浙教版七年级数学上册:4.2 代数式 学案
七年级数学上册 4.2《代数式》教案 浙教版
4.2《代数式》教案1、教学目标:1)知识与技能目标:①让学生经历代数式概念的产生过程,了解代数式的概念.①使学生会用代数式表示简单的数量关系,并能运用代数式这一数学模型去表示和解释简单实际问题中的数量关系.2)过程与方法目标:①使学生在探索与创造的数学学习活动中,学会与人合作、与人交流.②通过自主探索、小组合作、互相交流数学活动,让学生体验如何进行数学学习,变“学会”为“会学”.3)情感与态度目标:①渗透代数式的模型思想,让学生体会数学知识来源于实践又反作用于实践的辩证唯物主义思想,进一步发展符号感.②激发学生探究数学的兴趣,发扬合作学习的精神,养成踏实细致、独立思考、严谨科学的学习习惯.③利用实际情境,渗透爱国主义教育和乡土文化教育,培养学生关注生活,热爱数学的情感,增进学生对数学的理解和应用数学的信心.2、教学重、难点:1)教学重点:代数式的概念和列代数式.突出重点措施:(1)通过比较——判别——交流——构造等环节,让学生经历代数式概念的产生过程,使学生在过程中获得对数学概念的理解.(2)通过“根据语言表述的数量关系列代数式”和“把代数式表示的数量关系用语言表述”两方面进行对比、观察、归纳,让学生获得必需的数学经验.2)教学难点:用代数式表示例2中的数量关系.突破难点策略:分二步分散难点①引入时设计学生身边的实际情景,让学生体会到代数式存在的普遍性及行程问题中的数量关系.②通过“审题”和“递进性追问”逐步分散难点.3、教学流程:四、设计说明:(一)指导思想:1、以落实课程标准为终极目标;以学生知识技能的形成、数学思维的完善和情感态度的发展为出发点;以多媒体课件为辅助教学手段;以教师的组织、引导、参与为依托;以学生的积极动脑、动口为主线来构建本课时的教学模式,促进学生的有效学习活动.2、以数学来源于生活,又服务于生活为原则设计整节课.3、突出新知识必须在学生自主探索,交流合作的基础上让学生自己去发现和归纳.(二)主要理念:1、重视情景创设,注重知识从现实中来到现实中去的原则.1、突出数学学习内容的的现实性、有价值性和富有挑战性.2、注重数学与英语、信息技术等课程的整合.3、关注学生学习的过程,进行多元评价.(三)设计思路:1、以贯彻新课程理念为前提,从学生的认知特点出发,通过创设情境,以参观抗日救亡干部学校为主线,把整节课串联起来,让学生从始至终都置身于参观游玩之中,却又紧紧围绕学习,仿佛玩中学,学中玩,不知不觉中来学习新知识.2、引导学生观察、类比、联想已有的知识经验,归纳、总结新的知识等一系列活动,让学生充分感受知识的产生和发展过程,使学生始终处于积极的思维状态之中,使新概念的得出不觉得意外,让学生跳一跳就可以摘得到桃子。
七年级数学上册第4章代数式4.2代数式第2课时教案新版浙教版
4.2 代数式(第2课时)一、教学目标:知识目标:掌握如何利用代数式来表示简单的数量关系。
能力目标:通过列代数式,培养学生的抽象思维能力.情感目标:通过从数到式的飞跃,体会代数式概念的重要性,体验从特殊到一般的过程。
二、教学重难点:重点:根据数量关系列代数式难点:列代数式的方法和技巧.三、教学过程:(一)导入新课:教师示多媒体图片:儿歌《小白兔》:一只小兔白又白,两只耳朵竖起来;4条小腿跑得快,蹦蹦跳跳真可爱;两只小兔白又白,4只耳朵竖起来,8条小腿跑得快,蹦蹦跳跳真可爱;三只小兔白又白,6只耳朵竖起来,12条小腿跑得快,蹦蹦跳跳真可爱……提问:(1)儿歌中数目之间有什么规律?(2)按这个规律怎样往下接着唱?(这是一首永远也唱不完的儿歌)(3)若有a只小兔,那么有多少只耳朵?多少条腿?(4)字母a表示的是什么?让学生观察、思考、猜测,从而回答出课题问题.(二)探究新知:1. 师:请同学们自主探究,完成下面的问题:(1)如图为一阶梯的纵截面,一只老鼠沿长方形的两边A-B-D的路线逃跑,一只猫同时沿阶梯(折线)A-C-D的路线去追,结果在距离C点0.6 m的D处,猫捉住老鼠,已知老鼠的速度是猫的4/5, 阶梯A-C的长度是_______.(2)将三个边长为a cm的正方体拼成一个长方体,则这个长方体的体积为 cm3.学生解答,教师点评、分析.学生完成上述问题后小组讨论交流结果,教师做总结:在解决实际问题时,常常把问题中与数量有关的词语用代数式表示出来,即列代数式,使问题变得具有简洁性和一般性.教师提问学生回答,最后教师作总结:这一节课学习了什么是代数式和怎样列代数式,其关键在于仔细审题,弄清题意,正确找出题中的数量关系和运算顺序,为避免弄错运算顺序,对于一些容易混淆的说法,要仔细进行对比.通过学生的动手操作,观察、分析、交流、进而归纳总结问题的规律;同时让学生经历从“特殊数”到“一般字母表示数”,及从“一般字母表示数”到“特殊数”的转化,向学生渗透了“一般”与“特殊”之间的相互转化思想.2.例题讲解例2 一辆汽车以80 km/h的速度行驶,从A城到B城需t(h).如果该车的行驶速度增加v(km/h),那么从A城到B城需多少时间?分析:对此实际应用题进行分析,指导学生独立解决,让学生自主判断解决的对错.用代数式表示用语言叙述的数量关系要注意:①弄清代数式中括号的使用;②字母与数字做乘积时,习惯上数字要写在字母的前面.【智力题】扑克牌的奥秘甲:我转过身,不看牌,你按我说的步骤做,第一步,发牌,分发左、中、右三堆,各堆牌的张数相同,但是不要说出有几张;第二步,从左边一堆拿出两张,放进中间一堆;第三步,从右边一堆拿出一张,放进中间一堆;第四步,从中间一堆往左边运牌,使左边一堆牌的张数加倍.数一数,中间还剩几张牌?乙:数过了,不告诉你有几张.甲:不说我也知道,中间有5张.乙:啊!请问:甲是如何知道的?(三)课内小结:谈谈本节课你对列代数式的认识和体会?(四)课堂练习:(五)作业布置:。
