新初中数学函数基础知识基础测试题附答案解析

合集下载

新初中数学函数之平面直角坐标系基础测试题含解析(2)

新初中数学函数之平面直角坐标系基础测试题含解析(2)

新初中数学函数之平面直角坐标系基础测试题含解析(2)一、选择题1.在平面直角坐标系xOy 中,对于点(),P x y ,我们把点()1,1P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点123,,,,,n A A A A L L .若点1A 的坐标为()3,1,则点2019A 的坐标为( ) A .()0,2-B .()0,4C .()3,1D .()3,1-【答案】D【解析】【分析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A 2019的坐标即可.【详解】解:A 1的坐标为(3,1),则A 2(-1+1,3+1)=(0,4),A 3(-4+1,0+1)=(-3,1),A 4(0,-2),A 5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A 2019的坐标与A 3的坐标相同,为(-3,1),故选D.【点睛】本题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.2.下列说法正确的是( )A .相等的角是对顶角B .在同一平面内,不平行的两条直线一定互相垂直C .点P(2,﹣3)在第四象限D .一个数的算术平方根一定是正数【答案】C【解析】【分析】直接利用对顶角的性质以及算术平方根和平行线的性质以及坐标与图形的性质分别分析得出答案.【详解】解:A 、相等的角是对顶角,错误;B、在同一平面内,不平行的两条直线一定相交,故此选项错误;C、点P(2,﹣3)在第四象限,正确;D、一个数的算术平方根一定是正数或零,故此选项错误.故选:C.此题主要考查了坐标与图形的性质、对顶角的性质等知识,正确把握相关性质是解题关键.3.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M、N为圆心,大于12MN的长为半径画弧,两弧在第二象限交于点P.若点P的坐标为(2a,b+1),则a与b的数量关系为()A.a=b B.2a+b=﹣1 C.2a﹣b=1 D.2a+b=1【答案】B【解析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.4.若点M的坐标为2-a b|+1),则下列说法中正确的是()A.点M在x轴正半轴上B.点M在x轴负半轴上C.点M在y轴正半轴上D.点M在y轴负半轴上【答案】C【解析】【分析】首先根据二次根式的定义及绝对值的性质分别判断出点M的横、纵坐标的符号;然后根据坐标轴上点的坐标特征进行分析即可作出判断.【详解】2a 有意义,则-a2≥0,∴a=0.∵|b|≥0,∴|b|+1>0,∴点M在y轴的正半轴上.故选C.【点睛】本题考查的是点的坐标的知识,解题关键是熟练掌握坐标轴上点的坐标特征.5.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( )A .﹣3B .﹣5C .1或﹣3D .1或﹣5【答案】A【解析】分析:根据点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,得到4=|2a +2|,即可解答.详解:∵点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,∴4=|2a +2|,a +2≠3,解得:a =−3,故选A .点睛:考查点的坐标的相关知识;用到的知识点为:到x 轴和y 轴的距离相等的点的横纵坐标相等或互为相反数.6.平面直角坐标系中,点A(-3,2),()3,5B ,(),C x y ,若AC ∥x 轴,则线段BC 的最小值及此时点C 的坐标分别为( )A .6,()3,4-B .2,()3,2C .2,()3,0D .3,()3,2【答案】D【解析】【分析】由AC ∥x 轴,A (-3,2),根据坐标的定义可求得y 值,根据线段BC 最小,确定BC ⊥AC ,垂足为点C ,进一步求得BC 的最小值和点C 的坐标.【详解】∵AC ∥x 轴,A (-3,2),(),C x y ,()3,5B ,∴y=2,当BC ⊥AC 于点C 时, 点B 到AC 的距离最短,即:BC 的最小值=5−2=3,∴此时点C 的坐标为(3,2).故选D .【点睛】本题主要考查平面直角坐标系中的点的坐标,根据题意,画出图形,掌握“直线外一点与直线上各个点的连线中,垂线段最短”,是解题的关键.7.如图,小手盖住的点的坐标可能为( )A.(-1,1) B.(-1,-1) C.(1,1) D.(1,-1)【答案】D【解析】【详解】解:根据第四象限的坐标特征,易得小手盖住的点的横坐标为正,纵坐标为负,选项D符合此特征,故选:D8.如图,直线m⊥n,在某平面直角坐标系中,x轴∥m,y轴∥n,点A的坐标为(-4,2),点B的坐标为(2,-4),则坐标原点为()A .O 1B .O 2C .O 3D .O 4【答案】A【解析】 试题分析:因为A 点坐标为(-4,2),所以,原点在点A 的右边,也在点A 的下边2个单位处,从点B 来看,B (2,-4),所以,原点在点B 的左边,且在点B 的上边4个单位处.如下图,O 1符合.考点:平面直角坐标系.9.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD , 又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.10.在平面直角坐标系中,点(-1, 3)在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】 根据各象限内点的坐标特征解答.【详解】解:点(-1, 3)在第二象限故选B.【点睛】本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).11.如图所示在平面直角坐标系中,半径均为1个单位长度的半圆O 1、O 2、O 3,……,组成一条平滑的曲线,点P 从原点O出发沿这条曲线向右运动,速度为每秒2个单位长度,则第2019秒时,点P 的坐标是( )A .(2018,0)B .(2019,1)C .(2019,﹣1)D .(2020,0)【答案】C【解析】分析:计算点P 走一个半圆的时间,确定第2019秒点P 的位置.详解:点运动一个半圆用时为2ππ=2秒∵2019=1009×2+1∴2019秒时,P 在第1010个的半圆的中点处∴点P 坐标为(2019,-1)故选C .点睛:本题是平面直角坐标系下的规律探究题,解答时既要研究动点的位置规律,又要考虑坐标的象限符号.12.已知点P 位于y 轴右侧,距y 轴3个单位长度,位于x 轴上方,距离x 轴4个单位长度,则点P 坐标是( )A .(3,4)B .(-3,4)C .(-4,3)D .(4,3)【答案】A【解析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【详解】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选A.【点睛】本题考查了点的位置判断方法及点的坐标几何意义.13.如图,将平面直角坐标系中“鱼”的每个“顶点”的纵坐标保持不变,横坐标变为原来的13,则点A的对应点A′的坐标是( )A.(2,3) B.(6,1) C.(2,1) D.(3,3)【答案】A【解析】【分析】先写出点A的坐标为(6,3),纵坐标保持不变,横坐标变为原来的13,即可判断出答案.【详解】点A变化前的坐标为(6,3),将纵坐标保持不变,横坐标变为原来的13,则点A的对应点A′坐标是(2,3).故选A.【点睛】本题考查的是坐标,熟练掌握坐标是解题的关键.14.mmn-有意义,那么直角坐标系中 P(m,n)的位置在()A.第一象限B.第二象限C.第三象限D.第四象限【解析】【分析】先根据二次根式与分式的性质求出m,n 的取值,即可判断P 点所在的象限.【详解】依题意的-m≥0,mn >0,解得m <0,n <0,故P(m,n)的位置在第三象限,故选C.【点睛】此题主要考查坐标所在象限,解题的关键是熟知二次根式与分式的性质.15.如图,在平面直角坐标系中,三角形AOB 的三个顶点的坐标分别是(1,3)A ,(0,0)O ,(2,0)B ,第一次将三角形AOB 变换成三角形11AOB ,1(2,3)A ,1(4,0)B ;第二次将三角形11AOB 变换成三角形22A OB ,2(4,3)A ,2(8,0)B ;第三次将三角形22A OB 变换成三角形33A OB …,则2020B 的横坐标是( )A .20192B .20202C .20212D .20222【答案】C【解析】【分析】 对于A 1,A 2,A n 坐标找规律可将其写成竖列,比较从而发现A n 的横坐标为2n ,而纵坐标都是3,B n 的纵坐标总为0,横坐标为2n+1,即可得到2020B 的横坐标.【详解】解:因为B (2,0),B 1(4,0),B 2(8,0),B 3(16,0)…纵坐标不变,为0, 同时横坐标都和2有关为2n+1,那么B 的坐标为2020B (20212,0);故选:C .【点睛】本题考查了学生观察图形及总结规律的能力,解题的关键是找到点B 横坐标都与2有关的规律.16.在平面直角坐标系中.对于平面内任一点(m ,n ),规定以下两种变换: ①f (m ,n )=(m ,﹣n ),如f (2,1)=(2,﹣1);②g (m ,n )=(﹣m ,﹣n ),如g (2,1)=(﹣2,﹣1).按照以上变换有:f[g (3,4)]=f (﹣3,﹣4)=(﹣3,4),那么g[f (3,2)]等于A .(3,2)B .(3.﹣2)C .(﹣3,2)D .(﹣3,﹣2)【答案】C【解析】【分析】根据f 、g 的规定进行计算即可得解.【详解】g [f (3,2)]=g (3,﹣2)=(﹣3,2).故选C .【点睛】本题考查了点的坐标,读懂题目信息,理解f 、g 的运算方法是解题的关键.17.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ), 由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.18.在平面直角坐标系中,点(一6,5)位于( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】B【解析】【分析】根据所给点的横纵坐标的符号可得所在象限.【详解】解:∵所给点的横坐标是-6为负数,纵坐标是5为正数,∴点(-6,5)在第二象限,故选:B .【点睛】本题考查象限内点的符号特点;用到的知识点为:符号为(-,+)的点在第二象限.19.象棋在中国有着三千多年的历史,由于用具简单,趣味性强,成为流行极为广泛的益智游戏.如图,是一局象棋残局,已知表示棋子“炮”和“車”的点的坐标分别为(1,2),(2,0)-,则表示棋子“馬”的点的坐标为( )A .(4,2)B .(2,4)C .(3,2)D .(2, 1)【答案】A【解析】【分析】 根据棋子“炮”和“車”的点坐标,推断出原点位置,进而可得出“馬”的点的坐标.【详解】如图所示,根据“車”的点坐标为()2,0-,可知x 轴在“車”所在的横线上,又根据“炮”的点坐标()1,2,可推出原点坐标如图所示,进而可知“馬”的点的坐标为()4,2,故选:A .【点睛】本题综合考查点的坐标位置的确定.解答本题的关键是由“炮”和“車”的点坐标确定出原点的坐标.20.在平面直角坐标系中,点P (0,﹣4)在( )A .x 轴上B .y 轴上C .原点D .与x 轴平行的直线上【答案】B【解析】【分析】根据点P的坐标为(0,﹣4)即可判断点P(0,﹣4)在y轴上.【详解】在平面直角坐标系中,点P(0,﹣4)在y轴上,故选:B.【点睛】本题考查了坐标与图形性质,熟练掌握坐标轴上点的坐标特征是解题的关键.。

最新初中数学函数基础知识基础测试题及答案(1)

最新初中数学函数基础知识基础测试题及答案(1)

最新初中数学函数基础知识基础测试题及答案(1)一、选择题1.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.2.在同一条道路上,甲车从A地到B地,乙车从B地到A地,乙先出发,图中的折线段表示甲、乙两车之间的距离y(千米)与行驶时间x(小时)的函数关系的图象,下列说法错误的是()A.乙先出发的时间为0.5小时B.甲的速度是80千米/小时C.甲出发0.5小时后两车相遇D.甲到B地比乙到A地早112小时【答案】D 【解析】试题分析:A.由图象横坐标可得,乙先出发的时间为0.5小时,正确,不合题意;B.∵乙先出发,0.5小时,两车相距(100﹣70)km,∴乙车的速度为:60km/h,故乙行驶全程所用时间为:=(小时),由最后时间为1.75小时,可得乙先到到达A地,故甲车整个过程所用时间为:1.75﹣0.5=1.25(小时),故甲车的速度为:100÷1.25 =80(km/h),故B选项正确,不合题意;C.由以上所求可得,甲出发0.5小时后行驶距离为:40km,乙车行驶的距离为:60km,40+60=100,故两车相遇,故C选项正确,不合题意;D.由以上所求可得,乙到A地比甲到B地早:1.75﹣=(小时),故此选项错误,符合题意.故选D.考点:函数的图象.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的最大公里数(单位:km/L),如图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况,下列叙述正确的是()A.以相同速度行驶相同路程,甲车消耗汽油最多B.以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米C.以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少D.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油【答案】D【解析】【分析】根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.【详解】解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A错误.以10km/h的速度行驶时,消耗1升汽油,甲车最多行驶5千米.故选项B错误.以低于80km/h的速度行驶时,行驶相同路程,甲车消耗汽油最少.故选项C错误.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油.故选项正确.故选D.【点睛】本题考查了函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.4.如图,边长为 2 的正方形ABCD,点P从点A出发以每秒 1 个单位长度的速度沿A D C --的路径向点 C 运动,同时点 Q 从点B 出发以每秒 2 个单位长度的速度沿BCD A --- 的路径向点 A 运动,当点 Q 到达终点时,点P 停止运动,设PQC ∆ 的面积为 S ,运动时间为t 秒,则能大致反映S 与t 的函数关系的图象是( )A .B .C .D .【答案】C【解析】【分析】 分三种情况求出解析式,即可求解.【详解】当0≤t≤1时,即当点Q 在BC 上运动,点P 在AD 上运动时,()2222212S t t =⨯⨯-=-, ∴该图象y 随x 的增大而减小,当1<t≤2时,即当点Q 在CD 上运动时,点P 在AD 上运动时,()()21222322S t t t t =--=-+-, ∴该图象开口向下, 当2<t≤3,即当点Q 在AD 上运动时,点P 在DC 上运动时,()()21424682S t t t t =--=-+- ∴该图象开口向下,故选:C .【点睛】本题考查了动点问题的函数图象,求出分段函数解析式是本题的关键.5.在某次实验中,测得两个变量m 和v 之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的( ) m1 2 3 4 v 0.01 2.9 8.03 15.1A .v=2m ﹣2B .v=m 2﹣1C .v=3m ﹣3D .v=m+1【答案】B【解析】一般情况下是把最大的一对数据代入函数关系式后通过比较得出最接近的关系式.解:当m=4时,A、v=2m﹣2=6;B、v=m2﹣1=15;C、v=3m﹣3=9;D、v=m+1=5.故选B.6.父亲节当天,学校“文苑”栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离家的时间,下面与上述诗意大致相吻合的图像是()A.B.C.D.【答案】B【解析】【分析】正确理解函数图象即可得出答案.【详解】解:同辞家门赴车站,父亲和学子的函数图象在一开始的时候应该一样,当学子离开车站出发,离家的距离越来越远,父亲离开车站回家,离家越来越近.故选B.【点睛】首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.7.圆周长公式C=2πR中,下列说法正确的是()A.π、R是变量,2为常量B.C、R为变量,2、π为常量C.R为变量,2、π、C为常量D.C为变量,2、π、R为常量【答案】B【解析】【分析】根据变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,可得答案.【详解】解:在圆周长公式C=2πR中,2、π是常量,C,R是变量.故选:B.【点睛】此题考查常量与变量,解题关键在于掌握变量是指在程序的运行过程中随时可以发生变化的量,常量是指在程序的运行过程不发生变化的量,注意π是常量.8.在正方形ABCD中,点E为BC边的中点,点F在对角线AC上,连接FB、FE.当点F 在AC上运动时,设AF=x,△BEF的周长为y,下列图象中,能表示y与x的函数关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】先根据正方形的对称性找到y的最小值,可知图象有最低点,再根据距离最低点x的值的大小(AM>MC)可判断正确的图形.【详解】如图,连接DE与AC交于点M,则当点F 运动到点M 处时,三角形△BEF 的周长y 最小,且AM >MC .过分析动点F 的运动轨迹可知,y 是x 的二次函数且有最低点,利用排除法可知图象大致为:故选B .【点睛】解决有关动点问题的函数图象类习题时,关键是要根据条件找到所给的两个变量之间的变化关系,尤其是在几何问题中,更要注意基本性质的掌握和灵活运用.9.如图,矩形ABCD 中,6cm AB =,3cm BC =,动点P 从A 点出发以1cm /秒向终点B 运动,动点Q 同时从A 点出发以2cm /秒按A D C →→B →的方向在边AD ,DC ,CB 上运动,设运动时间为x (秒),那么APQ ∆的面积()2cm y 随着时间x (秒)变化的函数图象大致为( )A .B .C .D.【答案】A【解析】【分析】根据题意分三种情况讨论△APQ面积的变化,进而得出△APQ的面积y(cm2)随着时间x (秒)变化的函数图象大致情况.【详解】解:根据题意可知:AP=x,Q点运动路程为2x,①当点Q在AD上运动时,y=12AP•AQ=12x•2x=x2,图象为开口向上的二次函数;②当点Q在DC上运动时,y=12AP•DA=12x×3=32x,是一次函数;③当点Q在BC上运动时,y=12AP•BQ=12x•(12−2x)=−x2+6x,为开口向下的二次函数,结合图象可知A选项函数关系图正确,故选:A.【点睛】本题考查了动点问题的函数图象,解决本题的关键是分三种情况讨论三角形APQ的面积变化.10.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C .D .【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B .【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.11.若12x y -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠, 解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.如图所示,边长分别为1和2的两个正方形靠在一起,其中一边在同一水平线上.大正方形保持不动,小正方形沿该水平线自左向右匀速运动,设运动时间为t,大正方形内去掉小正方形重叠部分后的面积为s,那么s与t的大致图象应为( )A.A B.B C.C D.D【答案】D【解析】根据题意,设小正方形运动的速度为v,分三个阶段;①小正方形向右未完全穿入大正方形,S=2×2-vt×1=4-vt,②小正方形穿入大正方形但未穿出大正方形,S=2×2-1×1=3,③小正方形穿出大正方形,S=Vt×1,分析选项可得,D符合,故选D.【点睛】本题考查了动点问题的函数图象,解决此类问题,注意将过程分成几个阶段,依次分析各个阶段得变化情况,进而综合可得整体得变化情况.13.下列图象中不是表示函数图象的是()A.B.C.D.【答案】C【解析】【分析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此即可确定函数的个数.【详解】解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,故选:C.【点睛】主要考查了函数的定义.函数的定义:在一个变化过程中,有两个变量x,y,对于x的每一个取值,y都有唯一确定的值与之对应,则y是x的函数,x叫自变量.14.如图,点P是等边△ABC的边上的一个做匀速运动的动点,其由点A开始沿AB边运动到B再沿BC边运动到C为止,设运动时间为t,△ACP的面积为S,则S与t的大致图象是()A.B.C.D.【答案】C【解析】【分析】设等边三角形的高为h,点P的运动速度为v,根据等边三角形的性质可得出点P在AB上运动时△ACP的面积为S,也可得出点P在BC上运动时的表达式,继而结合选项可得出答案.【详解】设等边三角形的高为h,点P的运动速度为v,①点P在AB上运动时,△ACP的面积为S=12hvt,是关于t的一次函数关系式;②当点P在BC上运动时,△ACP的面积为S=12h(AB+BC-vt)=-12hvt+12h(AB+BC),是关于t的一次函数关系式;故选C.【点睛】此题考查了动点问题的函数图象,根据题意求出两个阶段S与t的关系式,难度一般.15.如图1,点F从菱形ABCD的项点A出发,沿A-D-B以1cm/s的速度匀速运动到点B.图2是点F运动时,△FBC的面积y (m2)随时间x (s)变化的关系图象,则a的值为( )A .5B .2C .52D .25【答案】C【解析】【分析】 过点D 作DE BC ⊥于点E 由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .求出DE=2,再由图像得5BD =,进而求出BE=1,再在DEC Rt △根据勾股定理构造方程,即可求解.【详解】解:过点D 作DE BC ⊥于点E由图象可知,点F 由点A 到点D 用时为as ,FBC ∆的面积为2acm .AD BC a ∴==∴12DE AD a =g 2DE ∴=由图像得,当点F 从D 到B 时,用5s5BD ∴=Rt DBE V 中,2222(5)21BE BD DE =-=-=∵四边形ABCD 是菱形,1EC a ∴=-,DC a =DEC Rt △中,2222(1)a a =+-解得52a =故选:C .【点睛】本题综合考查了菱形性质和一次函数图象性质,要注意函数图象变化与动点位置之间的关系,解答此题关键根据图像关键点确定菱形的相关数据.16.某工厂加工一批零件,为了提高工人工作积极性,工厂规定每名工人每天薪金如下:生产的零件不超过a件,则每件3元,超过a件,超过部分每件b元,如图是一名工人一天获得薪金y(元)与其生产的件数x(件)之间的函数关系式,则下列结论错误的()A.a=20B.b=4C.若工人甲一天获得薪金180元,则他共生产45件.D.人乙一天生产40(件),则他获得薪金140元【答案】C【解析】【分析】根据题意和函数图象可以求得a、b的值,从而可以判断选项A和B是否正确,根据C和D的数据可以分别计算出题目中对应的数据是否正确,从而可以解答本题.【详解】解:由题意和图象可得,a=60÷3=20,故选项A正确,b=(140−60)÷(40−20)=80÷20=4,故选项B正确,若工人甲一天获得薪金180元,则他共生产:20+180602030504-=+=(件),故选项C错误;由图象可知,工人乙一天生产40(件),他获得的薪金为:140元,故选项D正确,故选:C.【点睛】本题考查函数图象的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.17.下列图象中,表示y是x的函数的是()A.B.C.D.【答案】C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A. B. D错误.故选C.【点睛】本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.18.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大变化,其体温(C )与时间(小时)之间的关系如图1所示.小清同学根据图1绘制了图2,则图2中的变量有可能表示的是( ).A .骆驼在t 时刻的体温与0时体温的绝对差(即差的绝对值)B .骆驼从0时到t 时刻之间的最高体温与当日最低体温的差C .骆驼在t 时刻的体温与当日平均体温的绝对差D .骆驼从0时到t 时刻之间的体温最大值与最小值的差【答案】B【解析】【分析】根据时间和体温的变化,将时间分为3段:0-4,4-8,8-16,16-24,分别观察每段中的温差,由此即可求出答案.【详解】解:观察可得从0时到4时,温差随时间的增大而增大,在4时达到最大,是2℃;再到8时,这段时间的最高温度是37℃,最低是35℃,温差不变,从8时开始,最高温度变大,最低温度不变是35℃,温差变大,达到3℃,从16时开始体温下降,温差不变.则图2中的变量y 有可能表示的是骆驼从0时到t 时刻之间的最高体温与当日最低体温的差. 故选:B .【点睛】本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.19.如图,数轴上表示的是某个函数自变量的取值范围,则这个函数解析式为( )A .y=x+2B .y=x 2+2C .2x +D .y=12x + 【答案】C【解析】试题分析:A .2y x =+,x 为任意实数,故错误;B .22y x =+,x 为任意实数,故错误;C .2y x =+20x +≥,即2x ≥-,故正确;D .12y x =+,20x +≠,即2x ≠-,故错误; 故选C . 考点:1.函数自变量的取值范围;2.在数轴上表示不等式的解集.20.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 逆时针0°~90°的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S与n关系的图象大致是()A.B.C.D.【答案】B【解析】【分析】注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.。

人教版初中数学二次函数基础测试题附答案

人教版初中数学二次函数基础测试题附答案
【解析】
【分析】
设出原数,表示出新数,利用解方程和函数性质即可求解.
【详解】
解:设原数为m,则新数为 ,
设新数与原数的差为y
则 ,
易得,当m=0时,y=0,则A错误

当 时,y有最大值.则B错误,D正确.
当y=21时, =21
解得 =30, =70,则C错误.
故答案选:D.
【点睛】
本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.
8.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()
A.当m=-3时,函数图象的顶点坐标是( , )
B.当m>0时,函数图象截x轴所得的线段长度大于
C.当m≠0时,函数图象经过同一个点
D.当m<0时,函数在x> 时,y随x的增大而减小
A. B.
C. D.
【答案】B
【解析】
【分析】
分三种情况求出y与t的函数关系式.当0≤t≤2.5时:P点由B到A;当2.5≤t≤4时,即P点在AD上时;当4≤t≤6时,即P点从D到C时.即可得出正确选项.
【详解】
解:作AE⊥BC于E,根据已知可得,
AB2=42+(6-3)2,
解得,AB=5cm.
下面分三种情况讨论:
当0≤t≤2.5时:P点由B到A, ,y是t的二次函数.最大面积= 5 cm2;
当2.5≤t≤4时,即P点在AD上时, , y是t的一次函数且最大值= ;
当4≤t≤6时,即P点从D到C时, y是t的二次函数
故符合y与t的函数图象是B.

