正弦、余弦函数的图象 说课稿 教案 教学设计
1.4.1《正弦函数余弦函数的图像》教案
1.4.1《正弦函数余弦函数的图像》教案正弦函数和余弦函数是高中数学中非常重要的函数之一,也是数学和物理中常用到的函数。
本节课将介绍正弦函数和余弦函数的概念和性质,并通过图像展示的方式加深学生对这两个函数的理解和认识。
一、教学目标1. 了解正弦函数和余弦函数的定义和基本性质;2. 能够画出正弦函数和余弦函数的图像,并能够根据函数的特点判断函数的周期、最值等;3. 理解正弦函数和余弦函数在数学和物理中的应用。
二、教学重点1. 正弦函数和余弦函数的定义和基本性质;2. 正弦函数和余弦函数的图像及其特点。
四、教学过程1. 引入通过投影仪展示一张正弦函数和余弦函数的图像,让学生观察并回答以下问题:1) 你能从图像中看出这是什么函数吗?2) 你能看出函数的周期是多少吗?3) 你能说出函数在哪些点上达到最大值和最小值吗?2. 讲解引导学生根据图像的特点,了解正弦函数和余弦函数的定义和基本性质:1) 正弦函数是一个周期为2π的函数,记作y = sin(x);2) 正弦函数的图像是周期性的波形图,以原点为对称轴;3) 正弦函数在x轴上有一个最大值1和最小值-1,且对称于原点。
3. 练习让学生在纸上绘制正弦函数和余弦函数的图像,并标注出周期、最大值和最小值的位置。
4. 拓展通过举例子的方式,让学生了解正弦函数和余弦函数在数学和物理中的应用:1) 数学:正弦函数和余弦函数可以用来描述周期性变化的现象,比如声音、光线的强度等;2) 物理:正弦函数和余弦函数可以用来描述振动、波动、震荡等现象,比如物体的弹簧振子、天体运动等。
七、板书设计1. 正弦函数:y = sin(x)2. 余弦函数:y = cos(x)3. 正弦函数和余弦函数的图像及其特点八、教学反思这节课主要通过图像展示的方式介绍了正弦函数和余弦函数的概念和性质,让学生通过观察图像来理解和认识这两个函数的特点。
学生的参与度较高,对函数的定义和基本性质有了初步的了解。
正弦函数和余弦函数的图像教案
正弦函数和余弦函数的图像教案【教案简介】本教案旨在通过教学展示正弦函数和余弦函数的图像特点及其应用,帮助学生深入理解两个函数的概念、性质和变化规律。
教案包括教学目标、教学重点、教学方法、教学步骤和教学评价等内容。
【教学目标】1. 了解正弦函数和余弦函数的定义及其图像特点;2. 掌握正弦函数和余弦函数的周期、振幅和相位差的计算方法;3. 能够绘制正弦函数和余弦函数的图像,并通过图像分析它们的变化规律;4. 实际应用中能够利用正弦函数和余弦函数解决问题。
【教学重点】1. 正弦函数和余弦函数的图像特点;2. 正弦函数和余弦函数的周期、振幅和相位差的计算方法。
【教学方法】1. 导入法:通过相关问题导入正弦函数和余弦函数的概念;2. 教师讲解法:讲解正弦函数和余弦函数的定义、性质和变化规律;3. 示范法:绘制正弦函数和余弦函数的图像,并进行解析;4. 演练法:通过练习题让学生熟练掌握计算和分析正弦函数和余弦函数的图像;5. 合作探究法:让学生分组进行实际问题的探究和解决。
【教学步骤】Step 1 引入通过提问的方式引入正弦函数和余弦函数的概念,如:“你们知道正弦函数和余弦函数是什么吗?有什么特点?能否给出一个实例?”等。
Step 2 讲解- 讲解正弦函数和余弦函数的定义及其图像特点;- 介绍正弦函数和余弦函数的周期、振幅和相位差的概念;- 分析正弦函数和余弦函数的变化规律,并与三角函数的单位圆解释相结合。
Step 3 示范示范绘制正弦函数和余弦函数的图像,并解析图像的特点和规律。
可以使用PPT或者黑板来演示。
Step 4 演练通过练习题让学生进行计算和分析正弦函数和余弦函数的图像,检验他们是否掌握了计算方法和分析技巧。
Step 5 合作探究将学生分组,让每个小组选择一个实际问题,并利用正弦函数和余弦函数解决问题。
小组之间可以进行交流和分享,促进学生的思维发展和合作能力。
【教学评价】1. 在课堂上观察学生的参与度和思维表达,并及时给予指导和鼓励;2. 结合练习题和小组探究的成果,评价学生对于正弦函数和余弦函数的理解和运用能力;3. 可以布置小作业或者课后练习,巩固学生的学习成果。
1.4.1《正弦函数余弦函数的图像》教案
1.4.1《正弦函数余弦函数的图像》教案篇一:正弦函数余弦函数的图像一、教学目标1. 知识与能力能够正确理解正弦函数和余弦函数的定义,并能够绘制它们的图像。
2. 过程与方法学会利用函数的性质和特点绘制函数的图像。
3. 情感态度价值观通过绘制正弦函数和余弦函数的图像,培养学生对数学的兴趣,提高他们的数学解决问题的能力。
二、教学重难点1. 教学重点正弦函数和余弦函数的定义,以及它们的图像特点。
2. 教学难点学生可能对正弦函数和余弦函数的周期性特点理解困难,需要适当的引导和解释。
三、教学过程1. 导入通过展示一张正弦函数和余弦函数的图像,并向学生提问:“这是什么图像?它们有什么特点?”引导学生思考,激发他们的兴趣。
3. 练习让学生通过例题练习,掌握正弦函数和余弦函数的图像特点。
指导学生如何根据函数的性质绘制出函数的图像。
4. 拓展让学生利用计算机绘制正弦函数和余弦函数的图像,并与手绘的图像进行比较,加深对函数图像的理解。
6. 反思让学生总结本节课的学习收获和问题,激发他们对数学学习的兴趣。
四、教学资源1. PPT课件2. 正弦函数和余弦函数的图像3. 计算机绘图软件五、教学评价1. 提问通过提问考察学生对正弦函数和余弦函数的理解程度。
2. 练习布置练习题,检验学生对函数图像的掌握情况。
3. 课堂表现评价学生在课堂上的表现,包括学习态度和参与程度。
六、教学反思1. 教学方法在本节课的教学过程中,需要充分引导学生自主学习,培养他们的解决问题的能力。
2. 教学内容应该注重对正弦函数和余弦函数图像特点的深入讲解,让学生掌握绘制函数图像的方法。
七、教学改进在后续的教学中,可以增加案例分析和实际应用的讲解,让学生更好地理解正弦函数和余弦函数的图像特点。
注重对学生自主学习和实践能力的培养。
正弦函数、余弦函数的图像教学设计
【课题】 5.4.1正弦函数、余弦函数的图像【教材分析】本节内容选自《普通高中课程标准实验教科书数学必修第一册(人教版A 版)》第五章《三角函数》第四节“三角函数的图像与性质”的第一课时“正弦函数、余弦函数的图像”。
本节主要内容是正弦函数和余弦函数的图象画法,过去学生已经学习了一次函数、二次函数、指数函数和对数函数等。
此前已学习三角函数的概念和诱导公式。
在此基础上学习正弦函数和余弦函数的图像画法,为后续研究正弦函数和余弦函数的性质、正切函数的图象与性质、函数y=Asin(ωx+φ)的图象的研究打好基础,起到了承上启下的作用,因此,本节的学习有着极其重要的地位。
【学情分析】◆从学生的知识层面上:1、学习过任意角三角函数的定义,三角函数的诱导公式等知识。
2、已学习用描点法绘制函数图像。
本节课主要学习几何法,利用三角函数定义绘制函数图象是第一次。
◆从学生的能力层面上:1、拥有基础的绘制函数图象的经验。
2、具备通过图形平移变换作图的能力和数形结合思想。
【教学目标】课标要求:1、利用三角函数的概念画x y sin =,x y cos =的图像。
2、掌握“五点法”画x y sin =、x y cos =的图像的步骤和方法;利用“五点法”作简单的正弦、余弦曲线。
3、理解x y sin =与x y cos =的图像之间的联系。
素养要求通过利用三角函数概念和“五点法”作x y sin =与x y cos =的图像,提升学生的数学抽象、逻辑推理和直观想象能力。
【教学重点】理解“几何法”画正弦函数图像;掌握“五点法”画正弦函数和余弦函数的简图。
【教学难点】利用正弦函数概念作图以及正弦函数和余弦函数的图像变换。
【教学策略方法】学生为主体,教师为主导。
采用问题引导探究式教学和小组合作式学习法。
【教学设备及工具】几何画板、Geogebra 软件、坐标纸、课件、多媒体、翻页笔。
教学过程设计师:通过刚才的物理实验,我们对正弦函数和余弦函数图象已经有了一个直观的认识,但这是从物理实验中得到的,我们如何利用所学过的数学知识来作出正弦函数和余弦函数图到原来的位置,由公式一:()απαsin 2sin =±k ,()απαcos 2cos =±k 可表示。
正弦、余弦函数的图象 说课稿 教案 教学设计
正弦、余弦函数的图象学习目的:(1)利用单位圆中的三角函数线作出R x x y ∈=,sin 的图象,明确图象的形状; (2)根据关系)2sin(cos π+=x x ,作出R x x y ∈=,cos 的图象;(3)用“五点法”作出正弦函数、余弦函数的简图,利用图象解决一些有关问题; 学习重点:用单位圆中的正弦线作正弦函数的图象; 学习难点:作余弦函数的图象,周期性; 1、复习描点、连线,画出简图。