七年级数学上册 第4章 代数式 4.2 代数式教案(新版)浙教版 教案
4.2 代数式1教学目标知识目标:在具体情境中让学生观察、分析归纳得出代数式的概念。
理解代数式的概念。
能力目标:进一步让学生理解字母表示数的意义,并能解释代数式的实际背景或几何意义,会用代数式表示简单的数量关系。
情感目标:使学生初步认识数学与人类的密切关系,体验数学活动充满着探索与创造。
2学情分析学生“现有的发展区”是上一节所学的初步理解用字母表示数的意义,会用字母表示一些数量关系,会列算式解决简单实际问题。
3重点难点教学重点:代数式的概念和列代数式。
教学难点:列代数式时涉及加、减、乘、除多种运算,正确理解题意、把握运算顺序是本节教学的难点。
4教学过程活动1【导入】复习引入师:上节课,我们学习了用字母表示数和数量关系,接下来我们测试一下同学们的掌握情况。
填空:(1)大米的单价为a 元/千克,,食油的单价为 b元/千克。
买10千克大米、2千克食油共需元。
(2)日平均气温是指一天中2:00,8:00,14:00,20:00四个时刻气温的平均值。
若上述四个时刻气温的摄氏度数分别是a、b、c、d ,则日平均气温的摄氏度数是。
(3)长方体的底面积为a平方厘米,它的高为114厘米,则它的体积是立方厘米。
(4)一个五彩花圃的形状如图所示,花圃的面积为.(5)一隧道长l米,一列火车长180米,如果该列火车穿过隧道所花的时间为t分,则列车的速度是米/分。
让学生根据情景列出算式,并指学生口述答案:活动2【讲授】新课教学探究新知:观察式子: , , , ,有什么特征?它们与我们以前学过的算式有什么区别?引出本节课并板书课题:代数式并给出代数式的概念:由数、表示数的字母和运算符号组成的数学表达式称为代数式。
运算指的是加、减、乘、除、乘方和开方。
单独的一个数或者一个字母也称代数式。
师:(幻灯片出示)判别下列哪些是代数式?在学生交流的基础上点明代数式的构成:(1)一个代数式由数、表示数的字母和运算符号组成. 这里的运算指加、减、乘、除、乘方和开方6种运算.(2)规定单独一个数或者字母也称代数式.通过对代数式构成的理解,师追问:你能说出一些代数式吗?(学生举例)以此达到让学生巩固代数式构成的进一步理解与掌握。
七级数学上册(浙教版)课件:4.2 代数式 (共22张PPT)
A.3x
B.13x
C.x+3 D.x+13
初中数学
3.如果两个数的和为10,其中一个数为x,那么表示这两个数的积的
代数式是( C ) A.10x
B.x(10+x)
C.x(10-x)
D.x(x-10)
4.(2016•大连)某文具店三月份销售铅笔100支,四、五两个月销售量
连续增长.若月平均增长率为x,则该文具店五月份销售铅笔的支数是
(1)a与b的平方差可表示为___a_2_-__b_2__; (2)x是两位数,y是一位数,如果把y放在x的左边,则组成的三位数表示为 __1_0_0__y_+__x_;
初中数学
(3)学生校服每套成本为x元,售价为y元,则每套的利润是 __(_y_-__x_)_元___;
(4)一圆形跑道长 s(m),甲、乙两人在跑道上练习跑步,甲 的速度为 x(m/s),乙的速度为 y(m/s),且 x>y.若两人同时同地
初中数学
15.某种书每本定价8元,若购书不超过10本,按原 价付款;若一次购书10本以上,超过10本部分按八 折付款.设一次购书数量为x本(x>10),则付款金 额为__(6_._4_x_+__1_6_)_元.
初中数学
16.方方和圆圆的房间窗帘的装饰物如图,它们分别由两个四分之一 圆和四个半圆组成(半径都分别相同).她们的窗户能射进阳光的面积 分别是多少(窗框面积不计)?
s 反向而行,则__(x_+__y_)__s 后两人第一次相遇;若两人同时同地同 向而行,则__(_x_-s_y__) _s 后两人第一次相遇.
初中数学
9.农民张大伯因病住院,手术费用为a元,其他费用为b元,由于参加 农村合作医疗,手术费用报销85%,其他费用报销60%.则张大伯此次住 院可报销__(_8_5_%__a_+__6_0_%__b_) _元. 10.代数式8x+5y可以表示很多意义,例如:若x表示苹果每千克的钱 数,y表示香蕉每千克的钱数,则8x+5y表示买8 kg苹果和5 kg香蕉共 花的钱数.请你给8x+5y赋予另一种实际意义.