初中数学函数基础知识基础测试题及答案解析

初中数学函数基础知识基础测试题及答案解析
【详解】
解:A选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故A是函数;
B选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故B是函数;
C选项:不满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故C不是函数;
D选项:满足对于x的每一个取值,y都有唯一确定的值与之对应关系,故D是函数,
【点睛】
本题是动点函数图象问题,将图形的运动与函数图象结合起来分析,是解决此类问题的关键,
5.如图,在 中, , 是边 上一条运动的线段(点 不与点 重合,点 不与点 重合),且 , 交 于点 , 交 于点 ,在 从左至右的运动过程中,设 , 的面积减去 的面积为 ,则下列图象中,能表示 与 的函数关系的图象大致是()
A. B.
C. D.
【答案】D
【解析】
【分析】
判断出△AEF和△ABC相似,根据相似三角形对应边成比例列式求出EF,再根据三角形的面积列式表示出S与x的关系式,然后得到大致图象选择即可.
【详解】
解:∵EF∥BC,
∴△AEF∽△ABC,
∴ ,
∴EF= •10=10-2x,
∴S= (10-2x)•x=-x2+5x=-(x- )2+ ,
观察图象,A、B、D的路程始终都在变化,故错误;
C、修车是的路程没变化,故C正确;
故选:C.
【点睛】
考核知识点:函数的图象.理解题意看懂图是关键.
10.如图,AB为半圆的直径,点P为AB上一动点.动点P从点A出发,沿AB匀速运动到点B,运动时间为t.分别以AP与PB为直径作半圆,则图中阴影部分的面积S与时间t之间的函数图象大致为()
A. B. C. D.
【答案】D

第19章 一次函数 2022-2023学年人教版八年级数学下册基础知识质量检测卷(含答案)

第19章 一次函数 2022-2023学年人教版八年级数学下册基础知识质量检测卷(含答案)

2022-2023学年新人教版初中八年级数学下册第十九单元基础知识质量检测卷时间:90分钟满分:120分班级__________姓名__________得分__________一.选择题(共10小题,满分30分,每小题3分)1.(3分)函数y=x―25中自变量x的取值范围是( )A.x>2B.x<2C.x≥2D.x≤22.(3分)一次函数y=﹣2x+2经过点(a,2),则a的值为( )A.﹣1B.0C.1D.23.(3分)已知一次函数y=kx﹣4(k≠0),y随x的增大而增大,则k的值可以是( )A.﹣2B.1C.0D.﹣34.(3分)下列函数中,是一次函数的是( )A.y=3x﹣5B.y=x2C.y=6xD.y=1x―15.(3分)在正比例函数y=kx中,y的值随着x值的增大而增大,则一次函数y=kx+k在平面直角坐标系中的图象大致是( )A.B.C.D.6.(3分)点P1(﹣1,y1),点P2(2,y2)是一次函数y=kx+b(k<0)图象上两点,则y1与y2的大小关系是( )A.y1>y2B.y1=y2C.y1<y2D.不能确定7.(3分)一个学习小组利用同一块木板,测量了小车从不同高度下滑的时间,他们得到如表数据:支撑物的高度h(cm)10203040506070小车下滑的时间t(s) 4.23 3.00 2.45 2.13 1.89 1.71 1.59下列说法正确的是( )A.当h=70cm时,t=1.50sB.h每增加10cm,t减小1.23C.随着h逐渐变大,t也逐渐变大D.随着h逐渐升高,小车下滑的平均速度逐渐加快8.(3分)下列问题中,变量y与x成一次函数关系的是( )A.10m长铁丝折成长为y(m),宽为x(m)的长方形B.斜边长为5cm的直角三角形的直角边y(cm)和x(cm)C.圆的面积y(cm2)与它的半径x(cm)D.路程一定时,时间y(h)和速度x(km/h)的关系9.(3分)一次函数y=﹣2x+6的图象与y轴的交点坐标是( )A.(0,6)B.(6,0)C.(3,0)D.(0,3)10.(3分)在正比例函数y=kx中,y的值随着x值的增大而减小,则点A(﹣3,k)在( )A.第一象限B.第二象限C.第三象限D.第四象限二.填空题(共6小题,满分18分,每小题3分)11.(3分)点P(a,b)在函数y=4x+3的图象上,则代数式12a﹣3b+1的值等于 .12.(3分)一次函数y=(k﹣3)x﹣2的函数值y随自变量x的增大而减小,则k的取值范围是 .13.(3分)小明骑车回家过程中,骑行的路程s与时间t的关系如图所示.则经15分钟后小明离家的路程为 .14.(3分)已知三点A(﹣2,6),B(﹣3,1),C(1,﹣3).若正比例函数y=kx图象经过其中两点,则k的值为 .15.(3分)将一次函数y=﹣2x的图象沿y轴向下平移4个单位长度后,所得图象的函数表达式为 .16.(3分)已知函数y=(m﹣2)x|3﹣m|+5是关于x的一次函数,则m= .三.解答题(共9小题,满分72分)17.(6分)求下列函数中自变量的取值范围.(1)y=2x﹣1;(2)y=x―3+5―x;(3)y=14―2x.18.(6分)平面直角坐标系xOy中,经过点(1,2)的直线y=kx+b,与x轴交于点A,与y轴交于点B.(1)当b=3时,求k的值以及点A的坐标;(2)若k=b,P是该直线上一点,当△OPA的面积等于△OAB面积的2倍时,求点P的坐标.19.(6分)已知y﹣1与x﹣1成正比例,且x=3时,y=4.(1)求y与x之间的函数关系式;(2)当y=﹣1时,求x的值.20.(8分)如图,一次函数y=kx+b(k≠0)的图象经过A,B两点.(1)求此一次函数的解析式;(2)结合函数图象,直接写出关于x的不等式kx+b<4的解集.21.(8分)我国是一个严重缺水的国家,大家应该倍加珍惜水资源,节约用水.据测试,拧不紧的水龙头每秒会滴下2滴水,每滴水约0.05mL.小明同学在洗手时,没有把水龙头拧紧,当小明离开x小时后,水龙头滴了yml水.(1)试写出y与x之间的函数关系式?(2)当滴了1620mL水时,小明离开水龙头几小时?22.(8分)已知一次函数y=―12x+3.(1)作出函数的图象;(2)求图象与两坐标轴所围成的三角形的面积.23.(10分)心理学家发现,学生对概念的接受能力y与提出概念所用的时间x(单位:分钟)之间有如下关系:(其中0≤x≤30)时间/x257101213141720接受能力/y47.853.556.35959.859.959.858.355(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)根据表格中的数据,你认为提出概念所用时间为几分钟时,学生的接受能力最强?(3)从表中可知,当时间x在什么范围内,学生的接受能力逐步增强?当时间x在什么范围内,学生的接受能力逐步降低?24.(10分)狗头枣产于陕西省延安市一带,久负盛名,其性味甘平,有润心肺、止咳、补五脏、治虚损的功效,已成为革命圣地延安最为著名的特产.某经销商购进了一批狗头枣,根据以往的销售经验,每天的售价与销售量之间有如下关系:当单价为38元/千克时,每天可以销售50千克,单价每下调1元,销量就会增加2千克,若设单价下调了x 元/千克,销售量为y千克.(1)y与x之间的关系式为 ;(2)当售价为28元/千克,这天的销售量是多少?(3)如果这批狗头枣的进价是20元/千克,某天的售价定为30元/千克,则这天的销售利润是多少元?25.(10分)甲超市在国庆节期间进行苹果优惠促销活动,苹果的标价为5元/kg,如果一次购买4kg以上的苹果,超过4kg的部分按标价6折售卖.其中x(单位:kg)表示购买苹果的重量,y甲(单位:元)表示付款金额.(1)文文购买3kg苹果需付款 元;购买5kg苹果需付款 元;(2)写出付款金额y甲关于购买苹果的重量x的函数关系式;(3)乙超市也在进行苹果优惠促销活动,同样的苹果的标价也为5元/kg,且全部按标价的8折售卖.文文如果要购买10kg苹果,请问她在哪个超市购买更划算?参考答案1.C;2.B;3.B;4.A;5.A;6.A;7.D;8.A;9.A;10.C;11.﹣8;12.k<3;13.1.5千米;14.﹣3;15.y=﹣2x﹣4;16.4;17.解:(1)y=2x﹣1中,自变量的取值范围是全体实数;(2)由题意得:x﹣3≥0,5﹣x≥0,解得:3≤x≤5;(3)由题意得:4﹣2x>0,解得:x<2.18.解:(1)∵直线y=kx+b经过点(1,2),∴k+b=2,当b=3时,k=﹣1,∴直线解析式为y=﹣x+3,令y=0,得x=3,∴点A的坐标为(3,0);(2)由(1)知k+b=2,当k=b时,可得k=b=1,∴直线解析式为:y=x+1,令x=0,得y=1,令y=0,得x=﹣1,∴点A的坐标为(﹣1,0),点B坐标为(0,1),∴S△OAB=12×1×1=12,设点P(m,n),∵△OPA的面积等于△OAB面积的2倍,∴12×1×|n|=2×12,∴|n|=2,得n=±2,∴点P坐标为(1,2)或(﹣3,﹣2).19.解:(1)∵y﹣1与x﹣1成正比例,∴设y﹣1=k(x﹣1),∵x=3时y=4,∴4﹣1=k(3﹣1),解得:k=3 2,∴y与x之间的函数关系式为:y﹣1=32(x﹣1),即y=32x―12;(2)当y=﹣1时,﹣1=32x―12,解得:x=―1 3.20.解:(1)将点A(3,4),B(0,﹣2)的坐标分别代入y=kx+b中,得3k+b=4 b=―2,解得k=2b=―2,故一次函数的解析式y=2x﹣2;(2)观察图象可知:关于x的不等式kx+b<4的解集为x<3.21.解:(1)∵水龙头每秒钟会滴下2滴水,每滴水约0.05毫升,∴离开x小时滴的水为3600×2×0.05x,∴y=360x(x≥0).(2)当y=1620mL时,1620=360x,解得x=4.5小时,答:小明离开水龙头4.5小时.22.解:(1)直线一次函数y=―12x+3过(0,3)(6,0)两点,描点连线可以画出其图象,如图:(2)图象与两坐标轴所围成的三角形的面积=12×6×3=9.23.解:(1)反映了提出概念所用的时间x和对概念接受能力y两个变量之间的关系;其中x是自变量,y是因变量;(2)提出概念所用的时间为13分钟时,学生的接受能力最强;(3)当x在2分钟至13分钟的范围内,学生的接受能力逐步增强;当x在13分钟至20分钟的范围内,学生的接受能力逐步降低.24.解:(1)由题意可知y与x之间的关系式为,y=50+2x;(2)当售价为28元/千克,价格下调了x=38﹣28=10,将x=10代入关系试中得y=50+2×10=70,∴当售价为28元/千克,这天的销售量是70千克;(3)当售价为30元/千克,价格下调了x=38﹣30=8,将x=8代入关系试中得y=50+2×8=66,∴当售价为30元/千克时的销售量是66千克,利润=(售价﹣进价)×销售量=(30﹣20)×66=660元,∴这天的销售利润是660元.25.解:(1)由题意可知:文文购买3kg苹果,不优惠,∴文文购买3kg苹果需付款:3×5=15(元),购买5kg苹果,4kg不优惠,1kg优惠,∴购买5kg苹果需付款:4×5+1×5×0.6=23(元),故答案为:15,23;(2)由题意得:当0<x≤4时,y甲=5x,当x>4时,y甲=4×5+(x﹣4)×5×0.6=3x+8,∴付款金额y甲关于购买苹果的重量x的函数解析式为:y甲=5x(0<x≤4) 3x+8(x>4);(3)文文在甲超市购买10kg苹果需付费:3×10+8=38(元),文文在乙超市购买10kg苹果需付费:5×10×0.8=40(元),∵38<40,∴文文应该在甲超市购买更划算.。

新初中数学函数基础知识专项训练及答案

新初中数学函数基础知识专项训练及答案

新初中数学函数基础知识专项训练及答案一、选择题1.一列快车从甲地驶往乙地,一列特快车从乙地驶往甲地,快车的速度为100千米/小时,特快车的速度为150千米/小时,甲乙两地之间的距离为1000千米,两车同时出发,则图中折线大致表示两车之间的距离y (千米)与快车行驶时间t (小时)之间的函数图象是A .B .C .D .【答案】C【解析】分三段讨论:①两车从开始到相遇,这段时间两车距迅速减小;②相遇后向相反方向行驶至特快到达甲地,这段时间两车距迅速增加;③特快到达甲地至快车到达乙地,这段时间两车距缓慢增大;结合图象可得C 选项符合题意.故选C .2.如图,在直角三角形ABC ∆中,90B ∠=︒,4AB =,3BC =,动点E 从点B 开始沿B C →以2cm/s 的速度运动至C 点停止;动点F 从点B 同时出发沿B A →以1cm/s 的速度运动至A 点停止,连接EF .设运动时间为x (单位:s ),ABC ∆去掉BEF ∆后剩余部分的面积为y (单位:2cm ),则能大致反映y 与x 的函数关系的图象是( )A .B .C .D .【答案】B【解析】【分析】根据已知题意写出函数关系,y 为ABC ∆去掉BEF ∆后剩余部分的面积,注意1.5秒时点E 运动到C 点,而点F 则继续运动,因此y 的变化应分为两个阶段.【详解】 解:14362ABC S ∆=⨯⨯=, 当302x ≤≤时,2122BEF S x x x ∆=⋅⋅=.26ABC BEF y S S x ∆∆=-=-; 当342x <≤时,13322BEF S x x ∆=⋅⋅=,362ABC BEF y S S x ∆∆=-=-, 由此可知当302x ≤≤时,函数为二次函数,当342x <≤时,函数为一次函数. 故选B .【点睛】本题主要考查了动点问题与函数图像相结合,解题的关键在于根据运动过程写出函数关系,要注意自变量的取值范围,以及是否为分段函数.3.如图,边长为2的等边ABC ∆和边长为1的等边A B C '''∆,它们的边BC ,B C ''位于同一条直线l 上,开始时,点C '与点B 重合,ABC ∆固定不动,然后把A B C '''∆自左向右沿直线l 平移,移出ABC ∆外(点B '与点C 重合)停止,设A B C '''∆平移的距离为x ,两个三角形重合部分的面积为y ,则y 关于x 的函数图象是( )A .B .C .D .【答案】C【解析】分为0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.【详解】解:如图1所示:当0≤x≤1时,过点D作DE⊥BC′.∵△ABC和△A′B′C′均为等边三角形,△DBC′为等边三角形.∴DE=32BC′=32x,∴y=12BC′•DE=34x2.当x=1时,y=34,且抛物线的开口向上.如图2所示:1<x≤2时,过点A′作A′E⊥B′C′,垂足为E.∵y=12B′C′•A′E=12×1×3=3.∴函数图象是一条平行与x轴的线段.如图3所示:2<x≤3时,过点D作DE⊥B′C,垂足为E.y=123x-3)2,函数图象为抛物线的一部分,且抛物线开口向上.【点睛】本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.4.如图,在ABC ∆中,90C =o ∠,30B ∠=o ,10AB cm =,P Q 、两点同时从点A 分别出发,点P 以2/cm s 的速度,沿A B C →→运动,点Q 以1/cm s 的速度,沿A C B →→运动,相遇后停止,这一过程中,若P Q 、两点之间的距离PQ y =,则y 与时间t 的关系大致图像是( )A .B .C .D .【答案】A【解析】【分析】根据题意分当05t ≤≤、5t >时两种情况,分别表示出PQ 的长y 与t 的关系式,进而得出答案.【详解】解:在ABC ∆中,90C =o ∠,30B ∠=o ,AB=10,∴AC=5, 12AC AB =, I. 当05t ≤≤时,P 在AB 上,Q 在AC 上,由题意可得:2AP t =,AQ t =, 依题意得:12AQ AP =,又∵A A ∠=∠∴APQ ABC V :V ,∴90AQP C ∠=∠=︒ 则3PQ t =, II.当5t >,P 、Q 在BC 上,由题意可得:P 走过的路程是2t ,Q 走过的路程是t , ∴15533PQ t =+-,故选:A .【点睛】此题主要考查了动点问题的函数图象,正确理解PQ 长与时间是一次函数关系,并得出函数关系式是解题关键.5.如图,边长为 2 的正方形ABCD ,点P 从点A 出发以每秒 1 个单位长度的速度沿A D C --的路径向点 C 运动,同时点 Q 从点 B 出发以每秒 2 个单位长度的速度沿B C D A --- 的路径向点 A 运动,当点 Q 到达终点时,点P 停止运动,设PQC ∆ 的面积为 S ,运动时间为t 秒,则能大致反映S 与t 的函数关系的图象是( )A .B .C .D .【答案】C【解析】【分析】 分三种情况求出解析式,即可求解.【详解】当0≤t≤1时,即当点Q 在BC 上运动,点P 在AD 上运动时,()2222212S t t =⨯⨯-=-, ∴该图象y 随x 的增大而减小,当1<t≤2时,即当点Q 在CD 上运动时,点P 在AD 上运动时,()()21222322S t t t t =--=-+-, ∴该图象开口向下, 当2<t≤3,即当点Q 在AD 上运动时,点P 在DC 上运动时,()()21424682S t t t t =--=-+- ∴该图象开口向下,故选:C.【点睛】本题考查了动点问题的函数图象,求出分段函数解析式是本题的关键.6.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是().①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.A.①③④B.①②③C.①②④D.①②③④【答案】D【解析】【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.【详解】解:由图象可得,小明家和学校距离为1200米,故①正确,小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,故选:D.【点睛】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.7.若A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,则y1、y2、y3的大小关系是()A.y1<y2<y3B.y2<y1<y3C.y3<y1<y2D.y1<y3<y2【答案】B【解析】【分析】把三个点的坐标代入二次函数解析式分别计算出则y1、y2、y3的值,然后进行大小比较.【详解】解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,∴y2<y1<y3.故选:B.【点睛】本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.8.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.【答案】D【解析】【分析】根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.【详解】解:A、距离越来越大,选项错误;B、距离越来越小,但前后变化快慢一样,选项错误;C、距离越来越大,选项错误;D、距离越来越小,且距离先变化慢,后变化快,选项正确;【点睛】本题考查了函数图象,观察距离随时间的变化是解题关键.9.如图1,在矩形ABCD 中,动点P 从点A 出发,以相同的速度,沿A→B→C→D→A 方向运动到点A 处停止.设点P 运动的路程为x ,△PAB 的面积为y ,如果y 与x 的函数图象如图2所示,则矩形ABCD 的面积为( )A .24B .40C .56D .60【答案】A【解析】【分析】 由点P 的运动路径可得△PAB 面积的变化,根据图2得出AB 、BC 的长,进而求出矩形ABCD 的面积即可得答案.【详解】∵点P 在AB 边运动时,△PAB 的面积为0,在BC 边运动时,△PAB 的面积逐渐增大, ∴由图2可知:AB=4,BC=10-4=6,∴矩形ABCD 的面积为AB·BC=24, 故选:A .【点睛】本题考查分段函数的图象,根据△PAB 面积的变化,正确从图象中得出所需信息是解题关键.10.在函数3y x =-中,自变量x 的取值范围是( ) A .3x <B .3x >C .3x ≥D .8,5OA OB ==u u u v u u u v【答案】C【解析】【分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,二次根式有意义的条件是:被开方数为非负数.【详解】依题意,得x-3≥0,解得x≥3.故选C .本题考查了二次根式的性质:二次根式的被开方数是非负数.11.若12x y x -=有意义,则x 的取值范围是( ) A .1x 2≤且x 0≠ B .1x 2≠ C .1x 2≤ D .x 0≠ 【答案】A【解析】【分析】根据二次根式有意义的条件和分式有意义的条件即可求出答案.【详解】 由题意可知:{12x 0x 0-≥≠,解得:1x 2≤且x 0≠, 故选A .【点睛】本题考查了分式有意义的条件、二次根式有意义的条件,熟练掌握分式的分母不为0、二次根式的被开方数为非负数是解题的关键.12.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O 逆时针0°~90°的旋转,那么旋转时露出的△ABC 的面积(S )随着旋转角度(n )的变化而变化,下面表示S 与n 关系的图象大致是( )A .B .C .D .【答案】B【解析】【分析】注意分析y 随x 的变化而变化的趋势,而不一定要通过求解析式来解决.【详解】旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.故选B.【点睛】考查动点问题的函数图象问题,关键要仔细观察.13.“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横t表示离家的时间,下面与上述诗意大致相吻合的图象是()A.B.C.D.【答案】B【解析】【分析】首先正确理解小诗的含义,然后再根据时间与离家的距离关系找出函数图象.【详解】解:同辞家门赴车站,父亲和孩子的函数图象在一开始的时候应该一样,别时叮咛语千万,时间在加长,路程不变,学子满载信心去,学子离家越来越远,老父怀抱希望还,父亲回家离家越来越近,故选:B.【点睛】此题主要考查了函数图象,首先应理解函数图象的横轴和纵轴表示的量,再根据实际情况来判断函数图象.14.如图,描述了林老师某日傍晚的一段生活过程:他晚饭后,从家里散步走到超市,在超市停留了一会儿,马上又去书店,看了一会儿书,然后快步走回家,图象中的平面直角坐标系中x表示时间,y表示林老师离家的距离,请你认真研读这个图象,根据图象提供的信息,以下说法错误的是( )A.林老师家距超市1.5千米B.林老师在书店停留了30分钟C.林老师从家里到超市的平均速度与从超市到书店的平均速度是相等的D.林老师从书店到家的平均速度是10千米/时【答案】D【解析】分析:根据图象中的数据信息进行分析判断即可.详解:A选项中,由图象可知:“林老师家距离超市1.5km”,所以A中说法正确;B选项中,由图象可知:林老师在书店停留的时间为;80-50=30(分钟),所以B中说法正确;C选项中,由图象可知:林老师从家里到超市的平均速度为:1500÷30=50(米/分钟),林老师从超市到书店的平均速度为:(2000-1500)÷(50-40)=50(米/分钟),所以C中说法正确;D选项中,由图象可知:林老师从书店到家的平均速度为:2000÷(100-80)=100(米/分钟)=6(千米/时),所以D中说法错误.故选D.点睛:读懂题意,“弄清函数图象中每个转折点的坐标的实际意义”是解答本题的关键.15.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()A.1 个B.2 个C.3 个D.4个【答案】C【解析】【分析】【详解】解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;③由横纵坐标看出,乙比甲先到达终点,故③错误;④由纵坐标看出,甲乙二人都跑了20千米,故④正确;故选C.16.某班同学在研究弹簧的长度跟外力的变化关系时,实验记录得到相应的数据如下表:砝码的质量x/g050100150200250300400500指针位置y/cm2345677.57.57.5则下列图象中,能表示y与x的函数关系的图象大致是( )A.B.C.D.【答案】B【解析】【分析】通过(0,2)和(100,4)利用待定系数法求出一次函数的解析式,再对比图象中的折点即可选出答案.【详解】解:由题干内容可得,一次函数过点(0,2)和(100,4).设一次函数解析式为y=k x+b,代入点(0,2)和点(100,4)可解得,k=0.02,b=2.则一次函数解析式为y=0.02x+2.显然当y=7.5时,x=275,故选B.【点睛】此题主要考查函数的图象和性质,利用待定系数法求一次函数解析式.17.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()A.B.C.D.【答案】D【解析】试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.考点:函数的图象.18.下列图象中,表示y是x的函数的是()A.B.C.D.【答案】C【解析】【分析】函数就是在一个变化过程中有两个变量x,y,当给x一个值时,y有唯一的值与其对应,就说y是x的函数,x是自变量.注意“y有唯一的值与其对应”对图象的影响.【详解】解:根据函数的定义可知,每给定自变量x一个值都有唯一的函数值y相对应,所以A. B. D错误.故选C.【点睛】本题考查了函数的概念,牢牢掌握函数的概念是解答本题的关键.19.如图,在△ABC中,AC=BC,有一动点P从点A出发,沿A→C→B→A匀速运动.则CP的长度s与时间t之间的函数关系用图象描述大致是()A.B.C.D.【答案】D【解析】试题分析:如图,过点C作CD⊥AB于点D.∵在△ABC中,AC=BC,∴AD=BD.①点P在边AC上时,s随t的增大而减小.故A、B错误;②当点P在边BC上时,s随t的增大而增大;③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.考点:等腰三角形的性质,函数的图象;分段函数.20.某天小明骑自行车上学,途中因自行车发生故障,修车耽误一段时间后继续骑行,按时赶到了学校.如图描述了他上学情景,下列说法中错误的是()A.用了5分钟来修车B.自行车发生故障时离家距离为1000米C.学校离家的距离为2000米D.到达学校时骑行时间为20分钟【答案】D【解析】【分析】观察图象,明确每一段小明行驶的路程,时间,作出判断即可.【详解】由图可知,修车时间为15-10=5分钟,可知A正确;自行车发生故障时离家距离为1000米,可知B正确;学校离家的距离为2000米,可知C正确;到达学校时骑行时间为20-5=15分钟,可知D错误,故选D.【点睛】本题考查了函数图象,读懂图象,能从图象中读取有用信息的数形、分析其中的“关键点”、分析各图象的变化趋势是解题的关键.。