(用几何画板画出y =sinx 的图像,显示动画) (2)、试用“五点(画图)法”作函数[]cos ,0,2y x x π=∈的图象。
解:按五个关键点列表:描点、连线,画出简图。
1.510.5-0.5-1123456Oπ2π32π2πf x () = cos x ()例1:画出下列函数的简图: (1) y =1+sinx ,[]0,2x π∈ (2) y =-cosx ,[]0,2x π∈(2)按五个关键点列表:描点、连线,画出简图。
●探究1如何利用y=sinx ,[]0,2x π∈的图象,通过图形变换(平移、翻转等)来得到(1)y =1+sinx , []0,2x π∈的图象;(2)y=sin(x -3π)的图象? 小结:函数值加减,图像上下移动;自变量加减,图像左右移动。
●探究2如何利用y=cos x ,[]0,2x π∈的图象,通过图形变换(平移、翻转等)来得到 y =-cosx ,[]0,2x π∈的图象? 小结:这两个图像关于x 轴对称。
●探究3如何利用y=cos x ,[]0,2x π∈的图象,通过图形变换(平移、翻转等)来得到 y =2-cosx ,[]0,2x π∈的图象?小结:先作 y=cos x 图象关于x 轴对称的图形,得到 y =-cosx 的图象, 再将y =-cosx 的图象向上平移2个单位,得到 y =2-cosx 的图象。
●探究4不用作图,你能判断函数y=sin( 32x π-)和y=cosx 的图象有何关系吗?请在同一坐标系中画出它们的简图,以验证你的猜想。
正弦函数余弦函数的图象与性质教案
一、教案基本信息正弦函数与余弦函数的图象与性质课时安排:2课时教学目标:1. 理解正弦函数和余弦函数的定义和基本性质。
2. 学会绘制正弦函数和余弦函数的图象。
3. 能够运用正弦函数和余弦函数的性质解决实际问题。
教学重点:1. 正弦函数和余弦函数的定义和基本性质。
2. 正弦函数和余弦函数的图象绘制方法。
教学难点:1. 正弦函数和余弦函数的图象绘制方法。
2. 运用正弦函数和余弦函数的性质解决实际问题。
教学准备:1. 教学PPT。
2. 教学黑板。
3. 粉笔。
4. 学生用书。
教学过程:第一课时:一、导入(5分钟)教师通过复习正弦函数和余弦函数的定义,引导学生回顾初中阶段学习的三角函数知识,为新课的学习做好铺垫。
二、新课内容(15分钟)1. 讲解正弦函数的定义和性质。
2. 讲解余弦函数的定义和性质。
3. 引导学生通过数学软件或手绘图象,绘制正弦函数和余弦函数的图象。
4. 分析正弦函数和余弦函数图象的特点。
三、课堂练习(10分钟)教师给出一些练习题,让学生独立完成,巩固所学知识。
第二课时:一、复习导入(5分钟)教师通过复习上节课所学内容,检查学生对正弦函数和余弦函数的定义、性质以及图象的掌握情况。
二、深入学习(15分钟)1. 讲解正弦函数和余弦函数的图象绘制方法。
2. 讲解如何运用正弦函数和余弦函数的性质解决实际问题。
3. 引导学生通过实例,运用正弦函数和余弦函数的性质解决问题。
三、课堂练习(10分钟)教师给出一些练习题,让学生独立完成,巩固所学知识。
四、总结与反思(5分钟)教师引导学生总结本节课所学内容,反思自己的学习过程,为课后复习做好规划。
教学评价:通过课堂讲解、练习题以及课后作业,评估学生对正弦函数和余弦函数的定义、性质、图象以及应用的掌握情况。
对学生在学习过程中遇到的问题进行针对性的辅导,提高学生的学习效果。
六、教学案例分析本节课以一道实际问题为例,让学生运用正弦函数和余弦函数的性质解决问题。
案例:某城市一条道路的路灯间隔为5米,路灯的高度为10米。
正弦函数余弦函数的图像说课稿
正弦函数余弦函数的图像说课稿正弦函数和余弦函数的图像是本次说课的主题,我来自XXX,很高兴能够通过这种方式向大家研究和交流。
本课程的内容来自人教版高中数学教科书高一下册第四章第八节。
本次说课分为五个部分:教材分析、教法分析、学法分析、教学过程和说明反思。
一、教材分析1.教材的地位和作用三角函数是数学模型之一,是研究自然界周期变化规律最强有力的数学工具。
本课程是研究三角函数图像与性质的入门课,是今后研究函数性质、正弦型函数y=Asin(wx+φ)的图像的知识基础和方法准备。
同时,本课程也是数形结合的良好题材。
2.课时安排本课程是三角函数图像和性质的第一课时,主要介绍用几何法和五点法画正余弦函数图像,以及简单的图像平移变换和对称变换。
二、教法分析1.学情分析学生已经具备了一定的函数基础知识和诱导公式、三角函数线知识,能够运用数形结合和化归思想来研究图像。
同时,学生具备一定的自学能力和对数学研究的兴趣和积极性。
但是,还有部分学生存在畏难情绪,需要在探究问题的能力、合作交流的意识等方面加强。
2.教学方法现代教学理论认为,教学是师生的多边活动,在教师的反馈-控制的同时,每个学生也都在进行着微观的反馈-控制。
因此,教学应该通过学生自身的研究建构活动来实现。
建构主义认为,知识是在原有知识的基础上,在人与环境的相互作用过程中,通过同化和顺应,使自身的认知结构得以转换和发展。
三、学法分析本课程的研究方法主要是通过几何法和五点法来掌握正余弦函数的图像,同时也需要运用数形结合和化归思想来研究问题。
四、教学过程本课程的教学过程分为三个环节:导入、讲解和练。
在导入环节,我将通过提问和引入实际问题的方式来激发学生的兴趣。
在讲解环节,我将通过图像和实例来讲解正余弦函数的图像和性质。
在练环节,我将设计一些练题来帮助学生巩固所学知识。
五、说明反思本课程的教学目标是让学生掌握正余弦函数的图像和性质,能够用几何法和五点法画出正余弦函数的图像,同时也要培养学生的数形结合和化归思想。
正弦函数、余弦函数的图象和性质的一等奖说课稿3篇
1、正弦函数、余弦函数的图象和性质的一等奖说课稿一、教材分析1. 地位与重要性“正弦函数、余弦函数的图象和性质”一节是高中《数学》第一册(下)的重要内容,这一节共分为四个课时。
本课为第二课时,其主要内容是通过观察正弦线、余弦线及正、余弦曲线研究正、余弦函数性质中最基本的定义域与值域。
通过对这一节课的学习,既可加深学生对单位圆、正弦线、余弦线及正、余弦函数图象的认识,又可加强学生对三角函数概念的理解,还为后面其它性质的学习作好准备,起到承上启下的重要作用。
2. 教学目标:(1)能力目标:①培养学生的观察能力、分析能力、归纳能力、表达能力;②培养学生数形结合、类比等思想方法;③培养学生进行数学交流,获得数学知识的能力。
(2)情感目标:培养学生勇于探索,勤于思考的精神。
(3)知识目标:①使学生正确理解正、余弦函数的定义域、值域的意义;②会求简单函数的定义域、值域。
3. 教学重、难点:重点:正弦、余弦函数的定义域和值域。
理解并掌握正、余弦函数的定义域、值域是高中数学的重要内容,也是大纲的明确要求。
复习好三角函数定义及正弦线、余弦线等有关知识是解决问题的关键。
难点:有关函数定义域、值域的求解。
解三角函数问题时,学生普遍存在会而不对,对而不全,造成失误的很大原因来自定义域和值域问题,往往不注意角的范围,在求最值方面更为突出。
二、教法分析:根据上述教材分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化教学改革,确定本课主要的教法为:(1)讨论式教学:通过学生对图形的观察,让学生分组讨论、交流、总结,并发表意见,说出正弦、余弦函数的定义域与值域。
(2)讲议结合教学:教师适时指导、分析、讲解和提问,并及时对学生的意见进行肯定与评价。
(3)电脑多媒体辅助教学:借助电脑多媒体引导学生观察图形,使问题变得直观,易于突破;同时其灵活多样的形式可以极大地提高学生的学习兴趣;其软件交互功能可以帮助教师更好地实施教学,加大一堂课的信息量,使教学目标更好的实现。
正弦函数、余弦函数的图象和性质教案
正弦函数、余弦函数的图象和性质教案第一章:正弦函数的定义与图象1.1 教学目标了解正弦函数的定义能够绘制正弦函数的图象1.2 教学内容正弦函数的定义:正弦函数是直角三角形中,对于一个锐角,其对边与斜边的比值。
正弦函数的图象:正弦函数的图象是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。
1.3 教学活动讲解正弦函数的定义,并通过实际例子进行解释。
使用图形计算器或者绘图软件,让学生自己绘制正弦函数的图象,并观察其特点。
1.4 作业与练习让学生完成一些关于正弦函数的练习题,包括选择题和解答题。
第二章:余弦函数的定义与图象2.1 教学目标了解余弦函数的定义能够绘制余弦函数的图象2.2 教学内容余弦函数的定义:余弦函数是直角三角形中,对于一个锐角,其邻边与斜边的比值。
余弦函数的图象:余弦函数的图象也是一条波浪形的曲线,它在每个周期内上下波动,波动的最大值为1,最小值为-1。