浙教版数学七年级上册第四章《代数式》复习教学设计
浙教版数学七年级上册第四章《代数式》复习教学设计一. 教材分析浙教版数学七年级上册第四章《代数式》是学生在初中阶段首次系统接触代数式的学习,本章内容主要包括代数式的概念、代数式的运算、列代数式等。
通过本章的学习,使学生理解和掌握代数式的基本概念和基本运算,培养学生运用代数式解决实际问题的能力。
二. 学情分析七年级的学生已经具备了一定的数学基础,对数学符号和运算有一定的认识,但部分学生可能对代数式的抽象概念理解起来较为困难。
因此,在教学过程中,需要关注学生的个体差异,针对不同层次的学生进行教学,使他们在原有基础上得到提高。
三. 教学目标1.理解代数式的概念,掌握代数式的基本运算方法。
2.能够运用代数式解决实际问题,提高学生的应用能力。
3.培养学生的逻辑思维能力和团队合作能力。
四. 教学重难点1.代数式的概念及其运用。
2.代数式的运算方法,如合并同类项、去括号等。
五. 教学方法1.情境教学法:通过生活实例引入代数式,使学生能够直观地理解代数式的实际意义。
2.小组合作学习:分组讨论,培养学生团队合作精神和沟通能力。
3.引导发现法:教师引导学生发现代数式的规律,激发学生的探究欲望。
4.实践操作法:让学生在实际操作中掌握代数式的运算方法。
六. 教学准备1.教学课件:制作精美的课件,辅助教学。
2.练习题:准备适量的练习题,巩固所学知识。
3.教学道具:如卡片、小黑板等,用于展示和讲解。
七. 教学过程1.导入(5分钟)利用生活实例引入代数式,如“某商店进行打折活动,原价100元的商品打8折,求打折后的价格。
”让学生感受代数式在实际生活中的应用。
2.呈现(10分钟)讲解代数式的概念,如“代数式是由数字、字母和运算符号组成的表达式。
”并通过PPT展示一些代数式的例子,让学生加深理解。
3.操练(10分钟)让学生进行代数式的书写练习,如根据给出的情境,写出相应的代数式。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)讲解代数式的运算方法,如合并同类项、去括号等。
浙教版数学七年级上册4.3《代数式的值》(第1课时)教学设计
浙教版数学七年级上册4.3《代数式的值》(第1课时)教学设计一. 教材分析本节课的内容是浙教版数学七年级上册4.3《代数式的值》。
这部分内容是学生在掌握了有理数、整式、函数等基础知识后的进一步学习,是学生进一步学习代数式的基础。
本节课主要让学生了解代数式的概念,学会计算代数式的值,并能够运用代数式解决一些简单的问题。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数、整式、函数等知识有一定的了解。
但是,学生对代数式的概念可能还比较陌生,需要通过实例来理解和掌握。
学生在计算代数式的值时,可能会遇到一些困难,需要通过练习来提高。
三. 教学目标1.知识与技能:让学生了解代数式的概念,学会计算代数式的值,并能够运用代数式解决一些简单的问题。
2.过程与方法:通过实例的展示和练习,让学生掌握代数式的计算方法,提高学生的计算能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的逻辑思维能力。
四. 教学重难点1.重点:代数式的概念,计算代数式的值的方法。
2.难点:灵活运用代数式解决实际问题。
五. 教学方法本节课采用实例教学法、问题驱动法、小组合作法等教学方法。
通过实例的展示和问题的提出,引导学生思考和探索,激发学生的学习兴趣。
同时,通过小组合作,让学生互相交流和讨论,提高学生的合作能力。
六. 教学准备1.教师准备:准备好相关的教学材料,如PPT、例题、练习题等。
2.学生准备:预习相关的知识,了解代数式的概念。
七. 教学过程1.导入(5分钟)教师通过一个实际问题引入本节课的内容,如“小明的年龄比小红大3岁,小红今年12岁,请问小明今年几岁?”让学生思考和回答,引导学生了解代数式的概念。
2.呈现(10分钟)教师通过PPT展示代数式的定义和计算方法,让学生初步了解代数式的概念,并学会计算代数式的值。
3.操练(10分钟)教师给出一些代数式的计算题目,让学生独立完成,并互相交流和讨论。
教师在这个过程中给予学生指导和帮助,解答学生的问题。
4.2 代数式的值 浙教版七年级数学上册课件
答:该企业明年的年产值 能达到1.21a亿元.有去年的年产值是2亿元,可预计 明年的年产值是2.42 亿元..
巩固练习
1.当a=3,b= -1时,求下列各代数式的值. (1)(a+b)²; (2) a²+2ab+b².
解:(1)当a=3,b= -1时,
(a+b)²=[3+(-1)]²=
2²=4
(2)当a=3,b= -1时,
a²+2ab+b²=3²+2×3× (-1)+(-1)²
=9+(-6)+1=
4
2.某超市在春节期间对顾客实行优惠,规定如下:
一次性购物 少于200元 低于500元但 不低于200元
500元或超过500元
优惠办法 不予优惠
九折优惠
其中500元部分给予九折优惠, 超过500元部分给予八折优惠
(1)若顾客在该超市一次性购物x元,当x小于500元但不小于200时,他应付 款________元,当x大于或等于500元时,他应付款____________元(用含x的 代数式表示);
4.3 代数式的值
教学目标
1.能解释代数式值的实际意义. 2.了解代数式值的概念.
教学目标
重点:代数式值的实际含义. 难点:根据代数式求值推断代数式所反 映的规律.
情境导入
请四位同学做一个传数游戏.规则为:第一个同学任意报一个数给第二个同 学,第二个同学把这个数加1传给第三个同学,第三个同学再把听到的数平 方后传给第四个同学,第四个呢?噢!把听到的数减去1报出答案.
例2 某企业去年的年产值为 a亿元,今年比去年增长了10%.如果明年还能按这个 速度增长,请你预测一下,该企业明年的年产值将能达到多少亿元?如果去年的产 值是2亿元,那么预计明年的年产值是多少亿元?
