17.(3分)(2017•齐齐哈尔)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)=67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.【点评】本题考查相似三角形的性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.18.(3分)(2017•齐齐哈尔)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于﹣24.=2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即【分析】易证S菱形ABCO可求得点C的坐标,代入反比例函数即可解题.【解答】解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC,∵DE∥AO,∴S=S△DEO,△ADO=S△CDE,同理S△BCD=S△ADO+S△DEO+S△BCD+S△CDE,∵S菱形ABCO∴S=2(S△DEO+S△CDE)=2S△CDO=40,菱形ABCO∵tan∠AOC=,∴OF=3x,∴OC==5x,∴OA=OC=5x,=AO•CF=20x2,解得:x=,∵S菱形ABCO∴OF=,CF=,∴点C坐标为(﹣,),∵反比例函数y=的图象经过点C,∴代入点C得:k=﹣24,故答案为﹣24.=2S 【点评】本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO是解题的关键.△CDO19.(3分)(2017•齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为(0,()2016)或(0,21008).【分析】根据等腰直角三角形的性质得到OA1=1,OA2=,OA3=()2,…,OA2017=()2016,再利用A1、A2、A3、…,每8个一循环,再回到y轴的正半轴的特点可得到点A2017在y轴的正半轴上,即可确定点A2017的坐标.【解答】解:∵等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=1,OA2=,OA3=()2,…,OA2017=()2016,∵A1、A2、A3、…,每8个一循环,再回到y轴的正半轴,2017÷8=252…1,∴点A2017在第一象限,∵OA2017=()2016,∴点A2017的坐标为(0,()2016)即(0,21008).故答案为(0,()2016)或(0,21008).【点评】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.三、解答题(共63分)20.(7分)(2017•齐齐哈尔)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:•﹣(+1)===,当x=2cos60°﹣3=2×﹣3=1﹣3=﹣2时,原式=.【点评】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.21.(8分)(2017•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C (﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形△A2B2C2即可;(3)利用扇形的面积公式即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)∵OA==5,∴线段OA扫过的图形面积==π.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.22.(8分)(2017•齐齐哈尔)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,∵S=4S△COE,∴2y=4×,△ABP∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).【点评】此题主要考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形=4S△COE列出方程是解决问题的关键.面积的求法等知识,根据S△ABP23.(8分)(2017•齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.【分析】(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)解:∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.【点评】本题考查的是全等三角形的判定和性质、直角三角形的性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.24.(10分)(2017•齐齐哈尔)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=70,b=0.40;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第3组;(4)请估计该校七年级学生日阅读量不足1小时的人数.【分析】(1)根据“频数÷百分比=数据总数”先计算总数为200人,再根据表中的数分别求a和b;(2)补全直方图;(3)第100和第101个学生读书时间都在第3组;(4)前两组的读书时间不足1小时,用总数2000乘以这两组的百分比的和即可.【解答】解:(1)10÷0.05=200,∴a=200×0.35=70,b=80÷200=0.40,故答案为:70,0.40;(2)补全直方图,如下图:(3)样本中一共有200人,中位数是第100和101人的读书时间的平均数,即第3组:1~1.5小时;故答案为:3;(4)1200×(0.05+0.1)=1200×0.15=180(人),答:估计该校七年级学生日阅读量不足1小时的人数为180人.【点评】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.25.(10分)(2017•齐齐哈尔)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=10,b=15,m=200;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.【分析】(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(4)分别求出当OD过点B、C时,小军的速度,结合图形,利用数形结合即可得出结论.【解答】解:(1)1500÷150=10(分钟),10+5=15(分钟),(3000﹣1500)÷(22.5﹣15)=200(米/分).故答案为:10;15;200.(2)线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;线段OD所在的直线的函数解析式为y=120x.联立两函数解析式成方程组,,解得:,∴3000﹣2250=750(米).答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.(3)根据题意得:|200x﹣1500﹣120x|=100,解得:x1==17.5,x2=20.答:爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米.(4)当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);当线段OD过点C时,小军的速度为3000÷22.5=(米/分钟).结合图形可知,当100<v<时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).【点评】本题考查了一次函数的应用、解含绝对值符号的一元一次方程以及解二元一次方程组,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系找出线段BC、OD所在直线的函数解析式;(3)结合(2)找出关于x的含绝对值符号的一元一次方程;(4)画出图形,利用数形结合解决问题.26.(12分)(2017•齐齐哈尔)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;。
历年黑龙江省齐齐哈尔市中考数学试题(含答案)
2016年黑龙江省齐齐哈尔市中考数学试卷一、单项选择题:每小题3分,共30分1.(3分)(2016•齐齐哈尔)﹣1是1的()A.倒数 B.相反数C.绝对值D.立方根2.(3分)(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.3.(3分)(2016•齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数 B.众数和极差C.众数和方差D.中位数和极差4.(3分)(2016•齐齐哈尔)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.5.(3分)(2016•齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个6.(3分)(2016•齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.7.(3分)(2016•齐齐哈尔)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,38.(3分)(2016•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或59.(3分)(2016•齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个10.(3分)(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个二、填空题:每小题3分,共27分11.(3分)(2016•齐齐哈尔)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为.12.(3分)(2016•齐齐哈尔)在函数y=中,自变量x的取值范围是.13.(3分)(2016•齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件使其成为菱形(只填一个即可).14.(3分)(2016•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为cm.15.(3分)(2016•齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=度.16.(3分)(2016•齐齐哈尔)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=.17.(3分)(2016•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为.18.(3分)(2016•齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD 边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB 于点N,则线段EC的长为.19.(3分)(2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为.三、解答题:共63分20.(7分)(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.21.(8分)(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.22.(8分)(2016•齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A 和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)(2016•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.24.(10分)(2016•齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于调查,样本容量是;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.25.(10分)(2016•齐齐哈尔)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)直接写出两机器人出发多长时间相距28米.26.(12分)(2016•齐齐哈尔)如图所示,在平面直角坐标系中,过点A(﹣,0)的两条直线分别交y轴于B、C两点,且B、C两点的纵坐标分别是一元二次方程x2﹣2x﹣3=0的两个根(1)求线段BC的长度;(2)试问:直线AC与直线AB是否垂直?请说明理由;(3)若点D在直线AC上,且DB=DC,求点D的坐标;(4)在(3)的条件下,直线BD上是否存在点P,使以A、B、P三点为顶点的三角形是等腰三角形?若存在,请直接写出P点的坐标;若不存在,请说明理由.2016年黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、单项选择题:每小题3分,共30分1.(3分)(2016•齐齐哈尔)﹣1是1的()A.倒数 B.相反数C.绝对值D.立方根【分析】根据相反数的定义:只有符号不同的两个数叫互为相反数.即a的相反数是﹣a.【解答】解:﹣1是1的相反数.故选B.【点评】主要考查相反数的概念:只有符号不同的两个数互为相反数,0的相反数是0.同时涉及倒数的定义,绝对值的性质,立方根的定义的知识点.2.(3分)(2016•齐齐哈尔)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;B、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;C、是轴对称图形.不是中心对称图形,因为找不到任何这样的一点,旋转180度后它的两部分能够重合;即不满足中心对称图形的定义,故此选项错误;D、是轴对称图形,又是中心对称图形.故此选项正确.故选:D.【点评】此题主要考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.(3分)(2016•齐齐哈尔)九年级一班和二班每班选8名同学进行投篮比赛,每名同学投篮10次,对每名同学投中的次数进行统计,甲说:“一班同学投中次数为6个的最多”乙说:“二班同学投中次数最多与最少的相差6个.”上面两名同学的议论能反映出的统计量是()A.平均数和众数 B.众数和极差C.众数和方差D.中位数和极差【分析】根据众数和极差的概念进行判断即可.【解答】解:一班同学投中次数为6个的最多反映出的统计量是众数,二班同学投中次数最多与最少的相差6个能反映出的统计量极差,故选:B.