2.3 教学活动讲解余弦函数的定义,并通过实际例子进行解释。
使用图形计算器或者绘图软件,让学生自己绘制余弦函数的图象,并观察其特点。
2.4 作业与练习让学生完成一些关于余弦函数的练习题,包括选择题和解答题。
第三章:正弦函数和余弦函数的性质3.1 教学目标了解正弦函数和余弦函数的性质3.2 教学内容正弦函数和余弦函数的周期性:正弦函数和余弦函数都是周期函数,它们的周期都是2π。
正弦函数和余弦函数的奇偶性:正弦函数是奇函数,余弦函数是偶函数。
正弦函数和余弦函数的单调性:正弦函数和余弦函数在一个周期内都是先增后减。
3.3 教学活动讲解正弦函数和余弦函数的性质,并通过实际例子进行解释。
让学生通过观察图象,总结正弦函数和余弦函数的性质。
3.4 作业与练习让学生完成一些关于正弦函数和余弦函数性质的练习题,包括选择题和解答题。
第四章:正弦函数和余弦函数的应用4.1 教学目标能够应用正弦函数和余弦函数解决实际问题4.2 教学内容正弦函数和余弦函数在物理学中的应用:正弦函数和余弦函数可以用来描述简谐运动,如弹簧振子的运动。
《正弦函数余弦函数的图象》(说课稿)
《正弦函数、余弦函数的图象》(说课稿)一、教材背景分析1、教材的地位与作用《正弦函数、余弦的函数图象》是高中《数学》必修④(人民教育出版社)第一章第四节的内容,其主要内容是正弦函数、余弦函数的图象。
过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线,在此基础上来学习正弦函数余弦函数的图象,为正切函数的图象与性质、函数)sin(ϕ+=wx A y 的图象的研究打好基础。
因此,本节的学习有着极其重要的地位。
2、教学重点和难点 教学重点:用“五点作图法”画长度为一个周期的闭区间上的正弦函数图象。
教学难点:利用单位圆画正弦函数图象。
3学情分析二、教学目标设计根据《高中数学教学大纲》的要求和教学内容的结构特征,依据学生学习的心理规律和素质教育的要求,结合学生的实际水平,制定本节课的教学目标如下:① 知识目标 (1)正弦函数、余弦函数图象的画法会用单位圆中的正弦线画出正弦函数图象;(2)掌握正弦函数图象的“五点作图法”;② 能力目标(1)培养学生合作学习和数学交流的能力;(2)培养学生运用知识解决实际问题的能力③情感目标(1)培养学生勇于探索、勤于思考的精神;(2)在形成知识、提高能力的过程中,激发学生学习数学的兴趣,提高学生的审美情趣,培养学生勇于探索、敢于创新的精神二、教法学法设计根据上述教材分析和目标分析,贯彻启发性教学原则,体现以教师为主导,学生为主体的教学思想,深化课堂教学改革,确定教法设计:1、计算机辅助教学 借助多媒体教学手段,引导学生理解利用单位圆中的正弦线画出正弦函数的图象,使问题变得直观,易于突破难点;利用多媒体向学生展示优美的函数图象,给人以美的享受。
2、讨论式教学 通过观察“正弦函数的几何作图法”课件的演示,让学生分组(四人一组)讨论、交流、总结,由小组成员代表小组发表意见(不同层次的组员回答,教师给予评价不同),说出函数x y sin =,[]π2,0∈x 的图象中起着关键作用的点。
1.4.1《正弦函数余弦函数的图像》教案
1.4.1《正弦函数余弦函数的图像》教案一、教学目标:1. 知识与技能:(1)了解正弦函数和余弦函数的概念和性质;(2)掌握正弦函数和余弦函数的图像特点;(3)能够用正弦函数和余弦函数描述周期性现象。
3. 情感态度价值观:通过本课的学习,学生将能够更好地理解数学在日常生活中的应用,培养学生对数学的兴趣和探索精神,增强学生对数学知识的自信心。
二、教学重点:1. 正弦函数和余弦函数的图像特点;2. 正弦函数和余弦函数的应用。
四、教学过程:2. 讲解并示范(20分钟)(1)教师用多媒体展示正弦函数和余弦函数的图像,并结合函数值的变化,解释它们的特点;(2)教师示范如何画出正弦函数和余弦函数的图像,并指导学生注意图像的对称性和周期性。
3. 练习与讨论(25分钟)(1)教师组织学生进行练习,要求学生分析不同参数对正弦函数和余弦函数图像的影响;(2)教师让学生结合实际例子讨论正弦函数和余弦函数的应用,并展开相关讨论。
5. 总结与作业布置(5分钟)(1)教师对本节课所学内容进行总结,并强调重点;(2)教师布置相关作业,要求学生进一步巩固和应用所学知识。
五、板书设计:正弦函数:y = Asin(Bx + C) + D余弦函数:y = Acos(Bx + C) + D特点:振幅、周期、相位、平移六、教学反思:本节课主要介绍了正弦函数和余弦函数的图像及其特点,通过引入周期性现象和实际应用,引导学生理解和掌握了相关知识。
但在教学过程中,应注重引导学生发现问题、解决问题的能力,增强课堂互动,培养学生的主动学习意识。
应多结合实际生活中的例子,让学生在综合性实际问题中运用所学知识,提升数学应用能力。
1.4.1《正弦函数余弦函数的图像》教案
1.4.1《正弦函数余弦函数的图像》教案一、教学目标1. 知识与技能:掌握正弦函数和余弦函数的定义和性质,能够准确地绘制正弦函数和余弦函数的图像,并用函数图像表示周期现象。
2. 过程与方法:通过观察和分析,培养学生绘制函数图像的能力,提高数学思维和分析问题的能力。
3. 情感态度和价值观:培养学生对数学知识的兴趣,增强学习数学的自信心。
二、教学重点与难点1. 教学重点:正弦函数和余弦函数的定义和性质,函数图像的绘制方法。
2. 教学难点:函数图像的周期性表现。
四、教学过程1. 引入问题为了引起学生的兴趣,可以通过提出一个问题引入正弦函数和余弦函数的教学内容,比如:在日常生活中我们经常遇到周期性的现象,比如四季更替、日升月落等,你知道如何用数学函数来描述这些现象吗?2. 理论学习教师介绍正弦函数和余弦函数的定义,及其性质,包括周期性、奇偶性、对称性等。
然后,通过示范和解释,教师讲解如何绘制正弦函数和余弦函数的图像,包括如何确定周期、振幅、相位等参数。
3. 练习与训练让学生进行简单的练习,让他们根据已知的函数,绘制相应的函数图像,加强他们的绘图能力和对函数图像的认识。
4. 拓展应用通过讲解正弦函数和余弦函数在日常生活中的具体应用,比如声音的频率、天体运动的规律等,引导学生将知识应用于实际问题中,并启发他们对数学知识的兴趣。
5. 总结反思教师对本节课的重点内容进行总结,并引导学生进行反思,总结学习方法和技巧,以及重点难点的突破方法。
五、教学手段1. 课件2. 黑板3. 教学实例4. 练习题六、教学评价1. 练习题考核通过练习题考核学生对正弦函数和余弦函数的理解和掌握程度。
2. 课堂表现评价通过观察学生的课堂表现,包括思维活跃程度、问题解决能力等来评价学生的学习情况。
七、教学反思本节课教学设计是以学生为中心的,注重培养学生的数学思维能力和实际应用能力,通过引入问题、理论学习、练习训练、拓展应用等环节,使学生能够全面地理解和掌握正弦函数和余弦函数的知识,并能在日常生活中灵活运用。
正弦余弦函数的图像说课稿
课题:正弦函数、余弦函数的图象《正弦函数、余弦函数的图象》(说课稿)桓台二中杨海涛本节课是人教版普通高中课程标准实验教科书必修4第一章第四节第一课时的内容。
下面我将从五个方面说明本节课的教学设计。
一、教材分析二、学情分析三、目标分析四、教法分析六、教学分析一、教材分析▪ 地位与作用:过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学过三角函数线,在此基础上来学习正弦函数余弦函数的图象,为正切函数的图象与性质、函数的图象的研究打好基础。
因此,本节的学习有着极其重要的地位。
▪ 重、难点分析:▪ 重点:正弦函数、余弦函数的图像形状▪ 难点:αsin y =在]2,0[π∈x 时的函数图像二、学情分析在初中学生已经学习过三步作图法(列表,描点、连线),在必修1学生已经掌握了一些基础函数的图像和性质,同时已经具备了一定的自学能力,这在我们今天用“五点法”作图提供了基础,让学生动手作出函数y =sinx 和y=cosx 的图象,学生不会感到困难。
但是现在的学生情况是对于“函数”二字表现的有些害怕,一涉及到函数就头疼,因此如何让他们愉快的去主动接受知识就成为最主要的问题。
讲新课之前需要把这节课要用到的旧知识预热充分。
鉴于此,我认为通过本节课的教学过程应达到如下的目标:三、目标分析①知识与技能掌握正弦、余弦函数图像的作法;理解并掌握五点法做图② 过程与方法:先以动手操作的形式激发学生的探究兴趣,再通过分析动态演示正弦曲线的形成过程,让学生领会数形结合的数学思想方法。
③情感态度和价值观:使学生体验探究的乐趣,培养学生善于观察勇于探究的良好习惯和严谨的科学态度。
四、教法分析一、以熟悉背景,引入思考为中心,以尝试画图,理解本质;探究问题,变式训练; 归纳小结,巩固知新; 布置作业,信息反馈为途径,创设一种“独立思考”、“自觉求异”、“探索求知”的环境,使学生在动中求变、变中求规。