浙教版七上4.2代数式预习(学案)
4.2 代数式【要点预习】1.代数式的概念:含有 的数学表达式称为代数式. 一个代数式由数、表示数的字母和 组成. 单独 或者 也称为代数式. 这里的运算是指 .【课前热身】1. 用代数式表示x 的相反数 .答案:-x2. 用代数式表示:a 的3倍与2的和 .答案:3a +23. 若甲数是乙数的2倍,设甲数为x ,则乙数为 . 答案:12x 4. 某商场2009年的销售利润为a ,预计以后每年比上一年增长b %,那么2008年该商场的销售利润将是 .答案:a (1+b %)【讲练互动】【例1】在4,,4,5,3xy x m π-+中, 代数式有…………………………………………( ) A. 2个 B. 3个 C. 4个 D. 5个答案:D【变式训练】1. 下列属于代数式的是………………………………………………………………( )A. S=abB. a 2-b 2=(a +b )(a -b )C. 2a +3D. S=πR 2答案:C【例2】用代数式表示:(1) m 与n 的和的一半;(2) x 与y 的差的平方;(3) 5a 的立方根;(4) a 与b 的平方和.解:(1) 2m n +;(2) (x -y )2;(3) (4) a 2+b 2.【黑色陷阱】列代数式时, 注意“关系语句”的正确理解, 特别是运算顺序的正确理解.【变式训练】2. 设甲数为x,乙数为y,用代数式表示:(1) 甲,乙两数的差除以两数的积:______________________.(2) 甲数的立方与乙数的3倍的和:______________________.(3) 甲数除乙数的商与乙数平方的差:_____________________.(4) 甲数与乙数差的立方的一半:_________________________.答案:(1)x yxy-;(2) x3+3y;(3) 2yyx-;(4)3()2x y-.【例3】A,B两站相距s千米,客,货两列火车分别从A,B两站以y千米/小时的速度开出,当两车相距24千米时(此时两车还未相遇),已行驶了多少小时.(用代数示表示)解:24sy-小时.【变式训练】3. 例3是如果去掉条件“此时两车还未相遇”, 问题又该如何解?解:24sy-或24sy+小时.。
浙教版数学七年级上册4.2《代数式》教学设计
浙教版数学七年级上册4.2《代数式》教学设计一. 教材分析浙教版数学七年级上册4.2《代数式》是学生在掌握了有理数、方程、不等式等基础知识后的进一步学习,是初中数学的重要内容。
本节内容主要介绍代数式的概念、分类和简单的运算。
教材通过具体的例子,引导学生理解代数式的意义,并通过练习让学生熟练掌握代数式的运算方法。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数、方程、不等式等概念有一定的了解。
但学生在代数式的理解和运用上还存在一定的困难,如对代数式的分类、代数式运算的规则等。
因此,在教学过程中,需要结合学生的实际情况,用生动具体的例子让学生理解代数式的概念,并通过大量的练习让学生熟练掌握代数式的运算方法。
三. 教学目标1.理解代数式的概念,掌握代数式的分类。
2.能够进行简单的代数式运算,如加减乘除、乘方等。
3.能够运用代数式解决实际问题。
四. 教学重难点1.代数式的概念和分类。
2.代数式的运算方法。
五. 教学方法采用问题驱动法、案例教学法和练习法。
通过具体的例子引导学生思考,用案例教学法让学生深入了解代数式的应用,通过大量的练习让学生熟练掌握代数式的运算方法。
六. 教学准备1.教材、教案、PPT。
2.练习题。
3.教学辅助工具,如黑板、粉笔等。
七. 教学过程1.导入(5分钟)通过一个实际问题引导学生思考,如“小明买了3个苹果和2个香蕉,苹果每个2元,香蕉每个3元,小明一共花了多少钱?”让学生尝试用数学语言来表示这个问题,从而引出代数式的概念。
2.呈现(15分钟)通过PPT展示代数式的定义和分类,让学生了解代数式的基本概念。
同时,通过具体的例子,让学生理解代数式的意义和运用。
3.操练(20分钟)让学生进行代数式的运算练习,如加减乘除、乘方等。
教师可以通过布置一些具有挑战性的题目,让学生在练习中掌握代数式的运算方法。
4.巩固(10分钟)通过一些具有实际意义的问题,让学生运用代数式进行解决。
例如,可以让学生解决一些几何问题,如求解三角形的面积、周长等。
浙教版-数学-七年级上册-4.2 代数式 教学设计
代数式一、目标分析1.了解代数式的概念。
2.掌握如何利用代数式来表示简单的数量关系。
3.培养学生基本的分析、比较能力和抽象思维能力。
4.通过从数到式的飞跃,体会代数式概念的重要性,体验从特殊到一般的过程。
二、教学重点与难点教学重点:代数式的概念和根据数量关系列代数式教学难点:代数式变化三、教学过程1.创设情景,引起思考一隧道长l米,一列火车长180米,如果该列火车穿过隧道所花的时间为t分,那么列车的速度怎么表示呢?11802 vt+⨯=2.类比结果,展示新知首先学生指出后者与前者的区别在于后者是由数和表示数的字母及运算符号组成的表达式,再举个例子大米的单价为a元/千克,食油的单价为b元/千克,买了10千克大米、2千克食油共需几元,从而给出定义像900a+500b+600c,10a+2b这样含有字母的数学表达式称为代数式。
注意两点:1.代数式由数、表示数的字母和运算符号组成,运算符号除上面几个代数式出现的加,减,乘外,还包括除,开方和乘方运算;2.单独的一个数或一个字母也称为代数式.同时可以发现,通过代数式可以简明普遍地表示实际问题中的量。