【点评】本题考查的是统计量的选择,平均数、众数、中位数和极差、方差在描述数据时的区别:①数据的平均数、众数、中位数是描述一组数据集中趋势的特征量,极差、方差是衡量一组数据偏离其平均数的大小(即波动大小)的特征数,描述了数据的离散程度.②极差和方差的不同点:极差表示一组数据波动范围的大小,一组数据极差越大,则它的波动范围越大.4.(3分)(2016•齐齐哈尔)下列算式①=±3;②=9;③26÷23=4;④=2016;⑤a+a=a2.运算结果正确的概率是()A.B.C.D.【分析】分别利用二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算法则、合并同类项法则进行判断,再利用概率公式求出答案.【解答】解:①=3,故此选项错误;②==9,正确;③26÷23=23=8,故此选项错误;④=2016,错误;⑤a+a=2a,故此选项错误,故运算结果正确的概率是:,故选:A.【点评】此题主要考查了二次根式的性质以及负整数指数幂的性质、同底数幂的除法运算、合并同类项、概率公式等知识,正确掌握相关运算法则是解题关键.5.(3分)(2016•齐齐哈尔)下列命题中,真命题的个数是()①同位角相等②经过一点有且只有一条直线与这条直线平行③长度相等的弧是等弧④顺次连接菱形各边中点得到的四边形是矩形.A.1个B.2个C.3个D.4个【分析】根据平行线的性质对①进行判断;根据平行公理对②进行判断;根据等弧的定义对③进行判断;根据中点四边的判定方法可判断顺次连接菱形各边中点得到的四边形为平行四边形,加上菱形的对角线垂直可判断中点四边形为矩形.【解答】解:两直线平行,同位角相等,所以①错误;经过直线外一点有且只有一条直线与这条直线平行,所以②错误;在同圆或等圆中,长度相等的弧是等弧,所以③选项错误;顺次连接菱形各边中点得到的四边形是矩形,所以④正确.故选A.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.6.(3分)(2016•齐齐哈尔)点P(x,y)在第一象限内,且x+y=6,点A的坐标为(4,0).设△OPA的面积为S,则下列图象中,能正确反映面积S与x之间的函数关系式的图象是()A.B.C.D.【分析】先用x表示出y,再利用三角形的面积公式即可得出结论.【解答】解:∵点P(x,y)在第一象限内,且x+y=6,∴y=6﹣x(0<x<6,0<y<6).∵点A的坐标为(4,0),∴S=×4×(6﹣x)=12﹣2x(0<x<6),∴C符合.故选C.【点评】本题考查的是一次函数的图象,在解答此题时要注意x,y的取值范围.7.(3分)(2016•齐齐哈尔)若关于x的分式方程=2﹣的解为正数,则满足条件的正整数m的值为()A.1,2,3 B.1,2 C.1,3 D.2,3【分析】根据等式的性质,可得整式方程,根据解整式方程,可得答案.【解答】解:等式的两边都乘以(x﹣2),得x=2(x﹣2)+m,解得x=4﹣m,x=4﹣m≠2,由关于x的分式方程=2﹣的解为正数,得m=1,m=3,故选:C.【点评】本题考查了分式方程的解,利用等式的性质得出整式方程是解题关键,注意要检验分式方程的根.8.(3分)(2016•齐齐哈尔)足球比赛规定:胜一场得3分,平一场得1分,负一场得0分.某足球队共进行了6场比赛,得了12分,该队获胜的场数可能是()A.1或2 B.2或3 C.3或4 D.4或5【分析】设该队胜x场,平y场,则负(6﹣x﹣y)场,根据:胜场得分+平场得分+负场得分=最终得分,列出二元一次方程,根据x、y的范围可得x的可能取值.【解答】解:设该队胜x场,平y场,则负(6﹣x﹣y)场,根据题意,得:3x+y=12,即:x=,∵x、y均为非负整数,且x+y≤6,∴当y=0时,x=4;当y=3时,x=3;即该队获胜的场数可能是3场或4场,故选:C.【点评】本题主要考查二元一次方程的实际应用,根据相等关系列出方程是解题的关键,要熟练根据未知数的范围确定方程的解.9.(3分)(2016•齐齐哈尔)如图是由一些完全相同的小正方体搭成的几何体的主视图和左视图,组成这个几何体的小正方体的个数最少是()A.5个B.6个C.7个D.8个【分析】由主视图和左视图确定俯视图的形状,再判断最少的正方体的个数.【解答】解:由题中所给出的主视图知物体共2列,且都是最高两层;由左视图知共行,所以小正方体的个数最少的几何体为:第一列第一行1个小正方体,第一列第二行2个小正方体,第二列第三行2个小正方体,其余位置没有小正方体.即组成这个几何体的小正方体的个数最少为:1+2+2=5个.故选A.【点评】本题主要考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.如果掌握口诀“俯视图打地基,正视图疯狂盖,左视图拆违章”就更容易得到答案.10.(3分)(2016•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x 轴的一个交点坐标为(﹣1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=﹣1,x2=3;③3a+c>0④当y>0时,x的取值范围是﹣1≤x<3⑤当x<0时,y随x增大而增大其中结论正确的个数是()A.4个B.3个C.2个D.1个【分析】利用抛物线与x轴的交点个数可对①进行判断;利用抛物线的对称性得到抛物线与x轴的一个交点坐标为(3,0),则可对②进行判断;由对称轴方程得到b=﹣2a,然后根据x=﹣1时函数值为0可得到3a+c=0,则可对③进行判断;根据抛物线在x轴上方所对应的自变量的范围可对④进行判断;根据二次函数的性质对⑤进行判断.【解答】解:∵抛物线与x轴有2个交点,∴b2﹣4ac>0,所以①正确;∵抛物线的对称轴为直线x=1,而点(﹣1,0)关于直线x=1的对称点的坐标为(3,0),∴方程ax2+bx+c=0的两个根是x1=﹣1,x2=3,所以②正确;∵x=﹣=1,即b=﹣2a,而x=﹣1时,y=0,即a﹣b+c=0,∴a+2a+c=0,所以③错误;∵抛物线与x轴的两点坐标为(﹣1,0),(3,0),∴当﹣1<x<3时,y>0,所以④错误;∵抛物线的对称轴为直线x=1,∴当x<1时,y随x增大而增大,所以⑤正确.故选B.【点评】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小:当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右;常数项c决定抛物线与y轴交点位置:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题:每小题3分,共27分11.(3分)(2016•齐齐哈尔)某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示为 6.9×10﹣7.【分析】对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.00000069=6.9×10﹣7.故答案为:6.9×10﹣7.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.12.(3分)(2016•齐齐哈尔)在函数y=中,自变量x的取值范围是x≥﹣,且x≠2.【分析】根据被开方数是非负数,分母不能为零,可得答案.【解答】解:由题意,得3x+1≥0且x﹣2≠0,解得x≥﹣,且x≠2,故答案为:x≥﹣,且x≠2.【点评】本题考查了函数自变量的取值范围,利用被开方数是非负数,分母不能为零得出不等式是解题关键.13.(3分)(2016•齐齐哈尔)如图,平行四边形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AC⊥BD或∠AOB=90°或AB=BC使其成为菱形(只填一个即可).【分析】利用菱形的判定方法确定出适当的条件即可.【解答】解:如图,平行四边形ABCD的对角线AC,BD相交于点O,添加一个适当的条件为:AC⊥BD或∠AOB=90°或AB=BC使其成为菱形.故答案为:AC⊥BD或∠AOB=90°或AB=BC【点评】此题考查了菱形的判定,以及平行四边形的性质,熟练掌握菱形的判定方法是解本题的关键.14.(3分)(2016•齐齐哈尔)一个侧面积为16πcm2的圆锥,其主视图为等腰直角三角形,则这个圆锥的高为4cm.【分析】设底面半径为r,母线为l,由轴截面是等腰直角三角形,得出2r=l,代入S侧=πrl,求出r,l,从而求得圆锥的高.【解答】解:设底面半径为r,母线为l,∵主视图为等腰直角三角形,∴2r=l,∴侧面积S侧=πrl=πr2=16πcm2,解得r=4,l=4,∴圆锥的高h=4cm,故答案为:4.【点评】本题考查了圆锥的计算,解题的关键是能够熟练掌握有关的计算公式,难度不大.15.(3分)(2016•齐齐哈尔)如图,若以平行四边形一边AB为直径的圆恰好与对边CD相切于点D,则∠C=45度.【分析】连接OD,只要证明△AOD是等腰直角三角形即可推出∠A=45°,再根据平行四边形的对角相等即可解决问题.【解答】解;连接OD.∵CD是⊙O切线,∴OD⊥CD,∵四边形ABCD是平行四边形,∴AB∥CD,∴AB⊥OD,∴∠AOD=90°,∵OA=OD,∴∠A=∠ADO=45°,∴∠C=∠A=45°.故答案为45.【点评】本题考查平行四边形的性质、切线的性质、等腰直角三角形的性质等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.16.(3分)(2016•齐齐哈尔)如图,已知点P(6,3),过点P作PM⊥x轴于点M,PN⊥y 轴于点N,反比例函数y=的图象交PM于点A,交PN于点B.若四边形OAPB的面积为12,则k=6.【分析】根据点P(6,3),可得点A的横坐标为6,点B的纵坐标为3,代入函数解析式分别求出点A的纵坐标和点B的横坐标,然后根据四边形OAPB的面积为12,列出方程求出k的值.【解答】解:∵点P(6,3),∴点A的横坐标为6,点B的纵坐标为3,代入反比例函数y=得,点A的纵坐标为,点B的横坐标为,即AM=,NB=,∵S四边形OAPB=12,即S矩形OMPN﹣S△OAM﹣S△NBO=12,6×3﹣×6×﹣×3×=12,解得:k=6.故答案为:6.【点评】本题考查了反比例函数系数k的几何意义,解答本题的关键是根据点A、B的纵横坐标,代入解析式表示出其坐标,然后根据面积公式求解.17.(3分)(2016•齐齐哈尔)有一面积为5的等腰三角形,它的一个内角是30°,则以它的腰长为边的正方形的面积为20和20.【分析】分两种情形讨论①当30度角是等腰三角形的顶角,②当30度角是底角,分别作腰上的高即可.【解答】解:如图1中,当∠A=30°,AB=AC时,设AB=AC=a,作BD⊥AC于D,∵∠A=30°,∴BD=AB=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.如图2中,当∠ABC=30°,AB=AC时,作BD⊥CA交CA的延长线于D,设AB=AC=a,∵AB=AC,∴∠ABC=∠C=30°,∴∠BAC=120°,∠BAD=60°,在RT△ABD中,∵∠D=90°,∠BAD=60°,∴BD=a,∴•a•a=5,∴a2=20,∴△ABC的腰长为边的正方形的面积为20.故答案为20或20.【点评】本题考查正方形的性质、等腰三角形的性质等知识,解题的关键是学会分类讨论,学会添加常用辅助线,属于中考常考题型.18.(3分)(2016•齐齐哈尔)如图,在边长为2的菱形ABCD中,∠A=60°,点M是AD 边的中点,连接MC,将菱形ABCD翻折,使点A落在线段CM上的点E处,折痕交AB 于点N,则线段EC的长为﹣1.【分析】过点M作MF⊥DC于点F,根据在边长为2的菱形ABCD中,∠A=60°,M为AD中点,得到2MD=AD=CD=2,从而得到∠FDM=60°,∠FMD=30°,进而利用锐角三角函数关系求出EC的长即可.【解答】解:如图所示:过点M作MF⊥DC于点F,∵在边长为2的菱形ABCD中,∠A=60°,M为AD中点,∴2MD=AD=CD=2,∠FDM=60°,∴∠FMD=30°,∴FD=MD=,∴FM=DM×cos30°=,∴MC==,∴EC=MC﹣ME=﹣1.故答案为:﹣1.【点评】此题主要考查了菱形的性质以及锐角三角函数关系等知识,解题的关键是从题目中抽象出直角三角形,难度不大.19.(3分)(2016•齐齐哈尔)如图,在平面直角坐标系中,矩形AOCB的两边OA、OC分别在x轴和y轴上,且OA=2,OC=1.在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,得到矩形A1OC1B1,再将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,以此类推,得到的矩形A n OC n B n的对角线交点的坐标为(﹣,).【分析】根据在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k,即可求得B n的坐标,然后根据矩形的性质即可求得对角线交点的坐标.【解答】解:∵在第二象限内,将矩形AOCB以原点O为位似中心放大为原来的倍,∴矩形A1OC1B1与矩形AOCB是位似图形,点B与点B1是对应点,∵OA=2,OC=1.∵点B的坐标为(﹣2,1),∴点B1的坐标为(﹣2×,1×),∵将矩形A1OC1B1以原点O为位似中心放大倍,得到矩形A2OC2B2…,∴B2(﹣2××,1××),∴B n(﹣2×,1×),∵矩形A n OC n B n的对角线交点(﹣2××,1××),即(﹣,),故答案为:(﹣,).【点评】本题考查的是矩形的性质、位似变换的性质,在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或﹣k.三、解答题:共63分20.(7分)(2016•齐齐哈尔)先化简,再求值:(1﹣)÷﹣,其中x2+2x﹣15=0.【分析】先算括号里面的,再算除法,最后算减法,根据x2+2x﹣15=0得出x2+2x=15,代入代数式进行计算即可.【解答】解:原式=•﹣=﹣=,∵x2+2x﹣15=0,∴x2+2x=15,∴原式=.【点评】本题考查的是分式的化简求值,此类题型的特点是:利用方程解的定义找到相等关系,再把所求的代数式化简后整理出所找到的相等关系的形式,再把此相等关系整体代入所求代数式,即可求出代数式的值.21.(8分)(2016•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.【分析】(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.【解答】解:(1)如图所示,△A1B1C1为所求做的三角形;(2)如图所示,△A2B2O为所求做的三角形;(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),∴A2A3所在直线的解析式为:y=﹣5x+16,令y=0,则x=,∴P点的坐标(,0).【点评】本题考查了利用旋转和平移变换作图,熟练掌握网格结构准确找出对应点的位置是解题的关键.22.(8分)(2016•齐齐哈尔)如图,对称轴为直线x=2的抛物线y=x2+bx+c与x轴交于点A 和点B,与y轴交于点C,且点A的坐标为(﹣1,0)(1)求抛物线的解析式;(2)直接写出B、C两点的坐标;(3)求过O,B,C三点的圆的面积.