相似三角形PPT课件
合集下载
相似三角形完整版PPT课件
相似三角形在几何变换中的应用 在平移、旋转、轴对称等几何变换中,相似三角形可以保持其形状不变,因此具有一些重要的应用。例 如,在建筑设计、地图制作等领域中,常常需要利用相似三角形进行比例缩放和形状保持。
谢谢您的聆听
THANKS
相似三角形的判定
两角分别相等的两个三角 形相似;两边成比例且夹 角相等的两个三角形相似; 三边成比例的两个三角形
相似。
易错点提示与纠正
忽视相似三角形的定义中对应角 相等和对应边成比例两个条件, 只满足其中一个条件不能判定两
个三角形相似。
在应用相似三角形的性质时,要 注意找准对应边和对应角,避免
出现错误。
利用相似三角形研究电磁学问题
在电磁学中,利用相似三角形原理研究电场、磁场和电磁波的传播规律,如电磁感应、电磁 波辐射等。
06
总结回顾与拓展延伸
知识点总结回顾
相似三角形的定义
对应角相等,对应边成比 例的两个三角形相似。
相似三角形的性质
相似三角形的对应角相等, 对应边成比例,面积比等
于相似比的平方。
04
相似三角形在代数中的应用
比例性质在方程求解中应用
利用相似三角形的比例性质,可以建立方 程求解未知数。
通过已知两边比例关系,可以推导出第三 边的长度,进而求解方程。
在复杂几何图形中,利用相似三角形的比 例关系可以简化计算过程。
比例中项在数列求和中应用
比例中项的概念可以 应用于等比数列的求 和问题。
利用比例中项的性质, 可以简化等比数列的 求和过程,提高计算 效率。
通过相似三角形的比 例中项,可以推导出 等比数列的求和公式。
黄金分割点及其性质应用
黄金分割点是指将一条线段分割为两部分,使得较长部分与较短部分之比等于整条 线段与较长部分之比,其比值为黄金比。
谢谢您的聆听
THANKS
相似三角形的判定
两角分别相等的两个三角 形相似;两边成比例且夹 角相等的两个三角形相似; 三边成比例的两个三角形
相似。
易错点提示与纠正
忽视相似三角形的定义中对应角 相等和对应边成比例两个条件, 只满足其中一个条件不能判定两
个三角形相似。
在应用相似三角形的性质时,要 注意找准对应边和对应角,避免
出现错误。
利用相似三角形研究电磁学问题
在电磁学中,利用相似三角形原理研究电场、磁场和电磁波的传播规律,如电磁感应、电磁 波辐射等。
06
总结回顾与拓展延伸
知识点总结回顾
相似三角形的定义
对应角相等,对应边成比 例的两个三角形相似。
相似三角形的性质
相似三角形的对应角相等, 对应边成比例,面积比等
于相似比的平方。
04
相似三角形在代数中的应用
比例性质在方程求解中应用
利用相似三角形的比例性质,可以建立方 程求解未知数。
通过已知两边比例关系,可以推导出第三 边的长度,进而求解方程。
在复杂几何图形中,利用相似三角形的比 例关系可以简化计算过程。
比例中项在数列求和中应用
比例中项的概念可以 应用于等比数列的求 和问题。
利用比例中项的性质, 可以简化等比数列的 求和过程,提高计算 效率。
通过相似三角形的比 例中项,可以推导出 等比数列的求和公式。
黄金分割点及其性质应用
黄金分割点是指将一条线段分割为两部分,使得较长部分与较短部分之比等于整条 线段与较长部分之比,其比值为黄金比。
相似三角形的判定+课件(共15张PPT)
EF∥BC,
OF OE , OC OB OD OE . OA OB
课堂小结
一、平行线分线段成比例定理: 三条平行线截两条直线,所得的对应线段 成比例. (关键要能熟练地找出对应线段)
zxxkw
二、要熟悉该定理的几种基本图形
A B C D E F C D B A E F
三、注意该定理在三角形中的应用
BC EF AB DE
AB DE ,AC DF
AB DE BC EF
,
BC EF , AC DF等等.AFra bibliotekB C
l2
D
E
学 科网
l3 l4
学.科.网
想一想:通过探究, 你得到了什么规律 呢?
F
l5
归纳
zxxkw
平行线分线段成比例定理: 三条平行线截两条直线,所得到的对应线段的 比相等.
(4)若Dn-1Dn=
1 Dn-1B,En-1En= 1 E C,则D E = n n 3 3 n-1
l2
A
B C
图1
D
E F
l3 l4
E A
D
B
C
l5
图2(2)
推论 平行于三角形一边的直线截其他两边(或两 边的延长线)所得的对应线段成比例. l l l l A D l E l
1
1
D B
E C
l2
A B
l2
l3
C
l3
新知应用
例1 如图,在△ABC中,DE∥BC,AC=4 , AB=3,EC=1.求AD和BD.