3.范例练习,师生互动例1.用代数式表示:(口答)x的3倍与3的差;(2)x的2倍与y的12的和;(3)a与b的和的平方;(4)2a的立方根;2(1)3 3 (2)2 (3)(a+b)2y x x -+在例1的学习中可以穿插a 与b 两数的平方和或a 与b 的平方的和,让学生体验列代数式犹如生活,须注意条理,把握顺序,抓住关键的字。
四、归纳小结,整理知识让学生从知识点、注意点及思想方法等方面,对本节课所学的进行归纳整理,老师再适当补充的方法,并在小结过程中指出以下几点:(1)要理清运算的顺序,注意代数式的书写;(2)要咬文嚼字,仔细斟酌某些关键词;(3)要善于分析实际情景中的数量关系。
五、课内练习,自我检测,布置作业。
七年级数学上册第4章代数式4.2代数式说课稿(新版浙教版)
七年级数学上册第4章代数式4.2代数式说课稿(新版浙教版)一. 教材分析《七年级数学上册》第4章代数式4.2代数式,是学生继学习算术运算后,进一步认识和理解数学符号和表达式的重要章节。
本节内容主要包括代数式的概念、代数式的分类和代数式的运算。
通过本节的学习,学生将能够理解代数式的含义,掌握代数式的基本运算方法,为后续的方程和不等式学习打下基础。
二. 学情分析七年级的学生已经具备了一定的算术基础,对于数学符号和运算规则有一定的认识。
但代数式作为一种抽象的表达方式,对于学生来说还是一个新的概念,需要通过实例和练习来逐步理解和掌握。
三. 说教学目标1.知识与技能:理解代数式的概念,掌握代数式的分类和基本运算方法。
2.过程与方法:通过观察、思考、交流、归纳等活动,培养学生的逻辑思维能力和解决问题的能力。
3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作意识和积极向上的学习态度。
四. 说教学重难点1.重点:代数式的概念、分类和基本运算方法。
2.难点:理解代数式的抽象意义,熟练进行代数式的运算。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例教学法、合作学习法等,引导学生主动探究和发现。
2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合学习任务单、练习册等辅助材料。
六. 说教学过程1.导入:通过一个实际问题,引入代数式的概念,激发学生的兴趣。
2.自主学习:学生通过阅读教材,了解代数式的定义和分类。
3.合作交流:学生分组讨论,总结代数式的基本运算方法。
4.教师讲解:针对学生的讨论结果,进行讲解和总结,强调重点和难点。
5.练习巩固:学生进行课堂练习,巩固所学知识。
6.拓展提高:学生通过解决实际问题,运用代数式进行分析和解答。
七. 说板书设计板书设计要清晰、简洁,能够突出代数式的概念和基本运算方法。
主要包括以下内容:1.代数式的概念2.代数式的分类3.代数式的基本运算方法八. 说教学评价通过课堂表现、课堂练习和课后作业等多种方式进行评价。
4.2代数式-浙教版七年级数学上册教案
4.2 代数式-浙教版七年级数学上册教案一、教学目标1.了解代数式的含义;2.能够使用字母表示代数式;3.理解代数式的加减法和乘法。
二、教学重点1.代数式的含义;2.代数式的加减法和乘法。
三、教学难点1.确定字母的含义;2.掌握代数式的加减法和乘法。
四、教学过程1. 导入新知识通过感性认识,将代数式的概念引入。
例如:让学生说出“10加4”与“2加12”哪个更优美,引导学生发现这两种表达方式都是把两个数相加。
但是,“10加4”和“2加12”不一样,后者的“2”、“12”可以用任何两个数替代,因此我们可以用两个字母代替这两个数,得到一个通用的公式表示为a+b。
然后,教师可以继续引导学生探究更多的类似情况。
2. 概念讲解1.代数式的含义:由数字、变量和运算符号组成的表示数值的式子叫做代数式。
其中,变量一般用字母来表示,例如a、b、x、y等。
2.代数式的加减法和乘法:代数式也可以进行加减法和乘法运算。
加减法运算和数的加减法一样,只需要把同类项相加减即可;乘法运算需要注意乘法分配律的使用。
3. 技能训练1.字母的含义问题。
教师可出示一些代数式,然后让学生说出里面各个字母的含义,并解释为什么用这个字母。
例如:2h-3k中,h和k分别代表什么含义?为什么用h和k?2.加减法的运算问题。
教师出一些代数式让学生进行加减运算,例如a+b+c,2a-3b+4c等。
3.乘法的分配律问题。
教师出一些代数式让学生应用乘法分配律完成运算。
例如:3(a+b)、5(2x+3y)等。
4. 总结归纳1.代数式是由数字、变量和运算符号组成的表达式;2.加减法运算和数的加减法一样,只需要把同类项相加减即可;3.乘法运算需要注意乘法分配律的使用。
五、课后作业1.完成教师留下的代数式计算题;2.用代数式计算周长和面积。
六、教学反思本课程针对代数式的概念和运算进行了讲解,并通过练习和归纳总结的方式帮助学生更好地掌握了这一概念。
未来,教师可以通过更多的例题和实践运用,帮助学生更深入地理解代数式并掌握运算。
浙教版-数学-七年级上册-4.2 代数式 教案
