指数函数的性质与变化规律

合集下载

指数函数及其性质(解析版)

指数函数及其性质(解析版)

微专题15 指数函数及其性质【方法技巧与总结】知识点一、指数函数的图象及性质:x y a =01a <<时图象 1a >时图象图象性质①定义域R ,值域(0,)+∞②01a =,即0x =时,1y =,图象都经过()0,1点 ③x a a =,即1x =时,y 等于底数a ④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤0x <时,1x a >0x >时,01x a <<⑤0x <时,01x a <<0x >时,1x a >⑥既不是奇函数,也不是偶函数(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论. (2)当01a <<时,x →+∞,0y →;当1a >时x →-∞,0y →. 当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快. 当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快. (3)指数函数xy a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称.知识点二、指数函数底数变化与图像分布规律 (1)①x y a =,②x y b =,③x y c =,④x y d =,则:01b a d c <<<<<又即:,()0x ∈+∞时,x x x x b a d c <<<(底大幂大) ,0()x ∈∞-时,x x x x b a d c >>>(2)特殊函数2x y =,3x y =,1()2x y =,1()3x y =的图像:【题型归纳目录】题型一:指数函数的图象基本性质:定点、对称性、单调性 题型二:指数 (型) 函数的单调性应用(1): 复合函数的值域问题 题型三:指数 (型) 函数的单调性应用(2): 复合函数的单调问题 题型四:指数(型) 函数中的奇偶性及与单调性的综合 【典型例题】题型一:指数函数的图象基本性质:定点、对称性、单调性 例1.(2022·全国·高一课时练习)已知函数()2x af x -=的图象关于直线2x =对称,则a =( )A .1B .2C .0D .-2【答案】B【解析】函数2xy =的图象关于y 轴对称,将函数2x y =的图象向右平移2个单位长度可得函数22x y -=的图象,所以函数22x y -=的图象关于直线2x =对称,故2a =.故选:B例2.(2022·福建·莆田二中高一期中)已知函数()21,24,2xx f x x x ⎧-≤⎪=⎨-+>⎪⎩,若实数,,a b c 满足a b c <<,且()()()f a f b f c ==,则22a c b c +++的取值范围为( )A .()4,8B .()4,16C .()8,32D .()16,32【答案】D【解析】作出函数()f x 的图象,如图,当0x <时,()()21120,1x xf x =-=-∈,由图可知,()()()()0,1f a f b f c ==∈,即()40,1c -∈ 得34c <<,则8216c <<,由()()f a f b =,即2121a b-=-,得1221a b -=-,求得222a b +=,∴()()222222216,32a cb c c a b c +++=+=⨯∈,故选:D例3.(2022·全国·高一课时练习)若222log xx x >>,则x 的取值范围为( )A .()3,4B .()4,+∞C .()0,2D .()1,2【答案】D【解析】在同一平面直角坐标系中作出函数2y x =,2x y =,2log y x =的图象如下图所示,数形结合可知:当12x <<时,222log xx x >>,x 的取值范围为()1,2.故选:D.变式1.(多选题)(2022·全国·高一单元测试)已知()2102,0x x f x x x x ⎧->=⎨--≤⎩,,则方程()220()xf a a R --=∈的根个数可能是( ) A .3 B .4 C .5 D .6【答案】ABD【解析】令()221xt t -=≥-,在同一坐标系中作出函数()(1)y f t t =≥-和直线y a =的图象,分析()0f t a -=的根:①当1a >时,方程()0f t a -=有一个根1t ,且12t >,方程122xt -=,对应2个x ,故方程()220()xf a a R --=∈有2个根;②当a =1时,方程()0f t a -=有两个根11t =-,22t =,方程122xt -=,对应1个x ,方程222x t -=对应2个x ,故方程()220()xf a a R --=∈有3个根.③当0<a <1时,方程()0f t a -=有三个根110t -<<,201t <<,312t <<,方程122xt -=,对应2个x ,方程222x t -=对应2个x ,方程322x t -=对应2个x ,故方程()220()x f a a R --=∈有6个根.④当a =0时,方程()0f t a -=有两个根10t =,21t =,方程122xt -=,对应2个x ,方程222x t -=对应2个x ,故方程()220()xf a a R --=∈有4个根.故选:ABD.变式2.(多选题)(2022·全国·高一期末)(多选)已知函数()x f x a b =-的图象如图所示,则( )A .a >1B .0<a <1C .b >1D .0<b <1【答案】BD【解析】观察图象得,函数()x f x a b =-是单调递减的,因此,01a <<,图象与y 轴交点纵坐标0y 有:001y <<,而0x =时,1y b =-,于是得011b <-<,解得01b <<, 所以01a <<,01b <<.故选:BD变式3.(多选题)(2022·全国·高一课时练习)已知函数()21xf x =-,实数a ,b 满足()()f a f b =()a b <,则( )A .222a b +>B .a ∃,b ∈R ,使得01a b <+<C .222a b +=D .0a b +<【答案】CD【解析】画出函数()21xf x =-的图象,如图所示.由图知1221a b -=-,则222a b +=,故A 错,C 对.由基本不等式可得22222222a b a b a b +=+>⋅=21a b +<,则0a b +<,故B 错,D 对.故选:CD .变式4.(2022·全国·高一单元测试)函数11x y a -=+图象过定点A ,点A 在直线()31,0mx ny m n +=>>上,则121m n+-最小值为___________. 【答案】92【解析】当1x =时,012y a =+=,11x y a -∴=+过定点()1,2A ,又点A 在直线3mx ny +=上,23∴+=m n ,即()122m n -+=, 1m >,0n >,10m ∴->,()()()21121121212512121m n m n m n m n m n -⎛⎫⎛⎫∴+=+-+=++≥ ⎪ ⎪---⎝⎭⎝⎭()2112952212m n m n ⎛- +⋅= -⎝(当且仅当()2121m nm n -=-,即53m =,23n =时取等号),121m n ∴+-的最小值为92. 故答案为:92.变式5.(2022·江苏·高一专题练习)函数27x y a -=+(0a >,且1a ≠)的图象恒过定点P ,P 在幂函数()f x x α=的图象上,则(3)f =_______;【答案】27【解析】因为函数27x y a -=+(0a >,且1a ≠)的图象恒过定点P , 所以由指数型函数性质得()2,8P , 因为P 在幂函数()f x x α=的图象上 所以28α=,解得3α=,所以()3f x x =,()327f =.故答案为:27变式6.(2022·全国·高一课时练习)函数()120.58x y -=-的定义域为______.【答案】(),3-∞- 【解析】因为()120.580.58xxy -=-=-0.580x ->,则322x ->,即3x ->,解得3x <-,故函数()120.58x y -=-的定义域为(),3-∞-.故答案为:(),3-∞-.变式7.(2022·全国·高一单元测试)已知函数()2x f x a -[)2,+∞,则=a _________. 【答案】4【解析】由题意可知,不等式20x a -≥的解集为[)2,+∞,则220a -=,解得4a =, 当4a =时,由240x -≥,可得2242x ≥=,解得2x ≥,合乎题意. 故答案为:4.变式8.(2022·全国·高一专题练习)已知函数f (x )=ax +b (a >0,a ≠1).(1)若f (x )的图象如图①所示,求a ,b 的取值范围;(2)若f (x )的图象如图②所示,|f (x )|=m 有且仅有一个实数解,求出m 的范围. 【解析】(1)由f (x )为减函数可知a 的取值范围为(0,1),又f (0)=1+b <0,所以b 的取值范围为(-∞,-1); (2)()f x 的图象过点(2,0),(0,2)-,所以2002a b a b ⎧+=⎨+=-⎩,解得3,3a b ==-, 所以()(3)3x f x =-,在同一个坐标系中,画出函数|()|y f x =和y m =的图象, 观察图象可知,当0m =或3m ≥时,两图象有一个交点, 若|()|f x m =有且仅有一个实数解,m 的范围是:0m =或3m ≥.题型二:指数 (型) 函数的单调性应用(1): 复合函数的值域问题 例4.(2022·全国·高一专题练习)函数1423x x y +=++的值域为____. 【答案】()3,+∞ 【解析】令2(0)x t t =>,∴函数()1423x x y x R +=++∈化为()()222312(0)f t t t t t =++=++>,()3f t ∴>,即函数1423x x y +=++的值域为()3,+∞.故答案为:()3,+∞例5.(2022·全国·高一单元测试)函数221()2x xy -+=的值域为( )A .1[,)2+∞B .1(,]2-∞C .(,2]-∞D .(0,2]【答案】A【解析】函数221()2x x y -+=定义域为R ,222(1)11x x x -+=--+≤,又函数1()2x在R 上单调递减,则221(221)x x -+≥, 所以函数221()2x x y -+=的值域为1[,)2+∞.故选:A例6.(2022·黑龙江·佳木斯一中高一期末)已知()212221x x xf x a +=+-+(其中a R ∈且a 为常数)有两个零点,则实数a 的取值范围是___________. 【答案】()4,+∞【解析】设()20,xt =∈+∞,由()212221x x xf x a +=+-+有两个零点, 即方程()2210t a t +-+=有两个正解,所以()21212Δ2402010a t t a t t ⎧=-->⎪+=->⎨⎪=>⎩,解得4a >,即()4,a ∈+∞, 故答案为:()4,+∞.变式9.(2022·河南·登封市第一高级中学高一阶段练习)函数113()934x xf x --⎛⎫=++ ⎪⎝⎭在[1,)-+∞上的值域为___________. 【答案】375,44⎛⎤⎥⎝⎦【解析】2113113()9334334x x xx f x --⎛⎫⎛⎫⎛⎫⎛⎫=++=+ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭+⎝⎭∵[1,)x ∈-+∞则令(],3130xt ⎛⎫⎪⎭∈= ⎝2334y t t =++在(]0,3递增∴375,44y ⎛⎤∈ ⎥⎝⎦故答案为:375,44⎛⎤⎥⎝⎦.变式10.(2022·陕西渭南·高一期末)方程23x x k +=的解在()1,2内,则k 的取值范围是___________. 【答案】()5,10【解析】令()23,1,2xy x x =+∈,显然该函数为增函数,122315,23210+⨯=+⨯=,值域为()5,10,故510k <<. 故答案为:()5,10.变式11.(2022·河南·洛宁县第一高级中学高一阶段练习)函数()()420x xf x x --=+>的值域是______.【答案】()0,2【解析】令()20,1xt -∈=,则2y t t =+,因为函数2y t t =+在0,1上单调递增,所以()20,2y t t =+∈,故()f x 的值域为()0,2.故答案为:()0,2.变式12.(2022·全国·高一课时练习)已知函数f (x )=ax +b (a >0,a ≠1),其中a ,b 均为实数. (1)若函数f (x )的图象经过点A (0,2),B (1,3),求函数()1y f x =的值域; (2)如果函数f (x )的定义域和值域都是[﹣1,0],求a +b 的值. 