(结果用含π的代数式表示)注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)利用对称轴方程可求得b,把点A的坐标代入可求得c,可求得抛物线的解析式;(2)根据A、B关于对称轴对称可求得点B的坐标,利用抛物线的解析式可求得B点坐标;(3)根据B、C坐标可求得BC长度,由条件可知BC为过O、B、C三点的圆的直径,可求得圆的面积.【解答】解:(1)由A(﹣1,0),对称轴为x=2,可得,解得,∴抛物线解析式为y=x2﹣4x﹣5;(2)由A点坐标为(﹣1,0),且对称轴方程为x=2,可知AB=6,∴OB=5,∴B点坐标为(5,0),∵y=x2﹣4x﹣5,∴C点坐标为(0,﹣5);(3)如图,连接BC,则△OBC是直角三角形,∴过O、B、C三点的圆的直径是线段BC的长度,在Rt△OBC中,OB=OC=5,∴BC=5,∴圆的半径为,∴圆的面积为π()2=π.【点评】本题为二次函数的综合应用,涉及知识点有二次函数的性质、待定系数法、勾股定理、圆周角定理等.在(3)中确定出圆的半径是解题的关键.本题属于基础性的题目,难度不大.23.(8分)(2016•齐齐哈尔)如图,在△ABC中,AD⊥BC,BE⊥AC,垂足分别为D,E,AD与BE相交于点F.(1)求证:△ACD∽△BFD;(2)当tan∠ABD=1,AC=3时,求BF的长.【分析】(1)由∠C+∠DBF=90°,∠C+∠DAC=90°,推出∠DBF=∠DAC,由此即可证明.(2)先证明AD=BD,由△ACD∽△BFD,得==1,即可解决问题.【解答】(1)证明:∵AD⊥BC,BE⊥AC,∴∠BDF=∠ADC=∠BEC=90°,∴∠C+∠DBF=90°,∠C+∠DAC=90°,∴∠DBF=∠DAC,∴△ACD∽△BFD.(2)∵tan∠ABD=1,∠ADB=90°∴=1,∴AD=BD,∵△ACD∽△BFD,∴==1,∴BF=AC=3.【点评】本题考查相似三角形的判定和性质、三角函数等知识,解题的关键是熟练掌握相似三角形的判定和性质,属于中考常考题型.24.(10分)(2016•齐齐哈尔)为增强学生体质,各学校普遍开展了阳光体育活动,某校为了解全校1000名学生每周课外体育活动时间的情况,随机调查了其中的50名学生,对这50名学生每周课外体育活动时间x(单位:小时)进行了统计.根据所得数据绘制了一幅不完整的统计图,并知道每周课外体育活动时间在6≤x<8小时的学生人数占24%.根据以上信息及统计图解答下列问题:(1)本次调查属于抽样调查,样本容量是50;(2)请补全频数分布直方图中空缺的部分;(3)求这50名学生每周课外体育活动时间的平均数;(4)估计全校学生每周课外体育活动时间不少于6小时的人数.【分析】(1)根据题目中的信息可知本次调查为抽样调查,也可以得到样本容量;(2)根据每周课外体育活动时间在6≤x<8小时的学生人数占24%,可以求得每周课外体育活动时间在6≤x<8小时的学生人数,从而可以求得2≤x<4的学生数,从而可以将条形统计图补充完整;(3)根据条形统计图可以得到这50名学生每周课外体育活动时间的平均数;(4)根据条形统计图,可以估计全校学生每周课外体育活动时间不少于6小时的人数.【解答】解:(1)由题意可得,本次调查属于抽样调查,样本容量是50,故答案为:抽样,50;(2)由题意可得,每周课外体育活动时间在6≤x<8小时的学生有:50×24%=12(人),则每周课外体育活动时间在2≤x<4小时的学生有:50﹣5﹣22﹣12﹣3=8(人),补全的频数分布直方图如右图所示,。
2012年黑龙江省齐齐哈尔市中考数学试题及答案(Word版)
2012年齐齐哈尔市初中学业考试数 学 试 卷一、单项选择题(每题3分,满分30分)1.下列各式:①x 2+x 3=x 5.②a 2·a 3=a 62=-④(11()33-=⑤0(1)1π-=,其中正确的是 ( )A .④⑤ B.③④ c.②③ D .①④2.下列图形既是轴对称图形,又是中心对称图形的是 ( )3.小亮为今年参加中考的好友小杰制作了一个正方体礼品盒(如图),六个面上各有一个 字,连起来就是“预祝中考成功”,其中“预”的对面是“中”,“成”的对面是“功”, 则它的平面展开图可能是 ( )4.如图,在△ABC 中,BC=4,以点A 为圆心,2为半径的0A 与BC 相切于点D ,交AB 于点E , 交AC 于点F ,点P 是OA 上的一点,且∠EPF=450,图中阴影影部分的面积为 ( ) A .4一π 8.4—2π C 、8+πⅡ D.8-2π孔5.2012年5月份,齐齐哈尔市一周空气质量报告中某项污染指数的数据是:31,35,30, 31,34,32,31,这组数据的中位数、众数分别是 ( ) A .32,31 B .31,31 C .31,32 D .32,35 +5.一天晚饭后,小明陪妈妈从家里出去散步,下图描述了他们散步过程中离家的距离s(米) 与散步时间t(分)之间的函数关系,下面的描述符合他们散步情景的是 ( ) A .从家出发,到了一家书店,看了一会儿书就回家了 B .从家出发,到了一家书店,看了一会儿书,继续向 前走了一段,然后回家了C .从家出发,一直散步(没有停留),然后回家了D .从家出发,散了一会儿步,到了一家书店,看了—会儿书, 继续向前走了一段,18分钟后开始返回7,为庆祝“六·一”国际儿童节,龙沙区某小学组织师生共360人参加公园游园活动,有A 、B 两种型号客车可供租用,两种客车载客量分别为45人、30人,要求每辆车必 须满载,则师生一次性全部到达公园的租车方案有 ( ) A .3种 B .4种 c .5种D .6种8.已知二次函数y=ax 2+bx+c(a≠O)的图象如图所示,现有下列结论:①ab c >0 ②b 2-4ac<0 ⑤c<4b ④a+b >0,则其中正确结论的个数是 ( ) A .1个 B .2个 C .3个D .4个 9.若关于x 的分式方程2213m x x x+-=-无解,则m 的值为( )A .一l .5B .1C .一l .5或2D .一0.5或一l .510.Rt △ABC 中,AB=AC ,点D 为BC 中点.∠MDN=900,∠MDN 绕点D 旋转,DM 、DN 分别与边AB 、AC 交于E 、F 两点.下列结论①2BC②S △AEF ≤14S △ABC③S 四边形AEDF =AD ·EF④AD ≥EF⑤A D 与EF 可能互相平分,其中正确结论的个数是( ) A .1个 B .2个 C .3个 D .4个二、填空题(每题3分,满分30分)11.2012年5月8日,“最美教师”张丽莉为救学生身负重伤,张老师舍己救人的事迹受到全国人民的极大关注,在住院期间,共有691万人以不同方式向她表示问候和祝福, 将691万人用科学记数法表示为 人.(结果保留两个有效数字) 12.函数y1x+中,自变量x 的取值范围是13.如图,己知AC=BD ,要使△ABC ≌△DCB,则只需添加一个 适当的条件是 (填一个即可)14.已知一个口袋中装有7个只有颜色不同的球,其中3个白球,4个黑球,若往口袋中再放入x 个白球和y 个黑球,从口袋中随机取出一个自球的概率是14,则y 与x 之间的函数关系式为15.如图所示,沿DE 折叠长方形ABCD 的一边,使点C 落在AB 边上的点F 处,若AD=8,且△AFD 的面积为60,则△DEC 的 面积为 16.由一些完全相同的小正方体搭成的几何体的主视图和左视图如图所示,则组成这个几何体的小正方体的个数可能是17.用半径为9,圆心角为1200的扇形围成一个圆锥,则圆锥的高为 . 18.Rt △ABC 中,∠A=900,BC=4,有一个内角为600,点P 是直线AB 上不同于A 、B 的一点,且∠ACP=300,则PB 的长为 . 19.如图,点A 在双曲线y=1x上,点B 在双曲线y=3x上,且AB ∥x 轴,点C 、D 在x 轴上,若四边形ABDC 为矩形, 则它的面积为20.如图,在平面直角坐标系中有一边长为l 的正方形OABC ,边0A 、0C 分别在x 轴、y 轴上,如果以对角线OB 为边作第二个正方形OBB 1C 1,再以对角线OB l 为边作第三个正方形 OB l B 2C 2,照此规律作下去,则点B 2012的坐标为三、懈答题(满分60分) 21.(本小题满分5分豢22.(本小题满分6分)顶点在网格交点的多边形叫做格点多边形,如图,在一个9 X 9的正方形网格中有一个格点△ABC.设网格中小正方形的边长为l 个单位长度. (1)在网格中画出△ABC 向上平移4个单位后得到的△A l B l C l . (2)在网格中画出△ABC 绕点A 逆时针旋转900后得到的△AB 2C 2 (3)在(1)中△ABC 向上平移过程中,求边AC 所扫过区域的面积.23.(本小题满分6分) 如图,抛物线y=212x+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C ,且OA=2,OC=3.(1)求抛物线的解析式.(2)若点D(2,2)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P ,使得△BDP的周长最小,若存在,请求出点P 的坐标,若不存在,请说明理由.24.(本小题满分7分)6月5日是世界环境日,为了普及环保知识,增强环保意识,某市第一中学举行了“环保知识竞赛”,参赛人数1000人,为了了解本次竞赛的成绩情况,学校团委从中抽取部分学生的成绩(满分为100分,得分取整数)进行统计,并绘制出不完整的频率分布表和不完整的频数分布直方图如下:(1)直接写当a的值,并补全频数分布直方图..(2)若成绩在80分以上(含80分)为优秀,求这次参赛的学生中成绩为优秀的约为多少人?(3)若这组被抽查的学生成绩的中位数是80分,请直接写出被抽查的学生中得分为8Q分的至少有多少人?25.(本小题满分8分)黄岩岛是我国南沙群岛的一个小岛,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向黄岩岛驶来,渔船向渔政部门报告,并。
初中数学统计及应用题
一、选择题1.(2010年齐齐哈尔市,5,3) “一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款捐物献爱心活动,下表是我市某中学七年级二班50名同学捐款情况统计表:根据表中所提供的信息,这50名同学捐款金额的众数是(精品分类拒绝共享).A.15 B.30 C.50 D.20【分析】一组数据中出现次数最多的数据,叫做这组数据的众数.【答案】B【涉及知识点】统计【点评】本题结合实事,考查了统计中的众数知识点.让学生进一步明确数学来源于生活,最终也服务也生活.对于众数来说,在理解上要明确是指出现次数最大的那个数据,而不是最大的那个数据.【推荐指数】★★二、填空题1.(2010湖北咸宁,15,3分)惠民新村分给小慧家一套价格为12万元的住房.按要求,需首期(第一年)付房款3万元,从第二年起,每年应付房款0.5万元与上一年剩余房款的利息的和.假设剩余房款年利率为0.4%,小慧列表推算如下:(n >1).1.5万元和剩下的9万元的利息,第三年还0.5万元和剩下的(9-0.5)万元的利息,第四年则要还0.5万元和剩下的(9-2×0.5)万元的利息,…,所以除了第一年以外,第n 年都是要还0.5万元和剩下的[9-(n-2)·0.5]万元的利息,可列式:[]0.59(2)0.50.4%n +--⨯⨯,化简可知第n 年应还款(0.540.002n -)万元.容易看出,从第二年开始,每年还款数与年份成一次函数关系,所以也可以这样解:设从第二年开始每年还款数w 与年份n 的函数关系为b kn w +=,则可列方程组⎩⎨⎧⨯+=+⨯+=+%4.05.85.03%4.095.02b k b k ,解得⎩⎨⎧=-=54.0002.0b k ,所以从第二年开始每年还款数w 与年份n 的函数关系为54.0002.0+-=n w .【答案】0.540.002n -(填[]0.59(2)0.50.4%n +--⨯⨯或其它正确而未化简的式子也给满分).【涉及知识点】用字母表示数、列代数式、列一次函数关系式.【点评】本题题材来源于现实生活中购房问题,设计巧妙,引导学生关注生活,特别是生活中的经济问题,并引导学生用学过的数学知识来解决问题.如果能将题目中的n 的取值范围写作(191≤<n 且n 为正整数)将显得更完整.【推荐指数】★★★★精品分类 拒绝共享三、解答题1.(2010年湖南益阳,17,10分)南县农民一直保持着冬种油菜的习惯,利用农闲冬种一季油菜.南县农业部门对2009年的油菜籽生产成本、市场价格、种植面积和产量等进行了调查统计,并绘制了如下统计表与统计图:请根据以上信息解答下列问题(1)种植油菜每亩的种子成本是多少元?(2)农民冬种油菜每亩获利多少元?(3)2009年南县全县农民冬种油菜的总获利多少元?(结果用科学记数法表示)【分析】(1)由扇形统计图容易得到种子所占的百分比,即可求得每亩的种子成本;(2)由统计表获得信息,根据获利=售价-成本价,求得每亩获利;(3)根据总获利=每亩获利×总亩数,容易求得农民冬种油菜的总获利,特别注意结果用科学记数法表示.【答案】解:(1)1-10%-35%-45%=10%,110×10%=11(元),所以种植油菜每亩的种子成本是11元.(2)130×3-110=280(元),所以农民冬种油菜每亩获利280元.(3)280×500 000=140 000 000=1.4×108(元),所以2009年南县全县农民冬种油菜的总获利1.4×108元.【涉及知识点】扇形统计图和统计表【点评】统计图表与我们的生产、生活联系密切,是近几年的中考试题中的热点.统计图表的应用要求同学们具有收集、整理与分析数据的能力、数形结合能力以及读图识图的能力.解题时由图表获取相关信息,运用相关的数学知识加以分析后,进而作出决策,最后解决问题.【推荐指数】★★★★精品分类拒绝共享2.(2010四川内江,19,9分)学校为了解学生参加体育活动的情况,对学生“平均每天参加体育活动的时间”进行了随机抽样调查,下图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答以下问题:(1)“平均每天参加体育活动的时间”为“0.5~1小时”部分的扇形统计图的下(2)本次一共调查了名学生;(3)将条形统计图补充完整;(4)若该校有2000名学生,你估计全校可能有多少名学生平均每天参加体育活动的时间在0.5小时以下.【分析】在扇形统计图中,各部份所占的百分比之和为100%,所以“平均每天参加体育活动的时间”为“0.5~1小时”部分的扇形统计图所占的百分比为100%-50%-30%-5%=15%,因此该部分的圆心角为360°×15%=54°;由条形统计图可知,“平均每天参加体育活动的时间”为“0.5小时以下”部分的学生有10人,而它在扇形统计图中占5%,所以本次一共调查了10÷5%=200(名);结合(2)的结果和扇形统计图,可得“平均每天参加体育活动的时间”为“0.5~1小时”部分的学生有200×15%=30(名),“平均每天参加体育活动的时间”为“1.5小时以上”部分的学生有200×30%=60(名),据此可以将条形统计图补充完整;根据样本容易估计出全校约有1000×5%=100(名)学生平均每天参加体育活动的时间在0.5小时以下.