相似比
AB : A1B1 = BC : B1C1 = CD : C1D1 = k 时,
相似三角形的性质ppt课件
性质
相似三角形的对应边成比例,对 应角相等,面积比等于相似比的 平方。
判定方法
预备定理
判定定理1
平行于三角形的一边,并且和其他两边相 交的直线,所截得的三角形的三边与原三 角形三边对应成比例。
如果一个三角形的两个角与另一个三角形 的两个角对应相等,那么这两个三角形相 似。
判定定理2
判定定理3
如果两个三角形的两组对应边的比相等, 并且相应的夹角相等,那么这两个三角形 相似。
∠C'。
由于内角相等,我们可以通过正 弦定理或余弦定理来证明对应边
之间的比例关系。
应用举例
在几何学中,相似三角形对应边成比例的性质被广泛应用于解决各种问题,如测量高度、计 算距离等。
例如,如果我们知道一个三角形的一边和它的一个内角,以及另一个三角形的一边和它的一 个内角,我们可以利用相似三角形的性质来找出这两个三角形之间的相似比,从而计算出未 知边的长度。
证明过程
可以通过相似三角形的定义和性质,结合几何图形进行证明 。
具体证明方法包括:利用相似三角形的对应角相等,通过作 高线将三角形分割为若干个小三角形,再利用小三角形的面 积关系推导出原三角形的面积比关系。
应用举例
在几何题目中,可以利用相似三角形的面积比性质求解一 些与面积相关的问题,如求某个图形的面积、判断两个图 形面积的大小关系等。
由于相似三角形的对应边成比 例,我们可以通过三角函数或 者角度的平分线等性质来证明 它们的对应角相等。
具体证明过程可以通过几何画 图或者数学推导来完成,这里 不再赘述。
应用举例
在几何学中,相似三角形对应角相等的性质被广泛应用于解决各种问题,比如测量 高度、计算角度等。
例如,在测量建筑物高度时,我们可以通过测量建筑物与地面之间的角度和距离, 然后利用相似三角形的性质计算出建筑物的高度。
相似三角形的对应边成比例,对 应角相等,面积比等于相似比的 平方。
判定方法
预备定理
判定定理1
平行于三角形的一边,并且和其他两边相 交的直线,所截得的三角形的三边与原三 角形三边对应成比例。
如果一个三角形的两个角与另一个三角形 的两个角对应相等,那么这两个三角形相 似。
判定定理2
判定定理3
如果两个三角形的两组对应边的比相等, 并且相应的夹角相等,那么这两个三角形 相似。
∠C'。
由于内角相等,我们可以通过正 弦定理或余弦定理来证明对应边
之间的比例关系。
应用举例
在几何学中,相似三角形对应边成比例的性质被广泛应用于解决各种问题,如测量高度、计 算距离等。
例如,如果我们知道一个三角形的一边和它的一个内角,以及另一个三角形的一边和它的一 个内角,我们可以利用相似三角形的性质来找出这两个三角形之间的相似比,从而计算出未 知边的长度。
证明过程
可以通过相似三角形的定义和性质,结合几何图形进行证明 。
具体证明方法包括:利用相似三角形的对应角相等,通过作 高线将三角形分割为若干个小三角形,再利用小三角形的面 积关系推导出原三角形的面积比关系。
应用举例
在几何题目中,可以利用相似三角形的面积比性质求解一 些与面积相关的问题,如求某个图形的面积、判断两个图 形面积的大小关系等。
由于相似三角形的对应边成比 例,我们可以通过三角函数或 者角度的平分线等性质来证明 它们的对应角相等。
具体证明过程可以通过几何画 图或者数学推导来完成,这里 不再赘述。
应用举例
在几何学中,相似三角形对应角相等的性质被广泛应用于解决各种问题,比如测量 高度、计算角度等。
例如,在测量建筑物高度时,我们可以通过测量建筑物与地面之间的角度和距离, 然后利用相似三角形的性质计算出建筑物的高度。
相似三角形的判定PPT课件
第三章 图形的类似
3.4.1 类似三角形判定的基本定理
复习导入
定义
全等三
角形
三角、三边对应相等
的两个三角形全等
类似三 三角对应相等, 三边对应
角形
成比例的两个三角形类似
判定方法
边
角
边
角
边
角
角
角
边
边
边
边
斜边与直角边
(直角三角形)
探究新知
如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.
∴
=
=
∠EAO=∠BAC,
∠AEO=∠B,
∠AOE=∠ACB,
当堂练习
2. 如图,已知点O在四边形ABCD的对角线AC上,OE∥CB,OF∥CD.试判
断四边形AEOF与四边形ABCD是否类似,并说明理由.
∵OF∥CD,∴△AFO∽△ADC,
∴
=
=
∠FAO=∠DAC,
DE至点F,使DE=EF. 求证:△CFE∽△ABC.
证明 ∵DE∥BC,点D为△ABC的边AB的中点,
∴AE=CE.
又∵DE=FE,∠AED=∠CEF,
∴△ADE≌△CEF.
∵DE∥BC,
∴△ADE∽△ABC.
∴△CFE∽△ABC.
知识要点
平行于三角形一边的直线与其他两边相交,截得的三角形与原
三角形类似.
求证:只要DE//BC,△ADE与△ABC始终类似.
证明:在△ADE与△ABC中,∠A=∠A.
∵DE∥BC,
分析:根据类似三角形的定
义去证明,三角对应相等,
三边对应成比例。
3.4.1 类似三角形判定的基本定理
复习导入
定义
全等三
角形
三角、三边对应相等
的两个三角形全等
类似三 三角对应相等, 三边对应
角形
成比例的两个三角形类似
判定方法
边
角
边
角
边
角
角
角
边
边
边
边
斜边与直角边
(直角三角形)
探究新知
如图,在△ABC中,D为AB上任意一点,过点D作BC的平行线DE,交AC于点E.
∴
=
=
∠EAO=∠BAC,
∠AEO=∠B,
∠AOE=∠ACB,
当堂练习
2. 如图,已知点O在四边形ABCD的对角线AC上,OE∥CB,OF∥CD.试判
断四边形AEOF与四边形ABCD是否类似,并说明理由.
∵OF∥CD,∴△AFO∽△ADC,
∴
=
=
∠FAO=∠DAC,
DE至点F,使DE=EF. 求证:△CFE∽△ABC.
证明 ∵DE∥BC,点D为△ABC的边AB的中点,
∴AE=CE.
又∵DE=FE,∠AED=∠CEF,
∴△ADE≌△CEF.
∵DE∥BC,
∴△ADE∽△ABC.
∴△CFE∽△ABC.
知识要点
平行于三角形一边的直线与其他两边相交,截得的三角形与原
三角形类似.
求证:只要DE//BC,△ADE与△ABC始终类似.
证明:在△ADE与△ABC中,∠A=∠A.
∵DE∥BC,
分析:根据类似三角形的定
义去证明,三角对应相等,
三边对应成比例。
相似三角形模型(全)课件
在解题过程中,可以根据题目的条件 选择适当的方法来证明或推导结论。
全等三角形可以用来证明两个三角形 完全重合,而相似三角形则可以用来 研究两个三角形的形状和大小关系。
05
相似三角形的证明方法
利用角角相似的证明方法
01
02
03
总结词
通过比较两个三角形的对 应角,如果两个三角形有 两组对应的角相等,则这 两个三角形相似。
相似三角形的对应角相等
总结词
如果两个三角形相似,则它们的 对应角相等。
详细描述
根据相似三角形的定义,如果两 个三角形对应的角都相等,则这 两个三角形是相似的。因此,相 似三角形的对应角必然相等。
相似三角形的对应边成比例
总结词
如果两个三角形相似,则它们的对应边之间存在一定的比例关系。
详细描述
由于两个三角形相似,它们的对应角相等,根据三角形的性质,对应的边之间 必然存在一定的比例关系,这个比例关系是固定的,与三角形的形状和大小无 关。
相似三角形的面积比等于边长比的平方
总结词
如果两个三角形相似,则它们的面积之比等于对应边长之比 的平方。
详细描述
根据相似三角形的性质,两个相似三角形的对应边长之比是 固定的,设为k。那么它们的面积之比就是k的平方,即k^2 。这意味着相似三角形的面积比等于边长比的平方。
相似三角形的周长比等于边长比
相似三角形模型(全)课件
目 录
• 相似三角形的基本概念 • 相似三角形的性质和定理 • 相似三角形的应用 • 相似三角形与全等三角形的关系 • 相似三角形的证明方法
01
相似三角形的基本概念
相似三角形的定义
相似三角形的定义
相似三角形的性质
如果两个三角形对应的角相等,则这 两个三角形相似。
《相似三角形》相似图形PPT课件
定义
两个多面体,如果它们的对应角相等,对应边长 成比例,则称这两个多面体相似。
1. 对应角相等
通过测量或计算验证两个多面体的对应角是否相 等。
3
2. 对应边长成比例
通过测量或计算验证两个多面体的对应边长是否 成比例。
性质总结
性质一
相似多面体的对应面面 积之比等于相似比的平
方。
性质二
相似多面体的对应体积 之比等于相似比的立方
案例分析
测量河流宽度
通过构造相似三角形,可以测量 河流的宽度,为水利工程和桥梁
建设提供重要数据支持。
估算森林面积
利用航空照片和相似三角形的原理 ,可以对森林面积进行估算,为林 业资源管理和生态保护提供依据。
分析交通事故原因
在交通事故分析中,相似三角形可 以帮助分析事故原因,确定责任方 ,为交通事故处理提供科学依据。
。
性质三
相似多面体的对应棱的 中线之比等于相似比。
性质四
相似多面体的对应高的 比、对应中线的比和对 应角平分线的比都等于
相似比。
应用前景展望
建筑设计
在建筑设计中,利用相似多面体 的性质可以方便地按比例缩放建 筑模型,以适应不同规模和需求
的设计项目。
艺术创作
在机械、航空等工程领域,相似 多面体的概念可用于按比例放大 或缩小零部件和装置,以简化设
。
相似比与对应角关系
01
02
03
相似比
两个相似三角形的对应边 之间的比值称为相似比。
相等性
相似三角形的对应角相等 。
互补性
如果两个角在一个三角形 中是互补的,那么它们在 另一个相似三角形中也是 互补的。
性质总结
对应边成比例
相似三角形ppt课件
∴DE=FC,∴
=
=
.
