概率论与数理统计练习题(含答案)
概率论与数理统计练习题(含答案)
第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
概率论与数理统计练习册答案
概率论与数理统计练习册答案第一章概率论的基本概念一、选择题4. 答案:(C )注:C 成立的条件:A 与B 互不相容.5. 答案:(C )注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D )注:由C 得出A+B=Ω. 8. 答案:(D )注:选项B 由于11111()1()1()1()1(1())nn n n n i i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C )注:古典概型中事件A 发生的概率为()()()N A P A N =Ω. 10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365r r r rC r P P A ?==,故365()1365rrP P A =-.12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明AB C ?,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ?=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P AB P AB P AB P A B P B P B P B P B P AB P B P B P A P B P AB P B P B P AB P B P B P A P B P AB P B P B P AB P AB P B P B P A P B P B P B P AB P B -?+=+--+--+==-?-+--+=-?-+--+=2(())()()()P B P AB P A P B -?=故A 与B 独立. .16.答案:(B )解:所求的概率为()1()1()()()()()()()11111100444161638P ABC P A B C P A P B P C P AB P BC P AC P ABC =-??=---+++-=---+++-= 注:0()()0()0ABC AB P ABC P AB P ABC ??≤≤=?=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱”1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++. 二、填空题2.;ABC ABC ABC ABC ABC 或AB BC AC3.0.3,0.5 解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7 解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6 解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=. 7.7/12 解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114=,故所求的概率为417!1260=. 11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 12.6/11解:设A={甲射击},B={乙射击},C={目标被击中},则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5,故()()(|)0.50.66 (|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ?====+?+?. 四、 )(,21)|(,31)|(,41)(B A P B A P A B P A P ?===求。
概率论与数理统计练习题(附答案)
练习题1、设随机变量)6.0,10(b ~X ,则22[()][(X)]D XE = ; 2、若随机变量X 的分布未知,但2,EX DX μσ==,则X 落在区间(2,2)μσμσ-+内的概率必不小于_________3、设ˆˆ(,......)12X X X n θθ=是未知参数θ的一个估计量,满足条件_________ 则称ˆθθ是的无偏估计。
4. 设X,Y 为随机变量,且D (X +Y )=7, D(X)=4, D(Y)=1,则相关系数XY ρ= 5. 设随机变量12,,,n X X X 相互独立,且(1,2,,)=i X i n 都服从区间[0,1]上的均匀分布,则当n 充分大时,∑==ni i nn X Y 11近似服从(写出具体分布与参数)6.设(,)X Y 服从区域222:G x y R +≤上的均匀分布,其概率密度为:222(,)0Cx y R f x y ⎧+≤=⎨⎩其它,则C=( );(A) 2R π ; (B)21R π; (C) R π2; (D) R π21。
7.设,......12X X X n 为相互独立的随机变量,且2(,())E X D X i iμσ==(1,2......i n =),11nX X i i n ∑==,则DX =( ) (A)2nσ(B)2n σ (C)nσ(D)22n σ8.设一次试验中事件A 不发生的概率为p,独立重复n 次试验,A 发生了X 次则正确的是:( )(A) ()()21p p X E -= ; (B)()E X np = ;(C)(1)DX np p =- ; (D) 2DX p p =-。
9.设随机变量X 和Y 不相关,则下列结论中正确的是( )A . X 与Y 独立; B. ()D X Y DX DY -=+; C .()D X Y DX DY -=-; D. ()D XY DXDY =. 10. 任何一个连续型随机变量的概率密度)(x ϕ一定满足( )。
概率论与数理统计期末考试试题及参考答案
概率论与数理统计期末考试试题及参考答案一、选择题(每题2分,共20分)1. 设A、B为两个事件,且P(A) = 0.5,P(B) = 0.6,则P(A∪B)等于()A. 0.1B. 0.3C. 0.5D. 0.7参考答案:D2. 设随机变量X的分布函数为F(x),若F(x)是严格单调增加的,则X的数学期望()A. 存在且大于0B. 存在且小于0C. 存在且等于0D. 不存在参考答案:A3. 设X~N(0,1),以下哪个结论是正确的()A. P(X<0) = 0.5B. P(X>0) = 0.5C. P(X=0) = 0.5D. P(X≠0) = 0.5参考答案:A4. 在伯努利试验中,每次试验成功的概率为p,失败的概率为1-p,则连续n次试验成功的概率为()A. p^nB. (1-p)^nC. npD. n(1-p)参考答案:A5. 设随机变量X~B(n,p),则X的二阶矩E(X^2)等于()A. np(1-p)B. npC. np^2D. n^2p^2参考答案:A二、填空题(每题3分,共15分)1. 设随机变量X~N(μ,σ^2),则X的数学期望E(X) = _______。
参考答案:μ2. 若随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),则X+Y的概率密度函数f(x) = _______。
参考答案:f(x) = (1/√(2πσ^2))exp(-x^2/(2σ^2))3. 设随机变量X、Y相互独立,且X~B(n,p),Y~B(m,p),则X+Y~_______。
参考答案:B(n+m,p)4. 设随机变量X、Y的协方差Cov(X,Y) = 0,则X、Y的相关系数ρ = _______。
参考答案:ρ = 05. 设随机变量X~χ^2(n),则X的期望E(X) = _______,方差Var(X) = _______。
参考答案:E(X) = n,Var(X) = 2n三、计算题(每题10分,共40分)1. 设随机变量X、Y相互独立,且X~N(0,1),Y~N(0,1),求X+Y的概率密度函数f(x)。
概率论与数理统计练习题集及答案
概率论与数理统计练习题集及答案一、选择题:1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中至多击中目标一次”的正确表示为 A 321A A A ++ B 323121A A A A A A ++ C 321321321A A A A A A A A A ++ D 321A A A2.掷两颗均匀的骰子,它们出现的点数之和等于8的概率为 A365 B 364 C 363 D 362 3.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则A )(1)(B P A P -= B )()()(B P A P AB P =C 1)(=+B A PD 1)(=AB P4.随机变量X 的概率密度为⎩⎨⎧<≥=-000)(2x x ce x f x ,则=EXA 21B1 C2 D 415.下列各函数中可以作为某随机变量的分布函数的是A +∞<<∞-+=x x x F ,11)(21 B ⎪⎩⎪⎨⎧≤>+=001)(2x x x x x FC +∞<<∞-=-x e x F x ,)(3D +∞<<∞-+=x x x F ,arctan 2143)(4π6.已知随机变量X 的概率密度为)(x f X ,令X Y 2-=,则Y 的概率密度)(y f Y 为A )2(2y f X -B )2(y f X -C )2(21y f X -- D )2(21y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=h A 81 B 83 C 41 D 318.设随机变量]5,1[~U X ,随机变量)4,2(~N Y ,且X 与Y 相互独立,则=-)2(Y XY EA3 B6 C10 D129.设X 与Y 为任意二个随机变量,方差均存在且为正,若EY EX EXY ⋅=,则下列结论不正确的是A X 与Y 相互独立B X 与Y 不相关C 0),cov(=Y XD DY DX Y X D +=+)(答案:1. B2. A 6. D 7. D 8. C 9. A1.某人射击三次,以i A 表示事件“第i 次击中目标”,则事件“三次中恰好击中目标一次”的正确表示为 C A 321A A A ++ B 323121A A A A A A ++C 321321321A A A A A A A A A ++D 321A A A2.将两封信随机地投入4个邮筒中,则未向前两个邮筒中投信的概率为 AA 2242B 2412C C C 24!2AD !4!23.设随机事件A 与B 互不相容,且0)(,0)(>>B P A P ,则 D A )()|(A P B A P = B )()()(B P A P AB P = C )()()|(B P A P B A P = D 0)|(=B A P4.随机变量X 的概率密度为⎩⎨⎧∈=其他),0(2)(a x x x f ,则=EX AA 32B1 C 38 D316 5.