【答案】解:(1) 54 ·····················2分(2) 200 ··························4分··············7分(3) 2000×5%=100(名)··················9分【涉及知识点】通过统计图表获取信息统计图表的制作【点评】在以信息和技术为基础的现代社会,统计显得越来越重要,因此这部分内容是中考数学试卷中的必考内容,在考查时,除了在选择题和填空题中具体考查某一个知识点外,通常还在解答题中综合考查统计的相关知识.【推荐指数】★★★★★精品分类拒绝共享3.(2010四川内江,21,10分)一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?【分析】根据题意,(1)精加工的天数+粗加工的天数=12天,精加工的蔬菜+粗加工的蔬菜=140吨,由此建立二元一次方程组进行求解;(2)销售利润=精加工的蔬菜的销售利润+粗加工的蔬菜的销售利润;由于精加工的蔬菜的销售利润大,所在规定时间完成加工销售任务,为获取最大利润,应尽可能的多安排精加工的时间,再结合一次函数的性质即可解决最后一问.【答案】解:⑴设应安排x 天进行精加工,y 天进行粗加工, ··· 1分根据题意得: ⎩⎨⎧x +y =12,5x +15y =140.················ 3分 解得⎩⎨⎧x =4,y =8.答:应安排4天进行精加工,8天进行粗加工. ········· 4分 ⑵①精加工m 吨,则粗加工(140-m )吨,根据题意得:W =2000m +1000(140-m )=1000m +140000 . ·················· 6分②∵要求在不超过10天的时间内将所有蔬菜加工完,∴m5+140-m15≤10 解得m≤5.············8分∴0<m≤5.又∵在一次函数W=1000m+140000中,k=1000>0,∴W随m的增大而增大,∴当m=5时,W max=1000×5+140000=145000. ·····9分∴精加工天数为5÷5=1,粗加工天数为(140-5)÷15=9.∴安排1天进行精加工,9天进行粗加工,可以获得最多利润为145000元.····························10分.【涉及知识点】二元一次方程组一次函数一元一次不等式【点评】本题是一个中等难度以上代数综合题,含二元一次方程组的应用、一元一次不等式的应用、一次函数的应用,具有较大的综合型和区分度.解决此类问题关键在于认真审题,找出关键词句,确定相等关系或不等关系.【推荐指数】★★★★★4.(2010北京,21,5分)根据北京市统计局公布的2006-2009年空气质量的相关数据,绘制统计图如下:2006-2009年北京全年市区空气质量达到二级和好于二级的天数统计图(1)由统计图中的信息可知,全北京全年市区空气质量达到二级和好于二级的天数与上一年相比,增加最多的是______年,增加了______天;(2)表1是根据《中国环境发展报告(2010)》公布的数据绘制的2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比的统计表,请将表1中的空缺部分补充完整(精确到1﹪);表1 2009年十个城市空气质量达到二级和好于二级的天数占全年天数百分比的统计表(3)根据表1百分比不低于95﹪的为A组,不低于85低于95﹪的为B组,低于85﹪的为C此标准,C百分比为______﹪;请你补全右边的扇形统计图.【分析】这是统计基础题,认真阅读难度不大.【答案】解:(1)2008;28;(2)78﹪;(3)30;.【涉及知识点】统计,折线图、扇形图【点评】统计图问题是中考必考题型,阅读图形中的信息并准确解读是解决这类问题的关键.需要说明的是,统计问题一般都是中考基础题,只是阅读量较大,少数同学往往不能坚持阅读,导致失分,这是很可惜的.解决方法是,对此类阅读量大的统计题细心读题,圈点出关键词句.【推荐指数】★★★★精品分类拒绝共享5.(2010江苏常州,20,7分)(本小题满分7分)某中学七年级(8)班同学全部参加课外体育活动情况统计如图:(1)请你根据以上统计图中的信息,填写下表:(2)请你将该条形统计图补充完整。
中考数学试卷
3301.(3 分) 3 的相反数是( )A.﹣3 B .√3 C .3 D.±32.(3分) 下面四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D.3.(3分) 下列计算不正确的是( )A.±√9 = ±3 B .2ab+3ba=5abC.(√2 −1) 0=1 D.(3ab2 ) 2=6a2b44.(3 分)小明和小强同学分别统计了自己最近10 次“一分钟跳绳”的成绩,下列统计量中能用来比较两人成绩稳定程度的是( )A.平均数B.中位数C.方差D.众数5.(3 分) 如图,直线a∥b,将一块含30°角(∠BAC=30°) 的直角三角尺按图中方式放置,其中A和C两点分别落在直线a和b上.若∠1=20°,则∠2 的度数为( )A .20°B .30°C .40°D .50°6.(3分) 如图是由几个相同大小的小正方体搭建而成的几何体的主视图和俯视图,则搭建这个几何体所需要的小正方体的个数至少为( )A .5B .6C .7D .87.(3 分)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是( )A .B .C .D .8.(3分) 学校计划购买A和B两种品牌的足球,已知一个A品牌足球60 元,一个B品牌足球75 元.学校准备将1500 元钱全部用于购买这两种足球(两种足球都买),该学校的购买方案共有( )A .3 种B .4 种C .5 种D .6 种9.(3 分) 在一个不透明的口袋中,装有一些除颜色外完全相同的红、白、黑三种颜色的小球.已知袋中有红球5 个,白球23 个,且从袋中随机摸出一个红球的概率是,则袋中黑球的个数为( )A .27B .23C .22D .1810.(3 分) 如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(﹣3 ,0),其对称轴为直线x= − ,结合图象分析下列结论:①abc>0;②3a+c>0;③当x<0 时,y随x的增大而增大;④一元二次方程cx2+bx+a=0 的两根分别为x1= −,x2= ;b2 −4ac⑤ <0;4a⑥若m,n(m<n)为方程a(x+3)(x﹣2) +3=0 的两个根,则m<﹣3 且n>2,其中正确的结论有( )A .3 个B .4 个C .5 个D .6 个72111.(3 分) 预计到2025 年我国高铁运营里程将达到38000 公里.将数据38000 用科学记数法表示为.12.(3 分) 如图,已知在△ABC和△DEF中,∠B=∠E,BF=CE,点B、F、C、E在同一条直线上,若使△ABC≌△DEF,则还需添加的一个条件是 (只填一个即可).13.(3 分) 将圆心角为216°,半径为5cm的扇形围成一个圆锥的侧面,那么围成的这个圆锥的高为cm.14.(3分) 关于x的分式方程− =3 的解为非负数,则a的取值范围为.15.(3分) 如图,矩形ABOC的顶点B、C分别在x轴,y轴上,顶点A在第二象限,点B 的坐标为(﹣2,0).将线段OC绕点O逆时针旋转60°至线段OD,若反比例函数y= (k≠0)的图象经过A、D两点,则k值为.16.(3分) 等腰△ABC中,BD⊥AC,垂足为点D,且BD= AC,则等腰△ABC底角的度数为.17.(3 分)如图,直线l:y= x+1 分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3,依此规律…,若图中阴影△A1OB1 的面积为S1,阴影△A2B1B2 的面积为S2,阴影△A3B2B3 的面积为S3…,则S n=.76918.(10 分)(1)计算:() ﹣1+√12 −6tan60°+|2 ﹣4√3|(2) 因式分解:a2+1 ﹣2a+4 (a﹣1)19.(5 分)解方程:x2+6x=﹣720.(8 分) 如图,以△ABC的边BC为直径作⊙O,点A在⊙O上,点D在线段BC的延长线上,AD=AB,∠D=30°.(1) 求证:直线AD是⊙O的切线;(2) 若直径BC=4,求图中阴影部分的面积.21.(10 分) 齐齐哈尔市教育局想知道某校学生对扎龙自然保护区的了解程度,在该校随机抽取了部分学生进行问卷,问卷有以下四个选项:A.十分了解;B.了解较多:C.了解较少:D.不了解(要求:每名被调查的学生必选且只能选择一项).现将调查的结果绘制成两幅不完整的统计图.请根据两幅统计图中的信息回答下列问题:(1) 本次被抽取的学生共有名;(2) 请补全条形图;(3) 扇形图中的选项“C.了解较少”部分所占扇形的圆心角的大小为°;(4) 若该校共有2000 名学生,请你根据上述调查结果估计该校对于扎龙自然保护区“十分了解”和“了解较多”的学生共有多少名?22.(10 分) 甲、乙两地间的直线公路长为400 千米.一辆轿车和一辆货车分别沿该公路从甲、乙两地以各自的速度匀速相向而行,货车比轿车早出发1 小时,途中轿车出现了故障,停下维修,货车仍继续行驶.1 小时后轿车故障被排除,此时接到通知,轿车立刻掉头按原路原速返回甲地(接到通知及掉头时间不计).最后两车同时到达甲地,已知两车距各自出发地的距离y(千米) 与轿车所用的时间x(小时) 的关系如图所示,请结合图象解答下列问题:(1) 货车的速度是千米/小时;轿车的速度是千米/小时;t值为.(2) 求轿车距其出发地的距离y(千米) 与所用时间x(小时)之间的函数关系式并写出自变量x的取值范围;(3) 请直接写出货车出发多长时间两车相距90 千米.23.(12 分)综合与实践折纸是同学们喜欢的手工活动之一,通过折纸我们既可以得到许多美丽的图形,同时折纸的过程还蕴含着丰富的数学知识.折一折:把边长为4 的正方形纸片ABCD对折,使边AB与CD重合,展开后得到折痕EF.如图①:点M为CF上一点,将正方形纸片ABCD沿直线DM折叠,使点C落在EF上的点N处,展开后连接DN,MN,AN,如图②(一) 填一填,做一做:(1)图②中,∠CMD=.线段NF=(2)图②中,试判断△AND的形状,并给出证明.剪一剪、折一折:将图②中的△AND剪下来,将其沿直线GH折叠,使点A落在点A′处,分别得到图③、图④.(二) 填一填(3)图③中阴影部分的周长为.(4)图③中,若∠A′GN=80°,则∠A′HD=°.(5)图③中的相似三角形(包括全等三角形)共有对;(6)如图④点A′落在边ND上,若= ,则= (用含m,n的代数式表示).24.(14 分)综合与探究如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于C点,OA=2 ,OC=6,连接AC和BC.(1) 求抛物线的解析式;(2)点D在抛物线的对称轴上,当△ACD的周长最小时,点D的坐标为.(3)点E是第四象限内抛物线上的动点,连接CE和BE.求△BCE面积的最大值及此时点E的坐标;(4) 若点M是y轴上的动点,在坐标平面内是否存在点N,使以点A、C、M、N为顶点的四边形是菱形?若存在,请直接写出点N的坐标;若不存在,请说明理由.。
2o2齐市中考数学试题及答案
2o2齐市中考数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个选项是实数集R的子集?A. 整数集ZB. 有理数集QC. 无理数集ID. 复数集C答案:B2. 已知函数f(x) = 2x - 3,求f(2)的值。
A. 1B. -1C. 5D. 7答案:A3. 一个数的平方根是4,那么这个数是:A. 16B. -16C. 4D. -4答案:A4. 一个三角形的内角和为:A. 180°B. 360°C. 90°D. 120°答案:A5. 已知一个圆的半径为5,那么它的周长是:A. 10πB. 20πC. 30πD. 40π答案:B6. 计算(2x + 3)(2x - 3)的结果。
A. 4x² - 9B. 4x² + 9C. 9 - 4x²D. 9 + 4x²答案:A7. 一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5和-5D. 0答案:C8. 已知一个等腰三角形的底角为45°,那么顶角的度数是:A. 45°B. 90°C. 135°D. 180°答案:B9. 计算(a² + b²)²的值。
A. a⁴ + b⁴B. a⁴ + 2a²b² + b⁴C. 2a⁴ + 2b⁴D. a⁴ - 2a²b² + b⁴答案:B10. 一个数的立方根是2,那么这个数是:A. 8B. 2C. 4D. 6答案:C二、填空题(每题4分,共20分)1. 已知一个数列的通项公式为a_n = 2n - 1,那么第5项的值是______。
答案:92. 一个正方体的体积是27,那么它的边长是______。
答案:33. 已知一个直角三角形的两条直角边长分别为3和4,那么斜边的长度是______。
答案:54. 一个数的立方是-8,那么这个数是______。
黑龙江省齐齐哈尔市中考数学试卷
黑龙江省齐齐哈尔市中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.2.(3分)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.3.(3分)作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×10124.(3分)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b 5.(3分)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个6.(3分)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣17.(3分)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.8.(3分)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.139.(3分)一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A.120°B.180°C.240° D.300°10.(3分)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是班.12.(3分)在函数y=+x﹣2中,自变量x的取值范围是.13.(3分)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件,使其成为正方形(只填一个即可)14.(3分)因式分解:4m2﹣36=.15.(3分)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为.16.(3分)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是.17.(3分)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为.18.(3分)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于.19.(3分)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为.三、解答题(共63分)20.(7分)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.21.