又∵∠ADE=∠B,∠AED=∠C,∠A=∠A,∴△ADE∽△ABC.
=
.
探
究
与
应
用
2.如图23-3-4,D为BA延长线上一点,作DE∥BC交直线AC于
点E,则△ADE与△ABC是否相似?为什么?
解:相似.理由:在边AB上截取AM=AD,
在边AC上截取AN=AE,
与△ABC的相似比为 1∶2
,△BAC∽ △EAF .
图23-3-2
探
究
与
应
用
探究二 相似三角形的预备定理
[猜想证明]
1.如图23-3-3所示,在△ABC中,D为边AB上的任意一点(不同
于点A,B),作DE∥BC,交边AC于点E,用刻度尺和量角器量一
量,判断△ADE与△ABC是否相似?如
果相似,请加以证明.
AC=15, DE=7,求AE和BC的长.
解:∵DE∥BC,∴△ADE∽△ABC,
∴
=
=
.
又∵AD=8,DB=12,AC=15,DE=7,
7
∴
=
8
8+12
=
35
,∴AE=6,BC= .
15
2
图23-3-5
探
究
与
应
用
建 模型
相似三角形判定的预备定理的基本图形
如图23-3-6,如果DE∥BC,那么△ADE∽△ABC.
图23-3-3
探
究
与
应
用
解:△ADE与△ABC相似.
相似三角形的判定 课件(共35张PPT)
DE=BF DE AE BC AC
AD AE DE AB AC BC
26
即:△ADE与△ABC中, ∠A=∠A,∠ADE=∠B, ∠AED=∠C.
AD AE DE AB AC BC
∴△ADE∽△ABC
27
相似三角形的预备定理
平行于三角形一边的直线和其他两边 相交,所构成的三角形与原三角形相似.
5
5
A
C E
21Biblioteka 练习二:(A组)1、如图: 已知 DE∥BC, AB = 14, AC = 18 , D
AE = 10,
求:AD的长。
B
(B组)
A
2、如图: 已知AB⊥BD,
ED⊥BD,垂足分别为 B B、D。
求证:—AECC— = —BDCC—
E C
C
D
E22
(A组)
DE
1、如图: 已知 DE∥BC,
19
练习一:
A
1、判断题:
如图:DE∥BC, 下列各式是否正确
A: —AA—DB = —AAEC— ( )B: —ABDD—= —AC—EE ( ) D
E
C:—AA—CD = —AA—BE ( ) D: —AA—ED = —AA—CB ( )B
C
2、填空题:
ED
如图:DE∥BC,
已知:
—AACE—
D
l3
E
l4
AB 与 DE 相等吗?
C
BC EF
F l5
6
L1 L2
A
D
L3
B
E
L4
C
F
L5
7
L1 L2
A
D
L3
B
AD AE DE AB AC BC
26
即:△ADE与△ABC中, ∠A=∠A,∠ADE=∠B, ∠AED=∠C.
AD AE DE AB AC BC
∴△ADE∽△ABC
27
相似三角形的预备定理
平行于三角形一边的直线和其他两边 相交,所构成的三角形与原三角形相似.
5
5
A
C E
21Biblioteka 练习二:(A组)1、如图: 已知 DE∥BC, AB = 14, AC = 18 , D
AE = 10,
求:AD的长。
B
(B组)
A
2、如图: 已知AB⊥BD,
ED⊥BD,垂足分别为 B B、D。
求证:—AECC— = —BDCC—
E C
C
D
E22
(A组)
DE
1、如图: 已知 DE∥BC,
19
练习一:
A
1、判断题:
如图:DE∥BC, 下列各式是否正确
A: —AA—DB = —AAEC— ( )B: —ABDD—= —AC—EE ( ) D
E
C:—AA—CD = —AA—BE ( ) D: —AA—ED = —AA—CB ( )B
C
2、填空题:
ED
如图:DE∥BC,
已知:
—AACE—
D
l3
E
l4
AB 与 DE 相等吗?