二、为了激发学生的学习兴趣,突出重点,突破难点,提高教学效率,采用多媒体辅助教学。
1.4.1《正弦函数余弦函数的图像》教案
1.4.1《正弦函数余弦函数的图像》教案【摘要】本教案旨在帮助学生深入理解正弦函数和余弦函数的图像特征。
通过系统的内容安排,学生将了解到正弦函数和余弦函数的数学定义、性质以及图像特点,并明确教学重点。
教学方法包括理论讲解、示例演练和实际应用,帮助学生更好地掌握知识。
教学效果评价将从学生的表现和理解程度入手,评估教学效果。
通过学习本教案,学生将对正弦函数和余弦函数有更深刻的认识,提高数学素养和图像思维能力。
【关键词】《正弦函数余弦函数的图像》、教案、制作目的、内容安排、教学重点、教学方法、教学效果评价、引言、结论1. 引言1.1 引言在数学教学中,正弦函数和余弦函数是非常重要的函数之一,它们在图像和性质上有很多有趣的特点。
通过学习正弦函数和余弦函数的图像,可以帮助学生更深入地理解这两个函数的规律和变化。
在本节课中,我们将围绕正弦函数和余弦函数的图像展开教学,通过直观的图像展示和实际计算,让学生更加直观地理解正弦函数和余弦函数的性质。
正弦函数和余弦函数是周期函数,它们的图像呈现出明显的周期性和对称性。
通过分析正弦函数和余弦函数在不同参数下的图像变化,可以帮助学生建立起对这两个函数的直观认识,并且深入理解它们的数学性质。
在本节课中,我们将通过实际的例题和练习来帮助学生掌握正弦函数和余弦函数的图像特点,培养他们的数学思维和分析能力。
希望通过本节课的学习,学生能够更加深入地理解正弦函数和余弦函数的图像,为以后的学习打下良好的基础。
2. 正文2.1 1.4.1《正弦函数余弦函数的图像》教案的制作目的本教案旨在帮助学生深入理解正弦函数和余弦函数的图像特征,以及它们在数学中的应用。
通过学习本教案,学生将能够掌握正弦函数和余弦函数的周期、振幅、相位和对称性等重要概念,并能够准确绘制它们的图像。
本教案还旨在培养学生的数学思维能力和图形绘制能力,提高他们对数学的兴趣和自信心。
通过实际练习和应用案例的引导,学生将能够更好地理解正弦函数和余弦函数在现实生活中的应用,进而提高他们的数学解决问题的能力和应用能力。
正弦函数余弦函数的图象与性质教案
正弦函数与余弦函数的图象与性质教案教学目标:1. 理解正弦函数和余弦函数的定义。
2. 学会绘制正弦函数和余弦函数的图象。
3. 掌握正弦函数和余弦函数的性质。
教学内容:第一章:正弦函数的定义与图象1.1 正弦函数的定义1.2 正弦函数的图象1.3 绘制正弦函数的图象第二章:余弦函数的定义与图象2.1 余弦函数的定义2.2 余弦函数的图象2.3 绘制余弦函数的图象第三章:正弦函数的性质3.1 周期性3.2 奇偶性3.3 最大值和最小值3.4 相位变换第四章:余弦函数的性质4.1 周期性4.2 奇偶性4.3 最大值和最小值4.4 相位变换第五章:正弦函数和余弦函数的应用5.1 振动现象的应用5.2 波动现象的应用5.3 温度变化的应用教学方法:1. 采用讲解法,引导学生理解正弦函数和余弦函数的定义和性质。
2. 采用图象绘制法,让学生通过绘制图象来加深对函数的理解。
3. 采用实例分析法,通过实际应用来让学生掌握正弦函数和余弦函数的图象与性质。
教学评价:1. 课堂讲解的清晰度和连贯性。
2. 学生绘制函数图象的准确性。
3. 学生对正弦函数和余弦函数性质的理解程度。
4. 学生解决实际问题的能力。
教学资源:1. 教学PPT。
2. 函数图象绘制软件。
3. 实际应用案例资料。
教学步骤:第一章:正弦函数的定义与图象1.1 讲解正弦函数的定义,引导学生理解正弦函数的概念。
1.2 利用函数图象绘制软件,演示正弦函数的图象。
1.3 学生动手绘制正弦函数的图象,加深对函数的理解。
第二章:余弦函数的定义与图象2.1 讲解余弦函数的定义,引导学生理解余弦函数的概念。
2.2 利用函数图象绘制软件,演示余弦函数的图象。
2.3 学生动手绘制余弦函数的图象,加深对函数的理解。
第三章:正弦函数的性质3.1 讲解正弦函数的周期性,引导学生理解周期性的概念。
3.2 讲解正弦函数的奇偶性,引导学生理解奇偶性的概念。
3.3 讲解正弦函数的最大值和最小值,引导学生理解最大值和最小值的概念。
正弦函数与余弦函数的图像教案
正弦函数与余弦函数的图像教案一、教学目标:1. 让学生掌握正弦函数和余弦函数的图像特点。
2. 培养学生运用函数图像解决实际问题的能力。
3. 引导学生通过观察、分析、归纳等方法,探索正弦函数和余弦函数的图像性质。
二、教学内容:1. 正弦函数的图像特点2. 余弦函数的图像特点3. 正弦函数和余弦函数的图像关系4. 应用实例三、教学重点与难点:1. 重点:正弦函数和余弦函数的图像特点及应用。
2. 难点:正弦函数和余弦函数图像关系的理解。
四、教学方法:1. 采用讲解、演示、练习、讨论相结合的教学方法。
2. 利用多媒体课件辅助教学,增强学生对函数图像的直观感受。
3. 引导学生积极参与,培养学生的动手操作能力和观察分析能力。
五、教学过程:1. 导入新课:通过复习正弦函数和余弦函数的定义,引导学生关注它们的图像特点。
2. 讲解与演示:讲解正弦函数和余弦函数的图像特点,利用多媒体课件展示函数图像,让学生直观地感受函数的性质。
3. 练习与讨论:布置练习题,让学生绘制正弦函数和余弦函数的图像,并观察它们的关系。
组织学生进行讨论,分享各自的发现和心得。
4. 应用实例:结合实际问题,让学生运用正弦函数和余弦函数的图像特点解决问题,培养学生的应用能力。
5. 总结与拓展:对本节课的内容进行总结,强调正弦函数和余弦函数的图像关系。
布置课后作业,拓展学生的知识面。
教案仅供参考,具体授课过程中可根据学生实际情况进行调整。
六、教学评价:1. 通过课堂讲解、练习和讨论,评价学生对正弦函数和余弦函数图像特点的理解程度。
2. 观察学生在应用实例中的表现,评估其运用函数图像解决实际问题的能力。
3. 收集学生作业和课后练习,分析其对正弦函数和余弦函数图像关系的掌握情况。
七、教学反思:1. 反思教学过程中是否充分展示了正弦函数和余弦函数的图像特点,以及是否引导学生积极参与课堂讨论。
2. 思考如何改进教学方法,以提高学生对正弦函数和余弦函数图像关系的理解。
【教案】正弦函数、余弦函数的图像教学设计(第1课时)必修第一册
课题:5.4.1 正弦函数、余弦函数的图像(第一课时)一、教学内容:正弦函数、余弦函数的图像二、教学目标:(一)、了解正弦函数、余弦函数图象的来历,掌握“五点法”画出正弦函数、余弦函数的图象的方法.达成上述目标的标志是:学生能先根据正弦函数的定义绘制一个点,再绘制正弦函数在一个周期[0,2π]内的图象,最后通过平移得到正弦函数的图象;学生能用图象变换的方法,由正弦函数的图象绘制余弦函数的图象,并能就一个具体的点清晰地解释图象的变换方式及原因;能说出正弦函数、余弦函数图象的五个特殊点,并能用五点法绘制正弦函数的图象.(二)、正、余弦函数图象的区别与联系达成上述目标的标志是:先选择一个具体的点,进行分析,然后上升到对一般点的分析.得到只要将函数y=sinx图象上的点向左平移π2个单位长度,即可得到函数y=cosx的图象.(三)、正、余弦函数图象的简单应用.达成上述目标的标志是:会用“五点法”作出与正、余弦函数相关的函数简图.三、教学重点及难点(一)重点:正弦函数、余弦函数的图象.(二)难点:用单位圆中的正弦线作正弦函数的图象的方法;探究正、余弦函数图象间的联系.四、教学过程设计问题1:三角函数是我们学习的一类新的基本初等函数,按照函数研究的方法,学习了三角函数的定义之后,接下来应该研究什么问题?怎样研究?追问:(1)研究指数函数、对数函数图象与性质的思路是怎样的?(2)绘制一个新函数图象的基本方法是什么?(3)根据三角函数的定义,需要绘制正弦函数在整个定义域上的函数图象吗?选择哪一个区间即可?师生活动:教师提出问题,学生回忆函数研究的路线图,师生共同交流、规划,完善方案. 预设的答案如下.研究的线路图:函数的定义——函数的图象——函数的性质.绘制一个新函数图象的基本方法是描点法.对于三角函数,单位圆上任意一点在圆周上旋转一周又回到原来的位置,这一特性已经用公式一表示,据此,可以简化对正弦函数、余弦函数图象与性质的研究过程,比如可以先画函数y=sinx,x∈[0,2π]的图象,再画正弦函数y=sinx,x∈R的图象.设计意图:规划研究方案,构建本单元的研究路径,以便从整体上掌握整个内容的学习进程,形成整体观念.问题2:在[0,2π]上任取一个值x0,如何利用正弦函数的定义,确定正弦函数值sinx0并画出点T(x0,sinx0)?师生活动:方法1:一起作图探讨,如图5.4.1,在直角坐标系中画出以原点O为圆心的单位圆,⊙O与x轴正半轴的交点为A(1,0).