初中数学函数基础知识基础测试题及答案(1)

初中数学函数基础知识基础测试题及答案(1)
8.小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()
A. B.
C. D.
【答案】D
【解析】
【分析】
根据上学,可得离学校的距离越来越小,根据开始步行,可得距离变化慢,后来坐车,可得距离变化快.
【详解】
解:A、距离越来越大,选项错误;
B、距离越来越小,但前后变化快慢一样,选项错误;
∵在△ABC中,AC=BC,∴AD=BD.
①点P在边AC上时,s随t的增大而减小.故A、B错误;
②当点P在边BC上时,s随t的增大而增大;
③当点P在线段BD上时,s随t的增大而减小,点P与点D重合时,s最小,但是不等于零.故C错误;
④当点P在线段AD上时,s随t的增大而增大.故D正确.故答案选D.
考点:等腰三角形的性质,函数的图象;分段函数.
【详解】
解:∵A(﹣3,y1)、B(0,y2)、C(2,y3)为二次函数y=(x+1)2+1的图象上的三点,
∴y1=(﹣3+1)2+1=5,y2=(0+1)2+1=2,y3=(2+1)2+1=10,
∴y2<y1<y3.
故选:B.
【点睛】
本题考查了比较函数值大小的问题,掌握二次函数的性质、代入法是解题的关键.
A. B.
C. D.
【答案】C
【解析】
【分析】
根据题意可对每个选项逐一分析判断图象得正误.
【详解】
解:A、从图象上看小亮的路程走平路不变是不正确的,故不是.
B、从图象上看小亮走的路程随时间有一段更少了,不正确,故不是.
C、小亮走的路程应随时间的增大而增大,两次平路的两条直线互相平行,此图象符合,故正确.

初中中考数学函数基础28典型题(含答案和解析)

初中中考数学函数基础28典型题(含答案和解析)

初中中考数学函数基础28道典型题(含答案和解析)1.已知关于x 的方程 mx+3=4的解为 x=1,则直线 y=(m−2)x−3一定不经过().A. 第一象限B. 第二象限C. 第三象限D. 第四象限答案:A.解析:∵关于x的方程mx+3=4的解为x=1.∴m+3=4.∴m=1.∴直线y=(m−2)x−3为直线y=−x−3.∴直线y=(m−2)x−3一定不经过第一象限.考点:函数——一次函数——一次函数与一元一次方程.2.如图,把直线y=−2x向上平移后得到直线AB,直线AB经过点(a,b),且2a+b=6,则直线AB解析式是().A. y=−2x−3B. y=−2x−6C. y=−2x+3D. y=−2x+6答案:D.解析:∵直线AB经过点(a,b),且2a+b=6.∴直线AB经过点(a,6−2a).∵直线AB与直线y=−2x平行.∴设直线AB的解析式是:y=−2x+b1.把(a,6−2a)代入函数解析式得:6−2a=−2a+b1.则b1=6.∴直线AB的解析式是y=−2x+6.考点:函数——一次函数——一次函数图象与几何变换——一次函数平移变换.3.如图,函数y=2x和y=ax+4的图象相交于点A(m,3),则不等式2x>ax+4的解集为.答案:x>23.解析:∵函数y=2x过点A(m,3).∴2m=3.解得:m=23.∴A(32,3).∴不等式2x>ax+4的解集为x>23.考点:函数——一次函数——一次函数与一元一次不等式——两条直线相交或平行问题.4.若函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1),则关于x、y的二元一次方程组{x−y=a2x+y=b的解是.答案:{x=2y=1.解析:因为函数y=x−a(a为常数)与函数y=−2x+b(b为常数)的图象的交点坐标是(2,1).所以方程组{x−y=a2x+y=b的解是{x=2y=1.考点:函数——一次函数——一次函数与二元一次方程——一次函数与二元一次方程(组)的关系.5.一次函数y=2x−3的图象与y轴交于A,另一个一次函数y=kx+b与y轴交于B,两条直线交于C,C点的纵坐标是1,且S△ABC=5,求k、b的值.答案:(2,1).解析:由题意知C(2,1).过C作CD⊥y轴,CD=2.·AB·CD=5.S△ABC=12∴AB=5.∴B(0,2)或(0,−8).x+2.当B(0,2)时,y=−12x−8.当B(0,−8)时,y=−92考点:函数——一次函数——求一次函数解析式——两条直线相交或平行问题.6.已知一次函数y=ax+b的图象过第一、二、四象限,且与x轴交于点(2,0),求关于x的不等式a(x−1)−b>0的解集.答案:x<−1.解析:∵一次函数y=ax+b的图象过第一、二、四象限.∴b>0,a<0.把(2,0)代入解析式y=ax+b得:0=2a+b.解得:2a=−b.b=−2.a∵a(x−1)−b>0.∴a(x−1)>b.∵a<0..∴x−1<ba∴x<−1.考点:函数——一次函数——一次函数与一元一次不等式.7.如果一次函数y=−x+1的图象与x轴、y轴分别交于A点、B点,点M在x轴上,并且使以点A、B、M为顶点的三角形是等腰三角形,那么这样的点M有().A. 3个B. 4个C. 5个D. 7个答案:B.解析:一次函数y=−x+1中令x=0,解得y=1.令y=0,解得x=1.∴A(1,0),B(0,1),即OA=OB=1.在直角三角形AOB中,根据勾股定理得:AB=√2.分四种情况考虑,如图所示:当BM1=BA时,由BO⊥AM1,根据三线合一得到O为M1A的中点,此时M1(−1,0).当AB=AM2时,由AB=√2,得到OM2=AM2−OA=√2−1,此时M2(1−√2,0).当BA=AM3时,由AB=√2,得到AM3=√2,则OM3=OA+AM3=1+√2,此时M3(1+√2,0).当M4A=M4B时,此时M4与原点重合,此时M4(0,0).综上,这样的M点有4个.故选B.考点:函数——一次函数——一次函数综合题——一次函数与等腰三角形结合.8.如图①,在梯形ABCD中,AD∥BC,∠A=60°,动点P从A点出发,以1cm/S的速度沿着A→B→C→D的方向不停移动,直到点P到达点D后才停止.已知△PAD的面积S(单位:cm2)与点P移动的时间(单位:s)的函数如图②所示,则点P从开始移动到停止移动一共用了秒(结果保留根号).答案:4+2√3.解析:由图②可知,t在2到4秒时,△PAD的面积不发生变化.∴在AB上运动的时间是2秒,在BC上运动的时间是4−2=2秒.∵动点P的运动速度是1cm/s.∴AB=2cm,BC=2cm.过点B作BE⊥AD于点E,过点C作CF⊥AD于点F.则四边形BCFE是矩形.∴BE=CF,BC=EF=2cm.∵∠A=60°.∴BE=ABsin60°=2×√3=√3.2AE=ABcos60°=2×1=1.2∴1×AD×BE=3√3.2×AD×√3=3√3.即12解得AD=6cm.∴DF=AD−AE−EF=6−1−2=3.在Rt△CDF中,CD=√CF2+DF2=√√32+32=2√3.所以,动点P运动的总路程为AB+BC+CD=2+2+2√3=4+2√3.∵动点P的运动速度是1cm/s.∴点P从开始移动到停止移动一共用了(4+2√3)÷1=4+2√3(秒).故答案为:4+2√3.考点:函数——一次函数——一次函数的应用.四边形——梯形.的图像上,OA长为2且∠1=60°。

初中数学一次函数基础测试题含答案解析

初中数学一次函数基础测试题含答案解析

初中数学一次函数基础测试题含答案解析一、选择题1.已知正比例函数0()y mx m =≠中,y 随x 的增大而减小,那么一次函数y mx m =-的图象大致是如图中的( )A .B .C .D .【答案】D【解析】【分析】由y 随x 的增大而减小即可得出m <0,再由m <0、−m >0即可得出一次函数y mx m =-的图象经过第一、二、四象限,对照四个选项即可得出结论.【详解】解:∵正比例函数y =mx (m≠0)中,y 随x 的增大而减小,∴m <0,∴−m >0,∴一次函数y =mx−m 的图象经过第一、二、四象限.故选:D .【点睛】本题考查了一次函数的图象、正比例函数的性质以及一次函数图象与系数的关系,熟练掌握“k <0,b >0⇔y =kx +b 的图象在一、二、四象限”是解题的关键.2.如图,在矩形AOBC 中,A (–2,0),B (0,1).若正比例函数y=kx 的图象经过点C ,则k 的值为( )A .–12B .12C .–2D .2【答案】A【解析】【分析】根据已知可得点C 的坐标为(-2,1),把点C 坐标代入正比例函数解析式即可求得k.【详解】∵A(-2,0),B(0,1),∴OA=2,OB=1,∵四边形OACB 是矩形,∴BC=OA=2,AC=OB=1,∵点C 在第二象限,∴C 点坐标为(-2,1),∵正比例函数y =kx 的图像经过点C ,∴-2k=1,∴k=-12, 故选A. 【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C 的坐标是解题的关键.3.给出下列函数:①y =﹣3x +2:②y =3x ;③y =﹣5x:④y =3x ,上述函数中符合条件“当x >1时,函数值y 随自变量x 增大而增大”的是( )A .①③B .③④C .②④D .②③【答案】B【解析】【分析】分别利用一次函数、正比例函数、反比例函数的增减性分析得出答案.【详解】 解:①y =﹣3x +2,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ②y =3x,当x >1时,函数值y 随自变量x 增大而减小,故此选项不符合题意; ③y =﹣5x,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意; ④y =3x ,当x >1时,函数值y 随自变量x 增大而增大,故此选项符合题意;故选:B .【点睛】此题考查一次函数、正比例函数、反比例函数,正确把握相关性质是解题关键.4.一次函数y kx b =+是(,k b 是常数,0k ≠)的图像如图所示,则不等式0kx b +<的解集是( )A .0x >B .0x <C .2x >D .2x <【答案】C【解析】【分析】 根据一次函数的图象看出:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),得到当x >2时,y<0,即可得到答案.【详解】解:一次函数y=kx+b (k ,b 是常数,k≠0)的图象与x 轴的交点是(2,0),当x >2时,y<0.故答案为:x >2.故选:C.【点睛】本题主要考查对一次函数的图象,一次函数与一元一次不等式等知识点的理解和掌握,能观察图象得到正确结论是解此题的关键.5.如图,函数4y x =-和y kx b =+的图象相交于点()8A m-,,则关于x 的不等式()40k x b ++>的解集为( )A .2x >B .02x <<C .8x >-D .2x <【答案】A【解析】【分析】 直接利用函数图象上点的坐标特征得出m 的值,再利用函数图象得出答案即可.【详解】解:∵函数y=−4x和y=kx+b的图象相交于点A(m,−8),∴−8=−4m,解得:m=2,故A点坐标为(2,−8),∵kx+b>−4x时,(k+4)x+b>0,则关于x的不等式(k+4)x+b>0的解集为:x>2.故选:A.【点睛】此题主要考查了一次函数与一元一次不等式,正确利用函数图象分析是解题关键.6.正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为()A.B.C.D.【答案】B【解析】【分析】根据图象分别确定k的取值范围,若有公共部分,则有可能;否则不可能.【详解】根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.7.已知正比例函数y=kx(k≠0)经过第二、四象限,点(k﹣1,3k+5)是其图象上的点,则k的值为()A.3 B.5 C.﹣1 D.﹣3【答案】C【解析】【分析】把x=k﹣1,y=3k+5代入正比例函数y=kx解答即可.【详解】把x=k﹣1,y=3k+5代入正比例函数的y=kx,可得:3k+5=k (k ﹣1),解得:k 1=﹣1,k 2=5,因为正比例函数的y=kx (k≠0)的图象经过二,四象限,所以k <0,所以k=﹣1,故选C .【点睛】本题考查了待定系数法求正比例函数的解析式,掌握正比例函数图象上的点的坐标都满足正比例函数的解析式是解题的关键.8.下列函数(1)y =x (2)y =2x ﹣1 (3)y =1x(4)y =2﹣3x (5)y =x 2﹣1中,是一次函数的有( )A .4个B .3个C .2个D .1个 【答案】B【解析】【分析】分别利用一次函数、二次函数和反比例函数的定义分析得出即可.【详解】解:(1)y =x 是一次函数,符合题意;(2)y =2x ﹣1是一次函数,符合题意; (3)y =1x是反比例函数,不符合题意; (4)y =2﹣3x 是一次函数,符合题意;(5)y =x 2﹣1是二次函数,不符合题意;故是一次函数的有3个.故选:B .【点睛】 此题考查一次函数、二次函数和反比例函数的定义,正确把握相关定义是解题关键.9.将直线21y x =+向下平移n 个单位长度得到新直线21y x =-,则n 的值为( ) A .2-B .1-C .1D .2【答案】D【解析】【分析】直接根据“上加下减”的原则进行解答即可.【详解】解:由“上加下减”的原则可知:直线y=2x+1向下平移n 个单位长度,得到新的直线的解析式是y=2x+1-n ,则1-n=-1,解得n=2.故选:D .【点睛】本题考查的是一次函数的图象与几何变换,熟知函数图象平移的法则是解答此题的关键.10.如图1所示,A ,B 两地相距60km ,甲、乙分别从A ,B 两地出发,相向而行,图2中的1l ,2l 分别表示甲、乙离B 地的距离y (km )与甲出发后所用的时间x (h )的函数关系.以下结论正确的是( )A .甲的速度为20km/hB .甲和乙同时出发C .甲出发1.4h 时与乙相遇D .乙出发3.5h 时到达A 地【答案】C【解析】【分析】根据题意结合图象即可得出甲的速度;根据图象即可得出甲比乙早出发0.5小时;根据两条线段的交点即可得出相遇的时间;根据图形即可得出乙出发3h 时到达A 地.【详解】解:A .甲的速度为:60÷2=30,故A 错误;B .根据图象即可得出甲比乙早出发0.5小时,故B 错误;C .设1l 对应的函数解析式为111y k x b =+,所以:1116020b k b =⎧⎨+=⎩, 解得113060k b =-⎧⎨=⎩ 即1l 对应的函数解析式为13060y x =-+;设2l 对应的函数解析式为222y k x b =+,所以:22220.503.560k b k b +=⎧⎨+=⎩, 解得 222010k b =⎧⎨=-⎩ 即2l 对应的函数解析式为22010y x =-,所以:30602010y x y x =-+⎧⎨=-⎩, 解得 1.418x y =⎧⎨=⎩ ∴点A 的实际意义是在甲出发1.4小时时,甲乙两车相遇, 故本选项符合题意; D .根据图形即可得出乙出发3h 时到达A 地,故D 错误.故选:C .【点睛】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.11.下列各点在一次函数y=2x ﹣3的图象上的是( )A .( 2,3)B .(2,1)C .(0,3)D .(3,0【答案】B【解析】【分析】把各点分别代入一次函数y=2x ﹣3进行检验即可.【详解】A 、2×2﹣3=1≠3,原式不成立,故本选项错误;B 、2×2﹣3=1,原式成立,故本选项正确;C 、2×0﹣3=﹣3≠3,原式不成立,故本选项错误;D 、2×3﹣3=3≠0,原式不成立,故本选项错误,故选B .【点睛】本题考查了一次函数图象上点的坐标特征,熟知一次函数图象上的点的坐标满足一次函数的解析式是解题的关键.解答时只要把四个选项一一代入进行检验即可.12.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.13.如图1,在Rt △ABC 中,∠ACB=90°,点P 以每秒1cm 的速度从点A 出发,沿折线AC -CB 运动,到点B 停止.过点P 作PD ⊥AB ,垂足为D ,PD 的长y (cm )与点P 的运动时间x (秒)的函数图象如图2所示.当点P 运动5秒时,PD 的长是( )A .1.5cmB .1.2cmC .1.8cmD .2cm 【答案】B【解析】【分析】【详解】由图2知,点P 在AC 、CB 上的运动时间时间分别是3秒和4秒,∵点P 的运动速度是每秒1cm ,∴AC=3,BC=4.∵在Rt △ABC 中,∠ACB=90°,∴根据勾股定理得:AB=5.如图,过点C 作CH ⊥AB 于点H ,则易得△ABC ∽△ACH . ∴CHAC BC AB =,即AC BC3412CH CH AB 55⋅⨯=⇒==.∴如图,点E (3,125),F (7,0).设直线EF 的解析式为y kx b =+,则123k b {507k b =+=+,解得:3 k5 {21 b5=-=.∴直线EF 的解析式为321y x55=-+.∴当x5=时,()3216PD y5 1.2cm555==-⨯+==.故选B.14.如图,已知直线1y x b=+与21y kx=-相交于点P,点P的横坐标为1-,则关于x 的不等式1x b kx+≤-的解集在数轴上表示正确的是().A.B.C.D.【答案】D【解析】试题解析:当x>-1时,x+b>kx-1,即不等式x+b>kx-1的解集为x>-1.故选A.考点:一次函数与一元一次不等式.15.函数()312y m x=+-中,y随x的增大而增大,则直线()12y m x=---经过() A.第一、三、四象限B.第二、三、四象限C.第一、二、四象限D.第一、二、三象限【答案】B【解析】【分析】根据一次函数的增减性,可得310m+>;从而可得10m--<,据此判断直线()12y m x =---经过的象限.【详解】解:Q 函数()312y m x =+-中,y 随x 的增大而增大,310m ∴+>,则13m >- 10m ∴--<,∴直线()12y m x =---经过第二、三、四象限.故选:B .【点睛】本题考查了一次函数的性质,正确掌握一次函数图象与系数的关系是解题的关键.即一次函数y=kx+b (k≠0)中,当k >0时,y 随x 的增大而增大,图象经过一、三象限;当k <0时,y 随x 的增大而减小,图象经过二、四象限;当b >0时,此函数图象交y 轴于正半轴;当b <0时,此函数图象交y 轴于负半轴.16.已知一次函数y =kx+k ,其在直角坐标系中的图象大体是( )A .B .C .D .【答案】A【解析】【分析】函数的解析式可化为y =k (x +1),易得其图象与x 轴的交点为(﹣1,0),观察图形即可得出答案.【详解】函数的解析式可化为y =k (x +1),即函数图象与x 轴的交点为(﹣1,0),观察四个选项可得:A 符合.故选A .【点睛】本题考查了一次函数的图象,要求学生掌握通过解析判断其图象与坐标轴的交点位置、坐标.17.如图,经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),4x +2<kx +b <0的解集为( )A .x <﹣2B .﹣2<x <﹣1C .x <﹣1D .x >﹣1【答案】B【解析】【分析】 由图象得到直线y=kx+b 与直线y=4x+2的交点A 的坐标(-1,-2)及直线y=kx+b 与x 轴的交点坐标,观察直线y=4x+2落在直线y=kx+b 的下方且直线y=kx+b 落在x 轴下方的部分对应的x 的取值即为所求.【详解】∵经过点B (﹣2,0)的直线y =kx +b 与直线y =4x +2相交于点A (﹣1,﹣2),∴直线y =kx +b 与直线y =4x +2的交点A 的坐标为(﹣1,﹣2),直线y =kx +b 与x 轴的交点坐标为B (﹣2,0),又∵当x <﹣1时,4x +2<kx +b ,当x >﹣2时,kx +b <0,∴不等式4x +2<kx +b <0的解集为﹣2<x <﹣1.故选B .【点睛】本题考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=ax+b 的值大于(或小于)0的自变量x 的取值范围;从函数图象的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.18.如图在平面直角坐标系中,等边三角形OAB 的边长为4,点A 在第二象限内,将OAB ∆沿射线AO 平移,平移后点A '的横坐标为43,则点B '的坐标为( )A .(3,2)-B .(63,3)-C .(6,2)-D .(63,2)-【答案】D【解析】【分析】先根据已知条件求出点A 、B 的坐标,再求出直线OA 的解析式,继而得出点A '的纵坐标,找出点A 平移至点A '的规律,即可求出点B '的坐标.【详解】解:∵三角形OAB 是等边三角形,且边长为4∴(2),(0,4)A B -设直线OA 的解析式为y kx =,将点A 坐标代入,解得:k =即直线OA 的解析式为:y x =将点A '的横坐标为4y =-即点A '的坐标为4)-∵点A 向右平移6个单位得到点A '∴B '的坐标为(046)2)+-=-.故选:D .【点睛】本题考查的知识点是坐标与图形变化-平移,熟练掌握坐标平面图形平移的规律是解决本题的关键.19.若一次函数y=kx+b 的图象经过一、二、四象限,则一次函数y=-bx+k 的图象不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】根据一次函数y=kx+b 图象在坐标平面内的位置关系先确定k ,b 的取值范围,再根据k ,b 的取值范围确定一次函数y=-bx+k 图象在坐标平面内的位置关系,从而求解.【详解】解:一次函数y=kx+b 过一、二、四象限,则函数值y 随x 的增大而减小,因而k <0;图象与y 轴的正半轴相交则b >0,因而一次函数y=-bx+k 的一次项系数-b <0,y 随x 的增大而减小,经过二四象限,常数项k <0,则函数与y 轴负半轴相交,因而一定经过二三四象限,因而函数不经过第一象限.故选:A .【点睛】本题考查了一次函数的图象与系数的关系.函数值y 随x 的增大而减小⇔k <0;函数值y 随x 的增大而增大⇔k >0;一次函数y=kx+b 图象与y 轴的正半轴相交⇔b >0,一次函数y=kx+b 图象与y 轴的负半轴相交⇔b <0,一次函数y=kx+b 图象过原点⇔b=0.20.一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行且经过点A (1,-3),则这个一次函数的图象一定经过( )A .第一、二、三象限B .第一、三、四象限C .第一、二、四象限D .第二、三、四象限【答案】C【解析】【分析】 由一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行可得k=-6,把点A 坐标代入y=-6x+b 可求出b 值,即可得出一次函数解析式,根据一次函数的性质即可得答案.【详解】∵一次函数y kx b +=的图象与正比例函数6y x =﹣的图象平行, ∴k=-6,∵一次函数6y x b =-+经过点A (1,-3),∴-3=-6+b ,解得:b=3,∴一次函数的解析式为y=-6x+3,∵-6<0,3>0,∴一次函数图象经过二、四象限,与y 轴交于正半轴,∴这个一次函数的图象一定经过一、二、四象限,故选:C .【点睛】本题考查了两条直线平行问题及一次函数的性质:若直线y=k 1x+b 1与直线y=k 2x+b 2平行,则k 1=k 2;当k >0时,图象经过一、三象限,y 随x 的增大而增大;当k <0时,图象经过二、四象限,y 随x 的增大而减小;当b >0时,图象与y 轴交于正半轴;当b <0时,图象与y 轴交于负半轴.。