C
BC EF
F l5
6
L1 L2
A
D
L3
B
E
L4
C
F
L5
7
L1 L2
A
D
L3
B
相似三角形ppt课件
注意事项
角边判定定理要求一个三角形的两条边与另一个 三角形的两条边成比例,并且这两个三角形有一 个对应的角相等,如果这些条件不满足,则不能 判定两个三角形相似。
03
相似三角形的应用
在几何图形中的应用
解决几何证明问题
相似三角形常被用于证明各种几何关 系和定理,如勾股定理、毕达哥拉斯 定理等。
理解几何图形的性质
面积比等于相似比的平方
两个相似三角形的面积比等于它们的相似比的平方,即 (AB:DE)^2=(BC:EF)^2=(CA:FD)^2。
相似三角形的分类
根据用途分类
根据相似三角形在几何学中的应 用,可以将相似三角形分为标准 型、等腰型、直角型等类型。
根据形状分类
根据两个相似三角形的形状,可 以将它们分为锐角三角形、直角 三角形和钝角三角形。
△ABC∽△A'B'C'。
边边判定定理的证明
总结词
通过比较两个三角形的对应边,如果两个三角形有三组对应边成比例,则这两个三角形相 似。
详细描述
在两个三角形ABC和A'B'C'中,如果AB/A'B'=BC/B'C'=AC/A'C',则根据边边判定定理, △ABC∽△A'B'C'。
证明过程
首先,由于AB/A'B'=AC/A'C',根据交叉相乘性质,我们可以得到∠BAC=∠B'A'C'。再由 于BC/B'C'=BA/B'A',根据交叉相乘性质,我们可以得到∠ACB=∠A'C'B'。因此,根据 AA相似判定定理,△ABC∽△A'B'C'。
角边判定定理要求一个三角形的两条边与另一个 三角形的两条边成比例,并且这两个三角形有一 个对应的角相等,如果这些条件不满足,则不能 判定两个三角形相似。
03
相似三角形的应用
在几何图形中的应用
解决几何证明问题
相似三角形常被用于证明各种几何关 系和定理,如勾股定理、毕达哥拉斯 定理等。
理解几何图形的性质
面积比等于相似比的平方
两个相似三角形的面积比等于它们的相似比的平方,即 (AB:DE)^2=(BC:EF)^2=(CA:FD)^2。
相似三角形的分类
根据用途分类
根据相似三角形在几何学中的应 用,可以将相似三角形分为标准 型、等腰型、直角型等类型。
根据形状分类
根据两个相似三角形的形状,可 以将它们分为锐角三角形、直角 三角形和钝角三角形。
△ABC∽△A'B'C'。
边边判定定理的证明
总结词
通过比较两个三角形的对应边,如果两个三角形有三组对应边成比例,则这两个三角形相 似。
详细描述
在两个三角形ABC和A'B'C'中,如果AB/A'B'=BC/B'C'=AC/A'C',则根据边边判定定理, △ABC∽△A'B'C'。
证明过程
首先,由于AB/A'B'=AC/A'C',根据交叉相乘性质,我们可以得到∠BAC=∠B'A'C'。再由 于BC/B'C'=BA/B'A',根据交叉相乘性质,我们可以得到∠ACB=∠A'C'B'。因此,根据 AA相似判定定理,△ABC∽△A'B'C'。
相似三角形ppt初中数学PPT课件
在建筑设计中,利用相似三角形原理,根据已知 条件设计出符合要求的建筑物形状和大小。
利用相似三角形进行建筑测量
在建筑测量中,利用相似三角形原理,通过测量 建筑物的角度和距离,计算出建筑物的高度、宽 度等参数。
利用相似三角形进行建筑施工
在建筑施工中,利用相似三角形原理,根据设计 图纸和比例关系,进行施工和安装。
分析法证明思路及步骤
明确目标
明确需要证明的结论,即两个三角形相似 。
逆向思维
从结论出发,逆向思考如何证明两个三角 形相似,即需要找到两个三角形对应的角
相等或对应边成比例。
寻找突破口
分析题目中的已知条件,寻找与相似三角 形相关的突破口。
验证结论
根据逆向思维找到的证明方法,验证结论 是否正确。
不同方法比较与选择
相似三角形ppt初中数学PPT 课件
目
CONTENCT
录
• 相似三角形基本概念与性质 • 相似三角形在几何图形中应用 • 相似三角形在解决实际问题中应用 • 相似三角形证明方法探讨 • 典型例题解析与练习 • 课堂小结与拓展延伸
01
相似三角形基本概念与性质
定义及判定方法
01
02
03
04
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似 。
相似三角形的判定方法
详细讲解相似三角形的四种判定方法,包括两角对应相等 、两边对应成比例且夹角相等、三边对应成比例以及通过 中间比转化等,并通过实例加以验证。
相似三角形的应用
通过举例和解析,展示相似三角形在解决实际问题中的应 用,如测量高度、计算面积等。
拓展延伸引导学生思考更深层次问题
相似多边形的研究
解析
根据相似三角形的判定定理,结合直角三角形的 性质,当两个直角三角形的一直角边和斜边对应 成比例时,可以判定这两个直角三角形相似。
利用相似三角形进行建筑测量
在建筑测量中,利用相似三角形原理,通过测量 建筑物的角度和距离,计算出建筑物的高度、宽 度等参数。
利用相似三角形进行建筑施工
在建筑施工中,利用相似三角形原理,根据设计 图纸和比例关系,进行施工和安装。
分析法证明思路及步骤
明确目标
明确需要证明的结论,即两个三角形相似 。
逆向思维
从结论出发,逆向思考如何证明两个三角 形相似,即需要找到两个三角形对应的角
相等或对应边成比例。
寻找突破口
分析题目中的已知条件,寻找与相似三角 形相关的突破口。
验证结论
根据逆向思维找到的证明方法,验证结论 是否正确。
不同方法比较与选择
相似三角形ppt初中数学PPT 课件
目
CONTENCT
录
• 相似三角形基本概念与性质 • 相似三角形在几何图形中应用 • 相似三角形在解决实际问题中应用 • 相似三角形证明方法探讨 • 典型例题解析与练习 • 课堂小结与拓展延伸
01
相似三角形基本概念与性质
定义及判定方法
01
02
03
04
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似 。
相似三角形的判定方法
详细讲解相似三角形的四种判定方法,包括两角对应相等 、两边对应成比例且夹角相等、三边对应成比例以及通过 中间比转化等,并通过实例加以验证。
相似三角形的应用
通过举例和解析,展示相似三角形在解决实际问题中的应 用,如测量高度、计算面积等。
拓展延伸引导学生思考更深层次问题
相似多边形的研究
解析
根据相似三角形的判定定理,结合直角三角形的 性质,当两个直角三角形的一直角边和斜边对应 成比例时,可以判定这两个直角三角形相似。
相似三角形PPT课件
THANKS
感谢观看
利用相似三角形的性质,通过已知三 角形的面积和相似比求解未知三角形 的面积。
通过构造相似三角形,使得已知三角 形和未知三角形分别对应相似三角形 的对应边和对应高,从而求解未知三 角形的面积。
对于三维几何体,可以利用相似三角 形的性质求解其体积。例如,对于两 个相似的棱锥,其体积之比等于其对 应边长之比的立方。
1 2
练习1
已知△ABC和△A'B'C'中,AB=6cm,BC=8cm, AC=10cm,A'B'=12cm,B'C'=16cm, A'C'=20cm。求证:△ABC∽△A'B'C'。
练习2
已知△ABC中,∠C=90°,CD⊥AB于D, AC=6cm,BC=8cm,求CD的长。
3
练习3
已知△ABC和△DEF中,∠A=∠D=90°,AB=AC, DE=4cm,DF=6cm。求证:△ABC∽△DEF并求 出它们的相似比。
05
拓展:全等三角形与相似 三角形关系
全等三角形定义及性质回顾
01
全等三角形的定义:两个三角形如果三边及三角分别对应相 等,则称这两个三角形为全等三角形。
02
全等三角形的性质
03
对应边相等;
04
对应角相等;
05
面积相等;
06
周长相等。
全等三角形与相似三角形联系和区别
联系
全等三角形是相似三角形的特例,即 相似比为1:1的情况;
项。
定理证明
通过构造相似三角形,利用相似 三角形的性质证明。
应用举例
求解直角三角形中的边长、角度 等问题。
25.5 相似三角形的性质课件(共24张PPT)
小结1相似三角形的性质定理1:相似三角形对应高的比、对应中线的比、对应角平分线的比,都等于相似比.