在单位圆上,将点A绕着点O旋转x0弧度至点B,根据正弦函数的定义,点B的纵坐标y0=sinx0.由此,以x0为横坐标,y0为纵坐标画点,即得到函数图象上的点T(x0,sinx0).追问:如何科学地将单位圆上每一点对应的图像画出?师生活动:若把x轴上从0到2π这一段分成12等份,使x0的值分别为0,π6, π3, π2,…,2π,它们所对应的角的终边与单位圆的交点将圆周12等分,再按上述画点T(x0,sinx0)的方法,就可画出自变量取这些值时对应的函数图象上的点(图5.4.2).方法2:利用信息技术,可使x0在区间[0,2π]上取到足够多的值而画出足够多的点T(x0,sinx0),将这些点用光滑的曲线连接起来,可得到比较精确的函数y=sinx,x∈[0,2π]的图象.设计意图:通过正弦函数的定义,得到点的坐标,通过分析点的坐标的几何意义,准确描点.进一步熟悉,描点连线成图,即点动成线的作图过程.问题3:根据函数y=sinx,x∈[0,2π]的图象,你能想象函数y=sinx,x∈R 的图象吗?师生活动:由诱导公式一可知,函数y=sinx,x∈[2kπ,2(k+1)π ],k∈Z且k≠0的图象与y=sinx,x∈[0,2π]的图象形状完全一致.因此将函数y =sinx , x ∈[0,2π]的图象不断向左、向右平移(每次移动2π个单位长度),就可以得到正弦函数y =sinx , x ∈R 的图象(图5.4.4).知识梳理:正弦函数的图象叫做正弦曲线(sinecueve ),是一条“波浪起伏”的连续光滑曲线.追问:确定正弦函数的图象形状时,应抓住哪些关键点?师生活动:观察图5.4.3,在函数y =sinx , x ∈[0,2π]的图象上,以下五个点:(0,0),(π2,1),(π,0),(3π2,−1),(2π,0) 在确定图象形状时起关键作用.描出这五个点,函数数y =sinx , x ∈[0,2π]的图象形状就基本确定了.知识梳理:在精确度要求不高时,常先找出这五个关键点,再用光滑的曲线将它们连接起来,得到正弦函数的简图.这种作图方法近似地称为“五点(画图)法”,今后作简图是非常实用的.设计意图:观察函数图象,概括其特征,获得“五点法”画图的简便画法.问题4:由三角函数的定义可知,正弦函数、余弦函数是一对密切关联的函数.你能利用这种关系,借助正弦函数的图象画出余弦函数的图象吗?师生活动:学生先用排除法观察诱导公式,选择简洁的公式,作为正弦函数、余弦函数关系 研究的依据.教师引导学生通过比较进行选择.从数的角度看,对于函数y=cosx,由诱导公式cosx=sin(x+π2)得,y=cosx=sin(x+π2),x∈R.追问1:你认为应该利用正弦函数和余弦函数的哪些关系,通过怎样的图形变换,才能将正弦函数的图象变换为余弦函数的图象?师生活动:函数y=sin(x+π2),x∈R 的图象可以通过正弦函数y=sinx,x∈R 的图象向左平移π2个单位长度而得到.将正弦函数的图象向左平移π2个单位长度,就得到余弦函数的图象,如图5.4.5 所示.知识梳理:余弦函数y=cosx,x∈R的图象叫做余弦曲线(cosinecurve).它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.追问2:你能在两个函数图象上选择一对具体的点,解释这种平移变换吗?师生活动:这是教学的难点,教师要首先进行示范.教师可以先选择一个具体的点,进行分析,然后上升到对一般点的分析.得到图象之后还可以再利用图象进行验证.设(x0,y0)是函数y=cosx图象上任意一点,则有y0=cosx0=sin(x0+π2).令x0+π2=t0,则y0=sinxt0,即在函数y=sinx图象上有对应点(t0,y0).比较两个点:(x0,y0)与(t0,y0).因为x0+π2 =t0即x0=t0-π2.所以点(x 0,y 0)可以看做是点(t 0,y 0)向左平移π2个单位得到的,只要将函数y =sinx 图象上的点向左平移π2个单位长度,即可得到函数y =cosx 的图象,如图5.4.5 所示.知识梳理:余弦函数y =cosx ,x ∈R 的图象叫做余弦曲线(cosinecurve ).它是与正弦曲线具有相同形状的“波浪起伏”的连续光滑曲线.设计意图:利用诱导公式,通过图象变换,由正弦函数的图象获得余弦函数图象;增强对两 个函数图象之间的联系性的认识.问题5:类似于用“五点法”画正弦函数的图象,你能找出余弦函数在区间[-π,π]上相应的五个关键点吗?可以画出y =cosx ,x ∈[-π,π]的简图吗?师生活动:画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是(0,1),(π2,0),(π,-1),(3π2,0),(2π,1).用光滑曲线顺次连接这五个点,得到余弦曲线的简图.设计意图:观察余弦函数图象,掌握其特征,获得“五点法”. 问题6:例题分析:如何用“五点法”作出下列函数的简图?(1)y =1+sin x ,x ∈[0,2π];(2)y =-cos x ,x ∈[0,2π].师生活动:老师点拨:在[0,2π]上找出五个关键点,用光滑的曲线连接即可.预设学生:在直角坐标系中描出五点,然后用光滑曲线顺次连接起来,就得到y=1+sin x,x∈[0,2π]的图象.追问:你能利用函数y=sin x,x∈[0,2π]的图象,通过图象变换得到y=1+sin x,x∈[0,2π]的图象吗?同样地,利用函数y=cos x,x∈[0,2π] 图象,通过怎样的图象变换就能得到函数y=-cos x,x∈[0,2π] 的图象?师生活动:学生先独立完成,然后就解题思路和结果进行展示交流,教师点评并给出规范的解答.设计意图:巩固学生对正弦函数、余弦函数图象特征的掌握,熟练“五点法"画图,掌握画图的基本技能.通过分析图象变换,深化对函数图象关系的理解,并为后续的学习作好铺垫.五、课堂小结1.正弦函数和余弦函数的图象.正、余弦函数的图象每相隔2π个单位重复出现,因此,只要记住它们在[0,2π]内的图象形态,就可以画出正弦曲线和余弦曲线.2.“五点法”是作三角函数图象的常用方法,“五点”即函数最高点、最低点与x轴的交点.3.列表、描点、连线是“五点法”作图过程中的三个基本环节,注意用光滑的曲线连接五个关键点.六、目标检测设计(一)课前预习整理1、正弦曲线和余弦曲线1.可以利用单位圆中的______线作y=sin x,x∈[0,2π]的图象.2.y=sin x,x∈[0,2π]的图象向____、____平行移动(每次2π个单位长度),就可以得到正弦函数y=sin x,x∈R的图象.3.正弦函数y=sin x,x∈R的图象和余弦函数y=cos x,x∈R的图象分别叫做__________和__________.整理2、正弦曲线和余弦曲线“五点法”作图 “五点法”作图的一般步骤是______⇒______⇒______. 设计意图:预习知识,引发思考.(二)课堂检测1.用“五点法”作函数y =cos 2x ,x ∈R 的图象时,首先应描出的五个点的横坐标是( )A .0,π2,π,3π2,2πB .0,π4,π2,3π4,πC .0,π,2π,3π,4πD .0,π6,π3,π2,2π32.用“五点法”画出y =cos (3π2-x ),x ∈[0,2π]的简图.设计意图:强化知识目标3 课后作业:(1)教科书第200页练习题.(2)习题5.4/1.设计意图:巩固知识,提升动手操作能力.七、教学反思。
正弦、余弦函数的图象 说课稿 教案 教学设计