代数式教学目标1.使学生认识用字母表示数的意义,并能说出一个代数式所表示的数量关系;2.初步培养学生观察、分析及抽象思维的能力;3.通过本节课的教学,教育学生为建设有中国特色社会主义而刻苦学习.教学重点和难点重点:用字母表示数的意义.难点:正确地说出代数式所表示的数量关系.教学过程一、提出问题1.在小学我们曾学过几种运算律?都是什么?如何用字母表示它们?(通过启发、归纳最后师生共同得出用字母表示数的五种运算律)(1)加法交换律a+b=b+a;(2)乘法交换律a·b=b·a;(3)加法结合律(a+b)+c=a+(b+c);(4)乘法结合律(ab)c=a(bc);(5)乘法分配律a(b+c)=ab+ac.指出:(1)“×”也可以写成“·”号或者省略不写,但数与数之间相乘,一般仍用“×”;(2)上面各种运算律中,所用到的字母a,b,c都是表示数的字母,它代表我们过去学过的一切数.2.若用s表示路程,t表示时间,v表示速度,你能用s与t表示v吗?svt3.一个正方形的边长是a厘米,则这个正方形的周长是多少?面积是多少?(用l厘米表示周长,则l=4a厘米;用S平方厘米表示面积,则S=a2平方厘米).此时,教师应指出:(1)用字母表示数可以把数或数的关系,简明的表示出来;(2)在公式与方程中,用字母表示数也会给运算带来方便;那么究竟什么叫代数式呢?代数式的意义又是什么呢?这正是本节课我们将要学习的内容.二、讲授新课1.代数式单独的一个数字或单独的一个字母以及用运算符号把数或表示数的字母连接而成的式子叫代数式.学习代数,首先要学习用代数式表示数量关系,明确代数式的意义.2.举例说明例1 、填空:(1)每包书有12册,n 包书有____册;(2)温度由t ℃下降到2℃后是______℃;(3)棱长是a 厘米的正方体的体积是______立方厘米;(4)产量由m 千克增长10%,就达到______千克.(此例题用投影给出,学生口答完成)解:(1)12n ; (2)(t-2); (3)a3; (4)(1+10%)m .例2.一辆汽车以80千米/时的速度行驶,从城A 到城B 需t 时.如果该车的行驶速度增加v 千米/时,那么从A 城到B 城需多少时间?解:由题意得,A ,B 两城之间的路程为80t 千米,如果该车的行驶速度增加v 千米/小时,则汽车的速度为(80+v)千米/小时,此时从A 城到B 城需三、课堂练习1.填空:(1)n 箱苹果重p 千克,每箱重(pn )千克;(2)甲身高a 厘米,乙比甲矮b 厘米,那么乙的身高为(a b -)厘米;(3)底为a ,高为h 的三角形面积是(2ah);2.用代数式表示:(1)x 与y 的和; ()x y + (2)x 的平方与y 的立方的差;23()x y -四、师生共同小结首先,提出如下问题:1.本节课学习了哪些内容?2.用字母表示数的意义是什么?3.什么叫代数式?①代数式实际上就是算式,字母像数字一样也可以进行运算;②在代数式和运算结果中,如有单位时,要正确地使用括号.五、作业。
4.2 代数式 浙教版七年级数学上册课件
kg;另一片有n hm2 ,平均每公顷产棉花b kg,用式子表示两片棉田上棉花的总产
量.
(am bn )kg
(4)在一个大正方形铁片中挖去一个小正方形铁片,大正方形的边长是a mm,
小正方形的边长是b mm,用式子表示剩余部分的面积.
(a2-b2 )mm2
2.说出下列代数式的意义: (1)圆珠笔每支售价a元,练习簿每本售价b元,那么,3a+4b表示什么?
2
方等运算符号把数或表示数的字母连接而成的式子,叫做代数式.
注意: 1.单个的数或字母也是代数式;
2.代数式中除了含有数,字母和运算符号外,还可以含有括 号;
3.代数式不含____“__=_”_____“__>_”_____“__<_”___.“≧” “≦”
在代数式中,应注意:
① 出现称号,相乘时省略乘号,数与字母相乘时数字在前;
(2)某产品前年的产量是n件,去年的产量是前年产量的3倍少20件,去年 的产量是_(_3_n____2_0__)件 _ ;
(3)某一正方形菜地的边长为a m,它的面积是另一菜地面积的2倍,另一 菜地的面积为___a2_2_m__2__.
知识总结:
a2
在上述例子中,出现了a+b,3n-20,
等,像这样用加、减、乘、除及乘
4.2 代数式
教学目标
1.了解代数式的发生发展过程,揭示代数式概念与一次式 的联系与区别,初步掌握与运用代数式的概念解决问题; 2.了解式的扩充是从特殊到一般,再由一般到特殊的认识 过程; 3.用代数式概念作为载体,设计探究过程,发展学生的数 学探究能力.
教学难点
难点:代数式概念的形式和使用.
情境导入
示船在这条河中ห้องสมุดไป่ตู้水行驶和逆水行驶时的速度;
浙教版七年级数学上册教案 4.2代数式
4.2代数式知识目标:①了解代数式的概念。
②掌握如何利用代数式来表示简单的数量关系。
能力目标:培养学生基本的分析、比较能力和抽象思维能力。
情感目标:①通过从数到式的飞跃,体会代数式概念的重要性,体验从特殊到一般的过程。
②鼓励学生积极主动参与教学过程,激发求知欲,体验成功,增强学习的兴趣和信心。
教学重点与难点教学重点:代数式的概念和根据数量关系列代数式教学难点:代数式变化以及例21.创设情景,引起思考一隧道长l米,一列火车长180米,如果该列火车穿过隧道所花的时间为t分,那么列车的速度怎么表示呢?2.类比结果,展示新知首先学生指出后者与前者的区别在于后者是由数和表示数的字母及运算符号组成的表达式,再举个例子大米的单价为a元/千克,食油的单价为b元/千克,买了10千克大米、2千克食油共需几元,从而给出定义,像900a+500b+600c,10a+2b这样含有字母的数学表达式称为代数式。
注意两点:1、代数式由数、表示数的字母和运算符号组成,运算符号除上面几个代数式出现的加,减,乘外,还包括除,开方和乘方运算;2、单独的一个数或一个字母也称为代数式.同时可以发现,通过代数式可以简明普遍地表示实际问题中的量。
3.范例练习,师生互动例1.用代数式表示:(口答)(1)x的3倍与3的差; (2)x的2倍与y的12的和;(3)a与b的和的平方; (4)2a的立方根;在例1的学习中可以穿插a与b两数的平方和或a与b的平方的和,让学生体验列代数式犹如生活,须注意条理,把握顺序,抓住关键的字。
设计例2的目的是在让学生进一步意识到,生活离不开数学.生活中常常用到列代数式等许多数学知识,所以数学就在我们身边,它等着我们去发现、去探索、去解释,也让学生初步体验数学建模的思想。