随机变量X 的分布函数⎩⎨⎧≤>+-=-0)1()(x x e x A x F x,则=A B A0 B1 C2 D36.已知随机变量X 的概率密度为)(x f X ,令X Y 3-=,则Y 的概率密度)(y f Y 为 DA )3(3y f X -B )3(y f X -C )3(31y f X --D )3(31y f X -7.已知二维随机向量),(Y X 的分布及边缘分布如表hg p fe d x c b a x p y y y X Y Y j Xi 61818121321,且X 与Y 相互独立,则=e B A 81 B 41 C 83 D 318.设随机变量Y X ,相互独立,且)5.0,16(~b X ,Y 服从参数为9的泊松分布,则=+-)12(Y X D CA-14 B13 C40 D419.设),(Y X 为二维随机向量,则X 与Y 不相关的充分必要条件是 D A X 与Y 相互独立 B EY EX Y X E +=+)( C DY DX DXY ⋅= D EY EX EXY ⋅= 一、填空题1.设A ,B 是两个随机事件,5.0)(=A P ,8.0)(=+B A P ,)1(若A 与B 互不相容,则)(B P = ;)2(若A 与B 相互独立,则)(B P = .2.一袋中装有10个球,其中4个黑球,6个白球,先后两次从袋中各取一球不放回.已知第一次取出的是黑球,则第二次取出的仍是黑球的概率为 .3.设离散型随机变量X 的概率分布为}{k a k X P 3==, ,2,1=k ,则常数=a .4.设随机变量X 的分布函数为⎪⎩⎪⎨⎧>≤≤<=2,120,0,0)(2x x ax x x F则常数=a ,}31{<<X P = . 5.设随机变量X 的概率分布为则)33(2+X E = .6.如果随机变量X 服从],[b a 上的均匀分布,且3)(=X E ,34)(=X D ,则a = ,b = .7.设随机变量X ,Y 相互独立,且都服从参数为6.0的10-分布,则}{Y X P == .8.设X ,Y 是两个随机变量,2)(=X E ,20)(2=X E ,3)(=Y E ,34)(2=Y E ,5.0=XY ρ,则)(Y X D - = .答案:1. 3.0,6.02. 313. 414.41,435.5.46. 1,57. 0.52 8. 211.设A ,B 是两个随机事件,3.0)(=A P ,)()(B A P AB P =,则)(B P = .2.甲、乙、丙三人在同一时间分别破译某一个密码,破译成功的概率依次为,,,则密码能译出的概率为 .3.设随机变量X 的概率分布为,5,4,3,2,1,15}{===k kk X P 则}31123{<<X P = . 4.设随机变量X 的分布函数为⎪⎪⎪⎩⎪⎪⎪⎨⎧>≤≤<=2,120,sin 0,0)(ππx x x x x F ,则=<}6{πX P .5.设随机变量X 服从]3,1[上的均匀分布,则X1的数学期望为 .6.设随机变量21,X X 相互独立,其概率分布分别为则}{21X X P == .7.设X ,Y 是两个随机变量,)3,0(~2N X ,)4,1(~2N Y ,X 与Y 相互独立,则~Y X + .8.设随机变量21,X X 相互独立,且都服从0,1上的均匀分布,则=-)3(21X X D .9.设随机变量X 和Y 的相关系数为5.0,=)(X E 0)(=Y E ,=)(2X E 2)(2=Y E ,则2)(Y X E + = . 答案:1. 0.72.3.314. 0.55. 3ln 216. 957. )5,1(2N8. 659. 6二、有三个箱子,第一个箱子中有3个黑球1个白球,第二个箱子中有3个黑球3个白球,第三个箱子中有3个黑球5个白球. 现随机地选取一个箱子,再从这个箱子中任取1个球.1求取到的是白球的概率;2若已知取出的球是白球,求它属于第二个箱子的概率.解:设事件i A 表示该球取自第i 个箱子)3,2,1(=i ,事件B 表示取到白球.2411853163314131)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P114)()|()()()()|(241163312222=⨯===B P A B P A P B P B A P B A P三、某厂现有三部机器在独立地工作,假设每部机器在一天内发生故障的概率都是2.0. 在一天中,若三部机器均无故障,则该厂可获取利润2万元;若只有一部机器发生故障,则该厂仍可获取利润1万元;若有两部或三部机器发生故障,则该厂就要亏损5.0万元. 求该厂一天可获取的平均利润.设随机变量X 表示该厂一天所获的利润万元,则X 可能取5.0,1,2-,且512.08.0}2{3===X P ,384.08.02.0}1{213=⨯⨯==C X P ,104.0384.0512.01}5.0{=--=-=X P .所以356.1104.0)5.0(384.01512.02)(=⨯-+⨯+⨯=X E 万元四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,010,10,4),(y x xy y x f .)1(求}{Y X P <;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解: 1 5.0)1(24),(}{102110=-===<⎰⎰⎰⎰⎰<dx x x xydy dx dxdy y x f Y X P x yx ;2,,010,24),()(,,010,24),()(1010⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y y xydx dx y x f y f x x xydy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 的密度函数为⎩⎨⎧≤≤=其它,010,3)(2x x x f X ,求随机变量12+=X Y 的密度函数.解法一:Y 的分布函数为)21(}21{}12{}{)(-=-≤=≤+=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤≤-≤-=-=-=其它即,0311210,)1(83)21(23)21(21)(22y y y y y f y f X Y解法二:因为12+=x y 是10≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤≤-=≤-=⨯-==其它即,031121)(0,)21(2321)21(3|)(|))(()(22y y y h y y dy y dh y h f y f X Y注:21)(-==y y h x 为12+=x y 的反函数;二、设甲、乙、丙三人生产同种型号的零件,他们生产的零件数之比为5:3:2. 已知甲、乙、丙三人生产的零件的次品率分别为%2%,4%,3. 现从三人生产的零件中任取一个. )1(求该零件是次品的概率;)2(若已知该零件为次品,求它是由甲生产的概率.解:设事件321,,A A A 分别表示取到的零件由甲、乙、丙生产,事件B 表示取到的零件是次品.1 028.0%2105%4103%3102)|()()(31=⨯+⨯+⨯==∑=i i i A B P A P B P ;2 143028.0%32.0)()|()()()()|(1111=⨯===B P A B P A P B P B A P B A P .三、设一袋中有6个球,分别编号1,2,3,4,5,6. 现从中任取2个球,用X 表示取到的两个球的最大编号. )1(求随机变量X 的概率分布;)2(求EX .解:X 可能取6,5,4,3,2,且6,5,4,3,2,1511}{26=-=-==k k C k k X P所以X 的概率分布表为3/115/45/115/215/165432P X且31415162=-⨯=∑=k k k EX .四、设随机向量),(Y X 的密度函数为⎩⎨⎧≤≤≤≤=其它,020,10,),(y x x y x f .)1(求}1{≤+Y X P ;)2(求Y X ,的边缘密度,并判断X 与Y 的独立性.解:1 31),(}1{1020101====≤+⎰⎰⎰⎰⎰≤+dx x xdy dx dxdy y x f Y X P x y x ; 2,,020,21),()(,,010,2),()(1020⎪⎩⎪⎨⎧≤≤===⎪⎩⎪⎨⎧≤≤===⎰⎰⎰⎰∞+∞-∞+∞-其它其它y xdx dx y x f y f x x xdy dy y x f x f Y X由),()()(y x f y f x f Y X =知随机变量Y X ,相互独立.五、设随机变量X 服从区间]3,0[上的均匀分布,求随机变量13-=X Y 的密度函数.解法一:由题意知⎩⎨⎧≤≤=其它,030,3/1)(x x f X . Y 的分布函数为)31(}31{}13{}{)(+=+≤=≤-=≤=y F y X P y X P y Y P y F X Y , 两边对y 求导,得⎪⎩⎪⎨⎧≤≤-≤+≤=+=其它即,0813310,91)31(31)(y y y f y f X Y 解法二:因为13-=x y 是30≤≤x 上单调连续函数,所以⎪⎩⎪⎨⎧≤≤-≤+=≤=⨯==其它即,081,331)(0,913131|)(|))(()(y y y h dy y dh y h f y f X Y 注:31)(+==y y h x 为13-=x y 的反函数; 三、已知一批产品中有90%是合格品,检查产品质量时,一个合格品被误判为次品的概率为,一个次品被误判为合格品的概率是.求:1任意抽查一个产品,它被判为合格品的概率; 2一个经检查被判为合格的产品确实是合格品的概率. 解:设=1A “确实为合格品”,=2A “确实为次品”, =B “判为合格品”1)|()()|()()(2211A B P A P A B P A P B P += 859.004.01.095.09.0=⨯+⨯=29953.0)()|()()|(111==B P A B P A P B A P四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<=-其他0),(yx e y x f y,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}1{<+Y X P . 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==-+∞-∞+∞-⎰⎰000000),()(x x ex x dy e dy y x f x f x x y X⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰00000),()(0y y yey y dx e dx y x f y f y y y Y 2)()(),(y f x f y x f Y X ≠ ∴ X 与Y 不独立 315.0210121}1{----+-==<+⎰⎰e e dxdy e Y X P xxy四、设二维连续型随机向量),(Y X 的概率密度为⎩⎨⎧<<>=-其他10,02),(y x ye y x f x,求:1边缘密度函数)(x f X 和)(y f Y ;2判断X 与Y 是否相互独立,并说明理由; 3}{Y X P <. 