例题示范
知识点2 相似三角形的性质定理2问题3 △ABC的周长和△A1B1C1的周长的比与它们的相似比有什么关系?请说明理由.
求证:相似三角形周长的比等于相似比.
证明:设△ABC∽△A1B1C1,相似比为k,
2.若△ABC∽△A′B′C′ ,它们的周长分别为60 cm和72 cm,且AB=15 cm,B′C′=24 cm,求BC,AC,A′B′,A′C′的长.
解:∵△ABC∽△A′B′C′ ,它们的周长分别为60 cm和72 cm, ∴ , ∵AB=15 cm,B′C′=24 cm, ∴BC=20 cm, AC=25 cm, A′B′=18 cm,A′C′=30 cm.
结论:相似三角形对应高的比等于相似比.
思考:把上图中的高改为中线、角平分线,那么它们对应中线的比,对应角平分线的比等于多少?问题2 图中△ABC和△A′B′C′相似,AD,A′D′分别为对应边上的中线,BE,B′E′分别为对应角的角平分线,那么它们之间有什么关系呢?
(2)已知:两个三角形相似比为k,即 .求证: .
问题引入
如图,△ABC∽△A′B′C′,相似比为k.AD与A'D',AE与A'E'分别为BC,B'C'边上的高和中线,AF与A'F'分别为∠BAC=∠B'A'C'的平分线.(1)AD和A'D'的比与相似比之间有怎样的关系?请说明理由.(2)AE和A'E'的比、AF和A'F'的比分别与相似比有怎样的关系?请说明理由.
第二十五章 图形的相似
例题示范
知识点2 相似三角形的性质定理2问题3 △ABC的周长和△A1B1C1的周长的比与它们的相似比有什么关系?请说明理由.
求证:相似三角形周长的比等于相似比.
证明:设△ABC∽△A1B1C1,相似比为k,
2.若△ABC∽△A′B′C′ ,它们的周长分别为60 cm和72 cm,且AB=15 cm,B′C′=24 cm,求BC,AC,A′B′,A′C′的长.
解:∵△ABC∽△A′B′C′ ,它们的周长分别为60 cm和72 cm, ∴ , ∵AB=15 cm,B′C′=24 cm, ∴BC=20 cm, AC=25 cm, A′B′=18 cm,A′C′=30 cm.
结论:相似三角形对应高的比等于相似比.
思考:把上图中的高改为中线、角平分线,那么它们对应中线的比,对应角平分线的比等于多少?问题2 图中△ABC和△A′B′C′相似,AD,A′D′分别为对应边上的中线,BE,B′E′分别为对应角的角平分线,那么它们之间有什么关系呢?
(2)已知:两个三角形相似比为k,即 .求证: .
问题引入
如图,△ABC∽△A′B′C′,相似比为k.AD与A'D',AE与A'E'分别为BC,B'C'边上的高和中线,AF与A'F'分别为∠BAC=∠B'A'C'的平分线.(1)AD和A'D'的比与相似比之间有怎样的关系?请说明理由.(2)AE和A'E'的比、AF和A'F'的比分别与相似比有怎样的关系?请说明理由.
第二十五章 图形的相似
《相似三角形的性质》PPT课件
《相似三角形的性质》PPT 课件
目录
• 相似三角形基本概念 • 相似三角形性质探究 • 相似三角形在几何证明中应用 • 相似三角形在解决实际问题中应用 • 拓展:全等三角形与相似三角形联系
与区别
01
相似三角形基本概念
定义及判定方法
定义
两个三角形如果它们的对应角相等,那 么这两个三角形相似。
AAA相似
01
利用相似三角形对应角相等 的性质,可以证明两个角相
等。
02
通过构造相似三角形,将待 证相等的两个角作为对应角 ,从而证明角度相等关系。
03
相似三角形中,若已知两角 对应相等,则第三角也必然 相等,这一性质可用于证明
复杂角度相等关系。
证明图形形状和大小关系
利用相似三角形形状相同的性质 ,可以证明两个图形形状相同。
01
04
对应角相等;
全等三角形的性质
02
05
面积相等;
对应边相等;
03
06
周长相等。
全等与相似关系探讨
联系 全等三角形是相似三角形的特例,即
相似比为1:1的情况;
全等和相似都涉及到两个三角形的形 状和大小关系。
区别
全等要求两个三角形完全重合,而相 似只要求形状相同,大小可以不同;
全等三角形的对应边和对应角都相等 ,而相似三角形只要求对应角相等, 对应边成比例。
02
相似三角形性质探究
对应角相等性质
01Biblioteka 0203性质描述
相似三角形的对应角相等 。
证明方法
通过三角形的相似定义和 角的对应关系进行证明。
应用举例
在几何问题中,利用相似 三角形的对应角相等性质 ,可以解决角度相关的问 题。
目录
• 相似三角形基本概念 • 相似三角形性质探究 • 相似三角形在几何证明中应用 • 相似三角形在解决实际问题中应用 • 拓展:全等三角形与相似三角形联系
与区别
01
相似三角形基本概念
定义及判定方法
定义
两个三角形如果它们的对应角相等,那 么这两个三角形相似。
AAA相似
01
利用相似三角形对应角相等 的性质,可以证明两个角相
等。
02
通过构造相似三角形,将待 证相等的两个角作为对应角 ,从而证明角度相等关系。
03
相似三角形中,若已知两角 对应相等,则第三角也必然 相等,这一性质可用于证明
复杂角度相等关系。
证明图形形状和大小关系
利用相似三角形形状相同的性质 ,可以证明两个图形形状相同。
01
04
对应角相等;
全等三角形的性质
02
05
面积相等;
对应边相等;
03
06
周长相等。
全等与相似关系探讨
联系 全等三角形是相似三角形的特例,即
相似比为1:1的情况;
全等和相似都涉及到两个三角形的形 状和大小关系。
区别
全等要求两个三角形完全重合,而相 似只要求形状相同,大小可以不同;
全等三角形的对应边和对应角都相等 ,而相似三角形只要求对应角相等, 对应边成比例。
02
相似三角形性质探究
对应角相等性质
01Biblioteka 0203性质描述
相似三角形的对应角相等 。
证明方法
通过三角形的相似定义和 角的对应关系进行证明。
应用举例
在几何问题中,利用相似 三角形的对应角相等性质 ,可以解决角度相关的问 题。
相似三角形的性质PPT通用课件
比例
相等
1、相似三角形对应边成____,对应角______.