【解析】(1)函数f (x )=ax +b (a >0,a ≠1),其中a ,b 均为实数,函数f (x )的图象经过点A (0,2),B (1,3),∴123b a b +=⎧⎨+=⎩,∴21a b =⎧⎨=⎩,∴函数f (x )=2x +1>1,函数()1121xy f x ==+<1. 又()1121x f x =+>0,故函数()1y f x =的值域为(0,1). (2)如果函数f (x )的定义域和值域都是[﹣1,0],若a >1,函数f (x )=ax +b 为增函数,∴1110b a b ⎧+=-⎪⎨⎪+=⎩,求得a 、b 无解.若0<a <1,函数f (x )=ax +b 为减函数,∴1011b a b ⎧+=⎪⎨⎪+=-⎩,求得122a b ⎧=⎪⎨⎪=-⎩, ∴a +b 32=-.变式13.(2022·河南·洛宁县第一高级中学高一阶段练习)已知函数()2422ax x f x ++=.(1)当1a =时,求()f x 的值域; (2)若()f x 有最大值16,求a 的值. 【解析】(1)当1a =时,()2422xx f x ++=.因为2t y =在R 上单调递增,且()2242222y x x x =++=+-≥-, 可得24221224x x ++-≥=,所以()2124f x -≥=, 故()f x 的值域为1,4⎡⎫+∞⎪⎢⎣⎭.(2)令242t ax x =++,因为函数2t y =在其定义域内单调递增, 所以要使函数()f x 有最大值16,则242t ax x =++的最大值为4,故20,44424,22a a a a <⎧⎪⎨⎛⎫⎛⎫-+⨯-+=⎪ ⎪⎪⎝⎭⎝⎭⎩解得2a =-. 故a 的值为2-.变式14.(2022·全国·高一课时练习)已知函数()x f x a =(0a >且1a ≠)的图象经过点()2,16-. (1)求a ,并比较27()4f m +与1()4f m -的大小;(2)求函数224()xx g x a -+-=的值域.【解析】(1)由已知得:216a -=,解得14a =,所以()14xf x ⎛⎫= ⎪⎝⎭, 因为()14xf x ⎛⎫= ⎪⎝⎭在R 上单调递减,2227117()()2()04424m m m m m +--=-+=-+>,所以271()()44f m f m +<-;(2)因为2224(1)33x x x -+-=----≤,所以2243116444x x -+--⎛⎫⎛⎫≥= ⎪⎪⎝⎭⎝⎭,故()g x 的值域是[64,)+∞; 变式15.(2022·全国·高一专题练习)求下列函数的定义域、值域: (1)513x y -=(2)2231.2x x y --⎛⎫= ⎪⎝⎭【解析】(1)由函数解析式可知:15105x x -≥⇒≥,所以函数的定义域为:1|5x x ⎧⎫≥⎨⎬⎩⎭; 510x -≥,所以510331x -≥=,因此函数的值域为:[1,)+∞;(2)由函数的解析式可知:函数的定义域为R ,222323122x x xx y ---++⎛⎫== ⎪⎝⎭,因为2223(1)44x x x -++=--+≤,所以223402216xx -++<≤=,因此函数的值域为:(0,16]. 变式16.(2022·山东·嘉祥县第一中学高一期中)设函数()()()10,1x xf x a k a a a -=-->≠是定义域R 的奇函数. (1)求k 值;(2)若()10f >,试判断函数单调性并求使不等式()()2210f x tx f x +++>在定义域上恒成立的t 的取值范围;(3)若()813f =,且()()222x xg x a a mf x -=+-在[)1,+∞上最小值为2-,求m 的值.【解析】(1)()f x 是定义域为R 的奇函数,()00f ∴=,即()110k --=,解得2k =;经检验成立 (2)因为函数()x xf x a a -=-(0a >且1a ≠),又()10f >,10a a∴->,又0a >, 1a ∴>,由于x y a =单调递增,x y a -=单调递减,故()f x 在R 上单调递增,不等式化为()()221f x tx f x +>--.221x tx x ∴+>--,即()2210x t x +++>恒成立,()2240t ∴∆=+-<,解得40t -<<;(3)由已知()813f =,得183a a -=,即23830a a --=,解得3a =,或13a =-(舍去),()()()()22233333333222x x x x x x x x g x m m ----∴=+----=+-,令()33x xt f x -==-,是增函数,1x ≥,()813t f ∴≥=,则()22282223y t mt t m m t ⎛⎫=-+=-+-≥ ⎪⎝⎭,若83m ≥,当t m =时,2min 22y m =-=-,解得823m =<,不成立;若83m <,当83t =时,min 64162293y m =-+=-,解得258123m =<,成立; 所以2512m =. 题型三:指数 (型) 函数的单调性应用(2): 复合函数的单调问题例7.(2022·全国·高一单元测试)若函数241()3x axf x -+⎛⎫= ⎪⎝⎭在区间()1,2上单调递增,则a 的取值范围为_________.【答案】1,2⎛⎤-∞ ⎥⎝⎦【解析】因为函数13xy ⎛⎫= ⎪⎝⎭是实数集上的减函数,所以由复合函数的单调性可知,函数24y x ax =-+在区间()1,2上单调递减, 函数24y x ax =-+的对称轴为2x a =,且开口向下,所以有21a ≤, 解得a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦,故答案为:1,2⎛⎤-∞ ⎥⎝⎦.例8.(2022·北京·牛栏山一中高一阶段练习)写出一个满足函数()+1221,>=+2,x x ag x x x x a ≤⎧-⎨-⎩在(),-∞+∞上单调递增的a 值_____________. 【答案】1(答案不唯一)【解析】因为()+1221,>=+2,x x ag x x x x a ≤⎧-⎨-⎩,当>x a 时()+121x g x -=在定义域上单调递增,当x a ≤时()()22+211x x g x x --==+-, 画出+121x y -=,2+2y x x -=的图象如下所示:要使函数()g x 在(),-∞+∞上单调递增,由图可知当1a ≤时均可满足函数()g x 在(),-∞+∞上单调递增; 故答案为:1(答案不唯一)例9.(多选题)(2022·江苏·无锡市市北高级中学高一期中)函数2(65)1()()2x x f x -+-=在下列哪些区间内单调递减( ) A .(3),-∞ B .(3,5)C .(1,3)D .(2,3)【答案】ACD【解析】由题意,函数1()2xy =在R 上单调递减,又由函数265y x x =-+-在(3),-∞上单调递增,在(3,)+∞上单调递减, 由复合函数的单调性可知,函数()f x 在(3),-∞上单调递减, 结合选项,可得选项ACD 符合题意. 故选:ACD.变式17.(2022·全国·高一单元测试)已知()()321,1,1xa x x f x a x ⎧-+≤=⎨>⎩是定义域为R 上的减函数,则a 的取值范围是( ) A .20,3⎛⎫⎪⎝⎭B .12,23⎡⎫⎪⎢⎣⎭C .()1,+∞D .2,13⎛⎫ ⎪⎝⎭【答案】B【解析】由题意,132001321a a a a -<⎧⎪<<⎨⎪-+≥⎩,故230121a a a ⎧<⎪⎪<<⎨⎪≥⎪⎩,解得12,23a ⎡⎫∈⎪⎢⎣⎭故选:B变式18.(2022·全国·高一单元测试)若2233x y x y ---<-,则( ) A .x y < B .||||x y < C .x y > D .||||x y >【答案】A【解析】设函数()23x x f x -=-,因为函数2,3x x y y -==-都是实数集上的增函数, 所以函数()23x x f x -=-也是实数集上的增函数,由22332323()()x y x y x x y y f x y x y -----<-⇒-<-⇒<⇒<, 故选:A变式19.(2022·河南·登封市第一高级中学高一阶段练习)函数2435x x y -+-=的单调递减区间是( )A .[2,)+∞B .(,2]-∞C .(,1]-∞D .[1,)+∞【答案】A【解析】设243x x μ=-+-,在(,2]-∞单调递增,在[2,)+∞单调递减,5y μ=在(,)-∞+∞单调递增,根据“同增异减”可得,函数2435x x y -+-=的单调递减区间是[2,)+∞.故选:A.题型四:指数(型) 函数中的奇偶性及与单调性的综合例10.(2022·浙江温州·高一期中)已知函数()()21R 2x x f x x a-=∈+为奇函数;(1)求实数a 的值; (2)求()f x 的值域;(3)若关于x 的方程()()121001t f x b b ---=<<无实数解,求实数t 的取值范围.【解析】(1)由函数()212x xf x a -=+是定义域为R 的奇函数, 则()()f x f x -=-,即212122x x x x a a----=-++,即1221122x x x xa a --=-+⋅+, 所以122x x a a +⋅=+,即()()1210xa --=在R x ∈上恒成立,解得1a =;(2)由(1)得1a =,则()2121221212121x x x x x f x -+-===-+++,又函数2x y =单调递增,且20x >, 所以211x +>,20221x<<+, 所以()11f x -<<,即函数()f x 的值域为()1,1-; (3)由()()121001t f x b b ---=<<无实数解,即()121t f x b -=+无实数解,又()()22,2f x ∈-,所以112t b -+≤-或112t b -+≥, 即13t b -≤-(不成立),或11t b -≥, 又01b <<,所以10t -≤, 即1t ≤.例11.(2022·全国·高一课时练习)已知函数()()240,12x xa a f x a a a a-+=>≠+是定义在R 上的奇函数. (1)求a 的值;(2)求函数()f x 的值域;(3)当()1,2x ∈时,()220xmf x +->恒成立,求实数m 的取值范围.【解析】(1)因为()f x 是定义在R 上的奇函数,所以()002420022a a a f a a a -+-===++,解得2a =,当2a =时,()2121x x f x -=+,此时()()21122112x xx x f x f x -----===-++,所以2a =时,()2121x x f x -=+是奇函数.所以2a =;(2)由(1)可得()2121221212121x x x xxf x -+-===-+++, 因为20x >,可得211x +>,所以10121x <<+, 所以22021x-<-<+, 所以211121x -<-<+, 所以函数()f x 的值域为()1,1-; (3)由()220x mf x +->可得()22x mf x >-,即122221x x xm ->+-⋅,可得()()212122x xx m +->-对于()1,2x ∈恒成立, 令()211,3xt -=∈,则()()2121t t tt m t-=-++>,函数21y t t=-+在区间()1,3单调递增,所以221013133t t -+<-+=,所以103m ≥, 所以实数m 的取值范围为10,3⎡⎫+∞⎪⎢⎣⎭.例12.(2022·贵州·黔西南州金成实验学校高一期末)已知函数4()12xf x a a=-+(0a >且1a ≠)为定义在R 上的奇函数.(1)利用单调性的定义证明函数()f x 在R 上单调递增;(2)求不等式()22(4)0f x x f x ++->的解集.(3)若函数()()1g x kf x =-有零点,求实数k 的取值范围.【解析】(1)由题意得:()40102f a =-=+,解得:2a =,142()112221x x f x +=-=-++, 任取12,x x R ∈,且12x x <,则()()()()()1212122121211111122222222222()112121212121212121x x x x x x x x x x x x f x f x +++++----=--+=-==++++++++因为12,x x R ∈,且12x x <,所以1211220x x ++-<,12210,210x x +>+>,所以()()()1221111222()02121x x x x f x f x ++--=<++,故()12()f x f x < 所以函数()f x 在R 上单调递增; (2)()22(4)0f x x f x ++->,即()22(4)f x x f x +>--,因为2()121x f x =-+为定义在R 上的奇函数, 所以()22(4)(4)f x x f x f x +>--=-,因为2()121x f x =-+为定义在R 上单调递增, 所以224x x x +>-, 解得:1x >或4x <-, 所以解集为:()(),41,-∞-+∞;(3)()()211121x g x kf x k ⎛⎫=-=-- ⎪+⎝⎭有零点, 当0k =时,()()11g x kf x =-=-,没有零点,不合题意,舍去; 当0k ≠时,即21121x k-=+有根, 其中当0x >时,21x >,212x +>,20121x<<+, 故()2()10,121x f x =-∈+, 又因为2()121x f x =-+在R 上为奇函数, 所以当0x <时,()2()11,021x f x =-∈-+, 且()00f =,所以2()121x f x =-+在R 上的值域为()1,1-, 故()()11,00,1k∈-⋃, 解得:()(),11,k ∈-∞-+∞,所以实数k 的取值范围为()(),11,k ∈-∞-+∞.