解:1⎩⎨⎧≤>=⎪⎩⎪⎨⎧≤>==--∞+∞-⎰⎰0000002),()(10x x ex x dy ye dy y x f x f x x X⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰+∞-∞+∞-其他其他01020102),()(0y y y dx ye dx y x f y f x Y2)()(),(y f x f y x f Y X = ∴ X 与Y 独立 3142}{1101-==<--⎰⎰e dxdy ye Y X P x x一、单项选择题1. 对任何二事件A 和B,有=-)(B A P C .A. )()(B P A P -B. )()()(AB P B P A P +-C. )()(AB P A P -D. )()()(AB P B P A P -+ 2. 设A 、B 是两个随机事件,若当B 发生时A 必发生,则一定有 B . A. )()(A P AB P = B. )()(A P B A P =⋃ C. 1)/(=A B P D. )()/(A P B A P = 3. 甲、乙两人向同一目标独立地各射击一次,命中率分别为0.5,0.8,则目标被击中的概率为 C 甲乙至少有一个击中A. 0.7B. 0.8C. 0.9D.0.854. 设随机变量X 的概率分布为则a,b 可以是 D 归一性. A. 4161==,b a B. 125121==,b a C. 152121==,b a D.3141==,b a 5. 设函数0.5,()0,a x bf x ≤≤⎧=⎨⎩其它 是某连续型随机变量X 的概率密度,则区间],[b a 可以是 B 归一性.A. ]1,0[B. ]2,0[C. ]2,0[D. ]2,1[6. 设二维随机变量),(Y X 的分布律为则==}0{XY P D .A. 0.1B. 0.3C.D.7. 设随机变量X 服从二项分布),(p n B ,则有 D 期望和方差的性质.A. 12(-X E np 2)=B. 14)12(-=-np X EC. 1)1(4)12(--=-p np X DD. )1(4)12(p np X D -=- 8.已知随机变量(,)X B n p ,且 4.8, 1.92EX DX ==,则,n p 的值为 AA.8,0.6n p == B.6,0.8n p == C.16,0.3n p ==D.12,0.4n p == 9.设随机变量(1,4)XN ,则下式中不成立的是 BA. 1EX =B. 2DX =C. {1}0P X ==D.{1}0.5P X ≤=10. 设X 为随机变量,1,2=-=DX EX ,则)(2X E 的值为 A 方差的计算公式.A .5 B. 1- C. 1 D. 311. 设随机变量X 的密度函数为⎩⎨⎧≤≤+=其它,010,)(x b ax x f ,且EX=0,则A 归一性和数学期望的定义.A. 6,4a b =-=B. 1,1a b =-=C. 6,1a b ==D.1,5a b ==12. 设随机变量X 服从参数为的指数分布,则下列各项中正确的是 A A. ()0.2,()0.04E X D X == B. ()5,()25E X D X == C. ()0.2,()4E X D X == D. ()2,()0.25E X D X == 13. 设(,)X Y 为二维连续型随机变量,则X 与Y 不相关的充分必要条件是 D .A. X 与Y 相互独立B.()()()E X Y E X E Y +=+C. ()()()E XY E X E Y =D. 221212(,)(,,,0)X Y N μμσσ 二、填空题1. 已知PA=,PA-B=,且A 与B 独立,则PB= .2. 设B A ,是两个事件,8.0)(,5.0)(=⋃=B A P A P ,当A, B 互不相容时,PB=;当A, B 相互独立时,PB=53 .3. 设在试验中事件A 发生的概率为p,现进行n 次重复独立试验,那么事件A 至少发生一次的概率为1(1)n p --.4. 一批产品共有8个正品和2个次品,不放回地抽取2次,则第2次才抽得次品的概率P =845. 5. 随机变量X 的分布函数Fx 是事件 PX )x ≤ 的概率.6. 若随机变量X ~ )0)(,(2>σσμN ,则X 的密度函数为 .7.设随机变量X 服从参数2=θ的指数分布,则X 的密度函数()f x = ; 分布函数Fx= .8. 已知随机变量X 只能取-1,0,1,三个值,其相应的概率依次为125236,,c c c,则c = 2 归一性 . 9. 设随机变量X 的概率密度函数为2,01()0,x x f x λ⎧<<=⎨⎩其它,则λ= 3归一性 .10. 设随机变量X ~2(2,)N σ,且{23}0.3P X <<=,则{1}P X <=.22232{23}{}11()(0)0.3,(0)0.5()=0.821211{1}{}=()=1()=0.2X P X P X P X P σσσσσσσσσ---<<=<<=Φ-Φ=Φ=∴Φ--<=<Φ--Φ又,,11. 设随机变量X ~N1,4,φ=,φ=,则P{|X |﹥2}= .{||>2}1{||2}1{22}2112111{}1{1.50.5}22221((0.5)( 1.5)0.9332),( 1.5)0.06680.69150.06680.31(1.5)=1-{||>2}=1((0.5)( 1.5))=751)3(P X P X P X X X P P P X ==-≤=--≤≤-----=-≤≤=--≤≤=-Φ-Φ-Φ-=-Φ∴-Φ-Φ--=-又 12. 设随机变量X ~ ),(211σμN ,Y ~ ),(222σμN ,且X 与Y 相互独立,则X+Y ~221212(,)N μμσσ++ 分布.13. 设随机变量X 的数学期望EX 和方差0DX >都存在,令DXEX X Y -=,则____0__=EY ;___1___=DY .14. 若X 服从区间0,2上的均匀分布,则2()E X =4/3 . 15. 若X ~(4,0.5)B ,则(23)D X -= 9 . 17. 设随机变量X 的概率密度23,01()0,x x f x ⎧<<=⎨⎩其它,()_____E X =,()_____D X =.18. 设随机变量X 与Y 相互独立,1,3DX DY ==,则(321)D X Y -+=(3)(2)9()4()D X D Y D X D Y +=+=21 .三、计算题1. 设随机变量X 与Y 独立,X ~(1,1)N ,Y ~)2,2(2N ,且0.2XY ρ=,求随机变量函数23Z X Y =-的数学期望与方差. 四、证明题1. 设随机变量X 服从标准正态分布,即X ~)1,0(N ,2X Y =,证明:Y 的密度函数为⎪⎩⎪⎨⎧≤>=-0,00,21)(2y y e yy f y Y π .五、综合题1.设二维随机变量X,Y 的联合密度为⎩⎨⎧<<<<=其它,010,10,6),(2y x xy y x f ,求:1关于X,Y 的边缘密度函数;2判断X,Y 是否独立;3求{}P X Y >.。
概率论与数理统计(练习参考答案)
一、填空题 (每小题2分,共10分)1、一射手对同一个目标独立地进行4次射击,若至少命中一次的概率为8180,则该射手的命中率为 .2、 设随机变量X 在区间[2,5]上服从均匀分布,则=)(2X E ____13_____ .3、 设X 服从参数为10=θ的指数分布,Y )2,3(~2N ,且X 与Y 相互独立,Y X Z 23-=,则=)(Z D ___916_____.4、已知5.0,9)(,4)(===XY Y D X D ρ,则=+)(Y X D 19_ .5、设总体),(~2σμN X ,n X X X ,,,21Λ为来自X 的简单随机样本,则~11∑==ni iX n X ),(2n N σμ. 二、单项选择题 (每小题2分,共10分)(1)对于任意两事件A 和B ,=-)(B A P C .(A ))()(B P A P - (B ))()()(AB P B P A P +- (C ) )()(AB P A P - (D ))()()(B A P A P A P -+ 2、.对于任意两个随机变量,若)()()(Y E X E XY E =则____B _____.(A))()()(Y D X D XY D = (B))()()(Y D X D Y X D +=+ (C) X 与Y 相互独立 (D)X 与Y 相互不独立 3、设Y X ,相互独立,X 和Y 的分布律分别为,则必有 D .(A )Y X = (B ){}0==Y X P(C ){}1==Y X P (D ){}58.0==Y X P4、 在假设检验中,原假设0H ,备择假设1H ,则称_____D _____ 为犯第二类错误 (A)10H H 为真,接受 (B) 00H H 不真,拒绝 (C) 10H H 为真,拒绝 (D) 00H H 不真,接受5、 已知341.1)15(90.0-=t 。
设随机变量X 服从自由度为15的t 分布,若90.0)(=<a X P ,则=a _____B _____.(A) -1.341 (B) 1.341 (C) 15 (D) -15三、计算题 (共52分)1、 有四位同学报考硕士研究生,他们被录取的概率分别为0.2、0.3、0.45、0.6,试求至少有一位同学被录取的概率. (5分) 解: 设}{个同学被录取第i A i =),4,3,2,1(=i ;}{至少有一位同学被录取=B则有 4321A A A A B +++= ;∑=-=-=41)(1)(1)(i iA PB P B P8768.04.055.07.08.01=⨯⨯⨯-=2、 某年级有甲,乙,丙三个班级,其中各班的人数分别占年级总人数的1/ 4, 1/3, 5/12,已知甲,乙,丙三个班级中是独生子女的人数分别占各班人数的1/ 2, 1/ 4, 1/5, 求:: (1) 从该年级中随机的选一人,该人是独生子女的概率为多少?(2) 从该年级中随机的选一人,发现其为独生子女,则此人是甲班的概率为多少? (8分) 解: 设}{为独生子女从该年级中随机选一人=B }{1选到的是甲班的人=A}{2选到的是乙班的人=A ;}{3选到的是丙班的人=A ;则321,,A A A 为一个分割,41)(1=A P ,1)(2=A P ,125)(3=A P ;21)(1=A B P ,41)(2=A B P ,51)(3=A B P . (1) ∑==31)()()(i i i A P A B P B P =32=⨯+⨯+⨯511254*********7; (2) )(1B A P =)()()(11B P A P A B P =73.3、设有5件产品,其中有两件次品,今从中连取二次,每次任取一件不放回,以X 表示所取得的次品数,试求: : (1)X 的分布律和分布函数)(x F ; (2)122+=X Y 的分布律. (9分) 解: (1)(2)4、 某商品的日销量X (公斤)~)300,10000(2N , 求:日销量在9700到10300公斤之间的概率. (8413.0)1(=Φ 97725.0)2(=Φ备用) (8分)解: 300,10000==σμ)9700()10300(}103009700{F F X P -=≤≤=)3001000010300(-Φ-)300100009700(-Φ=)1()1(--ΦΦ=1)1(2-Φ=6826.018413.02=-⨯5、设随机变量X 的密度函数为⎩⎨⎧≥=-其它0)(2x Ce x f x,求: (1) 常数C ; (2) 概率}2/11{<<-X P ; (3) )(X E ;(4)设X Y 2=,则Y 的密度函数)(y f Y 。