2、相似三角形对应边上的高、对应边上的中线、
相似比
对应角平分线的比都等于________.
相似比
3、相似三角形周长的比等于________,
相似三角形面积的比等于______________.
当堂训练
1.已知△ABC∽△DEF,BG、EH分别是△ABC和 △DEF的
求它们的相似比. 1∶4
1∶4
(2) △ADE的周长︰△ABC的周长=_______.
A
SADE
.
(3)
_______
D
E
S
ABC
(4)
SADE
S四边形BCED
1
15
B
C
7、如图,在 ABCD中,若E是AB的中点,
1:2
则(1)∆AEF与∆CDF的相似比为______.
AE 1
线AD=40cm,要把它加工成正方形零件,使正方
形的一边在BC上,其余两个顶点分别在AB,AC上
(1)△ ASR与△ ABC相似吗?为什么?
(2)求正方形SPQR的面积。
A
S
B
P
E R
D
Q
C
A
例题解析
(1)△ASR与△ABC相似吗?为什么?
40
(2)求正方形PQRS的面积.
分析:(1) △ASR∽△ABC.理由是:
100厘米、40厘米
———————。
(2)它们的面积之和是58平方厘米,这
两个三角形的面积分别是——————
50平方厘米、8平方厘米
——。
(1)与(2)的相似比=______
相等
1、相似三角形对应边成____,对应角______.
2、相似三角形对应边上的高、对应边上的中线、
相似比
对应角平分线的比都等于________.
相似比
3、相似三角形周长的比等于________,
相似三角形面积的比等于______________.
当堂训练
1.已知△ABC∽△DEF,BG、EH分别是△ABC和 △DEF的
求它们的相似比. 1∶4
1∶4
(2) △ADE的周长︰△ABC的周长=_______.
A
SADE
.
(3)
_______
D
E
S
ABC
(4)
SADE
S四边形BCED
1
15
B
C
7、如图,在 ABCD中,若E是AB的中点,
1:2
则(1)∆AEF与∆CDF的相似比为______.
AE 1
线AD=40cm,要把它加工成正方形零件,使正方
形的一边在BC上,其余两个顶点分别在AB,AC上
(1)△ ASR与△ ABC相似吗?为什么?
(2)求正方形SPQR的面积。
A
S
B
P
E R
D
Q
C
A
例题解析
(1)△ASR与△ABC相似吗?为什么?
40
(2)求正方形PQRS的面积.
分析:(1) △ASR∽△ABC.理由是:
100厘米、40厘米
———————。
(2)它们的面积之和是58平方厘米,这
两个三角形的面积分别是——————
50平方厘米、8平方厘米
——。
(1)与(2)的相似比=______
25.3 相似三角形课件(共18张PPT)
SSS, SAS, ASA, AAS
知识点1 相似三角形的有关概念
∠A=∠A',∠B=∠B',∠C=∠C',
如图,在△ABC和△A'B'C'中,如果
即△ABC与△A'B'C'相似.△ABC与△A'B'C'的相似比为k.
对应角相等、对应边成比例的的两个三角形叫做相似三角形.相似三角形对应边的比叫做它们的相似比.
新知引入
相似用符号“∽”表示,读作“相似于”.△ABC与△A'B'C'相似记作“△ABC∽△A'B'C'”,读作“△ABC相似于△A'B'C'”.
若表示为△ABC∽△DEF,一般A与D,B与E,C与F分别对应.
例题解析
例 如图,△AEF∽△ABC.(1)若AE=3,AB=5,EF=2.4,求BC的长.(2)求证:EF//BC.
解:∵DE⊥AC,BC⊥AC, ∴DE∥BC, ∴△ADE∽△ABC, ∴ , ∴ , ∴AD=7×55=385 cm, ∴梯子长AB=AD+BD=385+55=440 cm.
3.已知△ABC∽△ , ∠A=50°,∠B=95°,则∠ 等于( ) A.95° B.50° C.35° D.25°4. 若△ABC∽△ ,且AB=1, , ,则△ABC与△ 的相似比k为_____, △ 与△ABC的相似比 为______.
课堂小结
2.用平行线判定三角形相似的定理: 平行于三角形一边的直线和其他两边(或它们的延长线)相交,所截得的三角形与原三角形相似.
1.对应角相等、对应边成比例的两个三角形叫做相似三角形. 相似三角形对应边的比叫做它们的相似比.
知识点1 相似三角形的有关概念
∠A=∠A',∠B=∠B',∠C=∠C',
如图,在△ABC和△A'B'C'中,如果
即△ABC与△A'B'C'相似.△ABC与△A'B'C'的相似比为k.
对应角相等、对应边成比例的的两个三角形叫做相似三角形.相似三角形对应边的比叫做它们的相似比.
新知引入
相似用符号“∽”表示,读作“相似于”.△ABC与△A'B'C'相似记作“△ABC∽△A'B'C'”,读作“△ABC相似于△A'B'C'”.
若表示为△ABC∽△DEF,一般A与D,B与E,C与F分别对应.
例题解析
例 如图,△AEF∽△ABC.(1)若AE=3,AB=5,EF=2.4,求BC的长.(2)求证:EF//BC.
解:∵DE⊥AC,BC⊥AC, ∴DE∥BC, ∴△ADE∽△ABC, ∴ , ∴ , ∴AD=7×55=385 cm, ∴梯子长AB=AD+BD=385+55=440 cm.
3.已知△ABC∽△ , ∠A=50°,∠B=95°,则∠ 等于( ) A.95° B.50° C.35° D.25°4. 若△ABC∽△ ,且AB=1, , ,则△ABC与△ 的相似比k为_____, △ 与△ABC的相似比 为______.
课堂小结
2.用平行线判定三角形相似的定理: 平行于三角形一边的直线和其他两边(或它们的延长线)相交,所截得的三角形与原三角形相似.
1.对应角相等、对应边成比例的两个三角形叫做相似三角形. 相似三角形对应边的比叫做它们的相似比.
相似三角形的性质定理ppt课件
△ABC 的面积为100
cm2,且
AE AD 3
,求
AC AB 5
四边形 BCDE 的面积.
A
E
D
B
侵权必究
C
3. 连接三角形两边中点的线段把三角形截成的一个
1:2
小三角形与原三角形的周长比等于______,面积
1:4
比等于_____.
4. 两个相似三角形对应的中线长分别是 6 cm 和 18 cm,
相似三角形的性质
对应高之比、对应中线之比、对
应角平分线之比都等于相似比
周长之比等于相似比
面积之比等于相似比的平方
侵权必究
k
侵权必究
探索证明
那我们该如何证明呢?