变式20.(2022·全国·高一课时练习)已知函数()f x ,()g x 分别是定义在R 上的偶函数与奇函数,且()()+22.x f x g x =(1)求()f x 与()g x 的解析式;(2)若对()1,2x ∀∈,不等式()()()2220f x m g x -++恒成立,求实数m 的最大值. 【解析】(1)由题意()()+22xf xg x = ①,所以()()22xf xg x --+-= ,函数()f x ,()g x 分别是定义在R 上的偶函数与奇函数, 所以()()()(),f x f x g x g x =--=-所以()()22xf xg x --= ②,由①②解得()222x xf x -+=,22()4x xg x --=;(2)对()1,2x ∀∈,不等式()()()2220f x mg x -++恒成立,即()22222222024x x x xm --+--++,令22x x t -=-,315,24t ⎛⎫∈ ⎪⎝⎭,则222222x x t -+=+,不等式等价于()2222024t tm +-++在315,24t ⎛⎫∈ ⎪⎝⎭上恒成立, 所以min 622m t t ⎛⎫++ ⎪⎝⎭,因为60,0t t>>,所以6626t t t t+⋅= 当且仅当6t t =即3156,24t ⎛⎫= ⎪⎝⎭时取等号, 所以246,462m m +-,即m 的最大值为46 2.变式21.(2022·辽宁·高一阶段练习)设函数()()212x xk f x k -=+-⋅(x ∈R ,k ∈Z ).(1)若()k f x 是偶函数,求实数k 的值;(2)若存在[]1,2x ∈,使得()()014f mf x x +≤成立,求实数m 的取值范围. 【解析】(1)(1)若()k f x 是偶函数,则()()k k f x f x -=,即()()212212x x x xk k --+-⋅=+-⋅,即()()()()221212122x x x x x xk k k ----=-⋅--⋅=--,则11k -=,即2k =.(2)(2)存在[]1,2x ∈,使得()()014f mf x x +≤成立, 即2422x x x m -⋅≤-+,则()242242212x x x x xm ----+≤=⋅+-,设2x t -=,因为12x ≤≤,所以1142t ≤≤, 所以()22422141x x t t --⋅+-=+-, 令()224125y t t t =+-=+-, 因为1142t ≤≤,所以当12t =时,函数取得最大值152144y =+-=,则54m ≤, 所以实数m 的取值范围为5,4⎛⎤-∞ ⎥⎝⎦.变式22.(2022·河北沧州·高一期末)已知函数()22xxf x a -=+⋅为偶函数()a ∈R . (1)判断()f x 在[0,2]上的单调性并证明;(2)求函数()2()44x x g x mf x a -=-++⋅在[1,2]-上的最小值. 【解析】(1)()f x 为偶函数,()()f x f x ∴=-, 即2222x x x x a a --+⋅=+⋅,()()1212x x a a --⋅=-⋅,则10,1a a -==.所以()22x xf x -=+.()f x 在[0,2]为增函数,证明如下:任取1x ,2x ,且1202x x ≤<≤,()()()1122122222x x x x f x f x ---=+-+211212121211222222222x x x x x x x x x x +-=-+-=-+()()1212121212121212221212222122222x x x x x x x x x x x x x x x x ++++--⎛⎫=--=--=-⋅ ⎪⎝⎭,1202x x ≤<≤,12220x x ∴-<,12210x x +->, ()121212212202x x x x x x ++-∴-⋅<.即()()12f x f x <,∴()f x 在[0,2]上单调递增.(2)()()22244x x x xg x m --=-+++,令1222([1,2])2x x xx t x -=+=+∈-,结合题意及(1)的结论可知172,4t ⎡⎤∈⎢⎥⎣⎦. ()22442222x x x x t --+=+-=-,22217()()22()22,4g x h t t mt t m m t ⎛⎫⎡⎤∴==--=---∈ ⎪⎢⎥⎣⎦⎝⎭.①当174m ≥时,min 1725717()4162h t h m ⎛⎫==- ⎪⎝⎭; ②当1724m <<时,2min ()()2h t h m m ==--; ③当2m ≤时,min ()(2)24h t h m ==-.综上,()2min24,2172,242571717,1624m m g x m m m m ⎧⎪-≤⎪⎪=--<<⎨⎪⎪-≥⎪⎩.变式23.(2022·全国·高一课时练习)已知函数()()2422ax x f x a ++=∈R .当1a =时,()f x 的值域为______;若()f x 的最大值为16,则a 的值为______. 【答案】 1,4⎡⎫+∞⎪⎢⎣⎭【解析】当1a =时,()2422xx f x ++=,设242t x x =++,则()2222t x =+-≥-,因为2x y =在R 上是增函数,所以24221224x x ++-≥=,即()14f x ≥,所以函数的值域是1,4⎡⎫+∞⎪⎢⎣⎭;要使函数()f x 的最大值为16,则242t ax x =++的最大值为4,故2042444a a a <⎧⎪⎨⨯-=⎪⎩,解得2a =-.故答案为:1,4⎡⎫+∞⎪⎢⎣⎭;2-【过关测试】 一、单选题1.(2022·河南南阳·高一期中)已知函数()32,1,12,1,x x f x x x -⎧<-=⎨-≥-⎩若()()20f f a -+=,则实数=a ( )A .2-B .2C .4D .6【答案】B【解析】由题知()()222422f --===-,()()20f f a -+=所以()4f a =-,因为1x <-时,()22xf x -=>,所以,1a ≥-, 所以()3124f a a =-=-,解得2a =.故选:B2.(2022·天津·高一期末)设x ∈R ,则“|2|<1x -”是“3<27x ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】A【解析】由|2|<1x -可知,1<2<1x --,即1<<3x ,根据指数函数性质,3x y =是R 上递增的指数函数,3<27x 即33<3x ,故<3x ,显然1<<3x 可推出<3x ,但反之不成立,故“|2|<1x -”是“3<27x ”的充分不必要条件. 故选:A3.(2022·山东·嘉祥县第一中学高一期中)已知函数()f x 为R 上的奇函数,当0x <时,()133x f x =-,则()0f x ≥的解集为( )A .[)[)1,01,∞-⋃+B .[]1,1-C .[][)1,01,-⋃+∞D .[)(]1,00,1-【答案】C【解析】因为函数()f x 为R 上的奇函数, 所以()00f =,又当0x <时,()133xf x =-,当0x >时,0x -<,则()()133xf x f x --=-=-,所以0x >时,()1133xf x ⎛⎫=- ⎪⎝⎭,则由()0f x ≥可得,011033x x >⎧⎪⎨⎛⎫-≥ ⎪⎪⎝⎭⎩或01303x x <⎧⎪⎨-≥⎪⎩或0x =,解得1x ≥或10x -≤<或0x =,综上可得,不等式()0f x ≥的解集为[][)1,01,-⋃+∞. 故选:C .4.(2022·全国·高一课时练习) 若存在正数x ,使得关于x 的不等式()31xx a -<成立,则实数a 的取值范围是( ) A .[)3,+∞ B .[)1,-+∞C .()1,-+∞D .()0,+∞【答案】C【解析】由题意知13x x a ⎛⎫-< ⎪⎝⎭成立,即13xa x ⎛⎫>- ⎪⎝⎭成立.令()13xf x x ⎛-⎫⎪⎝⎭=,显然()f x 在()0,+∞上单调递增,所以0x ∀>,()()01f x f >=-, 所以实数a 的取值范围是()1,-+∞. 故选:C5.(2022·全国·高一课时练习)若实数x ,y 满足2022202320222023x y y x --+<+,则( ) A .1x y> B .1x y< C .0x y -< D .0x y ->【答案】C【解析】令()20222023x xf x -=-,由于2022x y =,2023x y -=-均为R 上的增函数,所以()20222023x x f x -=-是R 上的增函数.因为2022202320222023x y y x --+<+,所以2022202320222023x x y y ---<-,即()()f x f y <,所以x y <,所以0x y -<. 故选:C .6.(2022·全国·高一单元测试)在同一坐标系中,函数2y ax bx =+与函数xy b =的图象可能为( )A .B .C .D .【答案】B【解析】函数x y b =的是指数函数,0b >且1b ≠,排除选项C ,如果0a >,二次函数的开口方向向上,二次函数的图象经过原点,并且有另一个零点:b x a=-, 所以B 正确;对称轴在x 轴左侧,C 不正确; 如果0a <,二次函数有一个零点0bx a=->,所以D 不正确. 故选:B .7.(2022·全国·高一专题练习)若2525x x y y ---≤-,则有( ) A .0x y +≥ B .0x y +≤ C .0x y -≤ D .0x y -≥【答案】B【解析】构造函数()25x xf x -=-,易得函数()f x 单调递增,由2525x x y y ---≤-,可得()()f x f y ≤-,0x y x y ∴≤-⇒+≤, 故选:B.8.(2022·云南·昆明市官渡区第一中学高一阶段练习)已知函数()33,0,0x x f x x x -⎧≤=⎨->⎩若()()22f a f a -≥-,则实数a 的取值范围是( ) A .[2,1]- B .1,12⎡⎤⎢⎥⎣⎦C .(,1]-∞D .1,2⎡⎫+∞⎪⎢⎣⎭【答案】A【解析】因为()33,0,0x x f x x x -⎧≤=⎨->⎩,当0x ≤时()3xf x -=单调递减,且()1f x ≥,当0x >时,3()f x x =-单调递减,且()0f x <,所以函数()33,0,0x x f x x x -⎧≤=⎨->⎩在定义域上单调递减,因为()22()f a f a -≥-,所以22a a -≤-,解得21a -≤≤,即实数a 的取值范围为:[2,1]-. 故选:A. 二、多选题9.(2022·山东·青岛二中高一期中)高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,他和阿基米德、牛顿并列为世界三大数学家,用其名字命名的“高斯函数”为:设x R ∈,用[]x 表示不超过的最大整数,则[]y x =称为高斯函数,例如[]3.54-=-,[]2.12=.已知函数()()1112x xa f x a a =->+,则关于函数()()g x f x =⎡⎤⎣⎦的叙述中正确的是( ) A .()f x 是奇函数 B .()g x 是偶函数 C .()f x 在R 上是增函数 D .()g x 的值域是{}1,0-【答案】ACD【解析】A 选项:()()()1211122121x x x x x x xa a a a f x a a a ---=-==+++,()()()112121x xxx a a f x a a -----==++,∴()()f x f x -=-, ∴()f x 为奇函数,故A 正确;B 选项:∵()()g x f x =⎡⎤⎣⎦∴()()11g f ⎡⎤=⎣⎦,()()11g f ⎡⎤-=-⎣⎦,∵()f x 为奇函数,∴()()f x f x =--,∴()()11f f =--,∴()()11g g ≠-,故B 错误;C 选项:()()11111111112121221x x x x x xa a f x a a a a +-=-=-=--=-++++, ∵1a >,∴x a 为增函数,∴11xa +为减函数, ∴()1121xf x a =-+为增函数,故C 正确; D 选项:∵0x a >,∴11x a +>,∴111xa <+,∴()1122f x -<<. 