概率论与数理统计习题(含解答,答案)
概率论与数理统计习题(含解答,答案)概率论与数理统计复习题(1)⼀.填空.1.3.0)(,4.0)(==B P A P 。
若A 与B 独⽴,则=-)(B A P ;若已知B A ,中⾄少有⼀个事件发⽣的概率为6.0,则=-)(B A P 。
2.)()(B A p AB p =且2.0)(=A P ,则=)(B P 。
3.设),(~2σµN X ,且3.0}42{ },2{}2{=<<≥==>}0{X P 。
4.1)()(==X D X E 。
若X 服从泊松分布,则=≠}0{X P ;若X 服从均匀分布,则=≠}0{X P 。
5.设44.1)(,4.2)(),,(~==X D X E p n b X ,则==}{n X P6.,1)(,2)()(,0)()(=====XY E Y D X D Y E X E 则=+-)12(Y X D 。
7.)16,1(~),9,0(~N Y N X ,且X 与Y 独⽴,则=-<-<-}12{Y X P (⽤Φ表⽰),=XY ρ。
8.已知X 的期望为5,⽽均⽅差为2,估计≥<<}82{X P 。
9.设1?θ和2?θ均是未知参数θ的⽆偏估计量,且)?()?(2221θθE E >,则其中的统计量更有效。
10.在实际问题中求某参数的置信区间时,总是希望置信⽔平愈愈好,⽽置信区间的长度愈愈好。
但当增⼤置信⽔平时,则相应的置信区间长度总是。
⼆.假设某地区位于甲、⼄两河流的汇合处,当任⼀河流泛滥时,该地区即遭受⽔灾。
设某时期内甲河流泛滥的概率为0.1;⼄河流泛滥的概率为0.2;当甲河流泛滥时,⼄河流泛滥的概率为0.3,试求:(1)该时期内这个地区遭受⽔灾的概率;(2)当⼄河流泛滥时,甲河流泛滥的概率。
三.⾼射炮向敌机发射三发炮弹(每弹击中与否相互独⽴),每发炮弹击中敌机的概率均为0.3,⼜知若敌机中⼀弹,其坠毁的概率是0.2,若敌机中两弹,其坠毁的概率是0.6,若敌机中三弹则必坠毁。
(完整版)概率论与数理统计习题集及答案
《概率论与数理统计》作业集及答案第1章 概率论的基本概念§1 .1 随机试验及随机事件1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ;(2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ;B :两次出现同一面,则= ;C :至少有一次出现正面,则C= .§1 .2 随机事件的运算1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件:(1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则(1)=⋃B A ,(2)=AB ,(3)=B A , (4)B A ⋃= ,(5)B A = 。
§1 .3 概率的定义和性质1. 已知6.0)(,5.0)(,8.0)(===⋃B P A P B A P ,则(1) =)(AB P , (2)()(B A P )= , (3))(B A P ⋃= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = .§1 .4 古典概型1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率,(2)最多有2个女同学的概率,(3) 至少有2个女同学的概率.2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率.§1 .5 条件概率与乘法公式1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。
《概率论与数理统计》习题及答案
概率论与数理统计 第一部份 习题第一章 概率论基本概念一、填空题1、设A ,B ,C 为3事件,则这3事件中恰有2个事件发生可表示为 。
2、设3.0)(,1.0)(=⋃=B A P A P ,且A 与B 互不相容,则=)(B P 。
3、口袋中有4只白球,2只红球,从中随机抽取3只,则取得2只白球,1只红球的概率为 。
4、某人射击的命中率为0.7,现独立地重复射击5次,则恰有2次命中的概率为 。
5、某市有50%的住户订晚报,有60%的住户订日报,有80%的住户订这两种报纸中的一种,则同时订这两种报纸的百分比为 。
6、设A ,B 为两事件,3.0)(,7.0)(==B A P A P ,则=)(B A P 。
7、同时抛掷3枚均匀硬币,恰有1个正面的概率为 。
8、设A ,B 为两事件,2.0)(,5.0)(=-=B A P A P ,则=)(AB P 。
9、10个球中只有1个为红球,不放回地取球,每次1个,则第5次才取得红球的概率为 。
10、将一骰子独立地抛掷2次,以X 和Y 分别表示先后掷出的点数,{}10=+=Y X A{}Y X B >=,则=)|(A B P 。
11、设B A ,是两事件,则B A ,的差事件为 。
12、设C B A ,,构成一完备事件组,且,7.0)(,5.0)(==B P A P 则=)(C P ,=)(AB P 。
13、设A 与B 为互不相容的两事件,,0)(>B P 则=)|(B A P 。
14、设A 与B 为相互独立的两事件,且4.0)(,7.0)(==B P A P ,则=)(AB P 。
15、设B A ,是两事件,,36.0)(,9.0)(==AB P A P 则=)(B A P 。
16、设B A ,是两个相互独立的事件,,4.0)(,2.0)(==B P A P 则=)(B A P 。
17、设B A ,是两事件,如果B A ⊃,且2.0)(,7.0)(==B P A P ,则=)|(B A P 。
概率论与数理统计试题库及答案(考试必做)
概率论与数理统计试题库及答案(考试必做)概率论试题一、填空题1.设A、B、C是三个随机事件。
试用A、B、C分别表示事件1)A、B、C 至少有一个发生2)A、B、C 中恰有一个发生3)A、B、C不多于一个发生2.设A、B为随机事件,P (A)=0.5,P(B)=0.6,P(BA)=0.8。
则P(B A)=3.若事件A和事件B相互独立, P(A)= ,P(B)=0.3,P(A B)=0.7,则4. 将C,C,E,E,I,N,S等7个字母随机的排成一行,那末恰好排成英文单词__的概率为5. 甲、乙两人独立的对同一目标射击一次,其命中率分别为0.6和0.5,现已知目标被命中,则它是甲射中的概率为6.设离散型随机变量X分布律为P{X k} 5A(1/2)A=______________7. 已知随机变量X的密度为f(x)k(k 1,2, )则ax b,0 x 1,且P{x 1/2} 5/8,则0,其它a ________b ________28. 设X~N(2, ),且P{2 x 4} 0.3,则P{x 0} _________ 9. 一射手对同一目标独立地进行四次射击,若至少命中一次的概率为中率为_________10.若随机变量在(1,6)上服从均匀分布,则方程x+ x+1=0有实根的概率是280,则该射手的命8111.设P{X 0,Y 0}34,P{X 0} P{Y 0} ,则P{max{X,Y} 0} 7712.用(X,Y)的联合分布函数F(x,y)表示P{a X b,Y c} 13.用(X,Y)的联合分布函数F(x,y)表示P{X a,Y b} 14.设平面区域D 由y = x , y = 0 和x = 2 所围成,二维随机变量(x,y)在区域D上服从均匀分布,则(x,y)关于X的边缘概率密度在x = 1 处的值为。
15.已知X~N( 2,0.4),则E(X 3)=16.设X~N(10,0.6),Y~N(1,2),且X与Y相互独立,则17.设X的概率密度为f(x)22D(3X Y)x2,则D(X)=18.设随机变量X1,X2,X3相互独立,其中X1在[0,6]上服从均匀分布,X2服从正态分布N(0,2),X3服从参数为=3的泊松分布,记Y=X1-2X2+3X3,则D(Y)= 219.设D(X) 25,D Y 36, xy 0.4,则D(X Y) 20.设X1,X2, ,Xn, 是独立同分布的随机变量序列,且均值为,方差为,那么当n充分大时,近似有X~或2~。
《概率论与数理统计》练习题(含答案)
《概率论与数理统计》练习题(含答案)一、单项选择题1.设,,A B C 为三个事件,且,A B 相互独立,则以下结论中不正确的是( ) (A )若()1P C =,则AC 与BC 也独立. (B )若()1P C =,则A C 与B 也独立. (C )若()0P C =,则A C 与B 也独立. (D )若C B ⊂,则A 与C 也独立.答案:(D ).解答:因为概率为1的事件和概率为0的事件与任何事件独立,所以(A ),(B ),(C )都是正确的,只能选(D ).事实上由图 可见A 与C 不独立.2.设随机变量~(0,1),X N X 的分布函数为()x Φ,则(||2)P X >的值为( ) (A )2[1(2)]-Φ. (B )2(2)1Φ-. (C )2(2)-Φ. (D )12(2)-Φ.答案:(A )解答: ~(0,1)X N 所以(||2)1(||2)1(22)P X P X P X >=-≤=--<≤ 1(2)(2)1[2(2)1]2[1(2)]=-Φ+Φ-=-Φ-=-Φ 应选(A ).3.设随机变量X 和Y 不相关,则下列结论中正确的是( ) (A )X 与Y 独立. (B )()D X Y DX DY -=+. (C )()D X Y DX DY -=-. (D )()D XY DXDY =.SABC答案:(B )解答:由不相关的等价条件知,0y x cov 0xy =⇒=),(ρ ()+2cov x y D X Y DX DY -=+(,) 应选(B ).4.设离散型随机变量X 和Y 的联合概率分布为(,)(1,1)(1,2)(1,3)(2,1)(2,2)(2,3)111169183X Y P αβ若,X Y 独立,则,αβ的值为( )(A )21,99αβ==. (A )12,99αβ==.(C ) 11,66αβ== (D )51,1818αβ==.答案:(A )解答: 若,X Y 独立则有(2,2)(2)(2)P X Y P X P Y α======1121()()()3939αβαα=+++=+∴29α=, 19β=故应选(A ).5.设总体X 的数学期望为12,,,,n X X X μ为来自X 的样本,则下列结论中正确的是( )(A )1X 是μ的无偏估计量. (B )1X 是μ的极大似然估计量. (C )1X 是μ的相合(一致)估计量. (D )1X 不是μ的估计量. 