初中数学一次函数基础测试题及解析

初中数学一次函数基础测试题及解析

初中数学一次函数基础测试题及解析一、选择题1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =- 【答案】A【解析】【分析】直接根据“上加下减”、“左加右减”的原则进行解答即可.【详解】由“左加右减”的原则可知,将直线y=2x-3向右平移2个单位后所得函数解析式为y=2(x-2)-3=2x-7,由“上加下减”原则可知,将直线y=2x-7向上平移3个单位后所得函数解析式为y=2x-7+3=2x-4,故选A.【点睛】本题考查了一次函数的平移,熟知函数图象平移的法则是解答此题的关键.2.某一次函数的图象经过点()1,2,且y 随x 的增大而减小,则这个函数的表达式可能是( )A .24y x =+B .24y x =-+C .31y x =+D .31y x -=-【答案】B【解析】【分析】设一次函数关系式为y kx b =+,把(1,2)代入可得k+b=2,根据y 随x 的增大而减小可得k <0,对各选项逐一判断即可得答案.【详解】设一次函数关系式为y kx b =+,∵图象经过点()1,2, 2k b ∴+=;∵y 随x 增大而减小,∴k 0<,A.2>0,故该选项不符合题意,B.-2<0,-2+4=2,故该选项符合题意,C.3>0,故该选项不符合题意,D.∵31y x -=-,∴y=-3x+1,-3+1=-2,故该选项不符合题意,故选:B .【点睛】本题考查一次函数的性质及一次函数图象上的点的坐标特征,对于一次函数y=kx+b(k≠0),当k>0时,图象经过一、三、象限,y随x的增大而增大;当k<0时,图象经过二、四、象限,y随x的增大而减小;熟练掌握一次函数的性质是解题关键.3.正比例函数y=kx与一次函数y=x﹣k在同一坐标系中的图象大致应为()A.B.C.D.【答案】B【解析】【分析】根据图象分别确定k的取值范围,若有公共部分,则有可能;否则不可能.【详解】根据图象知:A、k<0,﹣k<0.解集没有公共部分,所以不可能;B、k<0,﹣k>0.解集有公共部分,所以有可能;C、k>0,﹣k>0.解集没有公共部分,所以不可能;D、正比例函数的图象不对,所以不可能.故选:B.【点睛】本题考查了一次函数的图象和性质,熟练掌握一次函数y=kx+b的图象的四种情况是解题的关键.4.一列动车从甲地开往乙地,一列普通列车从乙地开往甲地,两车均匀速行驶并同时出发,设普通列车行驶的时间为x (小时),两车之间的距离为y (千米),如图中的折线表示y与x之间的函数关系,下列说法:①动车的速度是270千米/小时;②点B的实际意义是两车出发后3小时相遇;③甲、乙两地相距1000千米;④普通列车从乙地到达甲地时间是9小时,其中不正确的有( )A.1个B.2个C.3个D.4个【答案】B【解析】【分析】由x=0时y=1000可判断③;由运动过程和函数图像关系可判断②;求出普通列车速度,设动车的速度为x 千米/小时,根据“动车3小时行驶的路程+普通列车3小时行驶的路程=1000”列方程求解可判断①;根据x=12时的实际意义可判断④.【详解】解:③由x=0时,y=1000知,甲地和乙地相距1000千米,正确;②如图,出发后3小时,两车之间的距离为0,可知点B 的实际意义是两车出发后3小时相遇,正确;①普通列车的速度是100012=2503千米/小时, 设动车的速度为x 千米/小时, 根据题意,得:3x+3×2503=1000, 解得:x=250,动车的速度为250千米/小时,错误;④由图象知x=t 时,动车到达乙地,∴x=12时,普通列车到达甲地,即普通列车到达终点共需12小时,错误;故选B.【点睛】本题主要考查一次函数的应用,根据题意弄懂函数图象中各拐点坐标的实际意义及行程问题中蕴含的相等关系是解题的关键.5.如图,在同一直角坐标系中,函数13y x =和22y x m =-+的图象相交于点A ,则不等式210y y <<的解集是( )A .01x <<B .502x <<C .1x >D .512x << 【答案】D【解析】【分析】先利用y 1=3x 得到A(1,3),再求出m 得到y 2═-2x+5,接着求出直线y 2═-2x+m 与x 轴的交点坐标为(52,0),然后写出直线y 2═-2x+m 在x 轴上方和在直线y 1=3x 下方所对应的自变量的范围【详解】当x=1时,y=3x=3,∴A(1,3),把A(1,3)代入y 2═−2x+m 得−2+m=3,解得m=5,∴y 2═−2x+5,解方程−2x+5=0,解得x=52, 则直线y 2═−2x+m 与x 轴的交点坐标为(52,0), ∴不等式0<y 2<y 1的解集是1<x<52故选:D【点睛】 本题考查了一次函数与一元一次不等式,会观察一次函数图象.6.如图,点,A B 在数轴上分别表示数23,1a -+,则一次函数(1)2y a x a =-+-的图像一定不经过( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】A【解析】【分析】根据数轴得出0<﹣2a +3<1,求出1<a <1.5,进而可判断1﹣a 和a ﹣2的正负性,从而得到答案.【详解】解:根据数轴可知:0<﹣2a +3<1,解得:1<a <1.5,∴1﹣a <0,a ﹣2<0,∴一次函数(1)2y a x a =-+-的图像经过第二、三、四象限,不可能经过第一限. 故选:A .【点睛】本题考查了利用数轴比较大小和一元一次不等式的解法以及一次函数图象与系数的关系.熟练掌握不等式的解法及一次函数的图象性质是解决本题的关键.7.已知直线3y mx =+经过点(2,0),则关于x 的不等式 30mx +>的解集是( ) A .2x >B .2x <C .2x ≥D .2x ≤【答案】B【解析】【分析】求出m 的值,可得该一次函数y 随x 增大而减小,再根据与x 轴的交点坐标可得不等式解集.【详解】解:把(2,0)代入3y mx =+得:023m =+, 解得:32m =-, ∴一次函数3y mx =+中y 随x 增大而减小, ∵一次函数3y mx =+与x 轴的交点为(2,0),∴不等式 30mx +>的解集是:2x <,故选:B .【点睛】本题考查了待定系数法的应用,一次函数与不等式的关系,判断出函数的增减性是解题的关键.8.如图,直线y=-x+m 与直线y=nx+5n (n≠0)的交点的横坐标为-2,则关于x 的不等式-x+m >nx+5n >0的整数解为( )A .-5,-4,-3B .-4,-3C .-4,-3,-2D .-3,-2【答案】B【解析】【分析】 根据一次函数图像与不等式的性质即可求解.【详解】直线y=nx+5n 中,令y=0,得x=-5∵两函数的交点横坐标为-2,∴关于x的不等式-x+m>nx+5n>0的解集为-5<x<-2故整数解为-4,-3,故选B.【点睛】此题主要考查一次函数与不等式的关系,解题的关键是熟知一次函数的图像与性质.9.如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为()A.5B.2 C.52D.25【答案】C【解析】【分析】通过分析图象,点F从点A到D用as,此时,△FBC的面积为a,依此可求菱形的高DE,再由图象可知,BD=5,应用两次勾股定理分别求BE和a.【详解】过点D作DE⊥BC于点E.由图象可知,点F由点A到点D用时为as,△FBC的面积为acm2..∴AD=a.∴12DE•AD=a.∴DE=2.当点F从D到B5∴5Rt△DBE中,()2222=521 BD DE--=,∵四边形ABCD是菱形,∴EC=a-1,DC=a,Rt△DEC中,a2=22+(a-1)2.解得a=5 2 .故选C.【点睛】本题综合考查了菱形性质和一次函数图象性质,解答过程中要注意函数图象变化与动点位置之间的关系.10.若正比例函数y=kx的图象经过第二、四象限,且过点A(2m,1)和B(2,m),则k的值为()A.﹣12B.﹣2 C.﹣1 D.1【答案】A【解析】【分析】根据函数图象经过第二、四象限,可得k<0,再根据待定系数法求出k的值即可.【详解】解:∵正比例函数y=kx的图象经过第二、四象限,∴k<0.∵正比例函数y=kx的图象过点A(2m,1)和B(2,m),∴2km1 2k m=⎧⎨=⎩,解得:m11k2=-⎧⎪⎨=-⎪⎩或m11k2=⎧⎪⎨=⎪⎩(舍去).故选:A.【点睛】本题考查了正比例函数的系数问题,掌握正比例函数的性质、待定系数法是解题的关键.11.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣21 2 a+=﹣a﹣12,纵坐标为:y=()()224214a a a--+=﹣2a﹣14,∴抛物线的顶点横坐标和纵坐标的关系式为:y=2x+34,∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D.【点睛】本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.12.生物活动小组的同学们观察某植物生长,得到该植物高度y(单位:cm)与观察时间x(单位:天)的关系,并画出如图所示的图象(//CD x轴),该植物最高的高度是()A.50cm B.20cm C.16cm D.12cm【答案】C【解析】【分析】设直线AC的解析式为()0y kx b k=+≠,然后利用待定系数法求出直线AC的解析式,再把50x=代入进行计算即可得解.【详解】解:设直线AC的解析式为()0y kx b k=+≠∵()0,6A,()30,12B∴61230bk b=⎧⎨=+⎩∴156kb⎧=⎪⎨⎪=⎩∴165y x=+∴当50x=时,16y=∴该植物最高的高度是16cm.故选:C【点睛】本题考查了一次函数的应用,主要利用了待定系数法求一次函数解析式,已知自变量求函数值,仔细观察图象,准确获取信息是解题的关键.13.一次函数y=3x+b和y=ax-3的图象如图所示,其交点为P(-2,-5),则不等式3x +b>ax-3的解集在数轴上表示正确的是( )A.B.C.D.【答案】A【解析】【分析】直接根据两函数图象的交点求出不等式的解集,再在数轴上表示出来即可.【详解】解:∵由函数图象可知,当x>-2时,一次函数y=3x+b的图象在函数y=ax-3的图象的上方,∴不等式3x+b>ax-3的解集为:x>-2,在数轴上表示为:故选:A.【点睛】本题考查的是一次函数与一元一次不等式,能利用函数图象求出不等式的解集是解答此题的关键.14.一辆慢车和一辆快车沿相同的路线从A地到B地,所行驶的路程与时间的函数图形如图所示,下列说法正确的有()①快车追上慢车需6小时;②慢车比快车早出发2小时;③快车速度为46km/h;④慢车速度为46km/h;⑤A、B两地相距828km;⑥快车从A地出发到B地用了14小时A.2个B.3个C.4个D.5个【答案】B【解析】【分析】根据图形给出的信息求出两车的出发时间,速度等即可解答.【详解】解:①两车在276km处相遇,此时快车行驶了4个小时,故错误.②慢车0时出发,快车2时出发,故正确.③快车4个小时走了276km,可求出速度为69km/h,错误.④慢车6个小时走了276km,可求出速度为46km/h,正确.⑤慢车走了18个小时,速度为46km/h,可得A,B距离为828km,正确.⑥快车2时出发,14时到达,用了12小时,错误.故答案选B.【点睛】本题考查了看图手机信息的能力,注意快车并非0时刻出发是解题关键.15.一次函数y=x-b的图像,沿着过点(1,0)且垂直于x轴的直线翻折后经过点(4,1),则b的值为()A.-5 B.5 C.-3 D.3【答案】C【解析】【分析】先根据一次函数沿着过点(1,0)且垂直于x轴的直线翻折后经过点(4,1)求出函数经过的点,再用待定系数法求解即可.【详解】解:∵过点(1,0)且垂直于x轴的直线为x=1,∴根据题意,y=x-b的图像关于直线x=1的对称点是(4,1),∴y =x -b 的图像过点(﹣2,1),∴把点(﹣2,1)代入一次函数得到:12b =--,∴b=﹣3,故C 为答案.【点睛】本题主要考查了与一次函数图像有关的知识点,求出从沿某直线翻折后经过的点求函数图像经过哪个点是解题的关键,并掌握用待定系数法求解.16.对于一次函数24y x =-+,下列结论正确的是( )A .函数值随自变量的增大而增大B .函数的图象不经过第一象限C .函数的图象向下平移4个单位长度得2y x =-的图象D .函数的图象与x 轴的交点坐标是()0,4【答案】C【解析】【分析】根据一次函数的系数结合一次函数的性质,即可得知A 、B 选项不正确,代入y=0求出与之对应的x 值,即可得出D 不正确,根据平移的规律求得平移后的解析式,即可判断C 正确,此题得解.【详解】解:A 、∵k=-2<0,∴一次函数中y 随x 的增大而减小,故 A 不正确;B 、∵k=-2<0,b=4>0,∴一次函数的图象经过第一、二、四象限,故B 不正确;C 、根据平移的规律,函数的图象向下平移4个单位长度得到的函数解析式为y=-2x+4-4,即y=-2x ,故C 正确;D 、令y=-2x+4中y=0,则x=2,∴一次函数的图象与x 轴的交点坐标是(2,0)故D 不正确.故选:C .【点睛】此题考查一次函数的图象以及一次函数的性质,解题的关键是逐条分析四个选项.本题属于基础题,难度不大,解决该题时,熟悉一次函数的性质、一次函数图象上点的坐标特征以及一次函数图象与系数的关系是解题的关键.17.如图,平面直角坐标系中,ABC ∆的顶点坐标分别是A(1,1),B(3,1),C(2,2),当直线12y x b =+与ABC ∆有交点时,b 的取值范围是( )A .11b -≤≤B .112b -≤≤ C .1122b -≤≤ D .112b -≤≤【答案】B【解析】【分析】 将A (1,1),B (3,1),C (2,2)的坐标分别代入直线y =12x+b 中求得b 的值,再根据一次函数的增减性即可得到b 的取值范围.【详解】解:直线y=12x+b 经过点B 时,将B (3,1)代入直线y =12x+b 中,可得32+b=1,解得b=-12; 直线y=12x+b 经过点A 时:将A (1,1)代入直线y =12x+b 中,可得12+b=1,解得b=12; 直线y=12x+b 经过点C 时:将C (2,2)代入直线y =12x+b 中,可得1+b=2,解得b=1. 故b 的取值范围是-12≤b≤1. 故选B .【点睛】 考查了一次函数的性质:k >0,y 随x 的增大而增大,函数从左到右上升;k <0,y 随x 的增大而减小,函数从左到右下降.18.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A .B .C .D .【答案】C【解析】【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键.19.若关于x 的一元二次方程2210x x kb -++=有两个不相等的实数根,则一次函数 y kx b =+的图象可能是:A .B .C .D .【答案】B【解析】【分析】【详解】由方程2210x x kb ++=-有两个不相等的实数根,可得()4410kb =-+V>, 解得0kb <,即k b 、异号,当00k b >,<时,一次函数y kx b =+的图象过一三四象限,当00k b <,>时,一次函数y kx b =+的图象过一二四象限,故答案选B.20.已知直线4y x =-+与2y x =+的图象如图,则方程组y x 4y x 2=-+⎧⎨=+⎩的解为( )A .31x y ==,B .13x y ==,C .04x y ==,D .40x y ==,【答案】B【解析】【分析】 二元一次方程组的解就是组成二元一次方程组的两个方程的公共解,即两条直线的交点坐标.【详解】解:根据题意知,二元一次方程组y x 4y x 2=-+⎧⎨=+⎩的解就是直线y =−x +4与y =x +2的交点坐标,又∵交点坐标为(1,3), ∴原方程组的解是:13x y ==,. 故选:B .【点睛】本题考查了一次函数与二元一次方程组.二元一次方程组的解就是组成该方程组的两条直线的图象的交点.。

新初中数学反比例函数基础测试题含答案解析(2)

新初中数学反比例函数基础测试题含答案解析(2)