已知: 如图,△ABC ∽△A′B′C′,相似比为 k,
∆
求证:
=k
∆’’’
A
C
B
A'
B'
侵权必究
C'
新课导入
思考:相似三角形的面积比有什么关系呢?
如图(1)(2)(3)分别是边长为1、2、3的等边三角
形,它们都相似.
2:1
(2)与(1)的相似比=_____
A
D'分别是它们的高。
∆
求证:
= 2
∆’’’
B D
A'
B'
侵权必究
D'
C
C'
归纳总结
侵权必究
小试牛刀
1.已知ΔABC与ΔA′B′C′的相似比为4:3,则对
应边上中线之比 4:3 ,面积之比为 16:9 .
2. 如果两个相似三角形的面积之比为1:9,
1:3
cm2,且
AE AD 3
,求
AC AB 5
四边形 BCDE 的面积.
A
E
D
B
侵权必究
C
3. 连接三角形两边中点的线段把三角形截成的一个
1:2
小三角形与原三角形的周长比等于______,面积
1:4
比等于_____.
4. 两个相似三角形对应的中线长分别是 6 cm 和 18 cm,
相似三角形的性质
对应高之比、对应中线之比、对
应角平分线之比都等于相似比
周长之比等于相似比
面积之比等于相似比的平方
侵权必究
k
侵权必究
探索证明
那我们该如何证明呢?
已知: 如图,△ABC ∽△A′B′C′,相似比为 k,
∆
求证:
=k
∆’’’
A
C
B
A'
B'
侵权必究
C'
新课导入
思考:相似三角形的面积比有什么关系呢?
如图(1)(2)(3)分别是边长为1、2、3的等边三角
形,它们都相似.
2:1
(2)与(1)的相似比=_____
A
D'分别是它们的高。
∆
求证:
= 2
∆’’’
B D
A'
B'
侵权必究
D'
C
C'
归纳总结
侵权必究
小试牛刀
1.已知ΔABC与ΔA′B′C′的相似比为4:3,则对
应边上中线之比 4:3 ,面积之比为 16:9 .
2. 如果两个相似三角形的面积之比为1:9,
1:3
相似三角形ppt教学课件完整版
在摄影测量学中,通过拍摄地面的照片,并利用射影几何的原理进行解析,可以精确地测量 出地面点的三维坐标,为地图制作和地形分析提供重要数据。
计算机视觉中的应用
在计算机视觉领域,射影几何被广泛应用于图像匹配、三维重建、摄像机标定等方面。通过 对图像进行射影变换和处理,可以实现图像的自动识别和场景的三维重建。
典型例题解析
解析
根据全等三角形的定义,两个三 角形如果三边分别相等,则这两 个三角形全等。因此,可以直接
得出△ABC≌△DEF。
2. 例2
已知两个相似三角形ABC和DEF, 其中
AB/DE=BC/EF=CA/FD=2/3, 求∠A和∠D的度数关系。
解析
根据相似三角形的性质,对应角 相等。因此,∠A=∠D。同时, 由于对应边成比例,可以得出两 个三角形的形状相同但大小不同。
对应角相等 面积相等
周长相等
相似与全等关系辨析
相似之处
都有对应边的关系
相似与全等关系辨析
不同之处
全等三角形可以完全重合,而相似三角形 不一定能完全重合
全等要求三边三角完全相等,相似只要求 对应边成比例、对应角相等
相似三角形可以有不同的形状和大小,只 要满足相似条件即可
水利工程中的水流分析
利用相似三角形的原理,可以模拟和分析水流在不同条件下的流速、 流量和水压等参数,为水利工程的设计和施工提供重要依据。
相似三角形与全等三角形关
04
系探讨
全等三角形定义及性质回顾
全等三角形的定义:两个三角形如果 三边及三角分别相等,则称这两个三
角形全等。
全等三角形的性质
对应边相等
相似三角形ppt教学 课件完整版
目录
• 相似三角形基本概念与性质 • 相似三角形在几何证明中的应用 • 相似三角形在解决实际问题中的应
计算机视觉中的应用
在计算机视觉领域,射影几何被广泛应用于图像匹配、三维重建、摄像机标定等方面。通过 对图像进行射影变换和处理,可以实现图像的自动识别和场景的三维重建。
典型例题解析
解析
根据全等三角形的定义,两个三 角形如果三边分别相等,则这两 个三角形全等。因此,可以直接
得出△ABC≌△DEF。
2. 例2
已知两个相似三角形ABC和DEF, 其中
AB/DE=BC/EF=CA/FD=2/3, 求∠A和∠D的度数关系。
解析
根据相似三角形的性质,对应角 相等。因此,∠A=∠D。同时, 由于对应边成比例,可以得出两 个三角形的形状相同但大小不同。
对应角相等 面积相等
周长相等
相似与全等关系辨析
相似之处
都有对应边的关系
相似与全等关系辨析
不同之处
全等三角形可以完全重合,而相似三角形 不一定能完全重合
全等要求三边三角完全相等,相似只要求 对应边成比例、对应角相等
相似三角形可以有不同的形状和大小,只 要满足相似条件即可
水利工程中的水流分析
利用相似三角形的原理,可以模拟和分析水流在不同条件下的流速、 流量和水压等参数,为水利工程的设计和施工提供重要依据。
相似三角形与全等三角形关
04
系探讨
全等三角形定义及性质回顾
全等三角形的定义:两个三角形如果 三边及三角分别相等,则称这两个三
角形全等。
全等三角形的性质
对应边相等
相似三角形ppt教学 课件完整版
目录
• 相似三角形基本概念与性质 • 相似三角形在几何证明中的应用 • 相似三角形在解决实际问题中的应
相似三角形的性质一课件
角边相似
如果一个三角形的两个角与另一个三 角形的一对对应角相等,并且这两个 角的夹边成比例,则这两个三角形相 似。
如果两个三角形的三组对应边成比例 ,则这两个三角形相似。
性质与定理
对应角相等
相似三角形对应角相等,即 $angle A_1 = angle A_2, angle B_1 = angle B_2, angle C_1 = angle C_2$。
对应边成比例
如果两个三角形相似,则它们的对应边长之间存在一定的比例关系。
这个比例称为相似比,是判定两个三角形是否相似的重要依据。
对应边之间的比例关系可以用数学公式表示,即 a/b = c/d = ... = k,其中 a, b, c, d, ... 是对应边的长度,k 是相似比。
面积比等于相似比的平方
BIG DATA EMPOWERS TO CREATE A NEW ERA
相似三角形的性质一ppt课
件
• 相似三角形的定义 • 相似三角形的性质 • 相似三角形的应用 • 相似三角形的判定定理 • 相似三角形的性质定理 • 相似三角形的综合应用
目录
CONTENTS
01
相似三角形的定义
BIG DATA EMPOWERS TO CREATE A NEW
应用。