答案:(A ) 解答:1EX μ=,所以1X 是μ的无偏估计,应选(A ).6. 设A 、B 、C 为三个事件,()0P AB >且(|)1P C AB =,则有( )Y X(A )()()() 1.P C P A P B ≤+- (B )()().P C P A B ≤ (C )()()() 1.P C P A P B ≥+- (D )()().P C P A B ≥答案:C 解答:由(|)1P C AB =知()()P ABC P AB =,故()()P C P AB ≥ ()()()()()()()1P C P AB P A P B P A B P A P B ≥=+-≥+- 应选C.7. 设随机变量X 的概率密度为2(2)4(),x f x x +-=-∞<<∞, 且~(0,1)Y aX b N =+,则在下列各组数中应取( ) (A )1/2, 1.a b == (B)2,a b ==(C )1/2,1a b ==-. (D)2,a b == 答案:B 解答:22(2)4()x f x +-==即~(2,)X N - 故当a b ===时 ~(0,1)Y aX b N =+ 应选B.8. 设随机变量X 与Y 相互独立,其概率分布分别为010.40.6X P010.40.6Y P则有( )(A )()0.P X Y == (B )()0.5.P X Y ==(C )()0.52.P X Y == (D )() 1.P X Y == 答案:C解答:()(0,0)(1,1)P X Y P X Y P X Y ====+== 0.40.40.60.60.52=⨯+⨯= 应选C.9. 对任意随机变量X ,若EX 存在,则[()]E E EX 等于( )(A )0. (B ).X (C ).EX (D )3().EX 答案:C 解答:[()]E E EX EX = 应选C.10. 设12,,,n x x x 为正态总体(,4)N μ的一个样本,x 表示样本均值,则μ的置信度为1α-的置信区间为( ) (A )/2/2(x u x u αα-+ (B )1/2/2(x u x u αα--+ (C )(x u x uαα-+ (D )/2/2(x u x u αα-+ 答案:D 解答:因为方差已知,所以μ的置信区间为/2/2(X u X u αα-+应选D. 11、设为总体的一个样本,为样本均值,则下),,,(21n X X X )2,1(2N X列结论中正确的是( D )。
概率论与数理统计练习题(含答案)
数理统计练习题一、填空题1、设A 、B 为随机事件,且P (A )=0.5,P (B )=0.6,P (B |A )=0.8,则P (A +B )=__ 0.7 __。
2、某射手对目标独立射击四次,至少命中一次的概率为8180,则此射手的命中率32。
3、设随机变量X 服从[0,2]上均匀分布,则=2)]([)(X E X D 1/3 。
4、设随机变量X 服从参数为λ的泊松(Poisson )分布,且已知)]2)(1[(−−X X E =1,则=λ___1____。
5、一次试验的成功率为p ,进行100次独立重复试验,当=p 1/2_____时 ,成功次数的方差的值最大,最大值为 25 。
6、(X ,Y )服从二维正态分布),,,,(222121ρσσμμN ,则X 的边缘分布为 ),(211σμN 。
7、已知随机向量(X ,Y )的联合密度函数⎪⎩⎪⎨⎧≤≤≤≤=其他,010,20,23),(2y x xy y x f ,则E (X )=34。
8、随机变量X 的数学期望μ=EX ,方差2σ=DX ,k 、b 为常数,则有)(b kX E += ,k b μ+;)(b kX D +=22k σ。
9、若随机变量X ~N (-2,4),Y ~N (3,9),且X 与Y 相互独立。
设Z =2X -Y +5,则Z ~ N(-2, 25) 。
10、θθθ是常数21ˆ ,ˆ的两个 无偏 估计量,若)ˆ()ˆ(21θθD D <,则称1ˆθ比2ˆθ有效。
1、设A 、B 为随机事件,且P (A )=0.4, P (B )=0.3, P (A ∪B )=0.6,则P (B A )=_0.3__。
2、设X ∼B (2,p ),Y ∼B (3,p ),且P {X ≥ 1}=95,则P {Y ≥ 1}=2719。
3、设随机变量X 服从参数为2的泊松分布,且Y =3X -2, 则E (Y )=4 。
4、设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。
概率论与数理统计练习题与答案
概率论与数理统计练习题与答案第一章随机事件及其概率(一)一.选择题1.对掷一粒骰子的试验,在概率论中将“出现奇数点”称为 [ C ](A)不可能事件(B)必然事件(C)随机事件(D)样本事件2.下面各组事件中,互为对立事件的有 [ B ] (A){抽到的三个产品全是合格品}{抽到的三个产品全是废品}(B){抽到的三个产品全是合格品}{抽到的三个产品中至少有一个废品}(C){抽到的三个产品中合格品不少于2个}{抽到的三个产品中废品不多于2个}(D){抽到的三个产品中有2个合格品}{抽到的三个产品中有2个废品}3.下列事件与事件不等价的是 [C ](A)(B)(C)(D)4.甲、乙两人进行射击,A、B分别表示甲、乙射中目标,则表示 [ C](A)二人都没射中(B)二人都射中(C)二人没有都射着(D)至少一个射中5.以表示事件“甲种产品畅销,乙种产品滞销”,则其对应事件为. [ D](A)“甲种产品滞销,乙种产品畅销”;(B)“甲、乙两种产品均畅销”;(C)“甲种产品滞销”;(D)“甲种产品滞销或乙种产品畅销6.设,则表示 [ A](A)(B)(C)(D)7.在事件,,中,和至少有一个发生而不发生的事件可表示为 [ A](A);(B);(C);(D).8、设随机事件满足,则 [ D ] (A)互为对立事件 (B)互不相容(C)一定为不可能事件 (D)不一定为不可能事件二、填空题1.若事件A,B满足,则称A与B 互不相容或互斥。
2.“A,B,C三个事件中至少发生二个”此事件可以表示为。
三、简答题:1.一盒内放有四个球,它们分别标上1,2,3,4号,试根据下列3种不同的随机实验,写出对应的样本空间:(1)从盒中任取一球后,不放回盒中,再从盒中任取一球,记录取球的结果;(2)从盒中任取一球后放回,再从盒中任取一球,记录两次取球的结果;(3)一次从盒中任取2个球,记录取球的结果。
答:(1){(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3 )}(2){(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3 ,4),(4,1),(4,2),(4,3),(4,4)}(3){(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}2.设A、B、C为三个事件,用A、B、C的运算关系表示下列事件。
《概率论与数理统计》考试练习题及参考答案
《概率论与数理统计》考试练习题及参考答案一、单选题1. 设X~N(2,9),Y~N(2,1),E(XY)=6,则D(X-Y)之值为A 、14B 、6C 、12D 、4答案:B2. 设X,Y的方差存在,且不等于0,则D(X+Y)=DX+DY是X,YA 、不相关的充分条件,但不是必要条件B 、独立的必要条件,但不是充分条件C 、不相关的必要条件,但不是充分条件D 、独立的充分必要条件答案:B3. 已知P(A)=0.3 ,P(B)=0.5 ,P(A∪B)=0.6,则P(AB)=A 、0.2B 、0.1C 、0.3D 、0.4答案:A4. 已知随机变量X服从二项分布,且EX=2.4,DX=1.44,则二项分布中的参数n,p的值分别为A 、n=4 ,p=0.6B 、n=6 ,p=0.4C 、n=8 ,p=0.3D 、n=24 ,p=0.1答案:B5. 若随机变量X与Y的方差D(X), D(Y)都大于零,且E(XY)=E(X)E(Y),则有A 、X与Y一定相互独立B 、X与Y一定不相关C 、D(XY)=D(X)D(Y)D 、D(X-Y)=D(X)-D(Y)答案:B6. 同时抛掷3枚硬币,则至多有1枚硬币正面向上的概率是A 、1/8B 、1/6C 、1/4D 、1/2答案:D7. 将长度为1的木棒随机地截成两段,则两段长度的相关系数为A 、1B 、1/2C 、2D 、-1答案:D8. 假设一批产品中一、二、三等品各占60% 、30% 、10%,今从中随机取一件产品,结果不是三等品,则它是二等品的概率为A 、1/3B 、1/2C 、2/3D 、1/4答案:A9. 袋中有50个乒乓球,其中20个黄球,30个白球,甲、乙两人依次各取一球,取后不放回,甲先取,则乙取得黄球的概率为A 、2/5B 、3/5C 、1/5D 、4/5答案:A10. 设随机变量X服从正态分布N(1 ,4) ,Y服从[0 ,4]上的均匀分布,则E(2X+Y )=A 、1B 、2C 、3D 、4答案:D11. 某电路由元件A 、B 、C串联而成,三个元件相互独立,已知各元件不正常的概率分别为:P(A)=0.1 ,P(B)=0.2 ,P(C)=0.3,求电路不正常的概率A 、0.496B 、0.7C 、0.25D 、0.8答案:A12. 一套五卷选集随机地放到书架上,则从左到右或从右到左卷号恰为1 ,2 ,3 ,4 ,5顺序的概率为A 、1/120B 、1/60C 、1/5D 、1/2答案:B13. 设随机变量X与Y独立同分布,记随机变量U=X+Y ,V=X-Y,且协方差Cov(U.V)存在,则U和V必然A 、不相关B 、相互独立C 、不独立D 、无法判断答案:A14. 设P(A)>0,P(B)>0,则下列各式中正确的是A 、P(A-B)=P(A)-P(B)B 、P(AB)=P(A)P(B)C 、P(A+B)=P(A)+P(B)D 、P(A+B)=P(A)+P(B)-P(AB)答案:D15. 随机变量X的所有可能取值为0和x ,且P{X=0}=0.3,E(X)=1,则x=A 、10/7B 、4/5C 、1D 、0答案:A16. 已知人的血型为O 、A 、B 、AB的概率分别是0.4;0.3;0.2;0.1。
概率论与数理统计试题及答案
概率论与数理统计一、单选题1.随机地掷一骰子两次,则两次出现的点数之和等于8的概率为()。
(4分)A :3/36B :4/36C :5/36D :2/362.A,B为任意两事件,若A,B之积为不可能事件,则称()。
(4分)A :A与B相互独立B :A与B互不相容C :A与B互为对立事件D :A与B为样本空间Ω的一个划分3.设A,B,C是三个事件,在下列各式中,不成立的是( ) .(4分)A :(A-B)UB=AUBB :(AUB)-B=AC :(AUB)-AB= UBD :(AUB)-C=(A-C)U(B-C)4.以A表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A为().(4分)A :“甲种产品滞销,乙种产品畅销”;B :“甲,乙两种产品均畅销”;C :“甲种产品滞销”;D :“甲种产品滞销或乙种产品畅销”。