又∵()()g x f x =⎡⎤⎣⎦,∴()g x 的值域为{}1,0-,故D 正确. 故选:ACD .10.(2022·河南南阳·高一期中)不等式34270x x +-+≥成立的一个充分不必要条件是( ) A .{}3,4x ∈ B .0x ≤C .1x ≥D .02x ≤≤【答案】AB【解析】令20x t =>,所以,不等式()()3242787170x x t t t t +-+=-+=--≥,解得7t ≥或01t <≤所以,27x ≥或021x <≤,解得2log 7x ≥或0x ≤, 所以,不等式34270x x +-+≥的解集为(][)2,0log 7,-∞+∞,因为所求的是不等式34270x x +-+≥成立的一个充分不必要条件, 故只需满足是(][)2,0log 7,-∞+∞真子集即可,所以,只有AB 选项满足,CD 选项不满足. 故选:AB11.(2022·全国·高一课时练习)(多选)定义在[]1,1-上的函数()2943x xf x =-⋅+⋅,则下列结论中正确的是( )A .()f x 的单调递减区间是[]0,1B .()f x 的单调递增区间是[]1,1-C .()f x 的最大值是()02f =D .()f x 的最小值是()16f =-【答案】ACD【解析】设3x t =,[]1,1x ∈-,则3x t =是增函数,且1,33t ⎡⎤∈⎢⎥⎣⎦,又函数()2224212y t t t =-+=--+在1,13⎡⎤⎢⎥⎣⎦上单调递增,在[]1,3上单调递减,因此()f x 在[]1,0-上单调递增,在[]0,1上单调递减,故A 正确,B 错误;()()max 02f x f ==,故C 正确;()1019f -=,()16f =-,因此()f x 的最小值是6-,故D 正确. 故选:ACD . 三、填空题12.(2022·山东省青岛第十九中学高一期中)若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩ 对于R 上任意两个不相等实数12,x x ,不等式()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,则实数a 的取值范围为______. 【答案】[)4,8【解析】若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩对于R 上任意两个不相等实数12,x x , 不等式()()()12120x x f x f x -->⎡⎤⎣⎦恒成立,则函数()f x 在R 上单调递增,则1402422a aa a ⎧⎪>⎪⎪->⎨⎪⎪≥-+⎪⎩,解得:48a ≤<,故实数a 的取值范围为[)4,8, 故答案为:[)4,8.13.(2022·内蒙古·北方重工集团第五中学高一阶段练习(文))已知函数()()10x f x a x -=≥的图象经过点1(2,),2其中0a >且1a ≠,则函数()(0)y f x x =≥的值域是________. 【答案】(]02,【解析】因为()()10x f x a x -=≥的图象经过点1(2,),2所以2112a -=,解得12a =,则()()1102x f x x -⎛⎫=≥ ⎪⎝⎭,因为0x ≥,所以11x -≥-,所以12102x -⎛⎫< ⎝⎭≤⎪,即函数()(0)y f x x =≥的值域是(]02,, 故答案为:(]02,14.(2022·四川·成都铁路中学高一阶段练习)已知函数()142f x x x =+-.若存在()2,x ∈+∞,使得()42a a f x ≤-成立,则实数a 的取值范围是______.【答案】[2,)+∞【解析】因为()2,x ∈+∞,所以20x ->, 所以()1144(2)822f x x x x x =+=-++-- 124(2)8122x x ≥-⋅=-, 当且仅当14(2)2x x -=-,即52x =时取等号,所以min ()12f x =,因为存在()2,x ∈+∞,使得()42a af x ≤-成立, 所以()min 42a af x ≤-,即1242a a ≤-,所以()222120a a --≥,即23a ≤-(舍去),或24a ≥,得2a ≥,所以a 的取值范围为[2,)+∞, 故答案为:[2,)+∞15.(2022·全国·高一课时练习)若函数()()22133xa x f x +-+=在(),1-∞上单调递减,则实数a 的取值范围是______.【答案】1,2⎛⎫-∞- ⎪⎝⎭【解析】因为3x y =是R 上的增函数,()2213y x a x =+-+在21,2a -⎛⎫-∞- ⎪⎝⎭上单调递减,所以,根据复合函数单调性,要使()f x 在(),1-∞上单调递减,需2112a --≥,解得12a ≤-,所以,实数a 的取值范围是1,2⎛⎫-∞- ⎪⎝⎭.故答案为:1,2⎛⎫-∞- ⎪⎝⎭16.(2022·全国·高一课时练习)若函数1()1x f x a -=-(0a >,且1a ≠)在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则实数a 的取值范围是______. 【答案】35,46⎛⎤⎥⎝⎦【解析】函数11x y a -=-(0a >,且1a ≠)的图象是将函数x y a =(0a >,且1a ≠)的图象向右平移1个单位,再向下平移1个单位得到的,故函数1()1x f x a -=-(0a >,且1a ≠)的图象恒过点()1,0.当01a <<时,结合函数()f x 的图象:若函数()f x 在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则()()01321232112a a a a ⎧⎪<<⎪-⎪<⎨⎪⎪-≤⎪⎩,解得3546a <≤.当1a >时,结合函数()f x 的图象:若()f x 在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则()()1321232112a a a a ⎧⎪>⎪-⎪<⎨⎪⎪-≤⎪⎩,无实数解. 综上,实数a 的取值范围为35,46⎛⎤⎥⎝⎦.解法二: 若()32112a a x -<<<,则110x a -->,所以()11x f x a -=-在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递增,不符合题意;当01a <<时,函数1x y a -=在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,要使函数1()1x f x a -=-在区间()321,2a a -⎛⎫ ⎪⎝⎭上单调递减,则110x a -->在区间()321,2a a -⎛⎫⎪⎝⎭上恒成立,所以()()01321232112a a a a ⎧⎪<<⎪-⎪<⎨⎪⎪-≤⎪⎩,解得3546a <≤.故实数a 的取值范围是35,46⎛⎤ ⎥⎝⎦.故答案为:35,46⎛⎤⎥⎝⎦.四、解答题17.(2022·山东·青岛二中高一期中)已知函数()()2,R f x x bx c b c =++∈,且()0f x ≤的解集为[]1,2-.(1)求函数()f x 的解析式;(2)解关于x 的不等式()()21mf x x m >--(其中0m>);(3)设()()232xf xg x --=,若对任意的1x ,[]21,2x ∈,都有()()12g x g x t -≤,求t 的取值范围.【解析】(1)由()0f x ≤的解集为[1,2]-可得1,2-是方程20x bx c ++=的两个根,所以122b c -+=-⎧⎨-=⎩,解得1,2b c =-=-,所以2()2f x x x =--; (2)()()21mf x x m >--,化简有()222(1)m x x x m -->--即()2220mx m x -++>,可整理得()()()2100mx x m -->>, ①当2m =时,21m=,不等式的解集为()(),11-∞⋃+∞,; ②当02m <<时,21m>,不等式的解集为()2,1,m ⎛⎫-∞+∞ ⎪⎝⎭;③当2m >时,21m<,不等式的解集为()2,1,m ⎛⎫-∞+∞ ⎪⎝⎭;(3)由题意,()()21322xx f x g x ---==,对任意的[]12,1,2x x ∈,都有12|()()|g x g x t -≤, 则当[]1,2x ∈时,max min ()()g x g x t -≤,因为当[]1,2x ∈时,()g x 单调递增,所以()max 22()g x g ==,()0min 1()21g x g ===,所以max min 2)1(1()g x g x =--=, 所以1t ≥,即t 的取值范围为[)1,+∞18.(2022·广东·深圳外国语学校高一期中)已知函数()f x 对任意的实数,m n 都有()()()1f m n f m f n +=+-,且当0x >时,有()1f x >.(1)求证:()f x 在R 上为增函数;(2)若()()923292x x xf f k -⋅+⋅->对任意[)0,x ∈+∞恒成立,求实数k 的取值范围.【解析】(1)设12x x <,令2m n x +=,1n x =,()()()22111f x f x x f x ∴=-+-, 则()()()21211f x f x f x x -=--;210x x ->,()211f x x ∴->,()()210f x f x ∴->,()f x ∴在R 上为增函数.(2)由题意得:()()()92329392312x x x x x f f k f k -⋅+⋅-=⋅-⋅-+>,()39231x x f k ∴⋅-⋅->,令0m n ==,则()()0201f f =-,解得:()01f =,()f x 为R 上的增函数,39230x x k ∴⋅-⋅->,3923x x k ∴<⋅-⋅,令31x t =≥,设()()2321g t t t t =-≥,()()min 11g t g ∴==,1k ∴<,即实数k 的取值范围为(),1-∞.19.(2022·福建省福州高级中学高一期末)已知函数()421x x f x k =+⋅+,()421x x g x =++. (1)若对于任意的R x ∈,()0f x >恒成立,求实数k 的取值范围; (2)若()()()f x h xg x =,且()h x 的最小值为2-,求实数k 的值. 【解析】(1)由()0f x >,得4210x xk +⋅+>恒成立,所以22x x k ->--对于任意的R x ∈,恒成立,因为()22222222x x x x x x -----=-+≤-⋅-,当且仅当22x x -=,即=0x 时取等号, 所以2k >-,即实数k 的取值范围为(2,)-+∞(2)()421221()111()421421212x x x x x x x x x x f x k k k h x g x +⋅+⋅--===+=+++++++,令1121221322x xx xt =++≥⋅=,当且仅当122x x =,即=0x 时取等号,则11(3)k y t t-=+≥, 当1k 时,11(3)k y t t -=+≥为减函数,则21,3k y +⎛⎤∈ ⎥⎝⎦无最小值,舍去, 当=1k 时,=1y 最小值不是2-,舍去, 当1k <时,11(3)k y t t -=+≥为增函数,则2,13k y +⎡⎫∈⎪⎢⎣⎭,最小值为223k +=-,解得=8k -,综上,=8k -20.(2022·全国·高一课时练习)已知函数()xf x ba =(其中a ,b 为常数,且0a >,1a ≠)的图象经过点()1,1M ,()3,9N .(1)求a b +的值;(2)当3x ≤-时,函数11xy a b ⎛⎫=+ ⎪⎝⎭的图象恒在函数2y x t =+图象的上方,求实数t 的取值范围.【解析】(1)∵函数()xf x ba =(其中a ,b 为常数,且0a >,1a ≠)的图象经过点()1,1M ,()3,9N ,∴319ba ba =⎧⎨=⎩∴29a =,∴3a =-(舍)或3a =,13b =,∴103a b +=; (2)由(1)得当3x ≤-时,函数133xy ⎛⎫=+ ⎪⎝⎭的图象恒在函数2y x t =+图象的上方, 即当3x ≤-时,不等式13203xx t ⎛⎫+--> ⎪⎝⎭恒成立,亦即当3x ≤-时,min 1323x t x ⎡⎤⎛⎫<+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.设()()13233xg x x x ⎛⎫=+-≤- ⎪⎝⎭,∵13xy ⎛⎫= ⎪⎝⎭在(],3-∞-上单调递减,2y x =-在(],3-∞-上单调递减,∴()1323xg x x ⎛⎫=+- ⎪⎝⎭在(],3-∞-上单调递减,∴()()min 336g x g =-=, ∴36t <.。