新初中数学反比例函数基础测试题含答案解析(2) 一、选择题1.如图,在平面直角坐标系中,点B在第一象限,BA⊥x轴于点A,反比例函数y=kx (x>0)的图象与线段AB相交于点C,且C是线段AB的中点,若△OAB的面积为3,则k的值为()A.13B.1 C.2 D.3【答案】D 【解析】【分析】连接OC,如图,利用三角形面积公式得到S△AOC=12S△OAB=32,再根据反比例函数系数k的几何意义得到12|k|=32,然后利用反比例函数的性质确定k的值.【详解】连接OC,如图,∵BA⊥x轴于点A,C是线段AB的中点,∴S△AOC=12S△OAB=32,而S△AOC=12|k|,∴12|k|=32,而k>0,∴k=3.故选:D.【点睛】此题考查反比例函数系数k 的几何意义,解题关键在于掌握在反比例函数y=k x图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.2.已知反比例函数2y x-=,下列结论不正确的是( ) A .图象经过点(﹣2,1) B .图象在第二、四象限C .当x <0时,y 随着x 的增大而增大D .当x >﹣1时,y >2 【答案】D【解析】【分析】【详解】A 选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B 选项:因为-2<0,图象在第二、四象限,故本选项正确;C 选项:当x <0,且k <0,y 随x 的增大而增大,故本选项正确;D 选项:当x >0时,y <0,故本选项错误.故选D .3.已知点A (﹣2,y 1),B (a ,y 2),C (3,y 3)都在反比例函数4y x =的图象上,且﹣2<a <0,则( )A .y 1<y 2<y 3B .y 3<y 2<y 1C .y 3<y 1<y 2D .y 2<y 1<y 3 【答案】D【解析】【分析】根据k >0,在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,逐一分析即可.【详解】∵反比例函数y=4x中的k=4>0, ∴在图象的每一支上,y 随x 的增大而减小,双曲线在第一三象限,∵-2<a <0,∴0>y 1>y 2,∵C (3,y 3)在第一象限,∴y 3>0,∴213y y y <<,故选D .【点睛】本题考查了反比例函数的性质,熟练地应用反比例函数的性质是解题的关键.4.如图,反比例函数y =2x的图象经过矩形OABC 的边AB 的中点D ,则矩形OABC 的面积为( )A .1B .2C .4D .8【答案】C【解析】【分析】 由反比例函数的系数k 的几何意义可知:2OA AD =g ,然后可求得OA AB g 的值,从而可求得矩形OABC 的面积.【详解】解:Q 反比例函数2y x=, 2OA AD ∴=g . D Q 是AB 的中点,2AB AD ∴=.∴矩形的面积2224OA AB AD OA ===⨯=g g .故选:C .【点睛】本题主要考查的是反比例函数k 的几何意义,掌握反比例函数系数k 的几何意义是解题的关键.5.已知点()1,3M -在双曲线k y x =上,则下列各点一定在该双曲线上的是( ) A .()3,1-B .()1,3--C .()1,3D .()3,1【答案】A【解析】【分析】先求出k=-3,再依次判断各点的横纵坐标乘积,等于-3即是在该双曲线上,否则不在.【详解】∵点()1,3M -在双曲线k y x=上, ∴133k =-⨯=-,∵3(1)3⨯-=-,∴点(3,-1)在该双曲线上,∵(1)(3)13313-⨯-=⨯=⨯=,∴点()1,3--、()1,3、()3,1均不在该双曲线上,故选:A.【点睛】此题考查反比例函数解析式,正确计算k 值是解题的关键.6.使关于x 的分式方程=2的解为非负数,且使反比例函数y=图象过第一、三象限时满足条件的所有整数k 的和为( ). A .0 B .1 C .2 D .3【答案】B【解析】试题分析:分别根据题意确定k 的值,然后相加即可.∵关于x 的分式方程=2的解为非负数,∴x=≥0,解得:k≥-1,∵反比例函数y=图象过第一、三象限,∴3﹣k >0,解得:k <3,∴-1≤k <3,整数为-1,0,1,2,∵x ≠0或1,∴和为-1+2=1,故选,B . 考点:反比例函数的性质.7.如图,菱形ABCD 的两个顶点B 、D 在反比例函数y =的图象上,对角线AC 与BD 的交点恰好是坐标原点O ,已知点A (1,1),∠ABC =60°,则k 的值是( )A .﹣5B .﹣4C .﹣3D .﹣2【答案】C【解析】 分析:根据题意可以求得点B 的坐标,从而可以求得k 的值.详解:∵四边形ABCD是菱形,∴BA=BC,AC⊥BD,∵∠ABC=60°,∴△ABC是等边三角形,∵点A(1,1),∴OA=,∴BO=,∵直线AC的解析式为y=x,∴直线BD的解析式为y=-x,∵OB=,∴点B的坐标为(−,),∵点B在反比例函数y=的图象上,∴,解得,k=-3,故选C.点睛:本题考查反比例函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用反比例函数的性质解答.8.如图,在平面直角坐标系中,将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,若反比例函数y=kx的图象经过点A的对应点A′,则k的值为()A.6 B.﹣3 C.3 D.6【答案】C【解析】【分析】直接利用旋转的性质得出A′点坐标,再利用反比例函数的性质得出答案.【详解】如图所示:∵将△OAB(顶点为网格线交点)绕原点O顺时针旋转90°,得到△OA′B′,反比例函数y=kx的图象经过点A的对应点A′,∴A′(3,1),则把A′代入y=kx,解得:k=3.故选C.【点睛】此题主要考查了反比例函数图象上点的坐标特征,正确得出A′点坐标是解题关键.9.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O位于坐标原点,斜边AB 垂直于x轴,顶点A在函数y1=1kx(x>0)的图象上,顶点B在函数y2= 2kx(x>0)的图象上,∠ABO=30°,则21kk=()A.-3 B.3C.13D.-13【答案】A【解析】【分析】根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A、B的坐标,表示出k1、k2,进而得出k2与k1的比值.【详解】如图,设AB交x轴于点C,又设AC=a.∵AB⊥x轴∴∠ACO=90°在Rt△AOC中,OC=AC·tan∠OAB=a·tan60°3∴点A3a,a)同理可得点B3,-3a)∴k1332, k23a×(-3a)3a∴21333 3k ak a==-.故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k,是解决问题的方法.10.下列各点中,在反比例函数3yx=图象上的是()A.(3,1) B.(-3,1)C.(3,13) D.(13,3)【答案】A【解析】【分析】根据反比例函数的性质可得:反比例函数图像上的点满足xy=3.【详解】解:A、∵3×1=3,∴此点在反比例函数的图象上,故A正确;B、∵(-3)×1=-3≠3,∴此点不在反比例函数的图象上,故B错误;C、∵13=133垂, ∴此点不在反比例函数的图象上,故C错误;D、∵13=133垂, ∴此点不在反比例函数的图象上,故D错误;故选A.11.函数y =1-k x 与y =2x 的图象没有交点,则k 的取值范围是( ) A .k<0B .k<1C .k>0D .k>1【答案】D【解析】【分析】由于两个函数没有交点,那么联立两函数解析式所得的方程无解.由此可求出k 的取值范围.【详解】 令1-k x =2x ,化简得:x 2=1-2k ;由于两函数无交点,因此1-2k <0,即k >1. 故选D .【点睛】 函数图象交点坐标为两函数解析式组成的方程组的解.如果两函数无交点,那么联立两函数解析式所得的方程(组)无解.12.如图,在某温度不变的条件下,通过一次又一次地对气缸顶部的活塞加压,测出每一次加压后气缸内气体的体积(mL)V 与气体对气缸壁产生的压强(kPa)P 的关系可以用如图所示的函数图象进行表示,下列说法正确的是( )A .气压P 与体积V 的关系式为(0)P kV k =>B .当气压70P =时,体积V 的取值范围为70<V<80C .当体积V 变为原来的一半时,对应的气压P 也变为原来的一半D .当60100V 剟时,气压P 随着体积V 的增大而减小 【答案】D【解析】【分析】A .气压P 与体积V 表达式为P=k V ,k >0,即可求解; B .当P=70时,600070V =,即可求解; C .当体积V 变为原来的一半时,对应的气压P 变为原来的两倍,即可求解;D .当60≤V≤100时,气压P 随着体积V 的增大而减小,即可求解.【详解】解:当V=60时,P=100,则PV=6000,A .气压P 与体积V 表达式为P= k V ,k >0,故本选项不符合题意;B .当P=70时,V=600070>80,故本选项不符合题意; C .当体积V 变为原来的一半时,对应的气压P 变为原来的两倍,本选项不符合题意; D .当60≤V≤100时,气压P 随着体积V 的增大而减小,本选项符合题意;故选:D .【点睛】本题考查的是反比例函数综合运用.现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,进而根据字母代表的意思求解.13.如图,已知点A ,B 分别在反比例函数12y x =-和2k y x=的图象上,若点A 是线段OB 的中点,则k 的值为( ).A .8-B .8C .2-D .4-【答案】A【解析】【分析】 设A (a ,b ),则B (2a ,2b ),将点A 、B 分别代入所在的双曲线解析式进行解答即可.【详解】解:设A (a ,b ),则B (2a ,2b ),∵点A 在反比例函数12y x=-的图象上, ∴ab =−2;∵B 点在反比例函数2k y x =的图象上, ∴k =2a•2b =4ab =−8.故选:A .【点睛】 本题考查了反比例函数图象上点的坐标特征,图象上的点(x ,y )的横纵坐标的积是定值k ,即xy =k .14.如图所示,已知()121,,2,2A y B y ⎛⎫ ⎪⎝⎭为反比例函数1y x =图象上的两点,动点(),0P x 在x 轴正半轴上运动,当AP BP -的值最大时,连结OA ,AOP ∆的面积是 ( )A .12B .1C .32D .52【答案】D【解析】【分析】先根据反比例函数解析式求出A ,B 的坐标,然后连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大,利用待定系数法求出直线AB 的解析式,从而求出P '的坐标,进而利用面积公式求面积即可.【详解】当12x =时,2y = ,当2x =时,12y = , ∴11(,2),(2,)22A B .连接AB 并延长AB 交x 轴于点P ',当P 在P '位置时,PA PB AB -=,即此时AP BP -的值最大.设直线AB的解析式为y kx b=+,将11(,2),(2,)22A B代入解析式中得122122k bk b⎧+=⎪⎪⎨⎪+=⎪⎩解得152kb=-⎧⎪⎨=⎪⎩,∴直线AB解析式为52y x=-+.当0y=时,52x=,即5(,0)2P',115522222AOP AS OP y'∴=⋅=⨯⨯=V.故选:D.【点睛】本题主要考查一次函数与几何综合,掌握待定系数法以及找到AP BP-何时取最大值是解题的关键.15.如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=6x(x >0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣6xB.y=﹣4xC.y=﹣2xD.y=2x【解析】【分析】直接利用相似三角形的判定与性质得出13 BCOAODSS= VV,进而得出S△AOD=3,即可得出答案.【详解】过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∵BOAO=tan30°=3,∴13BCOAODSS=VV,∵12×AD×DO=12xy=3,∴S△BCO=12×BC×CO=13S△AOD=1,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣2x.故选C.【点睛】此题主要考查了相似三角形的判定与性质,反比例函数数的几何意义,正确得出S△AOD=2是解题关键.16.当0x<时,反比例函数2yx=-的图象()A.在第一象限,y随x的增大而减小B.在第二象限,y随x的增大而增大C.在第三象限,y随x的增大而减小D.在第四象限,y随x的增大而减小【解析】【分析】 反比例函数2y x =-中的20k =-<,图像分布在第二、四象限;利用0x <判断即可. 【详解】解:Q 反比例函数2y x=-中的20k =-<, ∴该反比例函数的图像分布在第二、四象限;又0x <Q ,∴图象在第二象限且y 随x 的增大而增大.故选:B .【点睛】本题主要考查的是反比例函数的性质,对于反比例函数()0k y k x=≠,(1)0k >,反比例函数图像分布在一、三象限;(2)k 0< ,反比例函数图像分布在第二、四象限内.17.反比例函数y=的图象如图所示,则一次函数y=kx+b (k≠0)的图象的图象大致是( )A .B .C .D .【答案】D【解析】【分析】先由反比例函数的图象得到k ,b 同号,然后分析各选项一次函数的图象即可.【详解】∵y=的图象经过第一、三象限,∴kb >0,∴k ,b 同号,选项A 图象过二、四象限,则k <0,图象经过y 轴正半轴,则b >0,此时,k ,b 异号,故此选项不合题意;选项B 图象过二、四象限,则k <0,图象经过原点,则b=0,此时,k ,b 不同号,故此选项不合题意;选项C 图象过一、三象限,则k >0,图象经过y 轴负半轴,则b <0,此时,k ,b 异号,故此选项不合题意;选项D 图象过一、三象限,则k >0,图象经过y 轴正半轴,则b >0,此时,k ,b 同号,故此选项符合题意; 故选D .考点:反比例函数的图象;一次函数的图象.18.已知反比例函数b y x =与一次函数y ax c =+有一个交点在第四象限,该交点横坐标为1,抛物线2y ax bx c =++与x 轴只有一个交点,则一次函数b c y x a a=+的图象可能是( ) A . B . C . D .【答案】B【解析】【分析】根据题意得b <0,a+c <0,240b ac =>,可得a <0,c <0,进而即可判断一次函数b c y x a a=+的图象所经过的象限. 【详解】 ∵反比例函数b y x=与一次函数y ax c =+有一个交点在第四象限, ∴反比例函数的图象在二、四象限,即b <0,∵该交点横坐标为1,∴y=a+c <0,∵抛物线2y ax bx c =++与x 轴只有一个交点, ∴240b ac -=,即:240b ac =>,∴a <0,c <0, ∴0b a>,0c a >, ∴b c y x a a=+的图象过一、二、三象限. 故选B .【点睛】 本题主要考查反比例函数与一次函数的图象和性质,掌握函数图象上点的坐标特征以及函数解析式的系数的几何意义,是解题的关键.19.已知反比例函数y =﹣2x的图象上有三个点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),若x 1>x 2>0>x 3,则下列关系是正确的是( )A .y 1<y 2<y 3B .y 2<y 1<y 3C .y 3<y 2<y 1D .y 2<y 3<y 1【答案】B【解析】【分析】根据函数的解析式得出图象所在的象限和增减性,再进行比较即可.【详解】 解:∵反比例函数y =﹣2x, ∴函数图象在第二、四象限,且在每个象限内,y 随x 的增大而增大,∵函数的图象上有三个点(x 1,y 1),(x 2,y 2)、(x 3,y 3),且x 1>x 2>0>x 3, ∴y 2<y 1<0,y 3>0∴. y 2<y 1<y 3故选:B .【点睛】本题考查了反比例函数图象上点的坐标特征和函数的图象和性质,能灵活运用函数的图象和性质进行推理是解此题的关键.20.如图,正方形OABC 的边长为6,D 为AB 中点,OB 交CD 于点Q ,Q 是y =k x上一点,k 的值是( )A .4B .8C .16D .24【答案】C【解析】【分析】 延长根据相似三角形得到:1:2BQ OQ =,再过点Q 作垂线,利用相似三角形的性质求出QF 、OF ,进而确定点Q 的坐标,确定k 的值.【详解】解:过点Q 作QF OA ⊥,垂足为F ,OABC Q 是正方形,6OA AB BC OC ∴====,90ABC OAB DAE ∠=∠=︒=∠,D Q 是AB 的中点,12BD AB ∴=, //BD OC Q ,OCQ BDQ ∴∆∆∽, ∴12BQ BD OQ OC ==, 又//QF AB Q ,OFQ OAB ∴∆∆∽, ∴22213QF OF OQ AB OA OB ====+, 6AB =Q , 2643QF ∴=⨯=,2643OF =⨯=, (4,4)Q ∴,Q点Q在反比例函数的图象上,k∴=⨯=,4416故选:C.【点睛】本题考查了待定系数法求反比例函数、相似三角形的性质和判定,利用相似三角形性质求出点Q的坐标是解决问题的关键.。

初中数学函数基础知识技巧及练习题附解析

初中数学函数基础知识技巧及练习题附解析
B.以10km/h的速度行驶时,消耗1升汽油,甲车最少行驶5千米
C.以低于80km/h的速度行驶时,行驶相同路程,丙车消耗汽油最少
D.以高于80km/h的速度行驶时,行驶相同路程,丙车比乙车省油
【答案】D
【解析】
【分析】
根据题意和函数图象可以判断各个选项是否正确,从而可以解答本题.
【详解】
解:由图可得:以相同速度行驶相同路程,甲车消耗汽油最少.故选项A错误.
初中数学函数基础知识技巧及练习题附解析
一、选择题
1.如图,正方形ABCD的边长为2,动点P从点D出发,沿折线D→C→B作匀速运动,则△APD的面积S与点P运动的路程x之间的函数图象大致是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
分类讨论:当点D在DC上运动时,DP=x,根据三角形面积公式得到S△APD=x,自变量x的取值范围为0<x≤2;当点P在CB上运动时,S△APD为定值2,自变量x的取值范围为2<x≤4,然后根据两个解析式对各选项中的图象进行判断即可.
分为0≤x≤1、1<x≤2、2<x≤3三种情况画出图形,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.
【详解】
解:如图1所示:当0≤x≤1时,过点D作DE⊥BC′.
∵△ABC和△A′B′C′均为等边三角形,
△DBC′为等边三角形.
∴DE= BC′= x,
∴y= BC′•DE= x2.
其中正确的说法是( )
A.①②B.②③④C.②③D.①③④
【答案】B
【解析】
【分析】
根据函数图象上特殊点的坐标和实际意义即可作出判断.
【详解】
根据函数图象的意义,①已知甲的速度比乙快,故射线OB表示甲的路程与时间的函数关系;错误;

最新初中数学反比例函数基础测试题附答案解析(1)

最新初中数学反比例函数基础测试题附答案解析(1)