5..掷二枚骰子,事件A为出现的点数之和等于3的概率为()。
(4分)A :11B :44,214C :44,202D :都不对6.设A,B为两个事件,且B A,则下列各式中正确的是( ).(4分)A :P(AUB)= P(A)B :P(AB)=P(A)C :P(BIA)= P(B)D :P(B-A)=P(B)- P(A)7.某小组共9人,分得一张观看亚运会的入场券,组长将一张写有“得票”字样和8张写有“不得票”字样的纸签混合后让大家依次各抽一张,以决定谁得入场券,则()。
(4分)A :A.第1个抽签者得“得票”的概率最大B :第5个抽签者“得票”的概率最大C :每个抽签者得“得票”的概率相等D :最后抽签者得“得票”的概率最小8.设A,B是两个事件,且P(A)≤P(AIB)则有( ).(4分)A :P(A)= P(AIB)B :P(B)>0C :P(A)≥P(AIB)D :前三者都不一定成立9.设有10个零件,其中2个是次品,现随机抽取2个,恰有一个是正品的概率为().(4分)A :8/45B :16/45C :8/15D :8/3010.设盒中有10个木质球,6个玻璃球,玻璃球有两个为红色,4个为蓝色;木质球有3个为红色,7个为蓝色,现从盒中任取一球,用A表示“取到蓝色球”;B表示“取到玻璃球”。
《概率论与数理统计》练习题及答案
《概率论与数理统计》练习题一、单项选择题1. A 、B 为两事件,则B A ⋃=( )A .B A ⋃ B .A ∪BC .A BD .A ∩B 2.对任意的事件A 、B ,有( )A .0)(=AB P ,则AB 不可能事件 B .1)(=⋃B A P ,则B A ⋃为必然事件C .)()()(B P A P B A P -=-D .)()()(AB P A P B A P -=⋂ 3.事件A 、B 互不相容,则( )A .1)(=⋃B A P B .1)(=⋂B A PC .)()()(B P A P AB P =D .)(1)(AB P A P -= 4.设A 为随机事件,则下列命题中错误..的是( ) A .A 与A 互为对立事件 B .A 与A 互不相容 C .Ω=⋃A AD .A A =5.任意抛一个均匀的骰子两次,则这两次出现的点数之和为8的概率为( ) A .363 B .364 C .365 D .3626.已知A 、B 、C 两两独立,21)()()(===C P B P A P ,51)(=ABC P ,则)(C AB P 等于( )A .401 B .201 C .101 D .417.事件A 、B 互为对立事件等价于( )(1)A 、B 互不相容 (2)A 、B 相互独立(3)Ω=⋃B A (4)A 、B 构成对样本空间的一个剖分 8.A 、B 为两个事件,则)(B A P -=( )A .)()(B P A P - B .)()(AB P A P -C .)()(B P A P -D .)(A B P - 9.1A 、2A 、3A 为三个事件,则( )A .若321,,A A A 相互独立,则321,,A A A 两两独立;B .若321,,A A A 两两独立,则321,,A A A 相互独立;C .若)()()()(321321A P A P A P A A A P =,则321,,A A A 相互独立;D .若1A 与2A 独立,2A 与3A 独立,则1A 与3A 独立10.设A 与B 相互独立,2.0)(=A P ,4.0)(=B P ,则=)(B A P ( ) A .0.2B .0.4C .0.6D .0.811.同时抛掷3枚均匀的硬币,则恰好三枚均为正面朝上的概率为( ) A.0.125 B.0.25 C.0.375 D.0.5 12.设A 、B 为任意两个事件,则有( )A.(A ∪B )-B=AB.(A-B)∪B=AC.(A ∪B)-B ⊂AD.(A-B)∪B ⊂A 13.设A ,B 为两个互不相容事件,则下列各式错误..的是( ) A .P (AB )=0B .P (A ∪B )=P (A )+P (B )C .P (AB )=P (A )P (B )D .P (B-A )=P (B )14.设事件A ,B 相互独立,且P (A )=31,P (B )>0,则P (A|B )=( )A .151B .51C .154D .3115.设事件A 与B 互不相容,且P (A )>0,P (B ) >0,则有( ) A .P (AB )=lB .P (A )=1-P (B )C .P (AB )=P (A )P (B )D .P (A ∪B )=116.设A 、B 相互独立,且P (A )>0,P (B )>0,则下列等式成立的是( ) A .P (AB )=0 B .P (A -B )=P (A )P (B ) C .P (A )+P (B )=1D .P (A |B )=017.同时抛掷3枚均匀的硬币,则恰好有两枚正面朝上的概率为( ) A .0.125 B .0.25C .0.375D .0.5018.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )A .A 1A 2B .21A AC .21A AD .21A A19.某人每次射击命中目标的概率为p (0<p <1),他向目标连续射击,则第一次未中第二次命中的概率为( )A .p 2B .(1-p )2C .1-2pD .p (1-p )20.已知P (A )=0.4,P (B )=0.5,且A ⊂B ,则P (A |B )=( )A .0B .0.4C .0.8D .121.一批产品中有5%不合格品,而合格品中一等品占60%,从这批产品中任取一件,则该件产品是一等品的概率为( )A .0.20B .0.30C .0.38D .0.5722.X 的密度为⎩⎨⎧∈=其它,0],0[,2)(A x x x f ,则A=( )A .41 B .21 C .1 D .223.离散型随机变量X 的分布列为其分布函数为)(x F ,则=)3(F ( ) A . 0 B .3.0 C .8.0 D .1 24.随机变量X 的密度函数⎩⎨⎧∈=其它]1,0[)(4x cx x f 则常数c =( )A .51 B .41 C .4 D .525.离散型随机变量X 的分布列为其分布函数为)(x F ,则=)1(F ( ) A .4.0 B .2.0 C .6.0 D .126.设随机变量X 服从参数为3的指数分布,其分布函数记为)(x F ,则=)31(F ( )A .e31 B .3eC .11--eD .1311--e27.设随机变量X 的概率密度为⎩⎨⎧≤≤=,,0,10,)(3其他x ax x f 则常数=a ( )A .41 B .31C .3D .428.设随机变量X 与Y 独立同分布,它们取-1,1两个值的概率分别为41,43,则{}=-=1XY P ( )C .41 D .8329.设三维随机变量),(Y X 的分布函数为),(y x F ,则=∞+),(x F ( ) A .0 B .)(x F X C .)(y F YD .130.设随机变量X 和Y 相互独立,且)4,3(~N X ,)9,2(~N Y ,则~3Y X Z -=( ) A .)21,7(N B .)27,7(N C .)45,7(ND .)45,11(N31.设随机变量X 的概率密度为f(x)=⎪⎩⎪⎨⎧≤<-≤<.,0;2x 1,x 2;1x 0,x 其它 则P{0.2<X<1.2}的值是( )A .5.0B .6.0C .66.0D .7.032.某人射击三次,其命中率为0.7,则三次中至多击中一次的概率为( ) A.027.0 B.081.0 C.0.189 D.0.21633.设二维随机变量(X,Y)的联合分布函数为F(x,y). 其联合概率分布为( )则F (0,1)=( )A.2.0B.6.0C.7.0D.0.834.设二维随机变量(X ,Y )的联合概率密度为f(x,y)=⎩⎨⎧≤≤≤≤+.,0;1y 0,2x 0),y x (k 其它则k=( )A.41 B.31C.21 D.3235.设随机变量X 在[-1,2]上服从均匀分布,则随机变量X 的概率密度f (x )为( )A .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x fB .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f36.设随机变量X ~ B ⎪⎭⎫ ⎝⎛31,3,则P{X ≥1}=( )C .2719D .272637.设二维随机变量(X ,Y )的分布律为Y X1231 2101 103102 101102 101则P{XY=2}=( ) A .51 B .103 C .21D .5338.设二维随机变量(X ,Y )的概率密度为 ⎩⎨⎧≤≤≤≤=,,0;10,10,4),(其他y x xy y x f则当0≤y ≤1时,(X ,Y )关于Y 的边缘概率密度为f Y ( y )= ( ) A .x 21 B .2x C .y21D .2y39.设函数f (x )在[a ,b ]上等于sin x ,在此区间外等于零,若f (x )可以作为某连续型随机变量的概率密度,则区间[a ,b ]应为( )A .[0,2π-] B .[2π,0] C .]π,0[D .[23π,0]40.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤<-≤<其它21210x xx x ,则P (0.2<X<1.2)=( ) A .0.5 B .0.6 C .0.66 D .0.741.设在三次独立重复试验中,事件A 出现的概率都相等,若已知A 至少出现一次的概率为19/27,则事件A 在一次试验中出现的概率为( )A .61 B .41 C .31D .2142.设随机变量X ,Y 相互独立,其联合分布为则有( ) A .92,91==βα B .91,92==βα C .32,31==βαD .31,32==βα43.设随机变量X 的分布律为X 0 1 2 P0.3 0.2 0.5则P {X <1}=( )A .0B .0.2C .0.3D .0.544.下列函数中可作为某随机变量的概率密度的是( )A .⎪⎩⎪⎨⎧≤>100,0,100,1002x x x B .⎪⎩⎪⎨⎧≤>0,0,0,10x x xC .⎩⎨⎧≤≤-其他,0,20,1xD .⎪⎩⎪⎨⎧≤≤其他,0,232121x ,45.随机变量X 服从二项分布)2.0,10(B ,则( ) A .==DX EX 2 B .==DX EX 6.1C .=EX 2,=DX 6.1D .=EX 6.1,=DX 246.X 可取无穷多个值 ,2,1,0,其概率分布为普阿松分布)3(P ,则( ) A .DX EX ==3 B .DX EX ==31 C .EX =3,DX =31 D .EX =31,DX =9147.随机向量),(Y X 有25,36==DY DX ,协方差12=XYσ,则)()(=-Y X DA .1B .37C .61D .8548.设X~B(10, 31), 则=)X (E )X (D ( )A.31 B.32 C.1D.31049.