指数与指数函数知识点

指数与指数函数知识点

指数与指数函数知识点一、指数运算的基本性质1.任何数的0次方等于12.非零数的负指数等于该数的倒数。

3.相同底数的指数之间的乘方运算,底数保持不变,指数相加。

4.相同指数的指数之间的乘方运算,指数保持不变,底数相乘。

二、指数运算的规律1.法则1:a的m次方乘以a的n次方,等于a的m加n次方。

2.法则2:a的m次方除以a的n次方,等于a的m减n次方。

3.法则3:(a的m次方)的n次方,等于a的m乘n次方。

4.法则4:a的m次方的p次方,等于a的m乘p次方。

5.法则5:零的任何正次方都是0,零的0次方没有意义,规定为1三、指数函数的定义与性质指数函数的定义为:y=a^x,其中a>0且a≠1,a为底数,x为指数。

指数函数可以看作是以底数为底,自变量为指数的函数。

指数函数的性质如下:1.底数a大于1时,指数函数是递增的,即自变量x的增大,函数值y也增大。

2.底数a介于0和1之间时,指数函数是递减的,即自变量x的增大,函数值y也减小。

3.指数函数的图象都经过点(0,1),即当x=0时,y=14.指数函数的图象在直线x=0和y=0上均没有交点。

5.指数函数的图象没有水平渐近线,但有一条过点(0,0)的铅直渐近线。

指数函数常见的应用有:1.在金融领域中,指数函数可以用来描述货币的增长规律,例如复利计算。

2.在自然科学领域中,指数函数可以用来描述人口增长、病原体传播等现象。

3.在电路中,指数函数可以用来描述电容、电感等元件的充放电过程。

4.在计算机领域中,指数函数可以用来描述算法的时间复杂度、空间复杂度等特性。

总结:。

指数函数知识点总结

指数函数知识点总结

指数函数知识点总结指数函数是数学中的重要概念之一,广泛应用于自然科学、工程技术和经济学等领域。

它具有独特的特点和重要的应用价值。

本文将总结指数函数的相关知识点。

一、指数函数的定义和性质指数函数可由以下形式表示:f(x) = a^x,其中a为常数,称为底数,x为指数。

指数函数的主要性质包括:1. 零指数:a^0 = 1,其中a≠0。

2. 负指数:a^(-x) = 1/a^x,其中a≠0。

3. 幂指数:(a^x)^y = a^(xy),其中a≠0。

4. 乘法法则:a^x * a^y = a^(x+y),其中a≠0。

5. 除法法则:a^x / a^y = a^(x-y),其中a≠0。

6. 幂次法则:(a^x)^y = a^(xy),其中a>0,且a≠1。

二、指数函数与对数函数的关系指数函数和对数函数是互为反函数的关系。

1. 对数函数的定义:y = loga(x) 的意义是 a^y = x,其中a为常数且a>0,且a≠1。

2. 对数函数与指数函数的关系:对于任意的x>0,a^loga(x) = x;而对于任意的x>0,loga(a^x) = x。

指数函数和对数函数的关系在解决指数方程和对数方程的过程中具有重要的应用价值。

三、指数增长和衰减指数函数在实际问题中常用来描述增长和衰减的过程。

指数函数可以被用来描述人口增长、投资增长、放射性崩解等现象。

1. 指数增长:当底数a>1时,指数函数呈现出指数增长的趋势。

例如,银行存款按年利率计算的复利增长,就可以用指数函数来描述。

2. 指数衰减:当底数0<a<1时,指数函数呈现出指数衰减的趋势。

例如,放射性物质的衰减过程,可以用指数函数来描述。

指数增长和衰减的特点是在一定时间内变化幅度较大,因此在实际问题中需要注意其应用的范围和限制条件。

四、指数函数的图像和性质指数函数的图像特点有助于我们更好地理解和应用指数函数。

1. 当底数0<a<1时,指数函数的图像呈现出递减的特点。

指数函数的性质与像分析

指数函数的性质与像分析

指数函数的性质与像分析指数函数是数学中的一种重要函数形式,在许多领域中都有广泛的应用。

本文将从性质和像分析两个方面来探讨指数函数。

一、指数函数的性质指数函数的一般形式为f(x) = a^x,其中常数a大于0且不等于1。

指数函数具有以下性质:1. 基数大于1时,函数增长较快当基数a大于1时,指数函数的值随着自变量x的增加而迅速增长。

这是因为指数函数的图像是递增的,且斜率随着自变量的增大而增大。

2. 基数介于0和1之间时,函数递减当基数a介于0和1之间时,指数函数的值随着自变量x的增加而递减。

基数越接近0,函数的值减小的速度越快。

3. 函数图像过点(0,1)无论基数a的大小如何,指数函数图像都会通过点(0,1)。

这是因为当自变量x为0时,指数函数的值始终为1。

4. 自变量趋近于负无穷时,函数趋近于0当自变量x趋近于负无穷时,指数函数的值趋近于0。

这是由指数函数的定义确定的。

二、指数函数的像分析像分析是指数函数中重要的概念之一,指的是函数的取值范围。

对于指数函数f(x) = a^x,像分析可以有以下讨论:1. 基数a大于1时,函数的值范围为(0, +∞)当基数a大于1时,指数函数的值范围为开区间(0, +∞),即取正实数。

这是由于指数函数是严格递增的,且随着自变量x的增加,函数的值也随之增加。

2. 基数介于0和1之间时,函数的值范围为(0, 1)当基数a介于0和1之间时,指数函数的值范围为开区间(0, 1),即取0到1之间的正实数。

基数越接近0,函数的值范围越接近0。

3. 函数的像不包含负数由于指数函数的定义,基数大于0且不等于1,因此函数的像不包含负数。

即指数函数的值范围始终为正实数。

综上所述,指数函数具有特定的性质和像分析规律。

它在数学、经济学、物理学等领域的应用广泛,特别是在模型建立、复利计算、指数增长等问题中起到重要作用。

深入理解和掌握指数函数的性质与像分析对于数学学习和实际问题的解决都具有重要意义。

指数与对数函数的性质

指数与对数函数的性质

指数与对数函数的性质指数与对数函数是高中数学中重要的两类函数,它们在数学和科学领域中具有广泛的应用。

本文将探讨指数和对数函数的性质,帮助读者更好地理解和应用这两种函数。

一、指数函数的性质指数函数可以用以下的形式表示:y = a^x,其中a为底数,x为指数,y为函数值。

下面是指数函数的性质:1. 基本性质:当底数a>0且a≠1时,指数函数y = a^x的定义域为实数集R,值域为正实数集R^+。

2. 单调性:当底数a>1时,指数函数y = a^x是增函数,即随着x的增大,函数值也增大;当0<a<1时,指数函数是减函数。

3. 对称性:指数函数y = a^x关于直线x=0对称,即f(-x) = 1/f(x)。

4. 上下界:若0<a<1,则指数函数的值域为(0, +∞),即该函数没有最小值;若a>1,则指数函数的值域为(0, +∞),即该函数没有最大值。

5. 零点:指数函数y = a^x的零点只有x = 0,即f(0) = 1。

二、对数函数的性质对数函数可以用以下的形式表示:y = loga(x),其中a为底数,x为对数的真数,y为函数值。

下面是对数函数的性质:1. 基本性质:对数函数y = loga(x)的定义域为正实数集R^+,值域为实数集R。

2. 单调性:当底数a>1时,对数函数y = loga(x)是增函数;当0<a<1时,对数函数是减函数。

3. 对数运算:loga(MN) = loga(M) + loga(N),loga(M/N) = loga(M) - loga(N),loga(M^p) = ploga(M)。

这些性质可以简化对数运算。

4. 换底公式:loga(M) = logb(M) / logb(a),通过换底公式可以转化不同底数的对数。

5. 特殊值:loga(1) = 0,loga(a) = 1。

三、指数与对数函数的关系指数函数和对数函数是互为反函数的关系,即对于指数函数y = a^x和对数函数y = loga(x),有以下关系:1. a^loga(x) = x,loga(a^x) = x,这两个等式表明指数函数和对数函数互为反函数。