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C(﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.22.(8分)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)23.(8分)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.24.(10分)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=,b=;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第组;(4)请估计该校七年级学生日阅读量不足1小时的人数.25.(10分)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=,b=,m=;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.26.(12分)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;(2)求证:△ADE≌△COE,并求出线段OE的长;(3)直接写出点D的坐标;(4)若F是直线AC上一个动点,在坐标平面内是否存在点P,使以点E,C,P,F为顶点的四边形是菱形?若存在,请直接写出P点的坐标;若不存在,请说明理由.黑龙江省齐齐哈尔市中考数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.(3分)(2017•齐齐哈尔)﹣2017的绝对值是()A.﹣2017 B.﹣C.2017 D.【分析】根据绝对值的定义即可解题.【解答】解:∵|﹣2017|=2017,∴答案C正确,故选C.【点评】本题考查了绝对值的定义,绝对值是指一个数在数轴上所对应点到原点的距离.2.(3分)(2017•齐齐哈尔)下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是()A.B.C.D.【分析】根据轴对称图形的概念求解.【解答】解:A、不是轴对称图形,故本选项错误;B、不是轴对称图形,故本选项错误;C、不是轴对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【点评】本题考查了轴对称图形的知识,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.3.(3分)(2017•齐齐哈尔)作为“一带一路”倡议的重大先行项目,中国,巴基斯坦经济走廊建设进展快、成效显著,两年来,已有18个项目在建或建成,总投资额达185亿美元,185亿用科学记数法表示为()A.1.85×109B.1.85×1010C.1.85×1011D.1.85×1012【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:185亿=1.85×1010.故选:B.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.(3分)(2017•齐齐哈尔)下列算式运算结果正确的是()A.(2x5)2=2x10 B.(﹣3)﹣2= C.(a+1)2=a2+1 D.a﹣(a﹣b)=﹣b【分析】根据合并同类项法则,同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;同底数幂相除,底数不变指数相减,即可解题.【解答】解:A、(2x5)2=4x10,故A错误;B、(﹣3)﹣2==,故B正确;C、(a+1)2=a2+2a+1,故C错误;D、a﹣(a﹣b)=a﹣a+b=b,故D错误;故选:B.【点评】本题考查合并同类项、同底数幂的乘法、幂的乘方、同底数幂的除法,熟练掌握运算性质和法则是解题的关键.5.(3分)(2017•齐齐哈尔)为有效开展“阳光体育”活动,某校计划购买篮球和足球共50个,购买资金不超过3000元.若每个篮球80元,每个足球50元,则篮球最多可购买()A.16个B.17个C.33个D.34个【分析】设买篮球m个,则买足球(50﹣m)个,根据购买足球和篮球的总费用不超过3000元建立不等式求出其解即可.【解答】解:设买篮球m个,则买足球(50﹣m)个,根据题意得:80m+50(50﹣m)≤3000,解得:m≤16,∵m为整数,∴m最大取16,∴最多可以买16个篮球.故选:A.【点评】本题考查了列一元一次不等式解实际问题的运用,解答本题时找到建立不等式的不等关系是解答本题的关键.6.(3分)(2017•齐齐哈尔)若关于x的方程kx2﹣3x﹣=0有实数根,则实数k 的取值范围是()A.k=0 B.k≥﹣1且k≠0 C.k≥﹣1 D.k>﹣1【分析】讨论:当k=0时,方程化为﹣3x﹣=0,方程有一个实数解;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,然后求出两个中情况下的k的公共部分即可.【解答】解:当k=0时,方程化为﹣3x﹣=0,解得x=;当k≠0时,△=(﹣3)2﹣4k•(﹣)≥0,解得k≥﹣1,所以k的范围为k≥﹣1.故选C.【点评】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7.(3分)(2017•齐齐哈尔)已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A.B.C.D.【分析】先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【解答】解:由题意得,2x+y=10,所以,y=﹣2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选D.【点评】本题考查了一次函数图象,三角形的三边关系,等腰三角形的性质,难点在于利用三角形的三边关系求自变量的取值范围.8.(3分)(2017•齐齐哈尔)一个几何体的主视图和俯视图如图所示,若这个几何体最多有a个小正方体组成,最少有b个小正方体组成,则a+b等于()A.10 B.11 C.12 D.13【分析】易得这个几何体共有2层,由俯视图可得第一层立方体的个数,由主视图可得第二层立方体的可能的个数,相加即可.【解答】解:结合主视图和俯视图可知,左边后排最多有3个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最多7块,结合主视图和俯视图可知,左边后排最少有1个,左边前排最多有3个,右边只有一层,且只有1个,所以图中的小正方体最少5块,a+b=12,故选:C.【点评】考查学生对三视图掌握程度和灵活运用能力,同时也体现了对空间想象能力方面的考查.9.(3分)(2017•齐齐哈尔)一个圆锥的侧面积是底面积的3倍,则这个圆锥侧面展开图的圆心角度数为()A.120°B.180°C.240° D.300°【分析】根据圆锥的侧面积是底面积的3倍得到圆锥底面半径和母线长的关系,根据圆锥侧面展开图的弧长=底面周长即可求得圆锥侧面展开图的圆心角度数.【解答】解:设底面圆的半径为r,侧面展开扇形的半径为R,扇形的圆心角为n度.由题意得S=πr2,底面面积l底面周长=2πr,S扇形=3S底面面积=3πr2,l扇形弧长=l底面周长=2πr.由S扇形=l扇形弧长×R得3πr2=×2πr×R,故R=3r.由l扇形弧长=得:2πr=解得n=120°.故选A.【点评】本题考查了圆锥的计算,通过圆锥的底面和侧面,结合有关圆、扇形的一些计算公式,重点考查空间想象能力、综合应用能力.熟记圆的面积和周长公式、扇形的面积和两个弧长公式并灵活应用是解答本题的关键.10.(3分)(2017•齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣2,与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,其部分图象如图所示,则下列结论:①4a﹣b=0;②c<0;③﹣3a+c>0;④4a﹣2b>at2+bt(t为实数);⑤点(﹣,y1),(﹣,y2),(﹣,y3)是该抛物线上的点,则y1<y2<y3,正确的个数有()A.4个 B.3个 C.2个 D.1个【分析】根据抛物线的对称轴可判断①,由抛物线与x轴的交点及抛物线的对称性可判断②,由x=﹣1时y>0可判断③,由x=﹣2时函数取得最大值可判断④,根据抛物线的开口向下且对称轴为直线x=﹣2知图象上离对称轴水平距离越小函数值越大,可判断⑤.【解答】解:∵抛物线的对称轴为直线x=﹣=﹣2,∴4a﹣b=0,所以①正确;∵与x轴的一个交点在(﹣3,0)和(﹣4,0)之间,∴由抛物线的对称性知,另一个交点在(﹣1,0)和(0,0)之间,∴抛物线与y轴的交点在y轴的负半轴,即c<0,故②正确;∵由②知,x=﹣1时y>0,且b=4a,即a﹣b+c=a﹣4a+c=﹣3a+c>0,所以③正确;由函数图象知当x=﹣2时,函数取得最大值,∴4a﹣2b+c≥at2+bt+c,即4a﹣2b≥at2+bt(t为实数),故④错误;∵抛物线的开口向下,且对称轴为直线x=﹣2,∴抛物线上离对称轴水平距离越小,函数值越大,∴y1<y3<y2,故⑤错误;故选:B.【点评】本题考查了二次函数与系数的关系:对于二次函数y=ax2+bx+c(a≠0),二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a共同决定对称轴的位置:当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab <0),对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c);抛物线与x轴交点个数由△决定:△=b2﹣4ac>0时,抛物线与x轴有2个交点;△=b2﹣4ac=0时,抛物线与x轴有1个交点;△=b2﹣4ac<0时,抛物线与x轴没有交点.二、填空题(本大题共9小题,每小题3分,共27分)11.(3分)(2017•齐齐哈尔)在某次七年级期末测试中,甲、乙两个班的数学平均成绩都是89.5分,且方差分别为S甲2=0.15,S乙2=0.2,则成绩比较稳定的是甲班.【分析】根据方差的意义判断.方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立【解答】解:∵s甲2<s乙2,∴成绩相对稳定的是甲,故答案为:甲.【点评】本题考查方差的意义:反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12.(3分)(2017•齐齐哈尔)在函数y=+x﹣2中,自变量x的取值范围是x ≥﹣4且x≠0.【分析】根据二次根是有意义的条件:被开方数大于等于0进行解答即可.【解答】解:由x+4≥0且x≠0,得x≥﹣4且x≠0;故答案为x≥﹣4且x≠0.【点评】本题考查了函数自变量的取值范围问题,掌握二次根是有意义的条件:被开方数大于等于0是解题的关键.13.(3分)(2017•齐齐哈尔)矩形ABCD的对角线AC,BD相交于点O,请你添加一个适当的条件AB=BC(答案不唯一),使其成为正方形(只填一个即可)【分析】此题是一道开放型的题目答案不唯一,证出四边形ABCD是菱形,由正方形的判定方法即可得出结论.【解答】解:添加条件:AB=BC,理由如下:∵四边形ABCD是矩形,AB=BC,∴四边形ABCD是菱形,∴四边形ABCD是正方形,故答案为:AB=BC(答案不唯一).【点评】本题考查了矩形的性质,菱形的判定,正方形的判定的应用,能熟记正方形的判定定理是解此题的关键,注意:有一组邻边相等的矩形是正方形,对角线互相垂直的矩形是正方形.14.(3分)(2017•齐齐哈尔)因式分解:4m2﹣36=4(m+3)(m﹣3).【分析】原式提取4,再利用平方差公式计算即可得到结果.【解答】解:原式=4(m2﹣9)=4(m+3)(m﹣3),故答案为:4(m+3)(m﹣3)【点评】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.15.(3分)(2017•齐齐哈尔)如图,AC是⊙O的切线,切点为C,BC是⊙O的直径,AB交⊙O于点D,连接OD,若∠A=50°,则∠COD的度数为80°.【分析】根据切线的性质得出∠C=90°,再由已知得出∠ABC,由外角的性质得出∠COD的度数.【解答】解:∵AC是⊙O的切线,∴∠C=90°,∵∠A=50°,∴∠B=40°,∵OB=OD,∴∠B=∠ODB=40°,∴∠COD=2×40°=80°,故答案为80°.【点评】本题考查了切线的性质,掌握切线的性质、直角三角形的性质以及外角的性质是解题的关键.16.(3分)(2017•齐齐哈尔)如图,在等腰三角形纸片ABC中,AB=AC=10,BC=12,沿底边BC上的高AD剪成两个三角形,用这两个三角形拼成平行四边形,则这个平行四边形较长的对角线的长是10cm,2cm,4cm.【分析】利用等腰三角形的性质,进而重新组合得出平行四边形,进而利用勾股定理求出对角线的长.【解答】解:如图:,过点A作AD⊥BC于点D,∵△ABC边AB=AC=10cm,BC=12cm,∴BD=DC=6cm,∴AD=8cm,如图①所示:可得四边形ACBD是矩形,则其对角线长为:10cm,如图②所示:AD=8cm,连接BC,过点C作CE⊥BD于点E,则EC=8cm,BE=2BD=12cm,则BC=4cm,如图③所示:BD=6cm,由题意可得:AE=6cm,EC=2BE=16cm,故AC==2cm,故答案为:10cm,2cm,4cm.【点评】此题主要考查了图形的剪拼以及勾股定理和等腰三角形的性质等知识,利用分类讨论得出是解题关键.17.(3分)(2017•齐齐哈尔)经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是△ABC的“和谐分割线”,△ACD为等腰三角形,△CBD和△ABC相似,∠A=46°,则∠ACB的度数为113°或92°.【分析】由△ACD是等腰三角形,∠ADC>∠BCD,推出∠ADC>∠A,即AC≠CD,分两种情形讨论①当AC=AD时,②当DA=DC时,分别求解即可.【解答】解:∵△BCD∽△BAC,∴∠BCD=∠A=46°,∵△ACD是等腰三角形,∵∠ADC>∠BCD,∴∠ADC>∠A,即AC≠CD,①当AC=AD时,∠ACD=∠ADC=(180°﹣46°)=67°,∴∠ACB=67°+46°=113°,②当DA=DC时,∠ACD=∠A=46°,∴∠ACB=46°+46°=92°,故答案为113°或92°.【点评】本题考查相似三角形的性质、等腰三角形的性质等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题,属于中考常考题型.18.(3分)(2017•齐齐哈尔)如图,菱形OABC的一边OA在x轴的负半轴上,O是坐标原点,tan∠AOC=,反比例函数y=的图象经过点C,与AB交于点D,若△COD的面积为20,则k的值等于﹣24.=2S△CDO,再根据tan∠AOC的值即可求得菱形的边长,即【分析】易证S菱形ABCO可求得点C的坐标,代入反比例函数即可解题.