已知随机变量X 的分布函数为F(x)=⎩⎨⎧>--.;0x e 1x2其它则X 的均值和方差分别为( )A.E(X)=2, D(X)=4B.E(X)=4, D(x)=2C.E(X)=41,D(X)=21D.E(X)=21, D(X)=4150.设随机变量X 的E (X )=μ,D(X)=2σ,用切比雪夫不等式估计≥σ≤-)3|)X (E X (|P ( ) A.91 B.31C.98D.151.设二维随机变量(X ,Y )的分布律为Y X 010 131 3131则E (XY )=( ) A .91- B .0 C .91D .3152.已知随机变量X 服从参数为2的泊松分布,则随机变量X 的方差为( ) A .-2 B .0 C .21 D .253.设n μ是n 次独立重复试验中事件A 出现的次数,P 是事件A 在每次试验中发生的概率,则对于任意的0>ε,均有}|{|lim εμ>-∞→p nP n n ( )A .=0B .=1C .> 0D .不存在54.设随机变量X 与Y 相互独立,X 服从参数为2的指数分布,Y ~B (6,21),则E(X-Y)=( )A .25- B .21C .2D .555.设二维随机变量(X ,Y )的协方差Cov(X ,Y )=61,且D (X )=4,D (Y )=9,则X 与Y 的相关系数XY ρ为( )A .2161B .361C .61 D .156.设总体X 服从),(2σμN ,n X X X ,,21为其样本,则SX n Y )(μ-=服从( ))(.)1(.)1,0(.)1(.2n t D n t C N B n x A --57.设总体X 服从),(2σμN ,,,21X X …n X ,为其样本,则∑=-=n i iXY 122)(1μσ服从( ))(.)1(.)(.)1(.22n t D n t C n x B n x A --58.设总体X 的分布律为{}p X P ==1,{}p X P -==10,其中10<<p .设n X X X ,,,21 为来自总体的样本,则样本均值X 的标准差为 ( )A .np p )1(- B .np p )1(-C .)1(p np -D .)1(p np -59.设随机变量)1,0(~,)1,0(~N Y N X ,且X 与Y 相互独立,则~22YX +( )A .)2,0(NB .)2(2χC .)2(tD .)1,1(F60.记F 1-α(m,n)为自由度m 与n 的F 分布的1-α分位数,则有( ) A.)n ,m (F 1)m ,n (F 1α-α=B.)n ,m (F 1)m ,n (F 11α-α-=C.)n ,m (F 1)m ,n (F αα=D.)m ,n (F 1)m ,n (F 1α-α=61.设x 1, x 2, …, x 100为来自总体X ~ N (0,42)的一个样本,以x 表示样本均值,则x ~( ) A .N (0,16) B .N (0,0.16) C .N (0,0.04)D .N (0,1.6)62.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自总体X 的样本,X 为样本均值,则X ~( )A .)10(2σμ,N B .)(2σμ,NC .)10(2σμ,N D .)10(2σμ,N63.设X 1,X 2,…,X n 为来自总体X 的样本,X 为样本均值,则样本方差S 2=( ) A .∑=-ni iX X n12)(1B .∑=--ni iX X n 12)(11C .∑=-ni iX X n12)(1D .∑=--ni iX X n 12)(1164.设总体n X X X N X ,,,),,(~212 σμ为来自总体X 的样本,2,σμ均未知,则2σ的无偏估计是( )A .∑=--ni iX X n 12)(11B .∑=--ni iX n 12)(11μC .∑=-ni iX X n12)(1D .∑=-+ni iX n 12)(11μ65.设总体X ~ N (2,σμ),其中μ未知,x 1,x 2,x 3,x 4为来自总体X 的一个样本,则以下关于μ的四个估计:)(41ˆ43211x x x x +++=μ,3212515151ˆx x x ++=μ,2136261ˆx x +=μ,1471ˆx =μ中,哪一个是无偏估计?( )A .1ˆμB .2ˆμC .3ˆμD .4ˆμ 66.总体X 服从)(λP ,其中0>λ为未知参数,n X X X ,,21为样本,则下面说法错误的是( ) A .X 是E X 的无偏估计量 B .X 是DX 的无偏估计量 C .X 是EX 的矩估计量 D .X 是2λ的无偏估计量 67.矩估计必然是( )(1)无偏估计 (2)总体矩的函数 (3)样本矩的函数 (4)极大似然估计 68.设θˆ是未知参数θ的一个估计量,若θθ=)ˆ(E ,则θˆ是θ的( ) A .极大似然估计 B .矩估计 C .无偏估计 D .有偏估计二、填空题1. A 、B 为两事件,8.0)(=⋃B A P ,2.0)(=A P ,4.0)(=B P ,则=-)(A B P 。
(完整版)概率论与数理统计练习题附答案详解
第一章《随机事件及概率》练习题一、单项选择题1、设事件A 与B 互不相容,且P (A )>0,P (B )>0,则一定有( )(A )()1()P A P B =-; (B )(|)()P A B P A =;(C )(|)1P A B =; (D )(|)1P A B =。
2、设事件A 与B 相互独立,且P (A )>0,P (B )>0,则( )一定成立 (A )(|)1()P A B P A =-; (B )(|)0P A B =;(C )()1()P A P B =-; (D )(|)()P A B P B =。
3、设事件A 与B 满足P (A )>0,P (B )>0,下面条件( )成立时,事件A 与B 一定独立(A )()()()P AB P A P B =; (B )()()()P A B P A P B =U ;(C )(|)()P A B P B =; (D )(|)()P A B P A =。
4、设事件A 和B 有关系B A ⊂,则下列等式中正确的是( )(A )()()P AB P A =; (B )()()P A B P A =U ;(C )(|)()P B A P B =; (D )()()()P B A P B P A -=-。
5、设A 与B 是两个概率不为0的互不相容的事件,则下列结论中肯定正确的是( ) (A )A 与B 互不相容; (B )A 与B 相容;(C )()()()P AB P A P B =; (D )()()P A B P A -=。
6、设A 、B 为两个对立事件,且P (A )≠0,P (B ) ≠0,则下面关系成立的是( ) (A )()()()P A B P A P B =+U ; (B )()()()P A B P A P B ≠+U ;(C )()()()P AB P A P B =; (D )()()()P AB P A P B =。
《概率论与数理统计》练习题试卷及答案解析
《概率论与数理统计》练习题试卷及答案解析一.单项选择题(每小题2 分,共 20 分)1.某射手向一目标射击两次,A i 表示事件“第i 次射击命中目标”,i =1,2,B 表示事件“仅第一次射击命中目标”,则B =( )B A .A 1A 2 B .21A A C .21A A D .21A A 2.则( )DA .121=a B .61=a C .121=a D .41=a 3.设事件A 与B 相互独立,则有( )CA .0)(=AB P B .)()()(B P A P B A P +=C .)()()(B P A P AB P =D .)()(A P A B P =4.设随机变量X 服从正态分布),(2σμN ,则其概率密度函数的最大值为( )D A .0 B .1 C .π21 D .212)2(-πσ5. 设随机变量X 与Y 互相独立, 且X ~),,(211σa N Y ~),,(222σa N 则Y X Z +=仍服从正态分布,且( ) DA . Z ~),(22211σσ+a N B . Z ~),(2121σσa a N +C . Z ~),(222121σσa a N + D . Z ~),(222121σσ++a a N6.设随机变量X 服从[-1,2]上的均匀分布,则X 的概率密度)(x f 为( )AA .⎪⎩⎪⎨⎧≤≤-=.,0;21,31)(其他x x f B .⎩⎨⎧≤≤-=.,0;21,3)(其他x x fC .⎩⎨⎧≤≤-=.,0;21,1)(其他x x fD . ⎪⎩⎪⎨⎧≤≤--=.,0;21,31)(其他x x f7.设,21X X ,3X 是总体~X ()2,σμN 的样本,则μ的无偏估计量是( )AA .3212110351X X X ++ B .321316131X X X ++ C .3211274131X X X ++ D .3211513151X X X ++8.某店有7台电视机,其中2台为次品,今从中随机地抽取3台,设X 为其中次品数,则数学期望EX =( )D A .73 B .74 C .75 D .76 9.设总体X ~N (2,σμ),X 1,X 2,…,X 10为来自总体X 的样本,X 为样本均值,则X ~( )CA .)10(2σμ,N B .)(2σμ,N C .)10(2σμ,N D .)10(2σμ,N 10.在假设检验中,H 0为原假设,H 1为备择假设,则第一类错误是( )BA. H 1成立,拒绝H 0B. H 0成立,拒绝H 0C. H 1成立,拒绝H 1D. H 0成立,拒绝H 1 二.填空题(每空 2 分,共 20 分)1.连续抛一枚均匀硬币4次,则正面至少出现一次的概率为___________.1615 2.设A ,B 为互不相容的两个随机事件,P (A )=0.3,P (B )=0.4,则)(B A P ⋃)=________.0.73.设随机变量X 的概率密度⎪⎩⎪⎨⎧≤≤=,,0;10,A )(2其他x x x f 则常数A=_________.34.设随机变量X 是服从区间(μ,2)上的均匀分布,且1=EX ,则μ= . 1 5.设X 为连续随机变量,c 为一个常数,则P {X =c }=____________.06.设随机变量X 服从二项分布),(p n B ,且,44.1,4.2==DX EX 则二项分布的参数p = . 0.47.10X =E ,4=DX ,若{}04.010≤≥-c X P ,则常数c = . 108.已知E (X )=1,E (Y )=2,E (XY )=3,则X ,Y 的协方差Cov (X ,Y )=_____________.2 9.设二维随机变量(X,Y)的分布律为则P{XY=0}=___________。
概率论与数理统计试题及答案