在数学竞赛中的应用
相似三角形是数学竞赛中常见的知识点之一,对于提高学生的数学竞赛 成绩有着重要的作用。
在数学竞赛中,相似三角形常常与其它知识点结合,形成综合性题目, 考察学生的数学综合素质。
掌握相似三角形的性质和判定方法,对于解决数学竞赛中的难题和压轴 题至关重要。
THANKS
感谢观看
04
相似三角形的判定定理
BIG DATA EMPOWERS TO CREATE A NEW
相似三角形的判定全ppt课件
2024/1/27
5
相似三角形性质总结
对应边成比例
相似三角形的对应边之比等于相似比。
对应高、中线、角平分线成比例
相似三角形的对应高、中线、角平分线之 比也等于相似比。
周长比等于相似比
相似三角形的周长之比等于相似比。
2024/1/27
面积比等于相似比的平方
相似三角形的面积之比等于相似比的平方 。
6
02
相似三角形的判定全ppt课件
2024/1/27
1
目 录
2024/1/27
• 相似三角形基本概念及性质 • 判定方法一:两边成比例且夹角相等 • 判定方法二:三边成比例 • 判定方法三:直角三角形中斜边和一直角边成
比例 • 综合运用及拓展延伸 • 课堂小结与作业布置
2
01
相似三角形基本概念及性质
2024/1/27
判定方法一:两边成比例且夹角 相等
2024/1/27
7
定理内容阐述
01
02
03
定理描述
如果两个三角形有两边成 比例,并且夹角相等,则 这两个三角形相似。
2024/1/27
定理条件
两个三角形中,任意两边 长度之比等于另两边长度 之比,且这两边所夹的角 相等。
定理
8
18
05
综合运用及拓展延伸
2024/1/27
19
不同判定方法之间的联系与区别
角角角(AAA)相似
三个内角分别相等,则两个三角形相 似。此方法简单易行,但需注意AAA 相似不能推出边长成比例。
边角边(BAB)相似
两边成比例且夹角相等,则两个三角 形相似。此方法结合了边的长度和角 的大小,较为常用。
《相似三角形的性质和判定》PPT课件
全等三角形是特殊的相似三角形,当相似比为1时性质探究
对应角相等
01
定义
两个三角形如果它们的对应角 相等,则称这两个三角形相似
。
02
性质
相似三角形的对应角相等,即 如果∠A = ∠A',∠B = ∠B',
则∠C = ∠C'。
03
示例
通过测量和比较两个三角形的 对应角度,可以判断它们是否
相似。
对应边成比例
03
定义
性质
示例
两个三角形如果它们的对应边成比例,则 称这两个三角形相似。
相似三角形的对应边成比例,即如果 AB/A'B' = BC/B'C' = CA/C'A',则△ABC ∽ △A'B'C'。
通过测量和比较两个三角形的对应边长, 可以判断它们是否相似。
面积比与边长比关系
01
平行线截割定理证明
平行线截割定理应用
在解决相似三角形问题时,可以利用 平行线截割定理来寻找相似三角形的 对应边。
通过相似三角形的性质,可以证明对 应线段之间的比例关系。
三角形中位线定理
三角形中位线定理内容
三角形的中位线平行于第三边,且等于第三边的一半。
三角形中位线定理证明
通过相似三角形的性质和平行线截割定理,可以证明三角形中位线 与第三边的关系。
01
更高层次相似三角形知识
02
相似多边形的性质和判定方 法
03
相似三角形与相似多边形之 间的关系和联系
拓展延伸:介绍更高层次相似三角形知识
• 相似三角形在几何变换中的应用,如平移、旋转、对 称等
拓展延伸:介绍更高层次相似三角形知识
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
B
C
∴当∠1=∠B时 ,△ACP∽△ABC ∴当AC:AP = AB:AC 时,△ACP∽△ABC
对应练习:如图△ABC中,AB=9,AC=6,D是边AB 上一点且AD=2,E是AC 上的点 ,则AE= 或3 时, △ADE 与△ABC相似? △AED∽△ △ADE∽△ ABC? A A D E B B C
O
C`
∴
=
特殊的相似关系 位似:相似图形对应顶 点所在直线交于一点.
∴A`C`∥AC
∴
=
=
=
∴ △A`B`C`∽△ABC
练习:如图 ,D,E.F分别是△ABC的三边的中点.
求证: △ DEF∽△ABC. 分析:1找两对角对应相等 A 2.三边对应成比例
F E 3.两边对应成比例且 夹角相等. 证明:∵D,E,F分别是三边中点 C ∴ = = =
B
D
∴△ DEF∽△ABC.
判定
性质
怎 样 的 两 三 角 灵 活 形 是 相 似 的
应 用
两 三 角 形 相 似 有 什 么 结 论
布置作业:
1、课本第239页第10、11、12题 2、阅读课本第249页“读一读”---位似变换 3、用今天所学解释:“同一时刻物体 的高度与它的影长成比例”
放大镜把什么放不大? 角度
没放大吧!
为什么?
放大后的三角形与原三角形相似.(判定)
相似三角形的对应角相等.(性质)
灵
活
应
用
三角形相似的判定方法:
1、基本定理:平行于三角形一边的
直线与另两边(或延长线)构成的三角 形与原三角形相似.
A型图
X型图
全 等
2 、判定定理 : 相 似 三 角 形
1.两角对应相等,两三角形相似 2.两边对应成比例且夹角相等,两三角形相似 3.三边对应成比例,两三角形相似. 4.斜边和一直角边对应成比例的两直角三角形相似
∴∠A`B`O=∠ABO,
C
=
= =
同理:∠C`B`O=∠CBO, ∴∠A`B`C`=∠ABC, ∴ △A`B`C`∽ △ ABC
例2 已知:如图A`B`∥ AB,B`C`∥BC,求证:△A`B`C`∽△ABC 证明:(方法二:三边对应成比例) A A`
B`
B C
∵ A`B`∥ AB , B)
SAS
SSS HL
返
回
三角形相似的性质
基本性质:
相似三角形的对应角相等,对应边成比例.
扩展性质:
返回
例1、已知△ABC,P是AB边上的一点,连结CP.
①∠1满足什么条件时 , △ACP∽△ABC ? ② 满足什么 条件时 , △ACP∽△ABC ?
A P
解:①∵∠A=∠A ②∵∠A=∠A
当△ADE∽△ABC时 当△AED∽△ABC时
D E C
思 维 要 严 密
=
AE= AE=3
=
例2已知:如图A`B`∥ AB,B`C`∥ BC 求证: △A`B`C`∽ △ ABC
分析:三角形相似需要等角和比例线段
A
A`
O C`
B`
平行线能给相似提供哪些条件? 你想选用哪种判定方法?
B
证明:∵ A`B`∥ AB