【解答】解:作DE∥AO,CF⊥AO,设CF=4x,∵四边形OABC为菱形,∴AB∥CO,AO∥BC,∵DE∥AO,=S△DEO,∴S△ADO=S△CDE,同理S△BCD=S△ADO+S△DEO+S△BCD+S△CDE,∵S菱形ABCO=2(S△DEO+S△CDE)=2S△CDO=40,∴S菱形ABCO∵tan∠AOC=,∴OF=3x,∴OC==5x,∴OA=OC=5x,∵S=AO•CF=20x2,解得:x=,菱形ABCO∴OF=,CF=,∴点C坐标为(﹣,),∵反比例函数y=的图象经过点C,∴代入点C得:k=﹣24,故答案为﹣24.=2S 【点评】本题考查了菱形的性质,考查了菱形面积的计算,本题中求得S菱形ABCO是解题的关键.△CDO19.(3分)(2017•齐齐哈尔)如图,在平面直角坐标系中,等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,依此规律,得到等腰直角三角形OA2017A2018,则点A2017的坐标为(0,()2016)或(0,21008).【分析】根据等腰直角三角形的性质得到OA1=1,OA2=,OA3=()2,…,OA2017=()2016,再利用A1、A2、A3、…,每8个一循环,再回到y轴的正半轴的特点可得到点A2017在y轴的正半轴上,即可确定点A2017的坐标.【解答】解:∵等腰直角三角形OA1A2的直角边OA1在y轴的正半轴上,且OA1=A1A2=1,以OA2为直角边作第二个等腰直角三角形OA2A3,以OA3为直角边作第三个等腰直角三角形OA3A4,…,∴OA1=1,OA2=,OA3=()2,…,OA2017=()2016,∵A1、A2、A3、…,每8个一循环,再回到y轴的正半轴,2017÷8=252…1,∴点A2017在第一象限,∵OA2017=()2016,∴点A2017的坐标为(0,()2016)即(0,21008).故答案为(0,()2016)或(0,21008).【点评】本题考查了规律型:点的坐标,等腰直角三角形的性质:等腰直角三角形的两底角都等于45°;斜边等于直角边的倍.也考查了直角坐标系中各象限内点的坐标特征.三、解答题(共63分)20.(7分)(2017•齐齐哈尔)先化简,再求值:•﹣(+1),其中x=2cos60°﹣3.【分析】根据分式的乘法和减法可以化简题目中的式子,然后将x的值代入即可解答本题.【解答】解:•﹣(+1)===,当x=2cos60°﹣3=2×﹣3=1﹣3=﹣2时,原式=.【点评】本题考查分式的化简求值、特殊角的三角函数值,解答本题的关键是明确分式化简求值的方法.21.(8分)(2017•齐齐哈尔)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣3,4),B(﹣5,2),C (﹣2,1).(1)画出△ABC关于y轴对称图形△A1B1C1;(2)画出将△ABC绕原点O逆时针方向旋转90°得到的△A2B2C2;(3)求(2)中线段OA扫过的图形面积.【分析】(1)分别作出各点关于y轴的对称点,再顺次连接即可;(2)根据图形旋转的性质画出旋转后的图形△A2B2C2即可;(3)利用扇形的面积公式即可得出结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)∵OA==5,∴线段OA扫过的图形面积==π.【点评】本题考查的是作图﹣旋转变换,熟知图形旋转不变性的性质是解答此题的关键.22.(8分)(2017•齐齐哈尔)如图,已知抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)和点B(3,0),与y轴交于点C,连接BC交抛物线的对称轴于点E,D 是抛物线的顶点.(1)求此抛物线的解析式;(2)直接写出点C和点D的坐标;=4S△COE,求P点坐标.(3)若点P在第一象限内的抛物线上,且S△ABP注:二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,)【分析】(1)将A、B的坐标代入抛物线的解析式中,即可求出待定系数b、c 的值,进而可得到抛物线的对称轴方程;(2)令x=0,可得C点坐标,将函数解析式配方即得抛物线的顶点C的坐标;(3)设P(x,y)(x>0,y>0),根据题意列出方程即可求得y,即得D点坐标.【解答】解:(1)由点A(﹣1,0)和点B(3,0)得,解得:,∴抛物线的解析式为y=﹣x2+2x+3;(2)令x=0,则y=3,∴C(0,3),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴D(1,4);(3)设P(x,y)(x>0,y>0),S△COE=×1×3=,S△ABP=×4y=2y,∵S=4S△COE,∴2y=4×,△ABP∴y=3,∴﹣x2+2x+3=3,解得:x1=0(不合题意,舍去),x2=2,∴P(2,3).【点评】此题主要考查了二次函数解析式的确定、抛物线的顶点坐标求法,图形=4S△COE列出方程是解决问题的关键.面积的求法等知识,根据S△ABP23.(8分)(2017•齐齐哈尔)如图,在△ABC中,AD⊥BC于D,BD=AD,DG=DC,E,F分别是BG,AC的中点.(1)求证:DE=DF,DE⊥DF;(2)连接EF,若AC=10,求EF的长.【分析】(1)证明△BDG≌△ADC,根据全等三角形的性质、直角三角形的性质证明;(2)根据直角三角形的性质分别求出DE、DF,根据勾股定理计算即可.【解答】(1)证明:∵AD⊥BC,∴∠ADB=∠ADC=90°,在△BDG和△ADC中,,∴△BDG≌△ADC,∴BG=AC,∠BGD=∠C,∵∠ADB=∠ADC=90°,E,F分别是BG,AC的中点,∴DE=BG=EG,DF=AC=AF,∴DE=DF,∠EDG=∠EGD,∠FDA=∠FAD,∴∠EDG+∠FDA=90°,∴DE⊥DF;(2)解:∵AC=10,∴DE=DF=5,由勾股定理得,EF==5.【点评】本题考查的是全等三角形的判定和性质、直角三角形的性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.24.(10分)(2017•齐齐哈尔)为养成学生课外阅读的习惯,各学校普遍开展了“我的梦中国梦”课外阅读活动,某校为了解七年级1200名学生课外日阅读所用时间情况,从中随机抽查了部分同学,进行了相关统计,整理并绘制出如下不完整的频数分布表和频数分布直方图,请根据图表信息解答下列问题:(1)表中a=70,b=0.40;(2)请补全频数分布直方图中空缺的部分;(3)样本中,学生日阅读所用时间的中位数落在第3组;(4)请估计该校七年级学生日阅读量不足1小时的人数.【分析】(1)根据“频数÷百分比=数据总数”先计算总数为200人,再根据表中的数分别求a和b;(2)补全直方图;(3)第100和第101个学生读书时间都在第3组;(4)前两组的读书时间不足1小时,用总数2000乘以这两组的百分比的和即可.【解答】解:(1)10÷0.05=200,∴a=200×0.35=70,b=80÷200=0.40,故答案为:70,0.40;(2)补全直方图,如下图:(3)样本中一共有200人,中位数是第100和101人的读书时间的平均数,即第3组:1~1.5小时;故答案为:3;(4)1200×(0.05+0.1)=1200×0.15=180(人),答:估计该校七年级学生日阅读量不足1小时的人数为180人.【点评】本题主要考查频率分布直方图和频率分布表的知识和分析问题以及解决问题的能力,解题的关键是能够读懂统计图,并从中读出有关信息.25.(10分)(2017•齐齐哈尔)“低碳环保,绿色出行”的理念得到广大群众的接受,越来越多的人再次选择自行车作为出行工具,小军和爸爸同时从家骑自行车去图书馆,爸爸先以150米/分的速度骑行一段时间,休息了5分钟,再以m米/分的速度到达图书馆,小军始终以同一速度骑行,两人行驶的路程y(米)与时间x(分钟)的关系如图,请结合图象,解答下列问题:(1)a=10,b=15,m=200;(2)若小军的速度是120米/分,求小军在途中与爸爸第二次相遇时,距图书馆的距离;(3)在(2)的条件下,爸爸自第二次出发至到达图书馆前,何时与小军相距100米?(4)若小军的行驶速度是v米/分,且在途中与爸爸恰好相遇两次(不包括家、图书馆两地),请直接写出v的取值范围.【分析】(1)根据时间=路程÷速度,即可求出a值,结合休息的时间为5分钟,即可得出b值,再根据速度=路程÷时间,即可求出m的值;(2)根据数量关系找出线段BC、OD所在直线的函数解析式,联立两函数解析式成方程组,通过解方程组求出交点的坐标,再用3000去减交点的纵坐标,即可得出结论;(3)根据(2)结论结合二者之间相距100米,即可得出关于x的含绝对值符号的一元一次方程,解之即可得出结论;(4)分别求出当OD过点B、C时,小军的速度,结合图形,利用数形结合即可得出结论.【解答】解:(1)1500÷150=10(分钟),10+5=15(分钟),(3000﹣1500)÷(22.5﹣15)=200(米/分).故答案为:10;15;200.(2)线段BC所在直线的函数解析式为y=1500+200(x﹣15)=200x﹣1500;线段OD所在的直线的函数解析式为y=120x.联立两函数解析式成方程组,,解得:,∴3000﹣2250=750(米).答:小军在途中与爸爸第二次相遇时,距图书馆的距离是750米.(3)根据题意得:|200x﹣1500﹣120x|=100,解得:x1==17.5,x2=20.答:爸爸自第二次出发至到达图书馆前,17.5分钟时和20分钟时与小军相距100米.(4)当线段OD过点B时,小军的速度为1500÷15=100(米/分钟);当线段OD过点C时,小军的速度为3000÷22.5=(米/分钟).结合图形可知,当100<v<时,小军在途中与爸爸恰好相遇两次(不包括家、图书馆两地).【点评】本题考查了一次函数的应用、解含绝对值符号的一元一次方程以及解二元一次方程组,解题的关键是:(1)根据数量关系,列式计算;(2)根据数量关系找出线段BC、OD所在直线的函数解析式;(3)结合(2)找出关于x的含绝对值符号的一元一次方程;(4)画出图形,利用数形结合解决问题.26.(12分)(2017•齐齐哈尔)如图,在平面直角坐标系中,把矩形OABC沿对角线AC所在直线折叠,点B落在点D处,DC与y轴相交于点E,矩形OABC的边OC,OA的长是关于x的一元二次方程x2﹣12x+32=0的两个根,且OA>OC.(1)求线段OA,OC的长;。
2010年黑龙江省黑河市中考数学试卷
2010年广东省深圳市中考数学试卷一、选择题(共10小题,每小题3分,满分30分)1、(2010•齐齐哈尔)下列各式:①(﹣)﹣2=9;②(﹣2)0=1;③(a+b)2=a2+b2;④(﹣3ab3)2=9a2b6;⑤3x2﹣4x=﹣x.其中计算正确的是()A、①②③B、①②④C、③④⑤D、②④⑤考点:负整数指数幂;合并同类项;幂的乘方与积的乘方;完全平方公式;零指数幂。
专题:计算题。
分析:根据平方的定义,0指数幂,有理数的乘方法则,幂的乘方和积的乘法法则以及完全平方公式分别计算结果即可判断正误.解答:解:①(﹣)2=;②(﹣2)0=1;③(a+b)2=a2+2ab+b2;④(﹣3ab3)2=9a2b6;⑤3x2和4x不是同类项不能合并.故正确的有①②④故选B.点评:本题为基础题型,是个综合性较强的题,涉及的知识点较多.需要一一掌握才能熟练、准确的解题.2、(2010•齐齐哈尔)下列图形中不是轴对称图形的是()A、B、C、D、考点:轴对称图形。
分析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.解答:解:A、是轴对称图形,不符合题意;B、是轴对称图形,不符合题意;C、不是轴对称图形,符合题意;D、是轴对称图形,不符合题意.故选C.点评:本题主要考查轴对称图形的知识点.确定轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.3、(2010•齐齐哈尔)六月P市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反应部队离开驻地的距离s (千米)与时间t(小时)之间函数关系的大致图象是()A、B、C、D、考点:函数的图象。
分析:本题是分段函数的图象问题,要根据初始图象的位置,图象变化的幅度进行判断.解答:解:由题意知,这个过程应分为三部分:①从驻地出发乘汽车走的一段距离,②部队休整了一段时间,③部队步行的距离;首先可排除的是D选项;由于部队是从驻地出发,那么S的初始值应该是0,可以排除B选项;由常识知汽车的速度要大于步行的速度,故①的斜率要大于③的斜率,所以C选项可以排除;故选A.点评:读函数的图象时首先要理解横纵坐标表示的含义,理解问题叙述的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小.4、(2010•齐齐哈尔)方程(x﹣5)(x﹣6)=x﹣5的解是()A、x=5B、x=5或x=6C、x=7D、x=5或x=7考点:解一元二次方程-因式分解法。
2010年黑龙江省哈尔滨市中考数学试题与答案
中考数学选择题(3×8=24分)1. 小明设计了一个关于实数运算的程序:输入一个数后,输出的数总是比该数的平方小1,小刚按照此程序输入32后,输出的结果应为( ) A :10 B :11 C :12 D :132.用换元法解方程xx x x +=++2221时,若设x 2+x=y, 则原方程可化为( ) A :y 2+y+2=0 B :y 2-y -2=0 C :y 2-y+2=0 D :y 2+y -2=0 3. 下列图形中,是中心对称图形,但不是轴对称图形的是( ) A :正方形 B :矩形 C :菱形 D :平行四边形4.两年期定期储蓄的年利率为2.25%,按照国家规定,所得利息要缴纳20%的利息税,王大爷于2002年6月存入银行一笔钱,两年到期时,共得税后利息540元,则王大爷2002年6月的存款额为( )元A :20000B :18000C :15000D :128005.生物学指出:在生态系统中,每输入一个营养级的能量,大约只有10%的能量能够流动到下一个营养级,在H 1→H 2→H 3→H 4→H 5→H 6这条生物链中(H n 表示第n 个营养级,n=1,2,3,4,5,6),要使H 6获得10千焦的能量,需要H 1提供的能量约为( )千焦。
A : 106 B : 105 C : 104 D : 1036、如图,E 、F 、G 、H 分别是四边形ABCD 四条边的中点,要使EFGH 为矩形,四边形应该具备的条件是( ) A :一组对边平行而另一组对边不平行 B :对角线相等C :对角线相互垂直D :对角线互相平分 7、函数y=-ax+a 与y=xa-(a ≠0)在同一个坐标系中的图像可能是( ) 8、某次“迎奥运”知识竞赛中共有20道题,对于每一道题,答对了得10分,答错了或者不答扣5分,至少要答对( )道题,其得分才会不少于95分。
A ;14 B :13 C :12 D :11一、填空题(3×8=24分) 9、化简:4422+--a a a (a<2)= 。
2010年黑龙江省哈尔滨市中考数学试卷及答案
哈尔滨市2010年初中升学考试数学试卷考生须知:1.本试卷满分为120分,考试时间为120分钟。
2.答题前,考生先将自己的“姓名”、“准考证号码”在答题卡上填写清楚,将条形码准确粘 贴在条形码区域内。
3.考生作答时,请按照题号顺序在答题卡各题目的区域内作答,超出答题卡区域书写的答 案无效;在草稿纸、试题纸上答题无效。