原题目:指数函数的变化规律

原题目:指数函数的变化规律

原题目:指数函数的变化规律指数函数是高中数学中一个重要的概念。

本文将探讨指数函数的变化规律及其特征。

1. 指数函数的定义和形式指数函数可以用以下的一般形式来表示:f(x) = a^x其中,a 是正实数且不等于1,x 是实数。

2. 指数函数的变化规律指数函数的变化规律如下:2.1. a > 1 时当 a 大于 1 时,指数函数呈现递增的趋势。

随着 x 的增大,函数值 f(x) 也越来越大。

2.2. 0 < a < 1 时当 a 大于 0 且小于 1 时,指数函数呈现递减的趋势。

随着 x 的增大,函数值 f(x) 逐渐减小,但不会取到0。

2.3. a = 1 时当 a 等于 1 时,指数函数为常函数,即 f(x) = 1。

3. 指数函数的特征指数函数具有以下几个特征:3.1. 零点指数函数不存在零点,因为指数函数的函数值不会取到0。

3.2. 渐近线对于 a > 1 的指数函数,它的图像会逐渐趋近于x 轴的正半轴。

对于 0 < a < 1 的指数函数,它的图像会逐渐趋近于 x 轴的负半轴。

3.3. x 轴截距对于 a > 1 的指数函数,它的图像在 x 轴上的截距为0。

对于 0 < a < 1 的指数函数,它的图像在 x 轴上无截距。

3.4. 定义域和值域指数函数的定义域为所有实数,值域为正实数。

4. 应用指数函数经常应用于各行各业,例如在金融领域中用于计算复利和投资增长,以及在自然科学中用于描述指数增长的现象。

总结指数函数是一种基于指数运算的数学函数,具有明确的变化规律和特征。

了解指数函数的特点有助于我们理解和应用它们在实际问题中的作用。

> 注意:本文中的内容是基于一般性质进行阐述,实际应用中可能会有一些具体情况和变化规律的差异。

---注:此文档为参考文档,所述内容均为一般性质,具体情况可能会有所差异。

指数函数性质总结

指数函数性质总结

指数函数性质总结指数函数是数学中一种重要的函数类型,它的表达形式是$y=a^x$,其中$a$为底数,$x$为指数。

指数函数具有以下几个重要的性质,下面将对这些性质进行详细总结。

性质一:幂乘法则指数函数的幂乘法则是指,当底数相同时,指数相加的结果等于对应幂相乘的结果。

即对于任意实数$a$和指数$x_1$、$x_2$,有$a^{x_1} \cdot a^{x_2} = a^{x_1 + x_2}$。

这个性质可以通过指数函数的定义和乘法法则推导得出。

性质二:指数为0和1的特殊情况当指数等于0时,指数函数的结果总是等于1。

即$a^0 = 1$,其中$a$为任意非零实数。

这是因为任何非零实数的0次方都是1。

当指数等于1时,指数函数的结果总是等于底数本身。

即$a^1 = a$,其中$a$为任意实数。

这是因为任何实数的1次方都等于它本身。

性质三:指数为负数的情况当指数为负数时,指数函数的结果等于底数的倒数的绝对值。

即当$x<0$时,$a^x=\frac{1}{|a^x|}$。

这是因为指数函数的值随着指数的增减而变化,当指数为负数时,结果是正数的倒数。

性质四:指数为分数的情况当指数为分数时,指数函数的结果等于底数的对应幂的开方。

即当$x=\frac{m}{n}$时,$a^x = \sqrt[n]{a^m}$,其中$a$为任意正实数,$m$和$n$为正整数。

这是因为指数为分数等于一个数的多次方根。

性质五:指数函数的图像特点指数函数的图像是一种特殊的曲线,其特点如下:1. 当底数$a>1$时,指数函数随着$x$的增大而迅速增大,曲线趋近于正无穷大。

当$a<1$时,指数函数随着$x$的增大而逐渐趋近于0,曲线接近于$x$轴。

这种特点称为“爆炸增长”和“衰减到零”。

2. 指数函数在$x=0$处取得函数值为1的极值点,称为“基准点”。

当底数$a>1$时,函数在基准点的右侧逐渐增大;当$a<1$时,函数在基准点的右侧逐渐减小。

指数函数的图像和性质

指数函数的图像和性质

指数函数的图像和性质指数函数是数学中常见的一种函数类型,它的图像和性质在数学学习中具有重要的意义。

本文将从图像和性质两个方面,对指数函数进行详细的分析和说明。

一、指数函数的图像指数函数的一般形式为y=a^x,其中a为底数,x为指数。

在探究指数函数的图像时,我们可以固定底数a的值,观察指数x的变化对应的函数值y的变化。

1. 当底数a>1时,指数函数呈现增长趋势。

例如,当a=2时,指数函数y=2^x的图像是逐渐上升的曲线。

随着指数x的增大,函数值y呈现出迅速增长的特点。

这说明指数函数在底数大于1的情况下,随着指数的增加,函数值呈现指数级增长。

2. 当底数0<a<1时,指数函数呈现衰减趋势。

例如,当a=0.5时,指数函数y=0.5^x的图像是逐渐下降的曲线。

随着指数x的增大,函数值y呈现出逐渐趋近于0的特点。

这说明指数函数在底数小于1的情况下,随着指数的增加,函数值呈现指数级衰减。

3. 当底数a=1时,指数函数呈现恒定趋势。

无论指数x取任何值,函数值y始终等于1。

这说明指数函数在底数为1时,函数值不随指数的变化而变化。

通过观察指数函数的图像,我们可以发现指数函数具有明显的特点:底数大于1时,函数呈现增长趋势;底数小于1时,函数呈现衰减趋势;底数为1时,函数呈现恒定趋势。

二、指数函数的性质除了图像特点外,指数函数还具有一些重要的性质,这些性质在数学学习中有着广泛的应用。

1. 指数函数的定义域为实数集R,值域为正实数集R+。

这意味着指数函数在实数范围内都有定义,并且函数值始终为正数。

2. 指数函数的性质与底数a的大小有关。

当底数a>1时,函数呈现增长趋势;当底数0<a<1时,函数呈现衰减趋势;当底数a=1时,函数值始终为1。

3. 指数函数具有幂运算的性质。

即指数函数的乘法可以转化为指数的加法,指数函数的除法可以转化为指数的减法。

例如,对于指数函数y=a^x和y=b^x,它们的乘积可以表示为y=(ab)^x,它们的商可以表示为y=(a/b)^x。

指数函数的性质及运算法则

指数函数的性质及运算法则

指数函数的性质及运算法则指数函数是数学中非常重要的一类函数,广泛应用于科学、工程、经济等领域。

它具有一些独特的性质和运算法则,本文将对指数函数的性质及运算法则进行探讨与总结。

一、指数函数的定义与性质指数函数的数学定义为:$$f(x) = a^x$$其中,$a$ 是一个正实数且不等于1,$x$ 是自变量,$f(x)$ 是函数值。

指数函数的性质如下:1. 当 $a>1$ 时,指数函数是递增函数;当 $0<a<1$时,指数函数是递减函数。

2. 特殊地,当 $a>0$ 且不等于1时,指数函数的图像经过点 $(0,1)$。

3. 当 $x$ 为整数时,指数函数可以简化为乘方形式:$a^x =\underbrace{a \cdot a \cdot \ldots \cdot a}_{x\text{次}}$。

4. 指数函数的定义域为全体实数,值域为正实数。

二、指数函数的运算法则1. 同底数幂的乘除法则- 乘法法则:$a^x \cdot a^y = a^{x+y}$- 除法法则:$\frac{a^x}{a^y} = a^{x-y}$例如:$2^3 \cdot 2^4 = 2^{3+4} = 2^7$,$\frac{3^4}{3^2} = 3^{4-2} = 3^2$。

2. 幂的乘方法则- 幂的乘方法则:$(a^x)^y = a^{xy}$例如:$(2^3)^2 = 2^{3\cdot2} = 2^6$。

3. 乘方的乘方法则- 乘方的乘方法则:$(a \cdot b)^x = a^x \cdot b^x$例如:$(2 \cdot 3)^4 = 2^4 \cdot 3^4$。

4. 负指数的性质- $a^{-x} = \frac{1}{a^x}$例如:$2^{-3} = \frac{1}{2^3} = \frac{1}{8}$。

5. 零指数的性质- $a^0 = 1$(其中,$a \neq 0$)例如:$2^0 = 1$。

指数函数知识点总结

指数函数知识点总结

指数函数知识点总结1. 什么是指数函数?指数函数是数学中常见的一类函数,它以底数为基准,将指数作为自变量,得到相应的函数值。

指数函数可以用数学表达式y = a^x来表示,其中a表示底数,x表示指数,y表示函数值。

2. 指数函数的特点指数函数具有以下几个特点:•当底数a大于 1 时,函数呈递增的趋势;当底数a介于 0 和 1 之间时,函数呈递减的趋势。

•指数函数图像总是过点(0, 1),因为a^0 = 1。

•指数函数的图像在x轴的正半轴上是渐进于 0 的,即函数值无限趋近于 0。

•当指数x为负数时,指数函数的值可以通过倒数得到,即a^(-x) =1 / a^x。

3. 指数函数的基本性质指数函数具有以下几个基本性质:•指数函数在自变量为 0 时取值为 1,即a^0 = 1。

•当指数x为正整数时,指数函数表示连乘,即a^x = a * a * ... * a(共x个a相乘)。

•当指数x为负整数时,指数函数表示连除,即a^(-x) = 1 / (a * a * ... * a)(共x个a相除)。

•指数函数具有指数与对数的互逆性质,即loga(a^x) = x和a^(loga(x)) = x。

•当指数函数的底数a大于 1 时,函数图像与x轴交于点(0, 0);当底数a介于 0 和 1 之间时,函数图像与y轴交于点(0, 0)。

4. 指数函数的图像变化规律指数函数的图像变化规律取决于底数a的大小,具体如下:•当a > 1时,指数函数图像从左下方逐渐增加到右上方。

•当0 < a < 1时,指数函数图像从左上方逐渐减小到右下方。

•当a = 1时,指数函数恒为y = 1,即一条水平直线。

5. 指数函数的应用指数函数在实际生活和科学研究中有广泛的应用,以下列举几个常见的应用场景:•金融领域:指数函数在复利计算中起到重要的作用,可以用来计算投资收益、贷款利息等。

•物理学:指数函数可以描述某些物理量的增长或衰减规律,如放射性物质的衰变、电路中的电荷充放电过程等。

指数函数及其性质

指数函数及其性质

指数函数及其性质
指数函数是数学中的一种常见函数形式,可以表示为f(x) = a^x,其中a是一个正实数且不为1,x是任意实数。

指数函数的性质如下:
1. 定义域:指数函数的定义域是全部实数集。

2. 值域:当a>1时,指数函数的值域是(0, +∞),即正数集;当0<a<1时,指数函数的值域是(0, 1),即(0,1)开区间。

3. 增减性:当a>1时,指数函数是递增的;当0<a<1时,指数函数是递减的。

4. 对称轴:指数函数没有对称轴。

5. 对称性:指数函数不具有对称性。

6. 极限性质:当x趋于正无穷大时,指数函数的极限是正无穷大;当x趋于负无穷大时,指数函数的极限是0。

7. 交叉性:当a>1时,指数函数与x轴交于点(0,1);当0<a<1时,指数函数与y轴交于点(0,1)。

8. 垂直渐近线:指数函数没有垂直渐近线。

9. 水平渐近线:指数函数没有水平渐近线。

10. 切线性质:指数函数在任意一点的切线都与该点对应的指数函数图像相切。

总结起来,指数函数具有增减性、无对称性、极限性质和交叉性等基本性质。

指数函数在实际问题中经常用于描述增长或衰减的规律,具有重要的应用价值。

知识讲解_指数函数及其性质_基础

知识讲解_指数函数及其性质_基础

指数函数及其性质要点一、指数函数的概念:函数y=a x (a>0且a ≠1)叫做指数函数,其中x 是自变量,a 为常数,函数定义域为R. 要点诠释:(1)形式上的严格性:只有形如y=a x (a>0且a ≠1)的函数才是指数函数.像23xy =⋅,12xy =,31xy =+等函数都不是指数函数.(2)为什么规定底数a 大于零且不等于1:①如果0a =,则000x x ⎧>⎪⎨≤⎪⎩xx时,a 恒等于,时,a 无意义.②如果0a <,则对于一些函数,比如(4)xy =-,当11,,24x x ==⋅⋅⋅时,在实数范围内函数值不存在.③如果1a =,则11xy ==是个常量,就没研究的必要了. 要点二、指数函数的图象及性质:y=a x0<a<1时图象a>1时图象图象性质 ①定义域R ,值域 (0,+∞)②a 0=1, 即x=0时,y=1,图象都经过(0,1)点 ③a x =a ,即x=1时,y 等于底数a④在定义域上是单调减函数 ④在定义域上是单调增函数 ⑤x<0时,a x >1 x>0时,0<a x <1⑤x<0时,0<a x <1 x>0时,a x >1⑥ 既不是奇函数,也不是偶函数(1)当底数大小不定时,必须分“1a >”和“01a <<”两种情形讨论。