1.4.1 正弦函数、余弦函数的图象整体设计教学分析研究函数的性质常常以图象直观为基础,这点学生已经有些经验,通过观察函数的图象,从图象的特征获得函数的性质是一个基本方法,这也是数形结合思想的应用.正弦函数、余弦函数的教学也是如此.先研究它们的图象,在此基础上再利用图象来研究它们的性质.显然,加强数形结合是深入研究函数性质的基本要求.由于三角函数是刻画周期变化现象的数学模型,这也是三角函数不同于其他类型函数的最重要的地方,而且对于周期函数,我们只要认识清楚它在一个周期的区间上的性质,那么它的性质也就完全清楚了,因此,教科书把对周期性的研究放在了首位.另外,教科书通过“旁白”,指出研究三角函数性质“就是要研究这类函数具有的共同特点”,这是对数学思考方向的一种引导.由于正弦线、余弦线已经从“形”的角度描述了三角函数,因此利用单位圆中的三角函数线画正弦函数图象是一个自然的想法.当然,我们还可以通过三角函数的定义、三角函数值之间的内在联系性等来作图,从画出的图形中观察得出五个关键点,得到“五点法”画正弦函数、余弦函数的简图.三维目标1.通过实验演示,让学生经历图象画法的过程及方法,通过对图象的感知,形成正弦曲线的初步认识,进而探索正弦曲线准确的作法,养成善于发现、善于探究的良好习惯.学会遇到新问题时善于调动所学过的知识,较好地运用新旧知识之间的联系,提高分析问题、解决问题的能力.2.通过本节学习,理解正弦函数、余弦函数图象的画法.借助图象变换,了解函数之间的内在联系.通过三角函数图象的三种画法:描点法、几何法、五点法,体会用“五点法”作图给我们学习带来的好处,并会熟练地画出一些较简单的函数图象.3.通过本节的学习,让学生体会数学中的图形美,体验善于动手操作、合作探究的学习方法带来的成功愉悦.渗透由抽象到具体的思想,加深数形结合思想的认识,理解动与静的辩证关系,树立科学的辩证唯物主义观.重点难点教学重点:正弦函数、余弦函数的图象.教学难点:将单位圆中的正弦线通过平移转化为正弦函数图象上的点;正弦函数与余弦函数图象间的关系.课时安排1课时教学过程导入新课思路 1.(复习导入)遇到一个新的函数,非常自然的是画出它的图象,观察图象的形状,看看有什么特殊点,并借助图象研究它的性质,如:值域、单调性、奇偶性、最大值与最小值等.我们也很自然的想知道y=sinx与y=cosx的图象是怎样的呢?回忆我们在必修1中学过的指数函数、对数函数的图象是什么?是如何画出它们图象的(列表描点法:列表、描点、连线)?进而引导学生通过取值,画出当x∈[0,2π]时,y=sinx的图象.思路 2.(情境导入)请学生动手做一做章头图表示的“简谐运动”实验.教师指导学生将塑料瓶底部扎一个小孔做成一个漏斗,再挂在架子上,就做成了一个简易单摆.在漏斗下方放一块纸板,板的中间画一条直线作为坐标系的横轴.把漏斗灌上沙并拉离平衡位置,放手使它摆动,同时匀速拉动纸板,这样就可在纸板上得到一条曲线,它就是简谐运动的图象.物理中把简谐运动的图象叫做“正弦曲线”或“余弦曲线”.它表示了漏斗对平衡位置的位移s(纵坐标)随时间t(横坐标)变化的情况.有了上述实验,你对正弦函数、余弦函数的图象是否有了一个直观的印象?画函数的图象,最基本的方法是我们以前熟知的列表描点法,但不够精确.下面我们利用正弦线画出比较精确的正弦函数图象. 推进新课 新知探究 提出问题问题①:作正弦函数图象的各点的纵坐标都是查三角函数表得到的数值,由于对一般角的三角函数值都是近似值,不易描出对应点的精确位置.我们如何得到任意角的三角函数值并用线段长(或用有向线段数值)表示x 角的三角函数值?怎样得到函数图象上点的两个坐标的准确数据呢?简单地说,就是如何得到y=sinx,x∈[0,2π]的精确图象呢? 问题②:如何得到y=sinx,x∈R 时的图象?活动:教师先让学生阅读教材、思考讨论,对于程度较弱的学生,教师指导他们查阅课本上的正弦线.此处的难点在于为什么要用正弦线来作正弦函数的图象,怎样在x 轴上标横坐标?为什么将单位圆分成12份?学生思考探索仍不得要领时,教师可进行适时的点拨.只要解决了y=sinx,x∈[0,2π]的图象,就很容易得到y=sinx,x∈R 时的图象了.对问题①,第一步,可以想象把单位圆圆周剪开并12等分,再把x 轴上从0到2π这一段分成12等份.由于单位圆周长是2π,这样就解决了横坐标问题.过⊙O 1上的各分点作x 轴的垂线,就可以得到对应于0、6π、4π、3π、2π、…、2π等角的正弦线,这样就解决了纵坐标问题(相当于“列表”).第二步,把角x 的正弦线向右平移,使它的起点与x 轴上的点x 重合,这就得到了函数对(x,y)(相当于“描点”).第三步,再把这些正弦线的终点用平滑曲线连接起来,我们就得到函数y=sinx 在[0,2π]上的一段光滑曲线(相当于“连线”).如图1所示(这一过程用课件演示,让学生仔细观察怎样平移和连线过程.然后让学生动手作图,形成对正弦函数图象的感知).这是本节的难点,教师要和学生共同探讨.图1对问题②,因为终边相同的角有相同的三角函数值,所以函数y=sinx 在x∈[2kπ,2(k+1)π],k∈Z 且k≠0上的图象与函数y=sinx 在x∈[0,2π]上的图象的形状完全一致,只是位置不同.于是我们只要将函数y=sinx,x∈[0,2π]的图象向左、右平行移动(每次2π个单位长度),就可以得到正弦函数y=sinx,x∈R 的图象.(这一过程用课件处理,让同学们仔细观察整个图的形成过程,感知周期性)图2讨论结果:①利用正弦线,通过等分单位圆及平移即可得到y=sinx,x∈[0,2π]的图象. ②左、右平移,每次2π个长度单位即可. 提出问题如何画出余弦函数y=cosx,x∈R 的图象?你能从正弦函数与余弦函数的关系出发,利用正弦函数图象得到余弦函数图象吗?活动:如果再用余弦线作余弦函数的图象那太麻烦了,根据已学的知识,教师引导学生观察诱导公式,思考探究两个函数之间的关系,通过怎样的坐标变换可得到余弦函数图象?让学生从函数解析式之间的关系思考,进而学习通过图象变换画余弦函数图象的方法.让学生动手做一做,体会正弦函数图象与余弦函数图象的异同,感知两个函数的整体形状,为下一步学习正弦函数、余弦函数的性质打下基础. 讨论结果:把正弦函数y=sinx,x∈R 的图象向左平移2π个单位长度即可得到余弦函数图象.如图3.图3正弦函数y=sinx,x∈R 的图象和余弦函数y=cosx,x∈R 的图象分别叫做正弦曲线和余弦曲线点.提出问题问题①:以上方法作图,虽然精确,但不太实用,自然我们想寻求快捷地画出正弦函数图象的方法.你认为哪些点是关键性的点?问题②:你能确定余弦函数图象的关键点,并作出它在[0,2π]上的图象吗?活动:对问题①,教师可引导学生从图象的整体入手观察正弦函数的图象,发现在[0,2π]上有五个点起关键作用,只要描出这五个点后,函数y=sinx 在[0,2π]上的图象的形状就基本上确定了.这五点如下: (0,0),(2π,1),(π,0),(23π,-1),(2π,0). 因此,在精确度要求不太高时,我们常常先找出这五个关键点,然后用光滑的曲线将它们连接起来,就可快速得到函数的简图.这种近似的“五点(画图)法”是非常实用的,要求熟练掌握.对问题②,引导学生通过类比,很容易确定在[0,2π]上起关键作用的五个点,并指导学生通过描这五个点作出在[0,2π]上的图象. 讨论结果:①略.②关键点也有五个,它们是:(0,1),(2π,0),(π,-1),(23π,0),(2π,1). 应用示例思路1例1 画出下列函数的简图(1)y=1+sinx,x∈[0,2π];(2)y=-cosx,x∈[0,2π].活动:本例的目的是让学生在教师的指导下会用“五点法”画图,并通过独立完成课后练习1领悟画正弦、余弦函数图象的要领,最终达到熟练掌握.从实际教学来看,“五点法”画图易学却难掌握,学生需练好扎实的基本功.可先让学生按“列表、描点、连线”三步来完成.对学生出现的种种失误,教师不要着急,在学生操作中指导一一纠正,这对以后学习大有好处.解:(1)按五个关键点列表:x 0 2ππ 23π 2π sinx 0 1 0 -1 0 1+sinx1211描点并将它们用光滑的曲线连接起来(图4).图4(2)按五个关键点列表:x 0 2π π 23π 2π cosx 1 0 -1 0 1 -cosx-11-1描点并将它们用光滑的曲线连接起来(图5).图5点评:“五点法”是画正弦函数、余弦函数简图的基本方法,本例是最简单的变化.本例的目的是让学生熟悉“五点法”.如果是多媒体教学,要突破课件教学的互动性,多留给学生一些动手操作的时间,或者增加图象纠错的环节,效果将会令人满意,切不可教师画图学生看.完成本例后,让学生阅读本例下面的“思考”,并回答如何通过图象变换得出要画的图象,让学生从另一个角度熟悉函数作图的方法. 变式训练2007山东临沂一摸统考17(1)在给定的直角坐标系如图6中,作出函数f(x)=2cos(2x+4π)在区间[0,π]上的图象.解:列表取点如下:x8π83π 85π 87π π42π+x4π 2π π23π 2π49π f(x)12- 021描点连线作出函数f(x)=2cos(2x+4π)在区间[0,π]上的图象如图7所示.图6 图7思路2例1 画出函数y=|sinx|,x∈R 的简图.活动:教师引导学生观察探究y=sinx 的图象并思考|sinx |的意义,发现只要将其x 轴下方的图象翻上去即可.进一步探究发现,只要画出y=|sinx|,x∈[0,π]的图象,然后左、右平移(每次π个单位)就可以得到y=|sinx|,x∈R 的图象.让学生尝试寻找在[0,π]上哪些点起关键作用,易看出起关键作用的点有三个:(0,0),(2π,1),(π,0).然后列表、描点、连线,让学生自己独立操作完成,对其失误的地方再予以一一纠正. 解:按三个关键点列表:x 0 2ππ sinx 0 1 0 y=|sinx |1描点并将它们用光滑的曲线连接起来(图8).图8点评:通过本例,让学生更深刻地理解正弦曲线及“五点法”画图的要义,并进一步从图象变换的角度认识函数之间的关系,也为下一步将要学习的周期打下伏笔. 变式训练 1.方程sinx=10x的根的个数为( ) A.7 B.8 C.9 D.10解:这是一个超越方程,无法直接求解,可引导学生考虑数形结合的思想方法,将其转化为函数y=10x的图象与y=sinx 的图象的交点个数问题,借助图形直观求解.解好本题的关键是正确地画出正弦函数的图象.如图9,从图中可看出,两个图象有7个交点.图9答案:A2.用五点法作函数y=2sin2x 的图象时,首先应描出的五点横坐标可以是( ) A.0,2π,23π,2π B.0,4π,2π,43π,π C.0,π,2π,3π,4π D.0,6π,3π,2π,32π答案:B 课堂小结以提问的方式,先由学生反思学习内容并回答,教师再作补充完善.1.怎样利用“周而复始”的特点,把区间[0,2π]上的图象扩展到整个定义域的?2.如何利用图象变换从正弦曲线得到余弦曲线?这节课学习了正弦函数、余弦函数图象的画法.除了它们共同的代数描点法、几何描点法之外,余弦函数图象还可由平移交换法得到.“五点法”作图是比较方便、实用的方法,应熟练掌握.数形结合思想、运动变化观点都是学习本课内容的重要思想方法. 作业。