四、归纳小结,整理知识让学生从知识点、注意点及思想方法等方面,对本节课所学的进行归纳整理,老师再适当补充的方法,并在小结过程中指出以下几点:(1)要理清运算的顺序,注意代数式的书写;(2)要咬文嚼字,仔细斟酌某些关键词;(3)要善于分析实际情景中的数量关系。
浙教版-数学-七年级上册-数学七年级上浙教版:4.2代数式导学案 学案
代数式导学案一、学习目标1. 理解代数式的意义,能根据简单的数量关系列代数式2. 能进行数学语言和自然语言的相互转化二、学习重点、难点:重点:理解代数式的意义和列代数式 难点:根据数量关系列代数式三、学习过程:(一)创设情境我们在前面学习了用字母表示数,你能完成下面的问题吗?1、一隧道长a 米,一列火车长180米,如果该列火车穿过隧道所花的时间为t 分,则火车的速度为 米/分。
2、大米的单价为每千克a 元,食油的单价为每千克b 元。
买10千克大米、2千克食油共需( )元。
3、日平均气温是指一天中2:00,8:00,14:00,20:00四个时刻气温的平均值,若上述四个时刻气温的摄氏度数分别是a ,b ,c ,d,则北京日平均气温的摄氏度数是 。
4、有一个五彩花圃(如图所示), 花圃的面积是( )(二)、自学内容与要求1. 代数式:像___________________________,这样含有 的数学表达式称为代数式。
一个代数式由数,表示数的字母和运算符号组成.注意:单独的一个数或者一个字母也称代数式。
2.判断下列算式是不是代数式:(1)x-1(2)1 (3) x (4)1-x (5) n m2(6)t=12-x (7)π+1 (8)3x>0 (9)2x+3≤1 3.用代数式表示:(1)x 的3倍与3的差; (2)x 的2倍与y 的1/2 的和;(3)a 与b 的和的平方; (4)2a 的立方根;练习:用代数式表示:(1) a 与b 的1/2的和; (2) a 与b 的平方的差;(3) m 与n 的差的平方; (4) c 与d 的和除s 所得的商;(5) x 与1的差的平方根; (6) x 的相反数与x 的绝对值的和4.并说出下列代数式的意义:(1)2)(b a -; (2)22b a -; (3) 3a+2b 注意:2)(b a -;22b a -的区别。
5.一辆汽车以80千米/时速度行驶,从A 城到B 城需t 时.如果该车的行驶速度增加了v 千米/时,那么从A 城到B 城需多少时间?练习:已知甲数比乙数的2倍少1,。
浙教版七年级数学上册第4章4.2代数式学案
代 数 式
学习目标: 1、计算代数式的值的一般步骤。
2、求代数式的值应注意的问题。
3、用代数式求值推断反映的规律及意义。
模块一:自主学习
模块二:交流研讨
代数式求值
下面是一对数值转换机,写出左图的输出结果图的运算过程。
×6
x 输入-3
x
6输出
x 输入?
?
)
(36-x ?输出
00.26
-2输入
2
1-
模块三:巩固内化
模块四:当堂训练
一、基础题
1、当x=7,y=3时,代数式7
2x y x 2
2+-的值是( )
A.
2140 B.2116 C.7
8 D.720 2、当n 取自然数时,代数式n 2
-10与10n+10的值先超过100的是( ).
A 、n 2
—10 B 、10n+10 C 、同时 D 、无法确定 3、当a= —1
2
1,b=1.5时,代数式a(b 2
+ab)的值是 . 4、若a+b=10,ab=16,则代数式(a+b )2
—ab=
5、若x —1=y —2=z —3=t+4,则x 、y 、z 、t 这四个数中最大的是 .
二、发展题
6、已知:m= —2,求代数式—m 2
—2(m+3)—5|m —5|的值.
⑴观察上表,描述所求得的这一列数的变化规律;
⑵当x 非常大时, 24
x
的值接近什么数?。
浙教版数学七年级上册《4.2 代数式》教学设计
浙教版数学七年级上册《4.2 代数式》教学设计一. 教材分析《4.2 代数式》是浙教版数学七年级上册的一个重要内容。
这部分内容主要介绍了代数式的概念、代数式的运算和代数式的应用。
通过这部分的学习,学生能够掌握代数式的基本知识,为后续的方程和函数学习打下基础。
二. 学情分析七年级的学生已经掌握了初步的数学知识,如算术运算、方程等。
他们对数学有一定的认识,但代数式作为一项新的知识,需要他们进行一定的适应和理解。
因此,在教学过程中,需要注重引导学生理解代数式的概念,并通过具体的例子让学生感受代数式的应用。
三. 教学目标1.了解代数式的概念,能够正确地书写代数式。
2.掌握代数式的基本运算,如加、减、乘、除等。
3.能够运用代数式解决实际问题,提高解决问题的能力。
四. 教学重难点1.代数式的概念,如何引导学生理解代数式。
2.代数式的运算,如何让学生熟练掌握代数式的运算规则。
3.代数式的应用,如何让学生将代数式运用到实际问题中。
五. 教学方法1.采用问题驱动法,引导学生主动思考和探索代数式的概念和运算。
2.使用案例教学法,通过具体的例子让学生理解代数式的应用。
3.利用小组合作学习,让学生在讨论中加深对代数式的理解。
六. 教学准备1.准备相关的教学案例和实际问题,用于引导学生理解和运用代数式。
2.准备代数式的运算练习题,用于巩固学生的运算能力。
3.准备多媒体教学设备,如投影仪等,用于展示和讲解代数式的相关内容。
七. 教学过程1.导入(5分钟)通过提出实际问题,如“小明的年龄比小红大3岁,小红的年龄比小亮小2岁,请问小明的年龄是多少?”引导学生思考和探索代数式的概念。
2.呈现(15分钟)通过讲解和展示代数式的相关案例,让学生理解代数式的概念,如“x + y”、“2a - 3b”等,并引导学生学会正确书写代数式。
3.操练(20分钟)让学生进行代数式的运算练习,如“计算2x - 3y + 4z的值”,让学生在实践中掌握代数式的运算规则。