(2)当01a <<时,,0x y →+∞→;当1a >时,0x y →-∞→。

当1a >时,a 的值越大,图象越靠近y 轴,递增速度越快。

当01a <<时,a 的值越小,图象越靠近y 轴,递减的速度越快。

(3)指数函数xy a =与1xy a ⎛⎫= ⎪⎝⎭的图象关于y 轴对称。

要点三、指数函数底数变化与图像分布规律 (1)① xy a = ②xy b = ③x y c = ④x y d =则:0<b <a <1<d <c又即:x ∈(0,+∞)时,x x x x b a d c <<< (底大幂大) x ∈(-∞,0)时,x x x x b a d c >>> (2)特殊函数112,3,(),()23x x x x y y y y ====的图像:要点四、指数式大小比较方法(1)单调性法:化为同底数指数式,利用指数函数的单调性进行比较. (2)中间量法 (3)分类讨论法 (4)比较法比较法有作差比较与作商比较两种,其原理分别为:①若0A B A B ->⇔>;0A B A B -<⇔<;0A B A B -=⇔=; ②当两个式子均为正值的情况下,可用作商法,判断1A B >,或1AB<即可. 【典型例题】类型一、指数函数的概念例1.函数2(33)xy a a a =-+是指数函数,求a 的值. 【答案】2【解析】由2(33)xy a a a =-+是指数函数,可得2331,0,1,a a a a ⎧-+=⎨>≠⎩且解得12,01,a a a a ==⎧⎨>≠⎩或且,所以2a =.【总结升华】判断一个函数是否为指数函数:(1)切入点:利用指数函数的定义来判断;(2)关键点:一个函数是指数函数要求系数为1,底数是大于0且不等于1的常数,指数必须是自变量x .举一反三:【变式1】指出下列函数哪些是指数函数(1)4xy =;(2)4y x =;(3)4xy =-;(4)(4)xy =-;(5)1(21)(1)2xy a a a =->≠且;(6)4x y -=.【答案】(1)(5)(6)【解析】(1)(5)(6)为指数函数.其中(6)4x y -==14x⎛⎫ ⎪⎝⎭,符合指数函数的定义,而(2)中底数x 不是常数,而4不是变数;(3)是-1与指数函数4x 的乘积;(4)中底数40-<,所以不是指数函数.类型二、函数的定义域、值域 例2.求下列函数的定义域、值域.(1)313xxy =+;(2)y=4x -2x +1;(4)y =为大于1的常数)【答案】(1)R ,(0,1);(2)R [+∞,43);(3)1,2⎡⎫-+∞⎪⎢⎣⎭[)0,+∞;(4)(-∞,-1)∪[1,+∞) [1,a)∪(a ,+∞)【解析】(1)函数的定义域为R (∵对一切x ∈R ,3x ≠-1).∵ (13)1111313x x xy +-==-++,又∵ 3x >0, 1+3x >1, ∴ 10113x <<+, ∴ 11013x-<-<+,∴ 101113x<-<+, ∴值域为(0,1). (2)定义域为R ,43)212(12)2(22+-=+-=x x x y ,∵ 2x >0, ∴ 212=x即 x=-1时,y 取最小值43,同时y 可以取一切大于43的实数,∴ 值域为[+∞,43). (3)要使函数有意义可得到不等式211309x --≥,即21233x --≥,又函数3x y =是增函数,所以212x -≥-,即12x ≥-,即1,2⎡⎫-+∞⎪⎢⎣⎭,值域是[)0,+∞.(4)∵011112≥+-=-+x x x x ∴ 定义域为(-∞,-1)∪[1,+∞), 又∵111011≠+-≥+-x x x x 且,∴ a ay a y x x x x≠=≥=-+-+1121121且, ∴值域为[1,a)∪(a ,+∞).【总结升华】求值域时有时要用到函数单调性;第(3)小题中值域切记不要漏掉y>0的条件,第(4)小题中112111≠+-=+-x x x 不能遗漏. 举一反三:【变式1】求下列函数的定义域: (1)2-12x y =(2)y =(3)y =(4)0,1)y a a =>≠【答案】(1)R ;(2)(]-3∞,;(3)[)0,+∞;(4)a>1时,(]-0∞,;0<a<1时,[)0+∞,【解析】(1)R(2)要使原式有意义,需满足3-x ≥0,即3x ≤,即(]-3∞,.(3) 为使得原函数有意义,需满足2x -1≥0,即2x ≥1,故x ≥0,即[)0,+∞(4) 为使得原函数有意义,需满足10xa -≥,即1xa ≤,所以a>1时,(]-0∞,;0<a<1时,[)0+∞,.【总结升华】本题中解不等式的依据主要是指数函数的单调性,根据所给的同底指数幂的大小关系,结合单调性来判断指数的大小关系.类型三、指数函数的单调性及其应用例3.讨论函数221()3x xf x -⎛⎫= ⎪⎝⎭的单调性,并求其值域.【思路点拨】对于x ∈R ,22103x x-⎛⎫> ⎪⎝⎭恒成立,因此可以通过作商讨论函数()f x 的单调区间.此函数是由指数函数及二次函数复合而成的函数,因此可以逐层讨论它的单调性,综合得到结果.【答案】函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数 (0,3] 【解析】解法一:∵函数()f x 的定义域为(-∞,+∞),设x 1、x 2∈(-∞,+∞)且有x 1<x 2,∴222221()3x x f x -⎛⎫= ⎪⎝⎭,211211()3x x f x -⎛⎫= ⎪⎝⎭,222222121212121122()()(2)2211()113()3313x x x x x x x x x x x x f x f x -----+--⎛⎫ ⎪⎛⎫⎛⎫⎝⎭=== ⎪ ⎪⎝⎭⎝⎭⎛⎫ ⎪⎝⎭. (1)当x 1<x 2<1时,x 1+x 2<2,即有x 1+x 2-2<0.又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)<0,则知2121()(2)113x x x x -+-⎛⎫> ⎪⎝⎭.又对于x ∈R ,()0f x >恒成立,∴21()()f x f x >. ∴函数()f x 在(-∞,1)上单调递增.(2)当1≤x 1<x 2时,x 1+x 2>2,即有x 1+x 2-2>0. 又∵x 2-x 1>0,∴(x 2―x 1)(x 2+x 1―2)>0,则知2121()(2)1013x x x x -+-⎛⎫<< ⎪⎝⎭.∴21()()f x f x <.∴函数()f x 在[1,+∞)上单调递减.综上,函数()f x 在区间(-∞,1)上是增函数,在区间[1,+∞)上是减函数.∵x 2―2x=(x ―1)2―1≥-1,1013<<,221110333x x--⎛⎫⎛⎫<≤= ⎪⎪⎝⎭⎝⎭. ∴函数()f x 的值域为(0,3].解法二:∵函数()f x 的下义域为R ,令u=x 2-2x ,则1()3uf u ⎛⎫= ⎪⎝⎭.∵u=x 2―2x=(x ―1)2―1,在(―∞,1]上是减函数,1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内是减函数,∴函数()f x 在(-∞,1]内为增函数.又1()3uf u ⎛⎫= ⎪⎝⎭在其定义域内为减函数,而u=x 2―2x=(x ―1)2―1在[1,+∞)上是增函数,∴函数()f x 在[1,+∞)上是减函数.值域的求法同解法一.【总结升华】由本例可知,研究()f x y a =型的复合函数的单调性用复合法,比用定义法要简便些,一般地有:即当a >1时,()f x y a=的单调性与()y f x =的单调性相同;当0<a <1时,()f x y a=的单调与()y f x =的单调性相反.举一反三:【变式1】求函数2323xx y -+-=的单调区间及值域.【答案】3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减. 14(0,3]【解析】[1]复合函数——分解为:u=-x 2+3x-2, y=3u ;[2]利用复合函数单调性判断方法求单调区间; [3]求值域. 设u=-x 2+3x-2, y=3u ,其中y=3u 为R 上的单调增函数,u=-x 2+3x-2在3(,]2x ∈-∞上单增, u=-x 2+3x-2在3[,)2x ∈+∞上单减, 则2323xx y -+-=在3(,]2x ∈-∞上单增,在3[,)2x ∈+∞上单减.又u=-x 2+3x-22311()244x =--+≤, 2323x x y -+-=的值域为14(0,3].【变式2】求函数2-2()(01)xxf x a a a =>≠其中,且的单调区间.【解析】当a>1时,外层函数y=a u 在()-∞+∞,上为增函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()(-1)x xf x a =∞在区间,上为减函数,在区间[)1+∞,上为增函数; 当0<a<1时,外层函数y=a u 在()-∞+∞,上为减函数,内函数u=x 2-2x 在区间(1)-∞,上为减函数,在区间[)1+∞,上为增函数,故函数2-2()xxf x a =在区间(1)-∞,上为增函数,在区间[)1,+∞上为减函数.例4.证明函数1()(1)1x xa f x a a -=>+在定义域上为增函数. 【思路点拨】利用函数的单调性定义去证明。

指数函数的图象与性质指数函数知识梳理指数函数运算法则公式

指数函数的图象与性质指数函数知识梳理指数函数运算法则公式

指数函数的图象与性质•指数函数y=a x(a>0,且a≠1)的图象和性质:0<a<1 a>1 图像图像定义域R值域(0,+∞)恒过定点图像恒过定点(0,1),即当x等于0时,y=1单调性在(∞,+∞)上是减函数在(∞,+∞)上是增函数函数值的变化规律当x<0时,y>1 当x<0时,0<y<1当x=0时,y=1 当x=0时,y=1当x>0时,0<y<1 当x>0时,y>1•底数对指数函数的影响:①在同一坐标系内分别作函数的图象,易看出:当a>l时,底数越大,函数图象在第一象限越靠近y轴;同样地,当0<a<l时,底数越小,函数图象在第一象限越靠近x轴.②底数对函数值的影响如图.③当a>0,且a≠l时,函数与函数y=的图象关于y轴对称。

利用指数函数的性质比较大小:若底数相同而指数不同,用指数函数的单调性比较:若底数不同而指数相同,用作商法比较;若底数、指数均不同,借助中间量,同时要注意结合图象及特殊值,•指数函数图象的应用:函数的图象是直观地表示函数的一种方法.函数的很多性质,可以从图象上一览无余.数形结合就是几何与代数方法紧密结合的一种数学思想.指数函数的图象通过平移、翻转等变可得出一般函数的图象.利用指数函数的图象,可解决与指数函数有关的比较大小、研究单调性、方程解的个数、求值域或最值等问题.高中数学必修之指数函数知识梳理知识点1.理解有理指数幂的含义,了解实数指数幂的意义,掌握幂的运算.2.了解指数函数模型的实际背景,理解指数函数的概念及其单调性,掌握指数函数图象通过的特殊点,会画底数为2,3,10,1/2,1/3的指数函数的图象.3体会指数函数是一类重要的函数模型.知识梳理1.根式的性质2.有理指数幂考点1:指数幂的运算[规律方法] 1.指数幂的运算,首先将根式、分数指数幂统一为分数指数幂,以便利用法则计算,但应注意:(1)必须同底数幂相乘,指数才能相加;(2)运算的先后顺序.2.当底数是负数时,先确定符号,再把底数化为正数.3.运算结果不能同时含有根号和分数指数,也不能既有分母又含有负指数.考点2:指数函数的图象及应用[规律方法]指数函数图象的画法(判断)及应用(1)画(判断)指数函数y=ax(a>0,a≠1)的图象,应抓住三个关键点:(1,a),(0,1) ,【1,1/a】(2)与指数函数有关的函数的图象的研究,往往利用相应指数函数的图象,通过平移、对称变换得到其图象.(3)一些指数方程、不等式问题的求解,往往利用相应的指数型函数图象数形结合求解.[规律方法] 1.比较指数式的大小的方法是:(1)能化成同底数的先化成同底数幂,再利用单调性比较大小;(2)不能化成同底数的,一般引入“1”等中间量比较大小.2.解简单的指数方程或不等式可先利用幂的运算性质化为同底数幂,再利用单调性转化为一般不等式求解.3.探究指数型函数的性质与研究一般函数的定义域、单调性(区间)、奇偶性、最值(值域)等性质的方法一致.总结思想与方法1.根式与分数指数幂的实质是相同的,分数指数幂与根式可以互化,通常利用分数指数幂进行根式的化简运算.2.判断指数函数图象上底数大小的问题,可以先通过令x=1得到底数的值再进行比较。

指数与对数函数的运算与性质

指数与对数函数的运算与性质

指数与对数函数的运算与性质指数与对数函数是高中数学中的重要概念,它们在数学和实际问题中都有广泛的应用。

本文将介绍指数与对数函数的运算规则和性质,帮助读者更好地理解和应用这两个函数。

一、指数函数的运算与性质指数函数的定义形式为y=a^x,其中a为常数且大于0且不等于1。

指数函数的运算规则包括以下几个方面:1. 指数相加规则当底数相同时,指数可以进行相加。

例如,对于指数函数y=2^x和y=2^y,可以得到y=2^(x+y)。

这个规则在计算指数函数的和或差时非常有用。

2. 指数相乘规则当底数相同时,指数可以进行相乘。

例如,对于指数函数y=2^x和y=2^y,可以得到y=(2^x)^y,进一步化简为y=2^(xy)。

这个规则在计算指数函数的乘积或幂次时非常有用。

3. 指数的负指数规则对于正实数a和整数m,有a^(-m)=1/(a^m)。

这个规则为计算负指数的指数函数提供了方便。

4. 指数为零规则对于任意正实数a,有a^0=1。

这个规则说明任何数的零次幂都等于1。

除了上述运算规则,指数函数还有以下几个性质:1. 指数函数的图像当底数a大于1时,指数函数呈现增长趋势;当底数a介于0和1之间时,指数函数呈现衰减趋势。

指数函数的图像通常是一条平滑的曲线。

2. 指数函数的性质指数函数的性质包括:对于任意正实数a,有a^x>0;当x1时,a^x2>a^x1。

二、对数函数的运算与性质对数函数的定义形式为y=loga(x),其中a为常数且大于0且不等于1。

对数函数的运算规则包括以下几个方面:1. 对数的乘法规则loga(xy)=loga(x)+loga(y)。

这个规则为计算对数函数的乘积提供了方便。

2. 对数的除法规则loga(x/y)=loga(x)-loga(y)。

这个规则为计算对数函数的商提供了方便。

3. 对数的指数规则loga(x^m)=m*loga(x)。

这个规则为计算对数函数的幂次提供了方便。

除了上述运算规则,对数函数还有以下几个性质:1. 对数函数的图像对数函数的图像通常是一条平滑的曲线,且在x轴的正半轴上逐渐增加。

指数函数有什么性质?如何证明指数函数的单调性?

指数函数有什么性质?如何证明指数函数的单调性?