最新初中数学反比例函数基础测试题附答案解析(1)一、选择题1.如图,在x 轴的上方,直角∠BOA 绕原点O 按顺时针方向旋转.若∠BOA 的两边分别与函数1y x=-、2y x =的图象交于B 、A 两点,则∠OAB 大小的变化趋势为( )A .逐渐变小B .逐渐变大C .时大时小D .保持不变【答案】D【解析】【分析】 如图,作辅助线;首先证明△BEO ∽△OFA ,,得到BE OE OF AF =;设B 为(a ,1a-),A 为(b ,2b ),得到OE=-a ,EB=1a-,OF=b ,AF=2b ,进而得到222a b =,此为解决问题的关键性结论;运用三角函数的定义证明知tan ∠2为定值,即可解决问题. 【详解】解:分别过B 和A 作BE ⊥x 轴于点E ,AF ⊥x 轴于点F ,则△BEO ∽△OFA ,∴BE OE OF AF=, 设点B 为(a ,1a -),A 为(b ,2b ), 则OE=-a ,EB=1a-,OF=b ,AF=2b , 可代入比例式求得222a b =,即222a b =, 根据勾股定理可得:22221OE EB a a +=+22224OF AF b b+=+∴tan ∠OAB=2222222212244b a OB a b OA b b b b++==++=222214()24b b b b ++=22 ∴∠OAB 大小是一个定值,因此∠OAB 的大小保持不变.故选D【点睛】该题主要考查了反比例函数图象上点的坐标特征、相似三角形的判定等知识点及其应用问题;解题的方法是作辅助线,将分散的条件集中;解题的关键是灵活运用相似三角形的判定等知识点来分析、判断、推理或解答.2.如图所示是一块含30°,60°,90°的直角三角板,直角顶点O 位于坐标原点,斜边AB 垂直于x 轴,顶点A 在函数y 1=1k x (x>0)的图象上,顶点B 在函数y 2= 2k x (x>0)的图象上,∠ABO=30°,则21k k =( )A .-3B .3C .13D .- 13【答案】A【解析】【分析】 根据30°角所对的直角边等于斜边的一半,和勾股定理,设出适当的常数,表示出其它线段,从而得到点A、B的坐标,表示出k1、k2,进而得出k2与k1的比值.【详解】如图,设AB交x轴于点C,又设AC=a.∵AB⊥x轴∴∠ACO=90°在Rt△AOC中,OC=AC·tan∠OAB=a·tan60°=3a∴点A的坐标是(3a,a)同理可得点B的坐标是(3a,-3a)∴k1=3a×a=3a2, k2=3a×(-3a)=-33a∴213333k ak a-==-.故选A.【点睛】考查直角三角形的边角关系,反比例函数图象上点的坐标特征,设适合的常数,用常数表示出k,是解决问题的方法.3.如图,是反比例函数3yx=和7yx=-在x轴上方的图象,x轴的平行线AB分别与这两个函数图象相交于点,A B,点P在x轴上.则点P从左到右的运动过程中,APB△的面积是()A.10 B.4 C.5 D.从小变大再变小【答案】C【解析】【分析】连接AO 、BO ,由AB ∥x 轴,得ABP ABO S S =V V ,结合反比例函数比例系数的几何意义,即可求解.【详解】连接AO 、BO ,设AB 与y 轴交于点C .∵AB ∥x 轴,∴ABP ABO S S =V V ,AB ⊥y 轴, ∵73522ABO BOC AOC S S S -=+=+=V V V , ∴APB △的面积是:5.故选C .【点睛】本题主要考查反比例函数比例系数的几何意义,掌握反比例函数图象上的点与原点的连线,反比例函数图象上的点垂直于坐标轴的垂线段以及坐标轴所围成的三角形面积等于反比例函数比例系数绝对值的一半,是解题的关键.4.如图,直线l 与x 轴、y 轴分别交于A 、B 两点,与反比例函数y =k x的图象在第一象限相交于点C .若AB =BC ,△AOB 的面积为3,则k 的值为( )A.6 B.9 C.12 D.18【答案】C【解析】【分析】设OB=a,根据相似三角形性质即可表示出点C,把点C代入反比例函数即可求得k.【详解】作CD⊥x轴于D,设OB=a,(a>0)∵△AOB的面积为3,∴12OA•OB=3,∴OA=6a,∵CD∥OB,∴OD=OA=6a,CD=2OB=2a,∴C(6a,2a),∵反比例函数y=kx经过点C,∴k=6a×2a=12,故选C.【点睛】本题考查直线和反比例函数的交点问题,待定系数法求函数解析式,会运用相似求线段长度是解题的关键.5.已知反比例函数2y x -=,下列结论不正确的是( ) A .图象经过点(﹣2,1) B .图象在第二、四象限C .当x <0时,y 随着x 的增大而增大D .当x >﹣1时,y >2 【答案】D【解析】【分析】【详解】A 选项:把(-2,1)代入解析式得:左边=右边,故本选项正确;B 选项:因为-2<0,图象在第二、四象限,故本选项正确;C 选项:当x <0,且k <0,y 随x 的增大而增大,故本选项正确;D 选项:当x >0时,y <0,故本选项错误.故选D .6.如图,在平面直角坐标系中,点A 是函数()0k y x x=>在第一象限内图象上一动点,过点A 分别作AB x ⊥轴于点B AC y ⊥、轴于点C ,AB AC 、分别交函数()10y x x=>的图象于点E F 、,连接OE OF 、.当点A 的纵坐标逐渐增大时,四边形OFAE 的面积( )A .不变B .逐渐变大C .逐渐变小D .先变大后变小【答案】A【解析】【分析】 根据反比例函数系数k 的几何意义得出矩形ACOB 的面积为k ,BOE S V COF S =V 12=,则四边形OFAE 的面积为定值1k -.【详解】∵点A 是函数(0k y x x=>)在第一象限内图象上,过点A 分别作AB ⊥x 轴于点B ,AC ⊥y 轴于点C ,∴矩形ACOB 的面积为k ,∵点E 、F 在函数1y x =的图象上, ∴BOE S V COF S =V 12=, ∴四边形OFAE 的面积11122k k =--=-, 故四边形OFAE 的面积为定值1k -,保持不变,故选:A .【点睛】本题考查了反比例函数中系数k 的几何意义,根据反比例函数系数k 的几何意义可求出四边形和三角形的面积是解题的关键.7.ABC ∆的面积为2,边BC 的长为x ,边BC 上的高为y ,则y 与x 的变化规律用图象表示大致是( )A .B .C .D .【答案】A【解析】【分析】根据三角形面积公式得出y 与x 的函数解析式,根据解析式作出图象进行判断即可.【详解】根据题意得122xy = ∴4y x=∵00x y >>,∴y 与x 的变化规律用图象表示大致是故答案为:A .【点睛】本题考查了反比例函数的图象问题,掌握反比例函数图象的性质是解题的关键.8.如图,点A 在双曲线4y x=上,点B 在双曲线(0)k y k x =≠上,AB x P 轴,交y 轴于点C .若2AB AC =,则k 的值为( )A .6B .8C .10D .12【答案】D【解析】【分析】 过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,得出四边形ACOD 是矩形,四边形BCOE 是矩形,得出ACOD S 矩形=4,BCOE S k =矩形,根据AB=2AC ,即BC=3AC ,即可求得矩形BCOE 的面积,根据反比例函数系数k 的几何意义即可求得k 的值.【详解】过点A 作AD ⊥x 轴于D ,过点B 作BE ⊥x 轴于E ,∵AB ∥x 轴,∴四边形ACOD 是矩形,四边形BCOE 是矩形,∵AB=2AC ,∴BC=3AC ,∵点A 在双曲线4y x=上, ∴ACOD S 矩形=4,同理BCOE S k =矩形,∴矩形3BCOE ACOD S S =矩形矩形=12,∴k=12,故选:D .【点睛】本题考查了反比例函数图象上点的坐标特征,反比例系数k 的几何意义,作出辅助线,构建矩形是解题的关键.9.如图,ABDC Y 的顶点,A B 的坐标分别是()(), 0,3 1, 0A B -,顶点,C D 在双曲线k y x=上,边BD 交y 轴于点E ,且四边形ACDE 的面积是ABE ∆面积的3倍,则k 的值为:( )A .6-B .4-C .3-D .12-【答案】A【解析】【分析】 过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,利用平行四边形的性质证明,DCF ABO ∆≅∆利用平移写好,C D 的坐标,由四边形ACDE 的面积是ABE ∆面积的3倍,得到2,DB BE =利用中点坐标公式求横坐标,再利用反比例函数写D 的坐标,列方程求解k .【详解】解:过D 作DF//y 轴,过C 作//CF x 轴,交点为F ,则,CF DF ⊥ABDC QY ,,CDF BAO ∴∠∠的两边互相平行,,AB DC = CDF BAO ∴∠=∠,90,DFC BOA ∠=∠=︒Q,DCF ABO ∴∆≅∆,,CF BO DF AO ∴== 设(,),k C m m由()(), 0,3 1, 0A B -结合平移可得:(1,3)k D m m++, Q 四边形ACDE 的面积是ABE ∆面积的3倍, 11()322BD BE DE CA h h BE ∴+=⨯⨯, ,,BD BE h h AC BD ==Q3DE AC BE ∴+=,4,DE BD BE BE ∴++=2,DB BE ∴=(1,3),(1,0),0,E k D m B x m++=Q ∴ 由中点坐标公式知: 110,2m ++= 2m ∴=- ,(1,)1k D m m ++Q , 3212k k ∴=+-+-, 6.k ∴=-故选A .【点睛】本题考查的是反比例函数的图像与性质,平行四边形的性质,平移性质,中点坐标公式,掌握以上知识点是解题关键.10.如图直线y=mx与双曲线y=kx交于点A、B,过A作AM⊥x轴于M点,连接BM,若S△AMB=2,则k的值是()A.1 B.2 C.3 D.4【答案】B【解析】【分析】此题可根据反比例函数图象的对称性得到A、B两点关于原点对称,再由S△ABM=2S△AOM并结合反比例函数系数k的几何意义得到k的值.【详解】根据双曲线的对称性可得:OA=OB,则S△ABM=2S△AOM=2,S△AOM=12|k|=1,则k=±2.又由于反比例函数图象位于一三象限,k>0,所以k=2.故选B.【点睛】本题主要考查了反比例函数y=kx中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点.11.如图,A 、C 是函数1y x=的图象上任意两点,过点A 作y 轴的垂线,垂足为B ,过点C 作y 轴的垂线,垂足为D .记Rt AOB ∆的面积为1S ,Rt COD ∆的面积为2S ,则1S 和2S 的大小关系是( )A .12S S >B .12S S <C .12=S SD .由A 、C 两点的位置确定【答案】C 【解析】 【分析】根据双曲线的图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12k|. 【详解】 由题意得:S 1=S 2=12|k|=12. 故选:C . 【点睛】本题主要考查了反比例函数y =kx中k 的几何意义,即图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=12|k|,是经常考查的一个知识点;这里体现了数形结合的思想.12.如图,二次函数2y ax bx c =++的图象如图所示,则一次函数y ax c =+和反比例函数by x=在同平面直角坐标系中的图象大致是( )A .B .C .D .【答案】D 【解析】 【分析】直接利用二次函数图象经过的象限得出a ,b ,c 的值取值范围,进而利用一次函数与反比例函数的性质得出答案. 【详解】∵二次函数y=ax 2+bx+c 的图象开口向下, ∴a <0,∵二次函数y=ax 2+bx+c 的图象经过原点, ∴c=0,∵二次函数y=ax 2+bx+c 的图象对称轴在y 轴左侧, ∴a ,b 同号, ∴b <0,∴一次函数y=ax+c ,图象经过第二、四象限, 反比例函数y=bx图象分布在第二、四象限, 故选D . 【点睛】此题主要考查了反比例函数、一次函数、二次函数的图象,正确把握相关性质是解题关键.13.已知反比例函数ky x=的图象分别位于第二、第四象限,()11,A x y 、()22,B x y 两点在该图象上,下列命题:①过点A 作AC x ⊥轴,C 为垂足,连接OA .若ACO ∆的面积为3,则6k =-;②若120x x <<,则12y y >;③若120x x +=,则120y y +=其中真命题个数是( )A .0B .1C .2D .3【答案】D 【解析】 【分析】根据反比例函数的性质,由题意可得k <0,y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,然后根据反比例函数k 的几何意义判断①,根据点位于的象限判断②,结合已知条件列式计算判断③,由此即可求得答案.【详解】 ∵反比例函数ky x=的图象分别位于第二、第四象限, ∴k<0,∵()11,A x y 、()22,B x y 两点在该图象上, ∴y 1=,,sin cos 22x x x ππ⎡⎤∃∈-≤⎢⎥⎣⎦,y 2=2k x ,∴x 1y 1=k ,x 2y 2=k ,①过点A 作AC x ⊥轴,C 为垂足, ∴S △AOC =1OC?AC 2=11x ?y k =322=, ∴6k=-,故①正确;②若120x x <<,则点A 在第二象限,点B 在第四象限,所以12y y >,故②正确; ③∵120x x +=, ∴()121212120k x x k k y y x x x x ++=+==,故③正确, 故选D. 【点睛】本题考查了反比例函数的性质,反比例函数图象上点的坐标特征等,熟练掌握和灵活运用相关知识是解题的关键.14.在函数()0ky k x=<的图象上有()11,A y ,()21,B y -,()32,B y -三个点,则下列各式中正确的是( )A .123y y y <<B .132y y y <<C .321y y y <<D .231y y y <<【答案】B 【解析】 【分析】根据反比例函数图象上点的坐标特征得到11y k ⨯=,21y k -⨯=,32y k -⨯=,然后计算出1y 、2y 、3y 的值再比较大小即可. 【详解】解:(0)ky k x =<Q 的图象上有1(1,)A y 、2(1,)B y -、3(2,)C y -三个点,11y k ∴⨯=,21y k -⨯=,32y k -⨯=,1y k ∴=,2y k =-,312y k =-,而k 0<,132y y y ∴<<.故选:B . 【点睛】本题考查了反比例函数图象上点的坐标特征:反比例函数ky x=(k 为常数,且0k ≠)的图象是双曲线,图象上的点(),x y 的横纵坐标的积是定值k ,即xy k =.15.反比例函数21k y x+=的图象上有两点()11,A a y -,()21,B a y +,若12y y <,则a的取值范围( )A .1a <-B .1a >C .11a -<<D .这样的a 值不存在【答案】C 【解析】 【分析】由210k +>得出在同一分支上,反比例函数y 随x 的增大而减小,然后结合反比例函数的图象进行求解. 【详解】210k +>Q ,∴在同一分支上,反比例函数y 随x 的增大而减小,11a a -<+Q ,12y y <,∴点A ,B 不可能在同一分支上,只能为位于不同的两支上,10a ∴-<且10a +>,11a ∴-<<, 故选C . 【点睛】本题考查反比例函数的图象与性质,熟练掌握反比例函数的性质是解题的关键,注意反比例函数的图象有两个分支.16.已知抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,则一次函数y=kx ﹣k 与反比例函数y=kx在同一坐标系内的大致图象是( ) A . B . C . D .【答案】D 【解析】【分析】依据抛物线y=x 2+2x+k+1与x 轴有两个不同的交点,即可得到k <0,进而得出一次函数y=kx ﹣k 的图象经过第一二四象限,反比例函数y=kx的图象在第二四象限,据此即可作出判断.【详解】∵抛物线y=x 2+2x+k+1与x 轴有两个不同的交点, ∴△=4﹣4(k+1)>0, 解得k <0,∴一次函数y=kx ﹣k 的图象经过第一二四象限, 反比例函数y=kx的图象在第二四象限, 故选D .【点睛】本题考查了二次函数的图象与x 轴的交点问题、反比例函数图象、一次函数图象等,根据抛物线与x 轴的交点情况确定出k 的取值范围是解本题的关键.17.如图,△AOB 是直角三角形,∠AOB =90°,△AOB 的两边分别与函数12,y y x x=-=的图象交于B 、A 两点,则等于( )A 2B .12C .14D 3【答案】A 【解析】 【分析】过点A,B 作AC ⊥x 轴,BD ⊥x 轴,垂足分别为C,D.根据条件得到△ACO ∽△ODB.根据反比例函数比例系数k 的几何意义得出2()S OBD OB S AOC OA ∆=∆=121=12利用相似三角形面积比等于相似比的平方得出2OB OA =【详解】∵∠AOB =90°,∴∠AOC +∠BOD =∠AOC +∠CAO =90°, ∠CAO =∠BOD , ∴△ACO ∽△BDO ,∴2()S OBD OB S AOC OA∆=∆ , ∵S △AOC =12 ×2=1,S △BOD =12×1=12, ∴2()OB OA =121=12 , ∴2OB OA =, 故选A .【点睛】此题考查了反比例函数图象上点的坐标特征和相似三角形的判定与性质,解题关键在于做辅助线,然后得到相似三角形再进行求解18.若点A (﹣4,y 1)、B (﹣2,y 2)、C (2,y 3)都在反比例函数1y x=-的图象上,则y 1、y 2、y 3的大小关系是( ) A .y 1>y 2>y 3 B .y 3>y 2>y 1C .y 2>y 1>y 3D .y 1>y 3>y 2【答案】C 【解析】 【分析】根据反比例函数图象上点的坐标特征求出y 1、y 2、y 3的值,比较后即可得出结论. 【详解】∵点A(﹣4,y 1)、B(﹣2,y 2)、C(2,y 3)都在反比例函数1y x=-的图象上, ∴11144y =-=-,21122y =-=-,312y =-, 又∵﹣12<14<12, ∴y 3<y 1<y 2, 故选C. 【点睛】本题考查了反比例函数图象上点的坐标特征,反比例函数值的大小比较,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.19.如图,Rt ABO ∆中,90AOB ∠=︒,3AO BO =,点B 在反比例函数2yx=的图象上,OA 交反比例函数()0ky k x=≠的图象于点C ,且2OC CA =,则k 的值为( )A .2-B .4-C .6-D .8-【答案】D 【解析】 【分析】过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴,利用AA 定理和平行证得△COE ∽△OBF ∽△AOD ,然后根据相似三角形的性质求得21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ,根据反比例函数比例系数的几何意义求得212BOF S ==V ,从而求得4COE S =V ,从而求得k 的值.【详解】解:过点A 作AD ⊥x 轴,过点C 作CE ⊥x 轴,过点B 作BF ⊥x 轴 ∴CE ∥AD ,∠CEO=∠BFO=90° ∵90AOB ∠=︒∴∠COE+∠FOB=90°,∠ECO+∠COE=90° ∴∠ECO=∠FOB ∴△COE ∽△OBF ∽△AOD 又∵3AO BO =,2OC CA = ∴13OB OA =,23OC OA = ∴21()9BOF OAD S OB S OA ==V V ,24()9COE AOD S OC S OA ==V V ∴4COEBOFS S =V V∵点B 在反比例函数2y x=的图象上 ∴212BOF S ==V ∴4COE S =V ∴42k=,解得k=±8 又∵反比例函数位于第二象限, ∴k=-8 故选:D .【点睛】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.20.如图,点A 是反比例函数y =kx(x <0)的图象上的一点,过点A 作平行四边形ABCD ,使点B 、C 在x 轴上,点D 在y 轴上.已知平行四边形ABCD 的面积为8,则k 的值为( )A .8B .﹣8C .4D .﹣4【答案】B 【解析】 【分析】作AE ⊥BC 于E ,由四边形ABCD 为平行四边形得AD ∥x 轴,则可判断四边形ADOE 为矩形,所以S 平行四边形ABCD =S 矩形ADOE ,根据反比例函数k 的几何意义得到S 矩形ADOE =|k|. 【详解】解:作AE⊥BC于E,如图,∵四边形ABCD为平行四边形,∴AD∥x轴,∴四边形ADOE为矩形,∴S平行四边形ABCD=S矩形ADOE,而S矩形ADOE=|k|,∴|k|=8,而k<0∴k=-8.故选:B.【点睛】本题考查了反比例函数y=kx(k≠0)系数k的几何意义:从反比例函数y=kx(k≠0)图象上任意一点向x轴和y轴作垂线,垂线与坐标轴所围成的矩形面积为|k|.。

初二数学函数基础知识试题

初二数学函数基础知识试题

初二数学函数基础知识试题1.下列各曲线中,不能表示y是x的函数的是()【答案】C.【解析】本题主要考查函数的自变量与函数值是一一对应的。

根据函数是一一对应的关系,给自变量一个值,有且只有一个函数值与其对应,就是函数,如果不是,则不是函数.选项A、B、D是函数,正确;选项C中很明显,给自变量一个值,不是有唯一的值对应,所以不是函数,错误;故选C.【考点】函数的概念.2.下列各曲线中不能表示y是x的函数的是()A. B. C. D.【答案】B.【解析】根据函数的定义可知,满足对于x的每一个取值,y都有唯一确定的值与之对应关系,据此对各选项图形分析判断后利用排除法求解.A、能表示y是x的函数,故本选项不符合题意;B、不能表示y是x的函数,故本选项符合题意;C、能表示y是x的函数,故本选项不符合题意;D、能表示y是x的函数,故本选项不符合题意.故选B.【考点】函数的概念.3.已知一次函数的图像经过点(—2,-2)和点(2,4)(1)求这个函数的解析式;(2)求这个函数的图像与y轴的交点坐标。

【答案】(1);(2)(0,1)【解析】设函数关系式为,由图像经过点(—2,-2)和点(2,4)根据待定系数法即可求得这个函数的解析式,再把x=0代入求得的函数解析式即可得到这个函数的图像与y轴的交点坐标。

解:(1)设函数关系式为∵图像经过点(—2,-2)和点(2,4)∴,解得∴这个函数的解析式为;(2)在中,当x=0时,∴这个函数的图像与y轴的交点坐标为(0,1).【考点】待定系数法求函数关系式,一次函数的性质点评:待定系数法求函数关系式是初中数学的重点,是中考中比较常见的知识点,一般难度不大,需熟练掌握.4.如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2),过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N。