正弦余弦函数图像说课稿
正弦、余弦函数的图象说课稿大家好,我今天说课的内容是人教A版必修四第一章第四节正弦、余弦函数的图像第一课时,下面我将从课标要求、教材分析、学情分析、教学目标、教学方法、教学理念、教学过程几个方面进行说明。
一、课标要求:能画出y=sinx, y=cosx, y=tanx的图像,了解三角函数的周期性。
二、教材分析:1、教材的地位和作用:本节的主要内容是正弦函数的图象,过去学生已经学习了一次函数、二次函数、指数函数和对数函数等,此前还学了锐角的正弦函数和任意角的正弦函数,在此基础上来学习正弦函数y=sinx的图象,为今后正弦函数的性质、余弦函数、正切函数的图象与性质,函数y=Asin(ωx+φ)的图象的研究打好基础,起到了承上启下的作用,因此,本节的学习有着极其重要的地位。
教学重点:理解并掌握用单位圆中的正弦线作正弦函数的图象的方法。
教学难点:理解作余弦函数的图象的方法。
如何突破重难点:先通过沙漏,学生初步认识正弦、余弦曲线形状,教师可通过逐步引导,用单位圆做出正弦函数的图象,继而发现用作正弦函数图象的方法来作余弦函数显然是不可行的,但是可以用正弦函数的图象来得出余弦函数的图象,引导学生想到诱导公式和平移的知识来得出余弦函数的图象。
三、学情分析:认知上学生已经学习了函数基础知识和诱导公式、三角函数线等知识,本节课在已有知识的基础上来研究图象,进一步表达数形结合和化归思想在高中数学中的运用。
心理上学生已经具备一定的自学能力,多数同学对数学的学习有相当的兴趣和积极性。
但学生在学习函数上仍有畏难情绪,在探究问题的能力,合作交流的意识等方面发展不够,尚有待加强。
思维上已经具备一定的抽象思维能力,对本节课的内容不难理解。
四、教学目标知识与技能:理解并掌握用单位圆作正弦函数以及作余弦函数的图象的方法。
过程与方法:利用单位圆中的三角函数线作出y=sinx, x∈R的图象,明确函数的图象;根据关系cosx=sin(x+π/2)作出y=cosx,x∈R的图象。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
正弦函数、余弦函数的图象●三维目标 1.知识与技能(1)利用单位圆中的三角函数线作出y =sin x ,x ∈R 的图象,明确图象的形状. (2)根据关系cos x =sin(x +π2),作出y =cos x ,x ∈R 的图象.(3)用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题. 2.过程与方法(1)通过利用单位圆中的三角函数线作出正弦函数、余弦函数的图象的过程,让学生体验、理解数形结合这一重要思想方法.(2)通过“五点法”作正弦函数、余弦函数的图象,使学生理解并掌握这一个作函数简图的基本方法.(3)引导学生利用正弦函数与余弦函数的联系,由正弦曲线,通过图象变换作出余弦曲线,使学生学会用联系的观点思考问题.3.情感、态度与价值观通过作正弦函数和余弦函数图象,培养学生认真负责,一丝不苟的学习和工作精神. ●重点、难点重点:正弦、余弦函数图象的作法.难点:正弦函数、余弦函数图象间的关系、图象变换及其应用. ●教学建议 1.问题引入为了使学生对研究的问题和方法先有一个概括性的认识,教科书在本节开头用了一段引导性语言.教学中应当对这段话给予充分重视,可以先引导学生回顾《数学1》中研究过哪些函数性质,然后说明可以在过去研究函数的经验的指导下研究三角函数的性质,并要特别注意思考三角函数的特殊性——周而复始的变化规律.为了使学生对三角函数图象有一个直观的认识,教科书利用单摆做简谐振动的实验引出正弦函数、余弦函数的图象.教学中,可以让学生亲自动手做实验,也可以由教师做演示实验,只要学生能够对正弦曲线、余弦曲线有一个直观的印象就算达到目的.另外,由于受实验条件及操作过程的影响,得到的图象很可能是不标准的.2.正弦函数的图象在简谐振动试验的基础上,教学中应先介绍用正弦线作比较精确的正弦函数图象的方法,才能从图象上观察到某些点是关键点,再讲“五点法”作简图.3.余弦函数的图象可以引导学生利用正弦函数与余弦函数的联系,在正弦曲线的基础上,利用图象变换作出余弦曲线,也可以用“五点法”作简图.●教学流程1.用描点法画y=sin x在[0,2π]上的图象如何操作?难点是什么?【提示】列表取值、描点、连线、难点在取值.正弦函数y=sin x,x∈R的图象和余弦函数y=cos x,x∈R的图象分别叫做正弦曲线和余弦曲线.你认为哪些点是y=sin x,x∈[0,2π]图象上的关键点?【提示】最高点、最低点及图象与x轴的三个交点.类型1用“五点法”作三角函数的图象例1用“五点法”作出下列函数的简图.(1)y=1+2sin x,x∈[0,2π](2)y=2+cos x,x∈[0,2π]【思路探究】在[0,2π]上找出五个关键点,用光滑的曲线连接即可.【自主解答】列表:x 0π2π3π22πsin x 010-101+2sin x 131-1 1在直角坐标系中描出五点(0,1),(π2,3),(π,1)(3π2,-1),(2π,1),然后用光滑曲线顺次连接起来,就得到y=1+2sin x,x∈[0,2π]的图象.(2)列表:x 0π2π32π2πcos x 10-10 12+cos x 3212 3规律方法1.“五点法”是作三角函数图象的常用方法,“五点”即函数图象最高点、最低点、画余弦函数图象的五点(0,1)(π2,0)(π,-1)(3π2,0)(2π,1)与x轴的交点.2.列表、描点、连线是“五点法”作图过程中的三个基本环节,注意用光滑的曲线连接五个关键点.变式训练画出y=2sin x,x∈[0,2π]的简图.【解】按五个关键点列表:x 0π2π3π22π2sin x 020-20描点并将它们用光滑的曲线连接起来如图所示.类型2利用“图象变换”作三角函数的图象例2利用图象变换作出下列函数的简图.(1)y=1-cos x;(2)y=|sin x|,x∈[0,4π].【思路探究】对(1)先作出y=cos x的图象,然后利用对称作出y=-cos x的图象,最后向上平移1个单位即可;对(2)先画出y=sin x在[0,4π]上的图象,然后把x轴下方的部分翻到x轴的上方即可.【自主解答】(1)作出y=cos x,x∈[0,2π]的图象,并作出其关于x轴的对称图形,得y=-cos x,x∈[0,2π]的图象,然后向上平移一个单位,得y=1-cos x的图象(如图①所示).(2)作y =sin x ,x ∈[0,4π]的图象,并将x 轴下方的部分翻转到x 轴上方(原x 轴上方的部分不变),得y =|sin x |的图象(如图②所示).规律方法函数的图象变换除了平移变换外,还有对称变换,一般地,函数f (-x )的图象与f (x )的图象关于y 轴对称,-f (x )与f (x )的图象关于x 轴对称,-f (-x )的图象与f (x )的图象关于原点对称,f (|x |)的图象关于y 轴对称.变式训练作出y =1-sin 2x 的图象.【解】 y =1-sin 2x =cos 2x =|cos x |. 作出y =cos x (x ∈R )的图象, 由于y =|cos x |的图象关于y 轴对称.∴把y =cos x (x ∈R )的图象位于x 轴下方的图象翻折到x 轴上方(原x 轴上方部分保留)得y =|cos x |的图象(如图所示).类型3正弦(余弦)函数图象的应用例3 写出不等式sin x ≥12的解集.【思路探究】 解答本题可利用数形结合,分别画出y =sin x 和y =12的图象,通过图象写出不等式的解集.【自主解答】 在同一坐标系下,作函数y =sin x ,x ∈[0,2π]的图象以及直线y =12.由函数的图象知, sin π6=sin 56π=12.