4.选择题必须用2B 铅笔在答题卡上填涂,非选择题用黑色字迹书写笔在答题卡上作答,否则无效。
5.保持卡面清洁,不要折叠、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第一卷 选择题(共30分)(涂卡)一、选择题(每小题3分,共计30分)1.某年哈尔滨市一月份的平均气温为-18℃,三月份的平均气温为2℃,则三月份的平均气温比 一月份的平均气温高().(A )16℃ (B )20℃ (C )一16℃ (D )一20℃2.下列运算中,正确的是( ).(A )x 3·x 2=x 5 (B )x +x 2=x 3 (C )2x 3÷x 2=x (D )2x 2x 33 )( 3.下列图形中,是中心对称图形的是( ).4.在抛物线y =x 2-4上的一个点是( ).(A )(4,4) (B )(1,一4) (C )(2,0) (D )(0,4)5.一个袋子里装有8个球,其中6个红球2个绿球,这些球除颜色外,形状、大小、质地等完全 相同.搅匀后,在看不到球的条件下,随机从这个袋子中摸出一个红球的概率是( ).(A )81 (B )61 (C )41 (D )43 6.下列几何体中,俯视图是三角形的几何体是( ).7.反比例函数y =x3-k 的图象,当x >00时,y 随x 的增大而增大,则k 的取值范围是( ). (A )k <3 (B )k ≤3 (C )k >3 (D )k ≥38.在Rt △ABC 中,∠C =90°,∠B =35°,AB =7,则BC 的长为( ).(A ) 7sin35° (B )035cos 7 (C )7cos35° (D )7tan35° 9.如图,AB 是⊙O 的弦,半径OA =2,∠AOB =120°,则弦AB 的长是( ).(A )22 (B )32 (C )5 (D )5310.小明的爸爸早晨出去散步,从家走了20分到达距离家800米的公园,他在公园休息了10分,然后用30分原路返回家中,那么小明的爸爸离家的距离S (单位:米)与离家的时间t (单位:分)之间的函数关系图象大致是( ).第二卷 非选择题(共90分)二、填空题(每小题3分,共计30分)11.地球与太阳之间的距离约为149 600 000千米,用科学记数法表示(保留2个有效数字)约 为 千米.12.函数y =2x 1x ++的自变量x 的取值范围是 . 13.化简:16= .14.把多项式2a 2-4ab +2b 2分解因式的结果是 。
2010年黑龙江市齐齐哈尔市中考数学试题及答案(word版)
二O 一O 年齐齐哈尔市初中学业考试数 学 试 卷考生注意:1.考试时间120分钟一、单项选择题(每题3分,满分30分)1. 下列各式:①(-13 )—2=9;②(-2)0=1;③(a +b )2=a 2+b 2;④(-3ab 3)2=9a 2b 6;⑤3x 2-4x =-x ,其中计算正确的是( )A .①②③B .①②④C .③④⑤D .②④⑤ 答案:B2. 下列图形中不是轴对称图形的是( )答案:C3. 六月P 市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离S (千米)与时间t (小时)之间的函数关系的大致图象是( )答案:A4. 方程(x -5)( x -6)=x -5的解是( )A .x=5 B .x =5或x =6 C .x =7 D .x =5或x =7 答案:D5. “一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款款物献爱心活动.下列是我市某中学七年级二班50名同学捐款情况统计表:根据表中所提供的信息,这50名同学捐款金额的众数是( ) A .15B .30C .50D .20 答案:B6. 已知函数y =1x的图象如图所示,当x ≥-1时,y 的取值范围是( )A .y <-1B .y ≤-1C .y ≤-1或y >0D .y <-1或y ≥0B A DB 第8题图C B 第10题图EB 第13题图答案:C7. 直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,∠C =60º,AD =DC =22,则BC 的长为( )A . 3B .4 2C .3 2D .2 3 答案:C8. 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为6,sin B =13,则线段AC 的长是( )A .3B .4C .5D .6答案:B 9. 现有球迷150人欲同时租用A 、B 、C 三种型号客车去观看世界杯足球赛,其中A 、B 、C 三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A 型客车最多租两辆,则球迷们一次性到达赛场的租车方案有( )A .3种B .4种C .5种D .6种 答案:B10.如图所示,已知△ABC 和△DCE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连接OC 、FG ,则下列结论要:①AE =BD ;②AG =BF ;③FG ∥BE ;④∠BOC =∠EOC ,其中正确结论的个数( ) A .1个 B .2个 C .3个 D .4个答案:D二、填空题(每题3分,满分30分)11.上海世博会永久地标建筑世博轴获“全球生态建筑奖”,该建筑占地面积约为104500平方米,这个数用科学记数法表示为_______________平方米. 答案:1.01×105 12.函数y =x -1 x +2中,自变量x 的取值范围是_______________.答案:x ≥113.如图所示,E 、F 是矩形ABCD 对角线AC 上的两点,试添加一个条件:_______________,使得△ADF ≌△CBE .答案:AF =CE 或AE =CF 或DF ∥BE 或∠ABE =∠CDF 等14.一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,丙从中任意摸出一个球,要使摸到黑的概率为 14 ,需要往这个口袋再放入同种黑球_______________个.答案:215.抛物线y =x 2-4x +m2与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是_______________.主视图 俯视图第17题图答案:(3,0)16.代数式3x 2-4x -5的值为7,则x 2- 43x -5的值为_______________.答案:-117.由一些完全相同的小正方体的搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_______________.答案:4或5(答对一值得1分,多答不得分)18.Rt △ABC 中,∠BAC =90º,AB =AC =2,以AC 为一边,在△ABC 外部作等腰直角三角形ACD ,则线段B D 的长为_______________. 答案:4或25或10(答对一值得1分,多答不得分)19.已知关于x 的分式方程 a +2x +1=1的解是非正数,则a 的取值范围是_______________.答案:a ≤-1且a ≠-220.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C 和OB 1交于点M 1;以M 1A 1为对角线作第二个正方形A 2A 1B 2 M 1,对角线A 1 M 1和A 2B 2 交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3 M 2,对角线A 1 M 2和A 3B 3 交于点M 3;……,依次类推,这样作的第n 个正方形对角线交点的坐标为M n _______________.答案:(1-12n ,12n )或另一书写形式(2n -12n ,12n )三、解答题(满分60分)21.(本小题满分5分)先化简:(a - 2a —1a )÷ 1-a 2a 2+a ,然后给a 选择一个你喜欢的数代入求值.答案:解:原式=a 2-2a +1a ÷ 1-a 2a 2+a…………………………1分=(a -1)2a ×a (a +1) (1-a ) (a +1)……………………2分=(1-a ) …………………………………………1分(a 取—1,1,0以外的任何数,计算正确均可得分)……1分22.(本小题满分6分) 每个小方格都是边长为1个单位长度的小正方形,菱形OABC 在平面直角坐标系中的位置如图所示. (1)将菱形OABC 先向右平移4个单位,再向上平移2个单位,得到菱形OA 1B 1C 1,请画出菱形OA 1B 1C 1,并直接写出点B 1的坐标;(2)将菱形OABC 绕原点O 顺时针旋转90º,得到菱形OA 2B 2C 2,请画出菱形OA 2B 2C 2,并求出点B旋转到B 2的路径长.答案:(1)正确画出平移后图形…………………………1分B 1(8,6)………………………………………1分(2)正确画出旋转图形……………………………1分 OB =42+42=32=42……………………1分BB 2的弧长=90π×42180=22π…………………………2分23.(本小题满分6分) .已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x 轴交于A 、B 两点.(1)试确定此二次函数的解析式;(2)判断点P (-2,3)是否在这个二次函数的图象上?如果在,请求出△P AB 的面积;如果不在,试说明理由.答案:解:(1)设二次函数的解析式为y =ax 2+bx +c ∵二次函数的图象经过点(0,3),(-3,0),(2, -5)c =3∴ 9a —3b +c =0…………………………………………………2分4a +2b +c =-5a =-1,b =-2,c =3,y =-x 2-2x +3 …………………………1分 (2)∵-(-2)2-2×(-2)+3=-4+4+3∴点P (-2,3)在这个二次函数的图象上…………………………1分 ∵-x 2-2x +3=0∴x 1=-3,x 2=1 ∴与轴的交点为:(-3,0),(1,0)…………1分 S △P AB =12×4×3=6 …………………………………………………1分24.(本小题满分7分) .某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a 的值为__________,b 的值为__________,并将频数分布直方图补充完整; (2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是__________,(每组数据含最小值,不含最大值) 第24题图答案:(1)a =60,b =0.05 …………………………………………………………………1分 补全直方图 ………………………………………………………………………1分(2)甲同学的视力情况范围:4.6≤x <4.9…………………………………………1分(3)视力正常的人数占被统计人数的百分比是:60+10200 ×100%=35% ………1分全区初中毕业生中视力正常的学生约有:5000×35%=1750(人) …………1分25.(本小题满分8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题: (1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米? (3)求直线AD 的解析式.答案:解:(1)甲水库每天的放水量为(3000-1000)÷5=400(万米3/天)……………………1分(2)甲水库输出的水第10天时开始注入乙水库………………………………………1分y =kx +b ∵B (0,800),C (5,550)∴ 50 b =800 ………………………………1分∴直线AB 的解析式为:y AB =-50x +800 ……………………………………1分 当x =10时,y =300 ∴此时乙水库的蓄水量为300(万米3) ………………1分 (3)∵甲水库单位时间的放水量与乙水库单位时间的进水量相同且损耗不计∴乙水库的进水时间为5天∵乙水库15天后的蓄水量为:300+(3000-1000) -50×5=2050(万米3) …1分 A (0,300),D (15,2050) 设直线AB 的解析式为: y =k 1x +b 1第25题图∴∴k1=350b1=-3200 ………………………………1分∴直线AD的解析式为:y AD=350x-3200 ……………………………………1分26.(本小题满分8分) .已知在Rt△ABC中,∠ABC=90º,∠A=30º,点P在AC上,且∠MPN=90º.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证t△PME∽t△PNF,得出PN=3PM.(不需证明)当PC=2P A,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.答案:解:如图2,如图3中都有结论:PN=6PM……………………………2分选如图2:在Rt△ABC中,过点P作PE⊥AB于E,PF⊥BC于点F∴四边形BFPE是矩形∴∠EPF=90º,∵∠EPM+∠MPF=∠FPN+∠MPF=90º可知∠EPM=∠FPN ∴△PFN∽△PEM ……………………2分∴PFPE=PNPM…………………………………………………………1分又∵Rt△AEP和Rt△PFC中:∠A=30º,∠C=60º∴PF=32PC,PE=12P A……………………………………………1分∴PNPM=PFPE=3PCP A……………………………………………1分∵PC=2P A ∴PNPM= 6 即:PN=6PM ………………1分若选如图3,其证明过程同上(其他方法如果正确,可参照给分)27.(本小题满分10分) .为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?答案:解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元E图1 图2 图3第26题图1分 1分∴购进一件A 种纪念品需要50元,购进一件B 种纪念品需要100元 ………………1分 (2个,购进B 种纪念品y 个……………………………………………………………2分解得20≤y ≤25 ……………………………………………………………………………1分 ∵y 为正整数 ∴共有6种进货方案…………………………………………………1分 (3)设总利润为W 元W =20x +30y =20(200-2 y )+30y=-10 y +4000 (20≤y ≤25) …………………………………………………2分∵-10<0∴W 随y 的增大而减小∴当y =20时,W 有最大值 ……………………………………………………………1分 W 最大=-10×20+4000=3800(元)∴当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元 ……………………………………………………………1分28.(本小题满分10分) .如图,在平面直角坐标系中,函数y =2x +12的图象分别交x 轴、y 轴于A 、B两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.