指数函数有什么性质?如何证明指数函数的单调性? 指数函数是数学中重要的函数。

应用到值e上的这个函数写为exp(x)。

还可以等价的写为ex,这里的e是数学常数,就是自然对数的底数,近似等于 2.718281828,还称为欧拉数。

在高中数学中占有一定位置。

那幺指数函数有什幺性质?如何证明指数函数的单调性? 指数函数有什幺性质? 指数函数一般具有以下性质:(1) 指数函数的定义域为所有实数的集合,这里的前提是a大于0且不等于1,对于a不大于0的情况,则必然使得函数的定义域不存在连续的区间,因此我们不予考虑, 同时a等于0函数无意义一般也不考虑。

(2) 指数函数的值域为大于0的实数集合。

(3) 函数图形都是下凹的。

(4) a大于1,则指数函数单调递增;a小于1大于0,则为单调递减的。

(5) 可以看到一个显然的规律,就是当a从0趋向于无穷大的过程中(当然不能等于0),函数的曲线从分别接近于Y轴与X轴的正半轴的单调递减函数的位置,趋向分别接近于Y轴的正半轴与X轴的负半轴的单调递增函数的位置。

其中水平直线y=1是从递减到递增的一个过渡位置。

小编推荐:《2018年高考数学备考计划好的复习计划是成功的开始》(6) 函数总是在某一个方向上无限趋向于X轴,永不相交。

(7) 函数总是通过(0,1)这点,(若Y=Ax+B,则函数定过点(0,1+b) (8) 显然指数函数无界。

(9) 指数函数既不是奇函数也不是偶函数。

(10)当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。

指数函数与对数函数的性质

指数函数与对数函数的性质

指数函数与对数函数的性质指数函数与对数函数是高中数学中重要的数学函数,它们在数学及其应用中具有重要的性质和特点。

本文将就指数函数与对数函数的性质进行探讨和分析。

1. 指数函数的性质:指数函数的定义域为实数集,具体形式为f(x) = a^x,其中a是常数且大于0且不等于1。

指数函数的主要性质如下:1.1. 增长性:当a>1时,随着自变量x的增大,指数函数将呈现出逐渐增大的趋势。

即f(x)在整个定义域上是递增的。

这是因为指数的幂次增大后,函数值会迅速增大。

1.2. 函数值:指数函数f(x)在x=0时取值为1,当x>0时,函数值大于1;当x<0时,函数值大于0且小于于1。

函数曲线在经过点(0,1)后,将呈现出逐渐增长的趋势。

1.3.性质的逆运算:指数函数与对数函数是互为反函数的,即指数函数f(x) = a^x与对数函数g(x) = loga(x)满足f(g(x)) = g(f(x)) = x。

其中,a为底数。

这一特性可以通过图像上的对称性得到证明。

2. 对数函数的性质:对数函数的定义域为正实数集,具体形式为f(x) = loga(x),其中a 是常数且大于0且不等于1。

对数函数的主要性质如下:2.1. 增长性:当0<a<1时,对数函数随着自变量x的增大而递减。

当a>1时,对数函数随着自变量x的增大而递增。

这是因为对数函数是底数为a的指数函数的反函数,其性质与指数函数相反。

2.2. 函数值:对数函数f(x)在x=1时取值为0,当x>1时,函数值大于0;当0<x<1时,函数值小于0。

随着x的增大或减小时,函数值呈现出指数级的变化。

2.3. 对数函数的基本性质:①对数函数f(x) = loga(x)与指数函数f(x) = a^x互为反函数;②特殊对数函数log10(x)可以简写为log(x),即以10为底的对数函数为常用对数函数;③对数函数满足对数运算的基本性质,如loga(1/x) = -loga(x),loga(x*y) = loga(x) + loga(y)等。

指数函数与对数函数的增减性与极限性质

指数函数与对数函数的增减性与极限性质

指数函数与对数函数的增减性与极限性质指数函数与对数函数是数学中常见的两种函数类型,它们在数学以及实际问题中具有重要的应用价值。

本文将重点讨论指数函数与对数函数的增减性与极限性质,并给出相应的证明和解释。

一、指数函数的增减性与极限性质指数函数是以某个正数a(a>0且a≠1)为底的函数 f(x) = a^x。

首先讨论指数函数的增减性。

1. 指数函数的增减性考虑指数函数 f(x) = a^x,其中a>0且a≠1。

根据指数函数的定义,我们知道当x1 < x2时,a^x1 < a^x2,即指数函数在其定义域上是递增的。

2. 指数函数的极限性质对于指数函数f(x) = a^x,其中a>0且a≠1,我们来讨论其极限性质。

当x趋向于负无穷时(记为x→-∞),指数函数 f(x) = a^x 的极限为0(记为lim(x→-∞) a^x = 0);当x趋向于正无穷时(记为x→+∞),指数函数 f(x) = a^x 的极限为正无穷(记为lim(x→+∞) a^x = +∞)。

证明:对于第一种情况,即当x趋向于负无穷时,我们需要证明lim(x→-∞) a^x = 0。

假设对于任意的正数ε(ε>0),存在一个实数M,使得当x < M时,有|a^x| < ε。

根据指数函数的性质,我们可以得到a^x < 1,即1/a^x > 1。

我们可以将指数函数 f(x) = a^x 转化为1/f(x),即1/a^x,求其极限。

由于lim(x→-∞) 1/a^x = +∞,即当x趋向于负无穷时,1/a^x的值会无限增大。

根据极限的定义,对于任意的正数M,当x < M时,有|1/a^x| > N,其中N为一个正数。

此时,我们可以将1/a^x写为|a^x|/a^x,即|a^x|/(a^x)^2。

我们可以取N = 1/(Ma),那么当x < M时,就有|a^x|/(a^x)^2 > N。

指数函数一般式

指数函数一般式

指数函数一般式指数函数是高等数学中的一种重要函数,它具有许多独特的特点和应用。

本文将详细介绍指数函数的一般式及其相关概念。

一、指数函数的一般式指数函数的一般式可表示为y=a^x,其中a为底数,x为指数,y为函数值。

底数a通常是正实数且不等于1。

指数函数的定义域为实数集R,值域为正实数集R+。

指数函数图像呈现出一种特殊的指数增长或指数衰减趋势。

二、指数函数的性质1. 基本性质:指数函数在定义域内严格单调递增或递减,与底数a的大小有关。

2. 对称性:当底数a为负数时,指数函数呈现出关于y轴对称的特点。

3. 与指数幂函数的关系:指数函数是指数幂函数在指数为实数时的特殊情况。

4. 自然指数函数:底数为自然常数e的指数函数被称为自然指数函数,通常表示为y=e^x。

三、指数函数的图像特点1. a>1的情况:指数函数的图像在x轴的右侧由左下向右上增长,表现出指数增长的趋势。

2. 0<a<1的情况:指数函数的图像在x轴的右侧由左上向右下递减,表现出指数衰减的趋势。

3. a<0的情况:指数函数的图像在x轴的右侧由左上向右下递减,但具有对称性,关于y轴对称。

四、指数函数的应用1. 财经领域:指数函数可以用来描述资产或指数的增长与衰减规律,预测市场趋势。

2. 自然科学领域:指数函数常用于描述物质的衰变、细胞的增长、生态系统的变化等。

3. 统计学领域:指数函数可应用于统计分布模型,如指数分布、泊松分布等。

4. 工程领域:指数函数广泛运用于电路、信号处理、计算机科学等领域。

综上所述,指数函数是一种重要的数学函数,具有丰富的性质和广泛的应用领域。

通过深入了解指数函数的一般式及相关知识,我们能够更好地应用和理解指数函数在实际问题中的作用,为各个领域的发展和研究提供有力支持。

指数函数图像随底数变化规律

指数函数图像随底数变化规律

指数函数图像随底数变化规律
指数函数具有独特的函数、定义域和图像,其根据所给底数指数幂指数变化而变化,在数学中被广泛使用。

下面以底数变化规律为例,来介绍指数函数图像随底数变化规律。

一,当底数变化时,指数函数的图像性质会发生变化。

1.当底数x>0时,指数函数图像函数性相同,函数幂的绝对值越大,函数的凹凸程度越大。

2.当底数x=0时,指数函数图像无意义。

3.当底数x<0时,指数函数图像分段函数变形,会出现反曲线,函数幂的绝对值越大,反曲度越大。

二、当底数变化时,指数函数的定义域会发生变化。

1.当底数x>0时,指数函数的定义域是[0,∞);
2.当底数x=0时,指数函数的定义域是{1};
3.当底数x<0时,指数函数的定义域是(-∞, 0]。

三、当底数变化时,指数函数的值也会发生变化。

1.当底数x>0时,指数函数中心点位于(1,1),函数幂增大,函数值以指数级增长;
2.当底数x=0时,指数函数中心点位于(0,1),函数值为1;
3.当底数x<0时,指数函数中心点位于(-1,1),函数幂增大,函数值
以指数级递减。

综上,指数函数图像随底数变化,其函数性、定义域和函数值都会发
生变化,其变化规律可概括如下:当底数增大,函数性和定义域不变,函数值增大;当底数变为0时,函数性无意义,定义域变为{1};当底
数变为负数时,函数性和定义域改变,函数值递减。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

指数函数的性质与变化规律
指数函数是高中数学中的一个重要概念,它在数学、工程学、经济
学等领域有着广泛的应用。

本文将探讨指数函数的性质与变化规律,
帮助读者更好地理解和应用指数函数。

一、定义与基本性质
指数函数可以用如下的数学表达式来表示:f(x) = a^x,其中a为底数,x为指数。

其中,a为正实数并且不等于1。

指数函数的定义域是
实数集,值域则取决于a的取值范围。

指数函数的基本性质如下:
1. 当x为自然数时,指数函数的取值等于底数连乘自己x次的结果。

例如,f(3) = a^3 = a × a × a。

2. 当x为0时,指数函数的取值等于1。

即f(0) = a^0 = 1。

这是因
为任何数的0次方都等于1。

3. 当x为负数时,指数函数的取值等于底数的倒数连乘自己x次的
结果。

例如,f(-2) = a^(-2) = 1/(a × a)。

4. 当x为分数时,指数函数的取值等于底数开根号的分母次方。

例如,f(1/2) = a^(1/2) = √a。

二、增长与衰减
指数函数在自变量x的取值不同时,其对应的函数值也会有所变化。

指数函数可以表现出增长或衰减的特性。

1. 当底数a大于1时,指数函数是增长的。

随着x的增加,函数值
也随之增加。

这是因为底数大于1时,连乘的结果会越来越大。

2. 当底数a大于0且小于1时,指数函数是衰减的。

随着x的增加,函数值会逐渐减小。

这是因为底数大于0且小于1时,连乘的结果会
越来越小。

三、对称性与奇偶性
指数函数还具有对称性和奇偶性的特点。

1. 当底数a为正数且不等于1时,指数函数关于y轴对称。

即f(-x) = a^(-x) = 1/(a^x) = 1/f(x)。

这意味着函数的图像在y轴上是对称的。

2. 当底数a为负数时,指数函数具有奇偶性。

当指数x为偶数时,
函数值为正;当指数x为奇数时,函数值为负。

例如,当a为-2时,
f(2) = (-2)^2 = 4,而f(3) = (-2)^3 = -8。

四、导数与极限
指数函数的导数与极限也是我们需要研究的一些性质。

1. 对于指数函数f(x) = a^x,其导数等于函数值的ln(a)倍。

即f'(x) = ln(a) × a^x。

这个性质在微积分中有着广泛的应用。

2. 当x趋近于无穷大时,指数函数的极限为无穷大。

当x趋近于负
无穷大时,指数函数的极限为0。

这意味着指数函数在正无穷和负无穷处没有水平渐进线。

综上所述,指数函数具有很多重要的性质与变化规律。

通过对这些
性质与规律的了解,可以更好地理解和应用指数函数。

在实际问题的
解决中,我们可以利用指数函数的增长与衰减特性、对称性与奇偶性、导数与极限等等,来进行数学建模与分析,从而得到准确的结果。

相关文档
最新文档