(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围。

最新初中数学二次函数基础测试题附答案

最新初中数学二次函数基础测试题附答案

最新初中数学二次函数基础测试题附答案一、选择题1.某二次函数图象的顶点为()2,1-,与x 轴交于P 、Q 两点,且6PQ =.若此函数图象通过()1,a 、()3,b 、()1,c -、()3,d -四点,则a 、b 、c 、d 之值何者为正?( ) A .aB .bC .cD .d【答案】D【解析】【分析】根据题意可以得到该函数的对称轴,开口方向和与x 轴的交点坐标,从而可以判断a 、b 、c 、d 的正负,本题得以解决.【详解】∵二次函数图象的顶点坐标为(2,-1),此函数图象与x 轴相交于P 、Q 两点,且PQ=6, ∴该函数图象开口向上,对称轴为直线x=2,∴图形与x 轴的交点为(2-3,0)=(-1,0),和(2+3,0)=(5,0),∵此函数图象通过(1,a )、(3,b )、(-1,c )、(-3,d )四点,∴a <0,b <0,c=0,d >0,故选:D .【点睛】此题考查抛物线与x 轴的交点、二次函数的性质、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.2.如图,抛物线y=ax 2+bx+c (a≠0)过点(1,0)和点(0,﹣2),且顶点在第三象限,设P=a ﹣b+c ,则P 的取值范围是( )A .﹣4<P <0B .﹣4<P <﹣2C .﹣2<P <0D .﹣1<P <0【答案】A【解析】【分析】【详解】 解:∵二次函数的图象开口向上,∴a >0.∵对称轴在y 轴的左边,∴b 2a-<0.∴b >0.∵图象与y 轴的交点坐标是(0,﹣2),过(1,0)点,代入得:a+b ﹣2=0.∴a=2﹣b ,b=2﹣a .∴y=ax 2+(2﹣a )x ﹣2.把x=﹣1代入得:y=a ﹣(2﹣a )﹣2=2a ﹣4,∵b >0,∴b=2﹣a >0.∴a <2.∵a >0,∴0<a <2.∴0<2a <4.∴﹣4<2a ﹣4<0,即﹣4<P <0.故选A .【点睛】本题考查二次函数图象与系数的关系,利用数形结合思想解题是本题的解题关键.3.如图,二次函数()200y ax bx c a =++=≠的图象与x 轴正半轴相交于A 、B 两点,与y 轴相交于点C ,对称轴为直线2x =,且OA OC =,则下列结论:①0abc >;②930a b c ++<;③1c >-;④关于x 的方程()200ax bx c a ++=≠有一个根为1a-,其中正确的结论个数有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 由二次图像开口方向、对称轴与y 轴的交点可判断出a 、b 、c 的符号,从而可判断①;由图像可知当x =3时,y <0,可判断②;由OA =OC ,且OA <1,可判断③;把﹣1a 代入方程整理得ac 2-bc +c =0,结合③可判断④;从而得出答案.【详解】由图像开口向下,可知a <0,与y 轴的交点在x 轴的下方,可知c <0,又对称轴方程为x =2,∴﹣2b a>0,∴b >0,∴abc >0,故①正确;由图像可知当x =3时,y >0,∴9a +3b +c >0,故②错误;由图像可知OA <1,∵OA =OC ,∴OC <1,即﹣c <1,故③正确;假设方程的一个根为x =﹣1a ,把﹣1a 代入方程,整理得ac 2-bc +c =0, 即方程有一个根为x =﹣c ,由②知﹣c =OA ,而当x =OA 是方程的根,∴x =﹣c 是方程的根,即假设成立,故④正确.故选C.【点睛】本题主要考查二次函数的图像与性质以及二次函数与一元二次方程的联系,熟练掌握二次函数的相关知识是解答此题的关键.4.对于二次函数()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭,下列说法正确的个数是( ) ①对于任何满足条件的a ,该二次函数的图象都经过点()2,1和()0,0两点;②若该函数图象的对称轴为直线0x x =,则必有001x <<;③当0x ≥时,y 随x 的增大而增大;④若()14,P y ,()()24,0Q m y m +>是函数图象上的两点,如果12y y >总成立,则112a ≤-. A .1个B .2个C .3个D .4个 【答案】B【解析】【分析】根据二次函数的图象与性质(对称性、增减性)逐个判断即可.【详解】 对于()21202y ax a x a ⎛⎫=+-< ⎪⎝⎭当2x =时,142(2)12y a a =+-=,则二次函数的图象都经过点()2,1当0x =时,0y =,则二次函数的图象都经过点()0,0则说法①正确 此二次函数的对称轴为1212124a x a a-=-=-+ 0a <Q1114a∴-+> 01x ∴>,则说法②错误 由二次函数的性质可知,抛物线的开口向下,当114x a<-+时,y 随x 的增大而增大;当114x a ≥-+时,y 随x 的增大而减小 因11104a-+>> 则当1014x a <-≤+时,y 随x 的增大而增大;当114x a≥-+时,y 随x 的增大而减小 即说法③错误0m >Q44m ∴+>由12y y >总成立得,其对称轴1144x a =-+≤ 解得112a ≤-,则说法④正确 综上,说法正确的个数是2个故选:B .【点睛】 本题考查了二次函数的图象与性质(对称性、增减性),熟练掌握二次函数的图象与性质是解题关键.5.已知,二次函数y=ax 2+bx+a 2+b (a≠0)的图象为下列图象之一,则a 的值为( )A .-1B .1C .-3D .-4【答案】A【解析】【分析】 分别对图形进行讨论:若二次函数的图形为第一个,则b=0,其顶点坐标为(0,a 2),与图形中的顶点坐标不符;若二次函数的图形为第二个,则b=0,根据顶点坐标有a 2=3,由抛物线与x 的交点坐标得到x 2=-a ,所以a=-4,它们相矛盾;若二次函数的图形为第三个,把点(-1,0)代入解析式得到a-b+a 2+b=0,解得a=-1;若二次函数的图形为第四个,把(-2,0)和(0,0)分别代入解析式可计算出a 的值.【详解】解:若二次函数的图形为第一个,对称轴为y 轴,则b=0,y=ax 2+a 2,其顶点坐标为(0,a 2),而a 2>0,所以二次函数的图形不能为第一个;若二次函数的图形为第二个,对称轴为y 轴,则b=0,y=ax 2+a 2,a 2=3,而当y=0时,x 2=−a ,所以−a=4,a=−4,所以二次函数的图形不能为第二个;若二次函数的图形为第三个,令x=−1,y=0,则a−b+a 2+b=0,所以a=−1;若二次函数的图形为第四个,令x=0,y=0,则a 2+b=0①;令x=−2,y=0,则4a−2b+a 2+b=0②,由①②得a=−2,这与图象开口向上不符合,所以二次函数的图形不能为第四个.故选A.【点睛】本题考查了二次函数y=ax 2+bx+c(a≠0)的图象与系数的关系:a >0,开口向上;a <0,开口向下;抛物线的对称轴为直线x=-;顶点坐标为(-,);也考查了点在抛物线上则点的坐标满足抛物线的解析式.6.定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论,其中不正确的是()A.当m=-3时,函数图象的顶点坐标是(13,83)B.当m>0时,函数图象截x轴所得的线段长度大于3 2C.当m≠0时,函数图象经过同一个点D.当m<0时,函数在x>14时,y随x的增大而减小【答案】D【解析】分析:A、把m=-3代入[2m,1-m,-1-m],求得[a,b,c],求得解析式,利用顶点坐标公式解答即可;B、令函数值为0,求得与x轴交点坐标,利用两点间距离公式解决问题;C、首先求得对称轴,利用二次函数的性质解答即可;D、根据特征数的特点,直接得出x的值,进一步验证即可解答.详解:因为函数y=ax2+bx+c的特征数为[2m,1﹣m,﹣1﹣m];A、当m=﹣3时,y=﹣6x2+4x+2=﹣6(x﹣13)2+83,顶点坐标是(13,83);此结论正确;B、当m>0时,令y=0,有2mx2+(1﹣m)x+(﹣1﹣m)=0,解得:x1=1,x2=﹣12﹣12m,|x2﹣x1|=32+12m>32,所以当m>0时,函数图象截x轴所得的线段长度大于32,此结论正确;C、当x=1时,y=2mx2+(1﹣m)x+(﹣1﹣m)=2m+(1﹣m)+(﹣1﹣m)=0 即对任意m,函数图象都经过点(1,0)那么同样的:当m=0时,函数图象都经过同一个点(1,0),当m≠0时,函数图象经过同一个点(1,0),故当m≠0时,函数图象经过x轴上一个定点此结论正确.D、当m<0时,y=2mx2+(1﹣m)x+(﹣1﹣m)是一个开口向下的抛物线,其对称轴是:直线x=14mm,在对称轴的右边y随x的增大而减小.因为当m<0时,11114444m m m -=->,即对称轴在x=14右边,因此函数在x=14右边先递增到对称轴位置,再递减,此结论错误;根据上面的分析,①②③都是正确的,④是错误的.故选D .点睛:考查二次函数的性质,顶点坐标,两点间的距离公式,以及二次函数图象上点的坐标特征.7.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( )A .5B .52-C .52D .-5【答案】A【解析】【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果.【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=,即8x =时,函数值等于5,故选:A .【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.8.已知二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,则下列结论:(1)4a +2b +c <0;(2)方程ax 2+bx +c =0两根都大于零;(3)y 随x 的增大而增大;(4)一次函数y =x +bc 的图象一定不过第二象限.其中正确的个数是( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】由图可知,x=2时函数值小于0,故(1)正确,函数与x 轴的交点为x=1.x=3,都大于0,故(2)正确 ,由图像知(3)错误,由图象开口向上,a >0,与y 轴交于正半轴,c >0,对称轴x=﹣=1,故b <0,bc <0,即可判断一次函数y =x +bc 的图象. 【详解】①由x =2时,y =4a +2b +c ,由图象知:y =4a +2b +c <0,故正确;②方程ax 2+bx +c =0两根分别为1,3,都大于0,故正确;③当x <2时,由图象知:y 随x 的增大而减小,故错误;④由图象开口向上,a >0,与y 轴交于正半轴,c >0,x=﹣=1>0,∴b <0, ∴bc <0,∴一次函数y =x +bc 的图象一定过第一、三、四象限,故正确;故正确的共有3个,故选:C .【点睛】此题主要考查二次函数的图像,解题的关键是熟知各系数所代表的含义.9.一列自然数0,1,2,3,…,100.依次将该列数中的每一个数平方后除以100,得到一列新数.则下列结论正确的是( )A .原数与对应新数的差不可能等于零B .原数与对应新数的差,随着原数的增大而增大C .当原数与对应新数的差等于21时,原数等于30D .当原数取50时,原数与对应新数的差最大【答案】D【解析】【分析】设出原数,表示出新数,利用解方程和函数性质即可求解.【详解】解:设原数为m ,则新数为21100m , 设新数与原数的差为y 则2211100100y m m m m =-=-+, 易得,当m =0时,y =0,则A 错误 ∵10100-< 当1m 50122100b a ﹣﹣﹣===⎛⎫⨯ ⎪⎝⎭时,y 有最大值.则B 错误,D 正确.当y =21时,21100m m -+=21 解得1m =30,2m =70,则C 错误.故答案选:D .【点睛】本题以规律探究为背景,综合考查二次函数性质和解一元二次方程,解题时要注意将数字规律转化为数学符号.10.抛物线y 1=ax 2+bx +c 与直线y 2=mx +n 的图象如图所示,下列判断中:①abc <0;②a +b +c >0;③5a -c =0;④当x <或x >6时,y 1>y 2,其中正确的个数有( )A .1B .2C .3D .4【答案】C【解析】【分析】【详解】 解:根据函数的开口方向、对称轴以及函数与y 轴的交点可知:a >0,b <0,c >0,则abc <0,则①正确;根据图形可得:当x=1时函数值为零,则a+b+c=0,则②错误;根据函数对称轴可得:-2b a=3,则b=-6a ,根据a+b+c=0可知:a-6a+c=0,-5a+c=0,则5a-c=0,则③正确;根据函数的交点以及函数图像的位置可得④正确.点睛:本题主要考查的就是函数图像与系数之间的关系,属于中等题目,如果函数开口向上,则a 大于零,如果函数开口向下,则a 小于零;如果函数的对称轴在y 轴左边,则b 的符号与a 相同,如果函数的对称轴在y 轴右边,则b 的符号与a 相反;如果函数与x 轴交于正半轴,则c 大于零,如果函数与x 轴交于负半轴,则c 小于零;对于出现a+b+c 、a-b+c 、4a+2b+c 、4a-2b+c 等情况时,我们需要找具体的值进行代入从而得出答案;对于两个函数值的大小比较,我们一般以函数的交点为分界线,然后进行分情况讨论.11.二次函数y =ax 2+bx +c (a ≠0)的图象如图所示,有下列结论:①abc >0;②a +b +c =2;③a 12>;④b >1,其中正确的结论个数是( )A .1个B .2 个C .3 个D .4 个【答案】C【解析】【分析】 根据题意和函数图象,可以判断各个小题中的结论是否正确,本题得以解决.【详解】由图象可得,a >0,b >0,c <0,∴abc <0,故①错误,当x =1时,y =a +b +c =2,故②正确,当x =﹣1时,y =a ﹣b +c <0,由a +b +c =2得,a +c =2﹣b ,则a ﹣b +c =(a +c )﹣b =2﹣b ﹣b <0,得b >1,故④正确, ∵12b a ->-,a >0,得122b a >>,故③正确, 故选C .【点睛】 本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.12.若二次函数22y ax ax c =-+的图象经过点(﹣1,0),则方程220ax ax c -+=的解为( )A .13x =-,21x =-B .11x =,23x =C .11x =-,23x =D .13x =-,21x =【答案】C【解析】【分析】【详解】∵二次函数22y ax ax c =-+的图象经过点(﹣1,0),∴方程220ax ax c -+=一定有一个解为:x=﹣1,∵抛物线的对称轴为:直线x=1,∴二次函数22y ax ax c =-+的图象与x 轴的另一个交点为:(3,0),∴方程220ax ax c -+=的解为:11x =-,23x =. 故选C .考点:抛物线与x 轴的交点.13.抛物线y =ax 2+bx+c 的顶点为(﹣1,3),与x 轴的交点A 在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为( )①若点P(﹣3,m),Q(3,n)在抛物线上,则m <n ;②c =a+3;③a+b+c <0;④方程ax 2+bx+c =3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C【解析】 试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确;由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确.故选C .考点:二次函数的图像与性质14.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( ) A . B .C.D.【答案】B【解析】【分析】由题意可求m<﹣2,即可求解.【详解】∵抛物线y=x2+2x﹣m﹣1与x轴没有交点,∴△=4﹣4(﹣m﹣1)<0∴m<﹣2∴函数y=的图象在第二、第四象限,故选B.【点睛】本题考查了反比例函数的图象,二次函数性质,求m的取值范围是本题的关键.15.在平面直角坐标系内,已知点A(﹣1,0),点B(1,1)都在直线1122y x=+上,若抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,则a的取值范围是()A.a≤﹣2 B.a<98C.1≤a<98或a≤﹣2 D.﹣2≤a<98【答案】C【解析】【分析】分a>0,a<0两种情况讨论,根据题意列出不等式组,可求a的取值范围.【详解】∵抛物线y=ax2﹣x+1(a≠0)与线段AB有两个不同的交点,∴令1122x +=ax 2﹣x +1,则2ax 2﹣3x +1=0 ∴△=9﹣8a >0 ∴a <98①当a <0时,110111a a ++≤⎧⎨-+≤⎩解得:a ≤﹣2∴a ≤﹣2②当a >0时,110111a a ++≥⎧⎨-+≥⎩ 解得:a ≥1∴1≤a <98综上所述:1≤a <98或a ≤﹣2 故选:C .【点睛】本题考查二次函数图象与系数的关系,一次函数图象上点的坐标特征,二次函数图象点的坐标特征,利用分类讨论思想解决问题是本题的关键.16.如图,已知()4,1A --,线段AB 与x 轴平行,且2AB =,抛物线2y x mx n =-++经过点()0,3C 和()3,0D ,若线段AB 以每秒2个单位长度的速度向下平移,设平移的时间为t (秒).若抛物线与线段AB 有公共点,则t 的取值范围是( )A .010t ≤≤B .210t ≤≤C .28t ≤≤D .210t <<【答案】B【解析】【分析】 直接利用待定系数法求出二次函数,得出B 点坐标,分别得出当抛物线l 经过点B 时,当抛物线l 经过点A 时,求出y 的值,进而得出t 的取值范围;【详解】解:(1)把点C (0,3)和D (3,0)的坐标代入y=-x 2+mx+n 中,得,23330n m n =⎧⎨-++=⎩解得32n m =⎧⎨=⎩∴抛物线l 解析式为y=-x 2+2x+3,设点B 的坐标为(-2,-1-2t ),点A 的坐标为(-4,-1-2t ),当抛物线l 经过点B 时,有y=-(-2)2+2×(-2)+3=-5,当抛物线l 经过点A 时,有y=-(-4)2+2×(-4)+3=-21,当抛物线l 与线段AB 总有公共点时,有-21≤-1-2t≤-5,解得:2≤t≤10.故应选B【点睛】此题主要考查了二次函数综合以及不等式组的解法等知识,正确利用数形结合分析得出关于t 的不等式是解题关键.17.如图,将一个小球从斜坡的点O 处抛出,小球的抛出路线可以用二次函数y =4x -12x 2刻画,斜坡可以用一次函数y =12x 刻画,下列结论错误的是( )A .斜坡的坡度为1: 2B .小球距O 点水平距离超过4米呈下降趋势C .小球落地点距O 点水平距离为7米D .当小球抛出高度达到7.5m 时,小球距O 点水平距离为3m【答案】D【解析】【分析】求出抛物线与直线的交点,判断A 、C ;根据二次函数的性质求出对称轴,根据二次函数性质判断B ;求出当7.5y =时,x 的值,判定D .【详解】解:214212y x x y x ⎧=-+⎪⎪⎨⎪=⎪⎩,解得,1100x y =⎧⎨=⎩,22772x y =⎧⎪⎨=⎪⎩, 72∶7=1∶2,∴A 正确; 小球落地点距O 点水平距离为7米,C 正确;2142y x x =- 21(4)82x =--+, 则抛物线的对称轴为4x =,∴当4x >时,y 随x 的增大而减小,即小球距O 点水平距离超过4米呈下降趋势,B 正确,当7.5y =时,217.542x x =-, 整理得28150x x -+=,解得,13x =,25x =,∴当小球抛出高度达到7.5m 时,小球水平距O 点水平距离为3m 或5m ,D 错误,符合题意;故选:D【点睛】本题考查的是解直角三角形的-坡度问题、二次函数的性质,掌握坡度的概念、二次函数的性质是解题的关键.18.抛物线y=–x 2+bx+c 上部分点的横坐标x 、纵坐标y 的对应值如下表所示:从上表可知,下列说法错误的是A .抛物线与x 轴的一个交点坐标为(–2,0)B .抛物线与y 轴的交点坐标为(0,6)C .抛物线的对称轴是直线x=0D .抛物线在对称轴左侧部分是上升的【答案】C【解析】【分析】【详解】解:当x=-2时,y=0,∴抛物线过(-2,0),∴抛物线与x 轴的一个交点坐标为(-2,0),故A 正确;当x=0时,y=6,∴抛物线与y 轴的交点坐标为(0,6),故B 正确;当x=0和x=1时,y=6,∴对称轴为x=12,故C 错误; 当x <12时,y 随x 的增大而增大, ∴抛物线在对称轴左侧部分是上升的,故D 正确;故选C .19.已知二次函数y =ax 2+bx+c 的图象如图所示,下列结i 论:①abc >0;②b 2﹣4ac >0;③2a+b =0;④a ﹣b+c <0.其中正确的结论有( )A .1个B .2个C .3个D .4个【答案】C【解析】【分析】 首先根据开口方向确定a 的取值范围,根据对称轴的位置确定b 的取值范围,根据抛物线与y 轴的交点确定c 的取值范围,根据抛物线与x 轴是否有交点确定b 2﹣4ac 的取值范围,根据x =﹣1函数值可以判断.【详解】解:Q 抛物线开口向下,0a ∴<,Q 对称轴12b x a=-=, 0b ∴>,Q 抛物线与y 轴的交点在x 轴的上方,0c ∴>,0abc ∴<,故①错误;Q 抛物线与x 轴有两个交点,240b ac ∴->,故②正确;Q 对称轴12b x a=-=, 2a b ∴=-,20a b ∴+=,故③正确;根据图象可知,当1x =-时,0y a b c =-+<,故④正确;故选:C .【点睛】此题主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a 与b 的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用是解题关键.20.在同一坐标系中,二次函数2y ax bx =+与一次函数y bx a =-的图像可能是( ) A . B .C .D .【答案】C【解析】【分析】直线与抛物线联立解方程组,若有解,则图象有交点,若无解,则图象无交点;根据二次函数的对称轴在y 左侧,a ,b 同号,对称轴在y 轴右侧a ,b 异号,以及当a 大于0时开口向上,当a 小于0时开口向下,来分析二次函数;同时在假定二次函数图象正确的前提下,根据一次函数的一次项系数为正,图象从左向右逐渐上升,一次项系数为负,图象从左向右逐渐下降;一次函数的常数项为正,交y 轴于正半轴,常数项为负,交y 轴于负半轴.如此分析下来,二次函数与一次函数无矛盾者为正确答案.【详解】解:由方程组2y ax bx y bx a⎧=+⎨=-⎩得ax 2=−a , ∵a ≠0∴x 2=−1,该方程无实数根,故二次函数与一次函数图象无交点,排除B .A:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;但是一次函数b为一次项系数,图象显示从左向右上升,b>0,两者矛盾,故A错;C:二次函数开口向上,说明a>0,对称轴在y轴右侧,则b<0;b为一次函数的一次项系数,图象显示从左向右下降,b<0,两者相符,故C正确;D:二次函数的图象应过原点,此选项不符,故D错.故选C.【点睛】本题考查的是同一坐标系中二次函数与一次函数的图象问题,必须明确二次函数的开口方向与a的正负的关系,a,b的符号与对称轴的位置关系,并结合一次函数的相关性质进行分析,本题中等难度偏上.。

初中数学函数基础知识经典测试题及解析

初中数学函数基础知识经典测试题及解析
故选: .
【点睛】
本题考查了列表法或树状图法和函数图像上点的特征.通过列表法或树状图法展示所有等可能的结果求出 ,再从中选出符合事件 或 的结果数目 ,然后根据概率公式求出事件 或 的概率.也考查了二次函数图象上点的坐标特征.
8.甲、乙两车同时从A地出发,各自都以自己的速度匀速向B地行驶,甲车先到B地,停车1小时后按原速匀速返回,直到两车相遇.已知,乙车的速度是60千米/时,如图是两车之间的距离y(千米)与乙车行驶的时间x(小时)之间的函数图象,则下列说法不正确的是( )
故选 .
3.如图,线段 ,动点 以 的速度从 在线段 上运动,到达点 后,停止运动;动点 以 的速度从 在线段 上运动,到达点 后,停止运动.若动点 同时出发,设点 的运动时间是 (单位: )时,两个动点之间的距离为S(单位: ),则能表示 与 的函数关系的是( )
A. B.
C. D.
【答案】D
【解析】
2.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是( )
9.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
先弄清题意,再分析路程和时间的关系.

初中数学函数基础知识基础测试题附答案解析(1)

初中数学函数基础知识基础测试题附答案解析(1)
60x+90(x﹣6)=450,解得x=6.6,
∴乙车从出发到与甲车返回时相遇所用的时间是6.6小时.
故选项B不合题意;
∵甲车的速度为90千米/时.
故选项C符合题意;
点M的纵坐标为:90×5﹣60×6=90,故选项D不合题意.
故选:C.
【点睛】
本题主要考查根据函数图象的信息,解决实际问题,理解x,y的实际意义,根据函数图象上点的坐标的实际意义,求出甲,乙车的速度和A,B两地之间的距离是解题的关键.
故选:B.
【点睛】
本题考查函数图象,正确理解函数图象横纵坐标表示的意义,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小以及理解本题中温差的含义是解决本题的关键.
12.木杆AB斜靠在墙壁上,当木杆的上端A沿墙壁NO竖直下滑时,木杆的底端B也随之沿着射线OM方向滑动.下列图中用虚线画出木杆中点P随之下落的路线,其中正确的是( )
初中数学函数基础知识基础测试题附答案解析(1)
一、选择题
1.如图, 次哈尔滨至幸福镇的动车需要匀速通过一条隧道(隧道长大于火车长),火车在隧道内的长度与火车进入隧道的时间 之间的关系用图象描述大致是()
A. B. C. D.
【答案】A
【解析】
【分析】
火车通过隧道分为3个过程:逐渐进入隧道,完全进入隧道并在其中行驶,逐渐出隧道
B.根据路程,时间与速度的关系解答即可;
C.由A的解答过程可得结论;
D.根据题意列式计算即可得出点M的纵坐标..
【详解】
∵根据题意,观察图象可知5小时后两车相距150千米,故甲车比乙车每小时多走30千米,∴甲车的速度为90千米/时;
∴A、B两地之间的距离为:90×5=450千米.

初三数学函数基础知识试题

初三数学函数基础知识试题

初三数学函数基础知识试题1.函数中自变量的取值范围是()A.B.C.D.【答案】C.【解析】根据题意知:x-2≥0,解得:x≥2.故选C.【考点】函数的自变量取值范围.2.函数 y=中自变量x的取值范围为()A.x≥0B.x≥﹣2C.x≥2D.x≤﹣2【答案】C.【解析】解:根据题意,得x﹣2≥0,解得x≥2.故选C.【考点】函数自变量的取值范围.3.函数y=中,自变量x的取值范围是()A.x>﹣2B.x≥﹣2C.x≠2D.x≤﹣2【答案】B【解析】由被开方数为非负数可知x+2≥0,所以x≥﹣2,B正确【考点】函数自变量的取值范围4.小明每天从家去学校上学行走的路程为900米,某天他从家去上学时以每分30米的速度行走了450米,为了不迟到,他加快了速度,以每分45米的速度行走完剩下的路程,那么小明行走过的路程S(米)与他行走的时间t(分)之间的函数关系用图象表示正确的是()【答案】D.【解析】小亮行走过的路程S(米)应随他行走的时间t(分)的增大而增大,因而选项A、B一定错误;他从家去上学时以每分30米的速度行走了450米,所用时间应是15分钟,因而选项C错误;行走了450米,为了不迟到,他加快了速度,后面一段图象陡一些,选项D正确.故选D.【考点】函数的图象.5.函数中,自变量x的取值范围是.【答案】【解析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。

6.如图,点P是以O为圆心,AB为直径的半圆上的动点,AB=2,设弦AP的长为x,△APO的面积为y,则下列图象中,能表示y与x的函数关系的图象大致是A.B.C.D.【答案】A。

【解析】如图,∵根据三角形面积公式,当一边OA固定时,它边上的高最大时,三角形面积最大,∴当PO⊥AO,即PO为三角形OA边上的高时,△APO的面积y最大。

此时,由AB=2,根据勾股定理,得弦AP=x=。

新初中数学函数之平面直角坐标系基础测试题含答案解析(2)

新初中数学函数之平面直角坐标系基础测试题含答案解析(2)