△ABP △AOB (1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.答案:解:(1)函数的解析式为y =2x +12 ∴A (-6,0),B (0,12) ………………1分∵点M 为线段OB 的中点 ∴M (0,6) ……………………………1分 设直线AM 的解析式为:y =kx +b………………………………………………2分∴k =1 b =6 ………………………………………………………1分 ∴直线AM 的解析式为:y =x +6 ………………………………………1分 (2)P 1(-18,-12),P 2(6,12) ………………………………………………2分 (3)H 1(-6,18),H 2(-12,0),H 3(-65 ,185)………………………………3分第28题图。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二O 一O 年齐齐哈尔市初中学业考试数 学 试 卷考生注意:1.考试时间120分钟一、单项选择题(每题3分,满分30分)1. 下列各式:①(-13 )—2=9;②(-2)0=1;③(a +b )2=a 2+b 2;④(-3ab 3)2=9a 2b 6;⑤3x 2-4x =-x ,其中计算正确的是( )A .①②③B .①②④C .③④⑤D .②④⑤ 答案:B2. 下列图形中不是轴对称图形的是( )答案:C3. 六月P 市连降大雨,某部队前往救援,乘车行进一段路程之后,由于道路受阻,汽车无法通行,部队短暂休整后决定步行前往,则能反映部队离开驻地的距离S (千米)与时间t (小时)之间的函数关系的大致图象是( )答案:A4. 方程(x -5)( x -6)=x -5的解是( )A .x =5 B .x =5或x =6 C .x =7 D .x =5或x =7 答案:D5. “一方有难,八方支援”,当青海玉树发生地震后,全国人民积极开展捐款款物献爱心活动.下列是我市某中学七年级二班50名同学捐款情况统计表:根据表中所提供的信息,这50名同学捐款金额的众数是( ) A .15B .30C .50D .20 答案:B6. 已知函数y =1x的图象如图所示,当x ≥-1时,y 的取值范围是( )A .y <-1B .y ≤-1C .y ≤-1或y >0D .y <-1或y ≥0B A DB 第8题图C B 第10题图EB 第13题图答案:C7. 直角梯形ABCD 中,AD ∥BC ,∠ABC =90º,∠C =60º,AD =DC =22,则BC 的长为( )A . 3B .4 2C .3 2D .2 3 答案:C8. 如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为6,sin B =13,则线段AC 的长是( )A .3B .4C .5D .6答案:B 9. 现有球迷150人欲同时租用A 、B 、C 三种型号客车去观看世界杯足球赛,其中A 、B 、C 三种型号客车载客量分别为50人、30人、10人,要求每辆车必须满载,其中A 型客车最多租两辆,则球迷们一次性到达赛场的租车方案有( )A .3种B .4种C .5种D .6种 答案:B10.如图所示,已知△ABC 和△DCE 均是等边三角形,点B 、C 、E 在同一条直线上,AE 与BD 交于点O ,AE 与CD 交于点G ,AC 与BD 交于点F ,连接OC 、FG ,则下列结论要:①AE =BD ;②AG =BF ;③FG ∥BE ;④∠BOC =∠EOC ,其中正确结论的个数( ) A .1个 B .2个 C .3个 D .4个答案:D二、填空题(每题3分,满分30分)11.上海世博会永久地标建筑世博轴获“全球生态建筑奖”,该建筑占地面积约为104500平方米,这个数用科学记数法表示为_______________平方米. 答案:1.01×105 12.函数y =x -1 x +2中,自变量x 的取值范围是_______________.答案:x ≥113.如图所示,E 、F 是矩形ABCD 对角线AC 上的两点,试添加一个条件:_______________,使得△ADF ≌△CBE .答案:AF =CE 或AE =CF 或DF ∥BE 或∠ABE =∠CDF 等14.一个不透明的口袋中,装有红球6个,白球9个,黑球3个,这些球除颜色不同外没有任何区别,丙从中任意摸出一个球,要使摸到黑的概率为 14 ,需要往这个口袋再放入同种黑球_______________个.答案:215.抛物线y =x 2-4x +m2与x 轴的一个交点的坐标为(1,0),则此抛物线与x 轴的另一个交点的坐标是_______________.主视图 俯视图第17题图答案:(3,0)16.代数式3x 2-4x -5的值为7,则x 2- 43x -5的值为_______________.答案:-117.由一些完全相同的小正方体的搭成的几何体的主视图和俯视图如图所示,则组成这个几何体的小正方体的个数可能是_______________.答案:4或5(答对一值得1分,多答不得分)18.Rt △ABC 中,∠BAC =90º,AB =AC =2,以AC 为一边,在△ABC 外部作等腰直角三角形ACD ,则线段B D 的长为_______________. 答案:4或25或10(答对一值得1分,多答不得分)19.已知关于x 的分式方程 a +2x +1=1的解是非正数,则a 的取值范围是_______________.答案:a ≤-1且a ≠-220.如图,在平面直角坐标系中,边长为1的正方形OA 1B 1C 的对角线A 1C 和OB 1交于点M 1;以M 1A 1为对角线作第二个正方形A 2A 1B 2 M 1,对角线A 1 M 1和A 2B 2 交于点M 2;以M 2A 1为对角线作第三个正方形A 3A 1B 3 M 2,对角线A 1 M 2和A 3B 3 交于点M 3;……,依次类推,这样作的第n 个正方形对角线交点的坐标为M n _______________.答案:(1-12n ,12n )或另一书写形式(2n -12n ,12n )三、解答题(满分60分)21.(本小题满分5分)先化简:(a - 2a —1a )÷ 1-a 2a 2+a ,然后给a 选择一个你喜欢的数代入求值.答案:解:原式=a 2-2a +1a ÷ 1-a 2a 2+a…………………………1分=(a -1)2a ×a (a +1) (1-a ) (a +1)……………………2分=(1-a ) …………………………………………1分(a 取—1,1,0以外的任何数,计算正确均可得分)……1分22.(本小题满分6分) 每个小方格都是边长为1个单位长度的小正方形,菱形OABC 在平面直角坐标系中的位置如图所示. (1)将菱形OABC 先向右平移4个单位,再向上平移2个单位,得到菱形OA 1B 1C 1,请画出菱形OA 1B 1C 1,并直接写出点B 1的坐标;(2)将菱形OABC 绕原点O 顺时针旋转90º,得到菱形OA 2B 2C 2,请画出菱形OA 2B 2C 2,并求出点B旋转到B 2的路径长.答案:(1)正确画出平移后图形…………………………1分B 1(8,6)………………………………………1分(2)正确画出旋转图形……………………………1分 OB =42+42=32=42……………………1分BB 2的弧长=90π×42180=22π…………………………2分23.(本小题满分6分) .已知二次函数的图象经过点(0,3),(-3,0),(2, -5),且与x 轴交于A 、B 两点.(1)试确定此二次函数的解析式;(2)判断点P (-2,3)是否在这个二次函数的图象上?如果在,请求出△P AB 的面积;如果不在,试说明理由.答案:解:(1)设二次函数的解析式为y =ax 2+bx +c ∵二次函数的图象经过点(0,3),(-3,0),(2, -5)c =3∴ 9a —3b +c =0…………………………………………………2分4a +2b +c =-5a =-1,b =-2,c =3,y =-x 2-2x +3 …………………………1分 (2)∵-(-2)2-2×(-2)+3=-4+4+3∴点P (-2,3)在这个二次函数的图象上…………………………1分 ∵-x 2-2x +3=0∴x 1=-3,x 2=1 ∴与轴的交点为:(-3,0),(1,0)…………1分 S △P AB =12×4×3=6 …………………………………………………1分24.(本小题满分7分) .某区对参加2010年中考的5000名初中毕业生进行了一次视力抽样调查,绘制出频分布表和频数分布直方图的一部分.请根据图表信息回答下列问题:(1)在频数分布表中,a 的值为__________,b 的值为__________,并将频数分布直方图补充完整; (2)甲同学说“我的视力情况是此次抽样调查所得数据的中位数”,问甲同学的视力情况应在什么范围内?(3)若视力在4.9以上(含4.9)均属正常,则视力正常的人数占被统计人数的百分比是__________,(每组数据含最小值,不含最大值) 第24题图答案:(1)a =60,b =0.05 …………………………………………………………………1分 补全直方图 ………………………………………………………………………1分(2)甲同学的视力情况范围:4.6≤x <4.9…………………………………………1分(3)视力正常的人数占被统计人数的百分比是:60+10200 ×100%=35% ………1分全区初中毕业生中视力正常的学生约有:5000×35%=1750(人) …………1分25.(本小题满分8分)因南方旱情严重,乙水库的蓄水量以每天相同的速度持续减少.为缓解旱情,北方甲水库立即以管道运输的方式给予以支援下图是两水库的蓄水量y (万米3)与时间x (天)之间的函数图象.在单位时间内,甲水库的放水量与乙水库的进水量相同(水在排放、接收以及输送过程中的损耗不计).通过分析图象回答下列问题: (1)甲水库每天的放水量是多少万立方米?(2)在第几天时甲水库输出的水开始注入乙水库?此时乙水库的蓄水量为多少万立方米? (3)求直线AD 的解析式.答案:解:(1)甲水库每天的放水量为(3000-1000)÷5=400(万米3/天)……………………1分(2)甲水库输出的水第10天时开始注入乙水库………………………………………1分y =kx +b ∵B (0,800),C (5,550)∴ 50 b =800 ………………………………1分∴直线AB 的解析式为:y AB =-50x +800 ……………………………………1分 当x =10时,y =300 ∴此时乙水库的蓄水量为300(万米3) ………………1分 (3)∵甲水库单位时间的放水量与乙水库单位时间的进水量相同且损耗不计∴乙水库的进水时间为5天∵乙水库15天后的蓄水量为:300+(3000-1000) -50×5=2050(万米3) …1分 A (0,300),D (15,2050) 设直线AB 的解析式为: y =k 1x +b 1第25题图∴∴k1=350b1=-3200 ………………………………1分∴直线AD的解析式为:y AD=350x-3200 ……………………………………1分26.(本小题满分8分) .已知在Rt△ABC中,∠ABC=90º,∠A=30º,点P在AC上,且∠MPN=90º.当点P为线段AC的中点,点M、N分别在线段AB、BC上时(如图1),过点P作PE⊥AB于点E,PF⊥BC于点F,可证t△PME∽t△PNF,得出PN=3PM.(不需证明)当PC=2P A,点M、N分别在线段AB、BC或其延长线上,如图2、图3这两种情况时,请写出线段PN、PM之间的数量关系,并任选取一给予证明.答案:解:如图2,如图3中都有结论:PN=6PM……………………………2分选如图2:在Rt△ABC中,过点P作PE⊥AB于E,PF⊥BC于点F∴四边形BFPE是矩形∴∠EPF=90º,∵∠EPM+∠MPF=∠FPN+∠MPF=90º可知∠EPM=∠FPN ∴△PFN∽△PEM ……………………2分∴PFPE=PNPM…………………………………………………………1分又∵Rt△AEP和Rt△PFC中:∠A=30º,∠C=60º∴PF=32PC,PE=12P A……………………………………………1分∴PNPM=PFPE=3PCP A……………………………………………1分∵PC=2P A ∴PNPM= 6 即:PN=6PM ………………1分若选如图3,其证明过程同上(其他方法如果正确,可参照给分)27.(本小题满分10分) .为了抓住世博会商机,某商店决定购进A、B两种世博会纪念品.若购进A种纪念品10件,B种纪念品5件,需要1000元;若购进A种纪念品5件,B种纪念品3件,需要550元.(1)求购进A、B两种纪念品每件各需多少元?(2)若该商店决定拿出1万元全部用来购进这两种纪念品,考虑市场需求,要求购进A种纪念品的数量不少于B种纪念品数量的6倍,且不超过B种纪念品数量的8倍,那么该商店共有几种进货方案?(3)若销售每件A种纪念品可获利润20元,每件B种纪念品可获利润30元,在第(2)问的各种进货方案中,哪一种方案获利最大?最大利润是多少元?答案:解:(1)设该商店购进一件A种纪念品需要a元,购进一件B种纪念品需要b元E图1 图2 图3第26题图1分 1分∴购进一件A 种纪念品需要50元,购进一件B 种纪念品需要100元 ………………1分 (2个,购进B 种纪念品y 个……………………………………………………………2分解得20≤y ≤25 ……………………………………………………………………………1分 ∵y 为正整数 ∴共有6种进货方案…………………………………………………1分 (3)设总利润为W 元W =20x +30y =20(200-2 y )+30y=-10 y +4000 (20≤y ≤25) …………………………………………………2分∵-10<0∴W 随y 的增大而减小∴当y =20时,W 有最大值 ……………………………………………………………1分 W 最大=-10×20+4000=3800(元)∴当购进A 种纪念品160件,B 种纪念品20件时,可获最大利润,最大利润是3800元 ……………………………………………………………1分28.(本小题满分10分) .如图,在平面直角坐标系中,函数y =2x +12的图象分别交x 轴、y 轴于A 、B两点.过点A 的直线交y 轴正半轴于点M ,且点M 为线段OB 的中点.△ABP △AOB (1)求直线AM 的解析式;(2)试在直线AM 上找一点P ,使得S △ABP =S △AOB ,请直接写出点P 的坐标;(3)若点H 为坐标平面内任意一点,在坐标平面内是否存在这样的点H ,使以A 、B 、M 、H 为顶点的四边形是等腰梯形?若存在,请直接写出点H 的坐标;若不存在,请说明理由.答案:解:(1)函数的解析式为y =2x +12 ∴A (-6,0),B (0,12) ………………1分∵点M 为线段OB 的中点 ∴M (0,6) ……………………………1分 设直线AM 的解析式为:y =kx +b………………………………………………2分∴k =1 b =6 ………………………………………………………1分 ∴直线AM 的解析式为:y =x +6 ………………………………………1分 (2)P 1(-18,-12),P 2(6,12) ………………………………………………2分 (3)H 1(-6,18),H 2(-12,0),H 3(-65 ,185)………………………………3分第28题图。