∴当0≤x ≤2π时,sin x ≥12的解为π6≤x ≤56π.∴不等式sin x ≥12的解集为{x |2k π+π6≤x ≤2k π+5π6,k ∈Z }.规律方法1.用三角函数的图象解sin x >a (或cos x >a )的方法: (1)作出直线y =a ,y =sin x (或y =cos x )的图象; (2)确定sin x =a (或cos x =a )的x 值;(3)选取一个合适周期写出sin x >a (或cos x >a )的解集,要尽量使解集为一个连续区间. 2.用三角函数线解sin x >a (或cos x >a )的方法:(1)找出使sin x =a (或cos x =a )的两个x 值的终边所在位置. (2)根据变化趋势,确定不等式的解集. 变式训练写出sin x <12的解集.【解】 作出y =sin x ,x ∈[π2,52π]及y =12的图象如下:由函数图象可知sin x <12时56π<x <136π, 所以sin x <12的解集为⎩⎨⎧⎭⎬⎫x |2k π+56π<x <2k π+136π,k ∈Z思想方法技巧数形结合思想在三角函数图象中的应用典例 (12分)求下列函数的定义域: (1)y =2sin x +1; (2)y =sin x -cos x【思路点拨】 写出使得函数有意义时所满足的条件→结合三角函数的定义域→求出不等式的交集即可【规范解答】 (1)要使y =2sin x +1有意义,则必须满足2sin x +1≥0,即sin x ≥-12.2分结合正弦曲线或三角函数线,如图所示:知函数y =2sin x +1的定义域为⎩⎨⎧⎭⎬⎫x |2k π-π6≤x ≤2k π+7π6,k ∈Z .............................6分(2)要使函数有意义,必须使sin x -cos x ≥0.......8分利用图象.在同一坐标系中画出[0,2π]上y =sin x 和y =cos x 的图象,如图所示................................................10分在[0,2π]内,满足sin x =cos x 的x 为π4,5π4,再结合正弦、余弦函数的图象.所以定义域为⎩⎨⎧⎭⎬⎫x |π4+2k π≤x ≤5π4+2k π,k ∈Z .........12分思维启迪(1)求由三角函数参与构成的函数定义域,对于自变量必须满足:①使三角函数有意义;②分式形式的分母不等于零;③偶次根式的被开方数不小于零. (2)三角函数定义域的求法:求三角函数定义域时,常常归结为解三角不等式组,这时可利用基本三角函数的图象或单位圆中三角函数线直观地求得解集.课堂小结1.三角函数图象直观地反映了三角函数的性质,所以画好三角函数的图象是研究三角函数性质的关键,因此一定要掌握正弦、余弦函数的图象特征,特别是会灵活运用五点作图法准确作出函数图象.2.关键点指的是图象的最高点最低点及与x 轴的交点. 3.在作函数图象时,自变量要采用弧度制,确保图象规范.当堂双基达标1.用五点法画y =sin x ,x ∈[0,2π]的图象时,下列哪个点不是关键点( ) A .(π6,12)B .(π2,1)C .(π,0)D .(2π,0)【解析】 易知(π6,12)不是关键点.【答案】 A2.下列图象中,是y =-sin x 在[0,2π]上的图象的是( )【解析】 由y =sin x 在[0,2π]上的图象作关于x 轴的对称图形,应为D 项. 【答案】 D3.函数y =cos x ,x ∈[0,2π]的图象与直线y =-12的交点有________个.【解析】 作y =cos x ,x ∈[0,2π]的图象及直线y = -12(图略),知两曲线有两个交点. 【答案】 两4.在[0,2π]内用五点法作出y =-sin x -1的简图.【解】 (1)按五个关键点列表:x 0 π2 π 3π2 2π y-1-2-1-1(2)如图所示:课后知能检测一、选择题1.对于正弦函数y =sin x 的图象,下列说法错误的是( ) A .向左右无限伸展B .与y =cos x 的图象形状相同,只是位置不同C .与x 轴有无数个交点D .关于y 轴对称【解析】 由正弦曲线,知A 、B 、C 均正确,D 不正确. 【答案】 D2.点M (π2,-m )在函数y =sin x 的图象上,则m 等于( )A .0B .1C .-1D .2【解析】 由题意-m =sin π2,∴-m =1,∴m =-1.【答案】 C3.从函数y =sin x ,x ∈[0,2π]的图象来看,对应于sin x =12的x 有( )A .1个值B .2个值C .3个值D .4个值【解析】 当x ∈[0,2π]时,sin π6=sin 5π6=12.【答案】 B4.函数y =cos x |tan x |(0≤x <3π2且,x ≠π2)的图象是下列图象中的( )【解析】 y =cos x |tan x |=⎩⎨⎧sin x ,0≤x <π2或π≤x <3π2,-sin x ,π2<x <π.其图象如图所示:【答案】 C5.在(0,2π)内,使sin x >cos x 成立的x 的取值范围是( ) A .(π4,π2)∪(π,5π4) B .(π4,π)C .(π4,5π4)D .(π4,π)∪(5π4,3π2)【解析】 如图所示(阴影部分)时满足sin x >cos x .【答案】 C 二、填空题6.利用余弦曲线,写出满足cos x >0,x ∈[0,2π]的x 的区间是__________.【解析】 画出y =cos x ,x ∈[0,2π]上的图象如下图所示. cos x >0的区间为[0,π2)∪(3π2,2π].【答案】 [0,π2)∪(3π2,2π]7.函数y =log 12sin x 的定义域是__________. 【解析】 由log 12sin x ≥0知0<sin x ≤1,由正弦函数图象知2k π<x <2k π+π,k ∈Z .【答案】 {x |2k π<x <2k π+π,k ∈Z }8.如果直线y =m 与函数y =sin x ,x ∈[0,2π]的图象只有一个交点,则m =________;有且只有两个交点,则m 的取值范围是________.【解析】 画出y =sin x ,x ∈[0,2π]及y =m 的图象如下:由图可知,当m =1或m =-1时二图象只有一个交点;当-1<m <1时,二图象有且只有两个交点.【答案】 1或-1,(-1,1) 三、解答题9.用五点法作出函数y =1-cos x (0≤x ≤2π)的简图. 【解】 列表:x 0 π2 π 32π 2π cos x 1 0 -1 0 1 1-cos x12110.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形(如图),求这个封闭图形的面积.图1-4-1【解】 观察图可知:图形S 1与S 2,S 3与S 4都是两个对称图形, 有S1=S 2,S 3=S 4.因此函数y =2cos x 的图象与直线y =2所围成的图形面积,可以等价转化为求矩形OABC 的面积.∵|OA |=2,|OC |=2π, ∴S 矩形OABC =2×2π=4π. ∴所求封闭图形的面积为4π.11.已知函数y =f (x )的定义域是[0,14],求函数y =f (sin 2x )的定义域.【解】 依题意,有0≤sin 2x ≤14,∴-12≤sin x ≤12.∴f (sin 2x )的定义域为2k π-π6≤x ≤2k π+π6或2k π+5π6≤x ≤2k π+7π6(k ∈Z ),即[k π-π6,k π+π6](k ∈Z ).【教师备课资源】1.巧用正弦、余弦函数图象解决方程有解问题(1)方程x 2-cos x =0的实数解的个数是__________. (2)方程sin x =lg x 的解的个数是__________.【思路探究】 (1)可在同一坐标系中作出y =x 2,y =cos x 图象,数形结合判断;(2)在同一直角坐标系中作出y =sin x 与y =lg x 图象来解.【解析】 (1)作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.(2)建立坐标系xOy ,先用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2 π个单位,得到y =sin x 的图象.描出点(110,-1),(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.【答案】2 31.对于含有对数式、指数式、三角函数式的方程问题常常通过构建相关函数,借助于其图象来求解.2.求解这类问题思路是:(1)分离函数式到方程两边;(2)分别构建函数;(3)在同一平面直角坐标系中作函数图象,数形结合求解.。