概率论与数理统计试题及答案一、选择题(每题2分,共10分)1. 设随机变量X服从参数为λ的泊松分布,那么P(X=2)等于:A. λ^2B. e^(-λ)λ^2C. λ^2/2D. e^(-λ)λ^2/2答案:D2. 某工厂生产的零件长度服从正态分布N(50, 25),那么长度在45到55之间的零件所占的百分比是:A. 68.27%B. 95.45%C. 99.74%D. 50%答案:B3. 一袋中有10个红球和5个蓝球,随机抽取3个球,那么抽到至少2个红球的概率是:A. 0.4375B. 0.5625C. 0.8125D. 0.9375答案:C4. 设随机变量Y服从二项分布B(n, p),那么E(Y)等于:A. npB. n/2C. p/nD. n^2p答案:A5. 以下哪个事件是不可能事件:A. 抛硬币正面朝上B. 抛骰子得到1点C. 一天有25小时D. 随机变量X取负无穷答案:C二、填空题(每题3分,共15分)6. 设随机变量X服从均匀分布U(0, 4),那么P(X>2)等于______。
答案:1/27. 随机变量Z服从标准正态分布,那么P(Z ≤ -1.5)等于______(结果保留两位小数)。
答案:0.06688. 设随机变量W服从指数分布Exp(μ),那么W的期望E(W)等于______。
答案:1/μ9. 从一副不含大小王的扑克牌中随机抽取一张,抽到黑桃A的概率是______。
答案:1/5210. 设随机变量V服从二项分布B(15, 0.4),那么P(V=5)等于______(结果保留三位小数)。
答案:0.120三、解答题(共75分)11. (15分)设随机变量ξ服从二项分布B(n, p),已知P(ξ=1) = 0.4,P(ξ=2) = 0.3,求n和p的值。
答案:根据二项分布的性质,我们有:P(ξ=1) = C(n, 1)p^1(1-p)^(n-1) = 0.4P(ξ=2) = C(n, 2)p^2(1-p)^(n-2) = 0.3通过解这两个方程,我们可以得到n=5,p=0.4。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 随机事件及其概率练习: 1. 判断正误(1)必然事件在一次试验中一定发生,小概率事件在一次试验中一定不发生。
(B )(2)事件的发生与否取决于它所包含的全部样本点是否同时出现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)若()0,P A = 则A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个孩子的家庭孩子的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),则P{}1=3两个女孩。
(B )(8)若P(A)P(B)≤,则⊂A B 。
(B ) (9)n 个事件若满足,,()()()i j i j i j P A A P A P A ∀=,则n 个事件相互独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件满足P(AB)=0,则©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,则P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)若A, B 为两随机事件,且B A ⊂,则下列式子正确的是(A) A. P(A ∪B)=P(A) B. P(AB)=P(A) C. P(B|A)=P(B) D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,则()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 满足P(B|A)=1, 则(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂ (7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 则(D)A. 事件A, B 互不相容B. 事件A 和B 互相对立C. 事件A, B 互不独立 D . 事件A, B 互相独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率分别是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
解:设事件A A B 甲乙表示甲命中,表示乙命中,表示目标被命中。
()()0.6()=0.75()()0.6+0.5-0.60.5()=()()()()P A B P A P A B P B P A A A B A B A P B P A A P A A P A P A ===⋃⨯⊂=⋃=甲甲甲甲乙甲甲甲甲乙甲乙甲乙(因为,所以),目标被命中只要甲乙至少有一个命中即可,所以甲乙独立射击,所以。
3.设一枚深水炸弹击沉一潜艇的概率为0.6,求释放4枚深水炸弹能击沉潜艇的概率。
解:4枚深水炸弹只要有一枚射中就有击沉潜艇的可能,所以 设B 表示潜艇被击沉,,1,2,3,4i A i =为第i 枚深水炸弹击沉潜艇。
_______________________12341234412341234()()1()1()1()()()()10.4P B P A A A A P A A A A P A A A A P A P A P A P A =⋃⋃⋃=-⋃⋃⋃=-=-=-4.某卫生机构的资料表明:患肺癌的人中吸烟的占90%,不患肺癌的人中吸烟的占20%。
设患肺癌的人占人群的0.1%。
求在吸烟的人中患肺癌的概率。
解:设A 表示吸烟,B 表示患肺癌。
已知条件为()90%,()20%,()0.1%.()()()()()()()()()0.0010.90.0010.90.9990.2P A B P A B P B P B P A B P AB P B A P A P B P A B P B P A B =====+⨯=⨯+⨯ 5.设玻璃杯整箱出售,每箱20个,各箱含0,1,2只残次品的概率分别为0.8,0.1,0.1,一顾客欲购买一箱玻璃杯,由售货员任取一箱,经顾客开箱随机查看4只,若无残次品,则购买,否则不买,求 (1)顾客购买此箱玻璃杯的概率。
(2)在顾客购买的此箱玻璃杯中,确实没有残次品的概率。
解:参考书上24页例4 第二章随机变量及其分布练习题: 1判断正误:(1) 概率函数与密度函数是同一个概念。
(B )(2) 超几何分布在一定条件下可近似成二项分布。
(A )(3)()P λ中的λ是一个常数,它的概率含义是均值。
(A ) (3) ()()P a X b P a X b <<=≤≤。
(B ) (4) 若X 的密度函数为()f x =cos x ,则0(0)cos .P X tdt ππ<<=⎰(B ) 2选择题(1) 若X 的概率函数为(),0,1,2,a ....kD P X k a k k A B C e e λλλλλ-===-则的值为(D )!(2) 设在区间[],a b 上,X 的密度函数()sin f x x =,而在[],a b 之外,()0f x =,则区间[],a b 等于:(A) []3.0,.0,.,0.0,222A B C D ππππ⎡⎤⎡⎤⎡⎤-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦(3) 若(),()()X P m P X m λ~==当时最大?(A)[][]..1..B C D A λλλλλ-或三解答题(1) 已知一批产品共20个,其中有4个次品,按不放回与有放回两种抽样方式抽取6个产品,求抽得的次品数的概率分布。
解:不放回抽样,次品数(4,6,20)X H ~6416620(),0,1,2,3,4.k kC C P X k k C -=== 放回抽样,次品数4(6,)20X B ~ 6614()()(),0,1,2,3,420.55k k kP X k C k -=== (2) 设X 的分布律是11(1),(1),22P X P X =-===求它的分布函数。
解:1,()0,()0;111,()()(1);21,()()(1)(1)1;0,0;1(),1121, 1.x P X x F x x F x P X x P X x F x P X x P X P X x F x x x <-<==-≤<=≤==-=≤=≤==-+==<⎧⎪⎪=-≤<⎨⎪≥⎪⎩(3) 设连续型随机变量X 的分布函数为0,0,()sin ,0,21,2x F x A x x x ππ⎧⎪<⎪⎪=≤≤⎨⎪⎪>⎪⎩求(1)常数A 的值(2)()6P x π<(3)X 的密度函数解:由分布函数的右连续性,函数的右极限值等于函数值有2lim ()(),1sin , 1.22x F x F A A πππ+→===所以所以1()()()()sin 0.6666662P X P X F F ππππππ<=-<<=--=-= cos ,0,()()20,.x x f x F x π⎧≤≤⎪'==⎨⎪⎩其它4设随机变量X 的概率密度函数为,12,()0,Ax x f x ≤≤⎧=⎨⎩其他,求(1)常数A(2)3(1)2P X -<< (3)X 的分布函数。
解:由密度函数性质有2221121,21,.223x A Axdx AA A ==-=∴=⎰333122221-1-113215(1)()0.23312P X f x dx dx xdx x -<<==+==⎰⎰⎰ 分布函数为:221-11()()0;211112()()().33332,() 1.xx xx F x P X x x F x P X x f t dt tdt t x x F x ∞≤=<=<<=<====-≥=⎰⎰当时,当时,当时 5.电话站为300个电话用户服务,在一小时内每一电话用户使用电话的概率等于0.01,求在一小时内恰有4个用户使用电话的概率:先用二项分布计算,再用泊松分布近似计算,并求相对误差。
解:4430041300(4)0.010.990.1689P x C -===,3000.013np λ==⨯=。
4323(4)0.16804!P x e -===121-0.53%P P R P ∣ ∣ ==第三章 随机变量的数字特征练习 1判断正误:(1)只要是随机变量,都能计算期望和方差。
(B )(2)期望反映的是随机变量取值的中心位置,方差反映的是随机变量取值的分散程度。
(A )(3)方差越小,随机变量取值越集中,方差越大越分散。
(A ) (4)方差的实质是随机变量函数的期望。
(A )(5)对于任意的X,Y ,都有,()EXY EXEY D X Y DX DY =-=-成立。
(B ) (6)若,EX EY =则X Y =。
(B ) 2选择题(1) 对于X 与Y ,若EXY=EXEY ,则下列结论不正确的是(A ) A. X 与Y 相互独立 B. X 与Y 必不相关C. D(X+Y)=DX+DYD. cov(X,Y)=0 (2) ~(,), 2.4, 1.44,X B n p EX DX ==则,n p 的值为(B )(3) 两个独立随机变量X 和Y 的方差分别为4和2,则3X-2Y 的方差是(D )A. 8B. 16C. 28D. 44 (4) 若EX ,DX 存在,则E(DX),D(EX)的值分别为(C )A. X, XB. DX, EXC. DX, 0D. EX, DX 3解答题(1)X 与Y 相互独立,且EX=EY=1,DX=DY=1,求2E(X-Y)。