4.2代数式-浙教版七年级数学上册教案
4.2 代数式 - 浙教版七年级数学上册教案一、教学目标1.了解代数式的概念和特点;2.能够通过例子理解代数式的含义;3.注意代数式中字母的含义,掌握化简代数式的方法;4.能够计算单项式和多项式的和差。
二、教学重点和难点1.教学重点:代数式的概念和特点,以及单项式和多项式的和差计算;2.教学难点:通过例子理解代数式的含义,掌握化简代数式的方法。
三、教学内容和学时安排1. 代数式的概念和特点(1学时)(1)代数式的概念代数式是由数字、字母、加减号等运算符号组成的式子,如3x+4、2a+5b 等。
其中,数字、字母是代数式的基本成分,它们有时又称为项。
加号、减号称为代数式的连接符号,用来表示项之间的加减关系。
(2)代数式的特点代数式有以下特点: * 代数式中包含字母,字母代表不确定的数; * 字母可以代表同种或不同种类的数; * 代数式中的数字称为常数项; * 代数式的系数是表示各项中的数字,例如,在5x−3y+8z中数字 5、-3、8 就是系数。
2. 例子理解代数式的含义(1学时)请参照教材例 2,让学生通过多组代数式例子来理解代数式的含义。
3. 化简代数式的方法(1学时)(1)合并同类项的方法将同种字母的项相加或相减,就可以合并同类项。
例如:3x+2y+5x−4y可以化简为8x−2y。
(2)提取公因数的方法将各项中公共的因子提取出来后,再将剩下部分的乘积相加或相减。
例如:6x+9y可以化简为3(2x+3y)。
4. 单项式和多项式的和差(1学时)单项式是只有一项的代数式,如2xy、−5a2等。
多项式是由一系列单项式的和或差组成的代数式,如2x+y−3、3a2+4a+1等。
计算多项式的和或差,只需要将同类项相加或相减即可。
例如:(3x2−4x+1)+(2x2+5x−3)可以化简为(5x2+x−2)。
四、教学方法和手段1.讲解法:通过讲解,让学生了解代数式的概念和特点,通过例子来理解其含义。
2.演示法:用实际例子演示合并同类项和提取公因数的方法,让学生更加直观地理解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
代数式
【学习目标】
1.了解代数式的意义,知道一个代数式所表示的数量关系。
2.能用代数式表示简单问题的数量关系。
3.能解释一些简单代数式的实际背景或几何意义。
【学习重难点】
理解符号代表的数量关系。
【学习过程】
一、自主学习
在横线上填写适当的代数式:
(1)20千克种子售价a元,1千克种子售价元。
(2)袜子每双x元,买一打(12双)需要元。
(3)小明同学的体重比小华重2千克。
如果小明同学的体重为x千克,那么小华同学的体重为千克。
(4)如果一列火车以v千米/时的速度匀速行驶,那么1.5小时火车行驶的路程是千米。
(5)全校学生总数是x,其中女生占48%,女生人数是。
(6)一本图书原价为n元,现9折出售,它现在的优惠价是元。
(7)如果m张贺卡的售价是4元,那么5张这种贺卡的售价是元。
(8)已知某超市里的矿泉水每箱进价为a元,零售时要加价20%,那么这种矿泉水每箱的零售价是元。
(9)如果大米的售价为每千克x元,面粉的售价是每千克y元,那么买15千克大米与10千克面粉共需元。
(10)用拖拉机耕地100公顷,原计划每天耕地x公顷。
如果每天多耕5公顷,那么实际只需天耕完。
二、合作探究
题型一:代数式定义相关
例1:下列四个式子中,是代数式的为( )
A .vt s =;
B .x y y x +=+;
C .1;
D .013=-x 。
解析:等式不是代数式
注:单独的数字、字母也是代数式
例2:在下列各式中,符合代数式书写格式要求的是( )
A .15b ;
B .t 432;
C .y ÷-1;
D .5
x -。
解析: 代数式的书写格式:⎪⎪⎪⎩⎪⎪⎪⎨⎧÷⋅⨯带分数写成假分数形式
”;”写成““”,或省略不写;”写成““数字写在字母前;....d c b a 题型二:根据题意列代数式
例3:设甲数为x ,乙数为y ,用代数式表示:
(1)甲乙两数的平方的和减去它们乘积的2倍所得的差。
(2)甲乙两数的差的平方与这两个数乘积的4倍的和。
(3)甲乙两数的和与它们的差的积。
(4)甲乙两数的和除以这两个数的差所得的商。
(5)甲乙两数的倒数的和乘以这两个数的积。
(6)甲乙两数绝对值的和除以这两个数的和的绝对值所得的商。
例4:用语言叙述下列代数式的意义:
(1)2()a b + (2)2pq +
【达标检测】
1.用字母表示:①a 与b 的平方和为 ;②a 与b 的和的平方为 ; ③b a ,的平方和为 ;
2.从1到n ,这n 个正整数的和是 。
3.若一个两位数的个位数字为a ,十位数字为b ,则这个两位数可以表示为 。
4.全校学生总数是x 人,男生占%48,则女生人数是__________人。
5.汽车每小时行60千米,它行驶s 千米需用_ ____小时。
6.水果商店有苹果、香蕉、李子等水果,单价分别如表所示:
名称 苹果 香蕉 李子
单价(元/千克) 1.5 1.7 1.9
(1)若购买香蕉、苹果、李子各1千克,共需 元;
(2)若购买香蕉a 千克、苹果b 千克、李子c 千克,共需 元;
7.写出下列式子中字母表示的意义:
(1)0=ab 表示 ;(2)0≠ab 表示 ;
(3)0||||||=++c b a 表示
(4)0||||||≠++c b a 表示
8.若甲数为x ,甲数是乙数的3倍,则乙数为( )
A .x 3
B .3+x
C .x 31
D .
3-x 9.下列含有字母的式子中,书写正确的是( )
A .a b
2 B .5a ×b C .)()2(b a y x +⨯÷ D .x 311。