新初中数学函数之平面直角坐标系基础测试题含答案解析(2)一、选择题1.点 P (m + 3,m + 1)在x 轴上,则P 点坐标为( )A .(0,﹣2)B .(0,﹣4)C .(4,0)D .(2,0) 【答案】D【解析】【分析】根据点在x 轴上的特征,纵坐标为0,可得m +1=0,解得:m =-1,然后再代入m +3,可求出横坐标.【详解】解:因为点 P (m + 3,m + 1)在x 轴上,所以m +1=0,解得:m =-1,所以m+3=2,所以P 点坐标为(2,0).故选D.【点睛】本题主要考查点在坐标轴上的特征,解决本题的关键是要熟练掌握点在坐标轴上的特征.2.在平面直角坐标系中,过点2)A -画直线a x ⊥轴,过点(B -画直线b y ⊥轴,直线,a b 相交于点P ,则点P 的坐标是( )A .B .C .)1-D .(- 【答案】A【解析】【分析】根据过点2)A -画直线a x ⊥轴可以知道P 点的横坐标,根据过点(B -画直线b y ⊥轴可以知道p 点的纵坐标,由点P 的横纵坐标即可得到答案.【详解】解:∵点p 是通过点2)A -画直线a x ⊥轴,过点(B -画直线b y ⊥轴得到的交点,∴点P 的横坐标与点A点P 的纵坐标与点B ,因此,点p 的坐标为, 故A 为答案.【点睛】本题主要考查了与直角坐标系有关的知识,掌握向x 轴画垂线得到的点横坐标相同,向y 轴作垂线得到的点纵坐标相同是解题的关键.3.在平面直角坐标系中,长方形ABCD 的三个顶点()(32),(12),1,1,A B C ---,,则第四个顶点D 的坐标是( ).A .()2,1-B .(3,1)-C .()2,3-D .(3,1)-【答案】B【解析】【分析】根据矩形的性质(对边相等且每个角都是直角),由矩形ABCD 点的顺序得到CD ⊥AD ,可以把D 点坐标求解出来.【详解】解:根据矩形ABCD 点的顺序可得到CD ⊥AD , 又∵()(32),(12),1,1,A B C ---,, ∴A 、B 纵坐标相等,B 、C 横坐标相等,∴A 、D 横坐标相等,即3;D 、C 纵坐标相等,即-1,因此(31)D -,【点睛】本题主要考查了矩形的性质和直角坐标系的基本概念,利用矩形四个角都是直角、对边相等是解题的关键.4.在平面直角坐标系中,点(),P x y 经过某种变换后得到点()'1,2P y x -++,我们把点()'1,2P y x -++叫做点(),P x y 的终结点.已知点1P 的终结点为2P ,点2P 的终结点为3,P 点3P 的终结点为4P ,这样依次得到1234,,,,,n P P P P P ⋅⋅⋅.若点1P 的坐标为(50,),则2017P 点的坐标为( )A .()2,0B .()3,0C .()4,0D .()5,0【答案】D【解析】【分析】根据题意先求出12345,,,,P P P P P L 的坐标,然后找到规律,利用规律即可求出答案.【详解】 ∵点1P 的坐标为(5)0,,根据题意有 ∴2345(1,7),(6,3),(2,4),(5,0)P P P P ---,由此可见,n P 点的坐标是四个一循环,201745041÷=Q L ,∴2017P 点的坐标为()5,0,故选:D .【点睛】本题主要考查点的坐标的规律,找到规律是解题的关键.5.如果点P (),3m 在第二象限,那么点Q ()3,m -在( )A .第一象限B .第二象限C .第三象限D .第四象限【答案】C【解析】【分析】根据第二象限的横坐标小于零可得m 的取值范围,进而判定Q 点象限.【详解】解:由点P (),3m 在第二象限可得m <0,再由-3<0和m <0可知Q 点在第三象限, 故选择C.【点睛】本题考查了各象限内坐标的符号特征.6.如图,在菱形ABCD 中,点,B C 在x 轴上,点A 的坐标为()0,23,分别以点,A B 为圆心、大于12AB 的长为半径作弧,两弧相交于点,E F .直线EF 恰好经过点,D 则点B 的坐标为( )A .()1,0B .)3,0C .()2,0D .()3,0【答案】C【解析】【分析】 连接DB ,如图,利用基本作图得到EF 垂直平分AB ,则DA =DB ,再根据菱形的性质得到AD ∥BC ,AD =AB ,则可判断△ADB 为等边三角形,所以∠DAB =∠ABO =60°,然后计算出OB =2,从而得到B 点坐标.【详解】解:连接DB ,如图,由作法得EF 垂直平分AB ,∴DA =DB ,∵四边形ABCD 是菱形,∴AD ∥BC ,AD =AB ,∴AD =AB =DB ,∴△ADB 为等边三角形,∴∠DAB =60°,∴∠ABO =60°,∵A (0,23),∴OA =23,∵∠ABO =60°,∠AOB =90°,∴∠BAO =30°,∴在Rt △AOB 中,AB =2OB ,∵OB 2+OA 2=AB 2,∴OB 2+()232=(2OB )2,∴OB =2(舍负),∴B (2,0).故选:C .【点睛】本题考查了作图基本作图:作已知线段的垂直平分线,也考查了线段垂直平分线的性质和菱形的性质以及30°的直角三角形的特殊性质.7.如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如()()()()()()1,02,02,11,11,22,2,,,,,······根据这个规律,第2019个点的纵坐标为( )A.5B.6C.7D.8【答案】B【解析】【分析】观察图形可知,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,并且右下角的点的横坐标是奇数时最后以横坐标为该数,纵坐标为0结束,当右下角的点横坐标是偶数时,以横坐标为1,纵坐标为右下角横坐标的偶数减1的点结束,根据此规律解答即可.【详解】解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上右下角的点的横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,…右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2019个点是(45,6),所以,第2019个点的纵坐标为6.故选:B.【点睛】本题考查了点的坐标,观察出点个数与横坐标的存在的平方关系是解题的关键.8.如图所示,正五边形ABCDE放入某平面直角坐标系后,若顶点A,B,C,D的坐标分别是(0,a),(-3,2),(b,m),(c,m),则点E的坐标是()A.(2,-3) B.(2,3) C.(3,2) D.(3,-2)【答案】C【解析】【分析】【详解】∵点A坐标为(0,a),∴点A在该平面直角坐标系的y轴上,∵点C、D的坐标为(b,m),(c,m),∴点C、D关于y轴对称,∵正五边形ABCDE是轴对称图形,∴该平面直角坐标系经过点A的y轴是正五边形ABCDE的一条对称轴,∴点B、E也关于y轴对称,∵点B的坐标为(﹣3,2),∴点E的坐标为(3,2),故选C..【点睛】本题考查了平面直角坐标系的点坐标特征及正五边形的轴对称性质,解题的关键是通过顶点坐标确认正五边形的一条对称轴即为平面直角坐标系的y轴.9.如图,正方形ABCD的顶点A(1,1),B(3,1),规定把正方形ABCD“先沿x轴翻折,再向左平移1个单位”为一次变换,这样连续经过2019次变换后,正方形ABCD的顶点C的坐标为()A.(﹣2018,3)B.(﹣2018,﹣3)C.(﹣2016,3)D.(﹣2016,﹣3)【答案】D【解析】【分析】首先由正方形ABCD,顶点A(1,1)、B(3,1)、C(3,3),然后根据题意求得第1次、2次、3次变换后的点C的对应点的坐标,即可得规律:第n次变换后的点C的对应点的为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3),继而求得把正方形ABCD连续经过2019次这样的变换得到正方形ABCD的点C的坐标.【详解】∵正方形ABCD,顶点A(1,1)、B(3,1),∴C(3,3).根据题意得:第1次变换后的点C的对应点的坐标为(3﹣1,﹣3),即(2,﹣3),第2次变换后的点C的对应点的坐标为:(3﹣2,3),即(1,3),第3次变换后的点C的对应点的坐标为(3﹣3,﹣3),即(0,﹣3),第n次变换后的点C的对应点的为:当n为奇数时为(3﹣n,﹣3),当n为偶数时为(3﹣n,3),∴连续经过2019次变换后,正方形ABCD的点C的坐标变为(﹣2016,﹣3).故选D.【点睛】此题考查了对称与平移的性质.此题难度较大,属于规律性题目,注意得到规律:第n次变换后的点C的对应点的坐标为:当n为奇数时为(3-n,-3),当n为偶数时为(3-n,3)是解此题的关键.10.已知在平面直角坐标系中,点A的坐标为(﹣3,4),下列说法正确的有()个①点A与点B(-3,﹣4)关于x轴对称②点A与点C(3,﹣4)关于原点对称③点A与点F(-4,3)关于第二象限的平分线对称④点A与点C(4,-3)关于第一象限的平分线对称A.1 B.2 C.3 D.4【答案】D【解析】【分析】根据关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数;关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变;关于第2象限角平分线对称的点的坐标特点:横纵坐标变换位置且变为相反数;关于第1象限角平分线对称的点的坐标特点:横纵坐标变换位置.综合以上即可得答案.【详解】∵点A的坐标为(﹣3,4),∴点A关于x轴对称的点的坐标为(﹣3,﹣4),点A关于原点对称的点的坐标为(3,-4),点A关于第二象限的角平分线对称的点的坐标为(-4,3)点A关于第一象限的角平分线对称的点的坐标为(4,-3)∴①、②、③、④正确.故选:D.【点睛】此题主要考查了关于x轴、y轴、第二象限的角平分线、第一象限的角平分线对称的点的坐标规律,关键是熟练掌握点的变化规律,不要混淆.11.如图,已知棋子“车”的坐标为(﹣2,﹣1),棋子“马”的坐标为(1,﹣1),则棋子“炮”的坐标为()A.(3,2)B.(﹣3,2)C.(3,﹣2)D.(﹣3,﹣2)【答案】C【解析】【分析】先根据棋子“车”的坐标画出直角坐标系,然后写出棋子“炮”的坐标.【详解】解:如图,棋子“炮”的坐标为(3,﹣2).故选C .12.我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为4的正方形ABCD 的边AB 在x 轴上,AB 的中点是坐标原点O ,固定点A ,B ,把正方形沿箭头方向推,使点D 落在y 轴正半轴上点D ¢处,则点C 的对应点C '的坐标为( )A .()23,2B .()4,2C .(4,23D .(2,23 【答案】C【解析】【分析】 由已知条件得到AD′=AD=4,AO=12AB=2,根据勾股定理得到2223AD OA '-=于是得到结论.【详解】∵AD ′=AD=4, AO=12AB=2, ∴OD ′2223AD OA '-=∵C ′D ′=4,C′D′∥AB ,∴C ′(4,3),故选C .【点睛】考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.13.如果点P 在第三象限内,点P 到x 轴的距离是4,到y 轴的距离是5,那么点P 的坐标是( )A .(﹣4,﹣5)B .(﹣4,5)C .(﹣5,4)D .(﹣5,﹣4)【答案】D【解析】【分析】根据第三象限内点的横坐标是负数,纵坐标是负数以及点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值解答.【详解】解:∵第三象限的点P 到x 轴的距离是4,到y 轴的距离是5,∴点P 的横坐标是﹣5,纵坐标是﹣4,∴点P 的坐标为(﹣5,﹣4).故选:D.【点睛】本题考查了点的坐标,熟记点到x 轴的距离等于纵坐标的绝对值,到y 轴的距离等于横坐标的绝对值是解题的关键.14.在平面直角坐标系中,点P (0,﹣4)在( )A .x 轴上B .y 轴上C .原点D .与x 轴平行的直线上【答案】B【解析】【分析】根据点P 的坐标为(0,﹣4)即可判断点P (0,﹣4)在y 轴上.【详解】在平面直角坐标系中,点P (0,﹣4)在y 轴上,故选:B .【点睛】本题考查了坐标与图形性质,熟练掌握坐标轴上点的坐标特征是解题的关键.15.在平面直角坐标系xOy 中,对于点(),P x y ,我们把点()1,1P y x '-++叫做点P 的伴随点.已知点1A 的伴随点为2A ,点2A 的伴随点为3A ,点3A 的伴随点为4A ,…,这样依次得到点123,,,,,n A A A A L L .若点1A 的坐标为()3,1,则点2019A 的坐标为( ) A .()0,2-B .()0,4C .()3,1D .()3,1-【答案】D【解析】【分析】根据“伴随点”的定义依次求出各点,每4个点为一个循环组依次循环,用2019除以4,根据商和余数的情况确定点A2019的坐标即可.【详解】解:A1的坐标为(3,1),则A2(-1+1,3+1)=(0,4),A3(-4+1,0+1)=(-3,1),A4(0,-2),A5(3,1),…,依此类推,每4个点为一个循环组依次循环,∵2019÷4=504…3,∴点A2019的坐标与A3的坐标相同,为(-3,1),故选D.【点睛】本题考查点的坐标规律,理解“伴随点”的定义并求出每4个点为一个循环组依次循环是解题的关键.16.已知点P位于y轴右侧,距y轴3个单位长度,位于x轴上方,距离x轴4个单位长度,则点P坐标是( )A.(3,4) B.(-3,4) C.(-4,3) D.(4,3)【答案】A【解析】【分析】根据题意,P点应在第一象限,横、纵坐标为正,再根据P点到坐标轴的距离确定点的坐标.【详解】解:∵P点位于y轴右侧,x轴上方,∴P点在第一象限,又∵P点距y轴3个单位长度,距x轴4个单位长度,∴P点横坐标为3,纵坐标为4,即点P的坐标为(3,4).故选A.【点睛】本题考查了点的位置判断方法及点的坐标几何意义.17.若x轴上的点P到y轴的距离为3,则点P的坐标为()A.(3,0)B.(3,0)或(–3,0)C.(0,3)D.(0,3)或(0,–3)【答案】B【解析】【分析】根据x 轴上点的纵坐标为0,可得P 点的纵坐标,根据点P 到y 轴的距离是点的横坐标的绝对值,可得答案.【详解】由x 轴上的点P ,得P 点的纵坐标为0,由点P 到y 轴的距离为3,得P 点的横坐标为3或-3,∴点P 的坐标为(3,0)或(-3,0),故选B .【点睛】本题考查了点的坐标,利用y 轴上点的横坐标为得出P 点的横坐标是解题关键,注意点到x 轴的距离是点的纵坐标的绝对值.18.预备知识:线段中点坐标公式:在平面直角坐标系中,已知A (x 1,y 1),B (x 2,y 2),设点M 为线段AB 的中点,则点M 的坐标为(122x x +,122y y +)应用:设线段CD 的中点为点N ,其坐标为(3,2),若端点C 的坐标为(7,3),则端点D 的坐标为( )A .(﹣1,1)B .(﹣2,4)C .(﹣2,1)D .(﹣1,4) 【答案】A【解析】【分析】根据线段的中点坐标公式即可得到结论.【详解】设D (x ,y ),由中点坐标公式得:7+x 2=3,3+y 2=2, ∴x =﹣1,y =1,∴D (﹣1,1),故选A .【点睛】此题考查坐标与图形性质,关键是根据线段的中点坐标公式解答.19.如图,若OABC Y 的顶点O ,A ,C 的坐标分别为(0,0),(4,0),(1,3),则顶点B 的坐标为( )A.(4,1)B.(5,3)C.(4,3)D.(5,4)【答案】B【解析】【分析】根据平行四边形的性质,以及点的平移性质,即可求出点B的坐标.【详解】解:∵四边形OABC是平行四边形,∴OC∥AB,OA∥BC,∴点B的纵坐标为3,∵点O向右平移1个单位,向上平移3个单位得到点C,∴点A向右平移1个单位,向上平移3个单位得到点B,∴点B的坐标为:(5,3);故选:B.【点睛】本题考查了平行四边形的性质,点坐标平移的性质,解题的关键是熟练掌握平行四边形的性质进行解题.20.在平面直角坐标系中,若一个点的横纵坐标互为相反数,则该点一定不在()A.直线y=-x上B.直线y=x上C.双曲线y=1xD.抛物线y=x2上【答案】C【解析】【分析】【详解】解:A、若此点坐标是(0,0)时,在直线y=-x上,故本选项错误;B、若此点坐标是(0,0)时,在直线y=x上,故本选项错误;C、因为双曲线y=1x上的点必须符合xy=1,故x、y同号与已知矛盾,故本选项正确;D、若此点坐标是(0,0)时,在抛物线y=x2上,故本选项错误.故选C.【点睛】本题考查反比例函数图象上点的坐标特征;一次函数图象上点的坐标特征;二次函数图象上点的坐标特征.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
②由横纵坐标看出,第一小时两人都跑了10千米,故②正确;
③由横纵坐标看出,乙比甲先到达终点,故③错误;
④由纵坐标看出,甲乙二人都跑了20千米,故④正确;
故选C.
13.均匀地向一个容器注水,最后把容器注满,在注水过程中,水面高度h随时间t的变化规律如图所示(图中OABC为折线),这个容器的形状可以是()
新初中数学函数基础知识基础测试题附答案解析
一、选择题
1.下列图形中的曲线不表示y是x的函数的是()
A. B. C. D.
【答案】C
【解析】
【分析】
函数是指:对于任何一个自变量x的值都有唯一确定的函数值y与之相对应.
【详解】
根据函数的图象,选项C的图象中,x取一个值,有两个y与之对应,故不是函数.
故选C
【详解】
甲在乙前面50m处,若两人同时起跑,经过50÷(6−4)=25秒,乙追上甲,则相距是0千米,故A、B错误;
相遇以后乙在前边,相距的距离每秒增加2米,乙全程用的时间是600÷6=100秒,故B.、D错误;
相遇以后两人之间的最大距离是:2×(100−25)=150米.
故选C.
【点睛】
本题主要考查函数的图象,理解函数图象上点的坐标的实际意义,掌握行程问题中的基本数量关系:速度×时间=距离,是解题的关键.
12.在全民健身环城越野赛中,甲乙两选手的行程y(千米)随时间(时)变化的图象(全程)如图所示.有下列说法:①起跑后1小时内,甲在乙的前面;②第1小时两人都跑了10千米;③甲比乙先到达终点;④两人都跑了20千米.其中正确的说法有()
【分析】
【详解】
解:①由纵坐标看出,起跑后1小时内,甲在乙的前面,故①正确;
【答案】A
【解析】
【分析】
根据分式的意义,进行求解即可.
【详解】
解:根据分式的意义得2-x≠0,解得x≠2
故选:A
【点睛】
本题考查了求自变量的取值范围,函数自变量的范围一般从几个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
(3)当函数表达式是二次根式时,被开方数为非负数.
解:A、x与y都是变量,且x是自变量,y是因变量,正确,不符合题意;
B、弹簧不挂重物时的长度为10cm,错误,符合题意;
C、在弹性范围内,所挂物体质量为7千克时,弹簧长度为10+0.5×7=13.5,正确,不符合题意;
D、在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米,正确,不符合题意.
A.①③④B.①②③C.①②④D.①②③④
【答案】D
【解析】
【分析】
根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,本题得以解决.
【详解】
解:由图象可得,
小明家和学校距离为1200米,故①正确,
小华乘坐公共汽车的速度是1200÷(13﹣8)=240米/分,故②正确,
480÷240=2(分),8+2=10(分),则小华乘坐公共汽车后7:50与小明相遇,故③正确,
【分析】
根据正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围解答即可.
【详解】
解:①函数 的自变量 的取值范围是 ;故错误;
②对角线相等且互相平分的四边形是矩形;故错误;
③正六边形的中心角为60°;故正确;
④对角线互相平分且垂直的四边形是菱形;故错误;
⑤计算| -2|的结果为1;故错误;
⑥同圆或等圆中,相等的圆心角所对的弧相等;故错误;
⑦ 是无理数;故正确.
故选:B.
【点睛】
本题考查了正多边形和圆,无理数的定义,二次根式的加减运算,菱形的判定,矩形的判定,函数自变量的取值范围,熟练掌握各知识点是解题的关键.
3.函数 中自变量 的取值范围是()
A.x≠2B.x≥2C.x≤2D.x>2
B.弹簧不挂重物时的长度为0厘米
C.在弹性范围内,所挂物体质量为7千克时,弹簧长度为13.5厘米
D.在弹性范围内,所挂物体质量每增加1千克弹簧长度增加0.5厘米
【答案】B
【解析】
试题分析:根据图表数据可得,弹簧的长度随所挂重物的质量的变化而变化,并且质量每增加1千克,弹簧的长度增加0.5cm,然后对各选项分析判断后利用排除法.
A. B. C. D.
【答案】D
【解析】
试题分析:注水量一定,函数图象的走势是稍陡,平,陡;那么速度就相应的变化,跟所给容器的粗细有关.则相应的排列顺序就为D.故选D.
考点:函数的图象.
14.已知: 表示不超过 的最大整数.例: , .记 ( 是正整数).例: .则下列结论正确的个数是()
(1) ;(2) ;(3) ;(4) 或1.
A.x≠1B.x>0C.x≥1D.x>1
【答案】D
【解析】
【分析】
根据被开方数大于等于0,分母不等于0列式计算即可得解.
【详解】
由题意得,x-1≥0且x-1≠0,
解得x>1.
故选D.
【点睛】
本题考查了函数自变量的范围,一般从三个方面考虑:
(1)当函数表达式是整式时,自变量可取全体实数;
(2)当函数表达式是分式时,考虑分式的分母不能为0;
B.根据图象即可得出甲比乙早出发0.5小时,故B错误;
C.设 对应的函数解析式为 ,
所以: ,解得
即 对应的函数解析式为 ;
设 对应的函数解析式为 ,
所以: ,解得
即 对应的函数解析式为 ,
所以: ,解得
∴点A的实际意义是在甲出发1.4小时时,甲乙两车相遇,故本选项符合题意;
D.根据图形即可得出乙出发3h时到达A地,故D错误.
A.监测点AB.监测点BC.监测点CD.监测点D
【答案】C
【解析】
试题解析: 、由监测点 监测 时,函数值 随 的增大先减少再增大.故选项 错误;
、由监测点 监测 时,函数值 随 的增大而增大,故选项 错误;
、由监测点 监测 时,函数值 随 的增大先减小再增大,然后再减小,选项 正确;
、由监测点 监测 时,函数值 随 的增大而减小,选项 错误.
A. B. C. D.
【答案】B
【解析】
【分析】
注意分析y随x的变化而变化的趋势,而不一定要通过求解析式来解决.
【详解】
旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化由小到大再变小.
故选B.
【点睛】
考查动点问题的函数图象问题,关键要仔细观察.
8.如图1所示,A,B两地相距60km,甲、乙分别从A,B两地出发,相向而行,图2中的 , 分别表示甲、乙离B地的距离y(km)与甲出发后所用的时间x(h)的函数关系.以下结论正确的是( )
A.1个B.2个C.3个D.4个
【答案】C
【解析】
【分析】
根据题中所给的定义,依次作出判断即可.
【详解】
解: ,正确;
,正确;
当k=3时, ,而 ,错误;
当k=3+4n(n为自然数)时,f(k)=1,当k为其它的正整数时,f(k)=0,正确;
正确的有3个,
故选:C.
【点睛】
本题考查新定义下的实数运算,函数值.能理解题中新的定义,并根据题中的定义进行计算是解决此题的关键.
故选:C.
【点睛】
本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质和数形结合的思想解答.
9.为了锻炼学生身体素质,训练定向越野技能,某校在一公园内举行定向越野挑战赛.路线图如图1所示,点E为矩形ABCD边AD的中点,在矩形ABCD的四个顶点处都有定位仪,可监测运动员的越野进程,其中一位运动员P从点B出发,沿着B﹣E﹣D的路线匀速行进,到达点D.设运动员P的运动时间为t,到监测点的距离为y.现有y与t的函数关系的图象大致如图2所示,则这一信息的来源是( )
故选B.
点评:本题考查了函数关系的确认,常量与变量的确定,读懂图表数据,并从表格数据得出正确结论是解题的关键,是基础题,难度不大.
7.如图,两块完全重合的正方形纸片,如果上面的一块绕正方形的中心O逆时针0°~90°的旋转,那么旋转时露出的△ABC的面积(S)随着旋转角度(n)的变化而变化,下面表示S与n关系的图象大致是( )
小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,小华从家到学校的所用时间为:1200÷100=12(分),则小华到校时间为8:00,小明到校时间为8:00,故④正确,
故选:D.
【点睛】
本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.
5.函数y= 中,自变量x的取值范围是( )
【点睛】
考点:函数的定义
2.下列说法:①函数 的自变量 的取值范围是 ;②对角线相等的四边形是矩形;③正六边形的中心角为 ;④对角线互相平分且相等的四边形是菱形;⑤计算 的结果为7:⑥相等的圆心角所对的弧相等;⑦ 的运算结果是无理数.其中正确的个数有()
A.1个B.2个C.3个D.4个
【答案】B
【解析】
4.小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公共汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中正确的是( ).①小明家和学校距离1200米;②小华乘坐公共汽车的速度是240米/分;③小华乘坐公共汽车后7:50与小明相遇;④小华的出发时间不变,当小华由乘公共汽车变为跑步,且跑步的速度是100米/分时,他们可以同时到达学校.
15.甲、乙两人在一条长为600m的笔直道路上均匀地跑步,速度分别为 和 ,起跑前乙在起点,甲在乙前面50m处,若两人同时起跑,则从起跑出发到其中一人先到达终点的过程中,两人之间的距离y(m)与时间t(s)的函数图象是()
相关文档
最新文档