汽车发动机点火系统原理(中英文对照)--同济大学分析解析共30页文档

合集下载

毕业设计论文外文文献翻译汽车专业发动机概述中英文对照[管理资料]

毕业设计论文外文文献翻译汽车专业发动机概述中英文对照[管理资料]

General comments of automobile engineEngine is the source of far, automotive engines are all powered by heat except for a few of automotives drived by automotive engines are called internal combustion engines because fuel burns inside the engine .The engine converts the burning fuel’s thermal energy to mechanical energy.By Cooling Systems Liquid-cooled engines and air-cooled engines are being used .Liquid-cooled engines are the most common in the diesel industry .By Fuel System Gasoline diesel and propane fuel systems are currently used in a wide variety of engines .By Ignition Method Gas engines use the spark (electrical)ignition diesel engines use the heat fro BDC to TDC ;it varies with cylinder bore size ,length of piston stroke ,and numb system injection .The calory of diesel engine come from the fuel emblazed by the compressed diesel engine’compression ration is much bigger than the gas sufficient calory is from the fuel burned by the pressed air.By valve Arrangement Four types of valve arrangements have been used in gasoline and diesel engines .Of the four types (L, T ,F ,and I heads ),the I head is commonly used on diesel engines .By Cylinder Arrangement Engine block configuration or cylinder arrangement depends on cylinder block design .Cylinders may be arranged in a straight line one behind the other .The most common in-line designs are the four-and six-cylinder engines .The V type of cylinder arrangement uses two banks of cylinders arranged in a 60°to 90°V design .The most common examples are those with two banks of three to eight cylinders each .The opposed engine uses two banks of cylinders opposite each other with the crankshaft in between .Engine’classificationAccording to the differences of the piston’movement, the piston intenal combusition engine will be classified reciprocating intenal combusition engine and rotary piston intenal combusition we will introduce working principle diagram of reciprocating internal combustion engine.Except for the wankel rotary ,engine ,all production automotive engines are the reciprocating ,or piston ,design . Reciprocating means “up and down “ or “back and forth“ .It is this up-and-down action of a piston in a cylinder that gives the reciprocating engine its name .Almost all engines of this type are built upon a cylinder block ,or engine block .The block is an iron or aluminum casting that contains the engine cylinders .The top of the block is covered with the cylinder head ,which forms the combustion chambers .The bottom of the block is covered with an oil pan ,or oil sump .A major exception to this type of engine on struction is the air-cooled V olkwagen engine .It is representative of the horizontally opposed air-cooled engines used by Porsche ,Chevrolet (Corvair ) ,and some other automobile manufacturers in years past .Power is produced by the inline motion of a piston in a cylinder .However ,this linear motion must be changed to rotating motion to turn the wheels of a car or truck .The piston is attached to the top of a connecting rod by a pin ,,called a piston pin or connecting rod transmits the up-and –down motion of the piston to the crankshaft ,which changes it to rotating motion .The connecting rod is mounted on the crankshaft with large bearings called rod bearings .Similar bearings , called main bearings ,are used to mount the crankshaft in the block.The crankshaft changes the reciprocating motion of the pistons to rotating motion .The combustible mixture of gasoline and air enters the cylinders through valves .Automotive engines use poppet valves .The valves can be in the cylinder head or in the block .The opening and closing of the valves is controlled by a camshaft .Lobes on the camshaft push the valves open as the camshaft rotates .A spring closes each valve when the lobe is not holding it open .The most common arrangements of engine cylinders and valves are discussed later .The basic single-cylinder engine consists of a cylinder (engine block ),a movable piston inside this cylinder ,a connecting rod attached at the top end to the piston and at the bottom to the offset portion of a crankshaft ,a camshaft to operate the two valves (intake and exhaust ), and a cylinder head .A flywheel is attached to one end of the crankshaft .The other end of the crankshaft has a gear to drive the camshaft gear .The camshaft gear is twice as large as the crankshaft gear .This drives the camshaft at half the speed of the crankshaft on four-stroke-cycle engines ,the crankshaft and camshaft run at the same speed .Energy ConversionThe internal combustion diesel engine is a device used to convert the chemical energy of the fuel into heat energy and then convert this heat energy into usable mechanical energy .This is achieved by combining the appropriate amounts of air andfuel and burning them in an enclosed cylinder at a controlled rate .A movable piston in the cylinder is forced down by the expanding gases of combustion .The movable piston in cylinder is connected to the top of a connecting rod .The bottom of the connected rod is attached to the offset portion is transferred to the crankshaft ,As the piston is forced down ,this offset portion of a crankshaft ,to rotate .The reciprocating (back and forth or up and down )movement of the piston is converted to rotary (turning )motion of the crankshaft ,which supplies the power to drive the vehicle .In general an average air-fuel ratio for good combustion is about 15parts of air to 1 part of fuel by weight .However ,the diesel engine always takes in a full charge of air (since there is no throttle plate in most systems ) ,but only a small part of this air is used at low or idle engine speeds .Air consists of about 20 percent oxygen while the remaining 80 percent is mostly nitrogen .This means that ,for every gallon of fuel burned ,the oxygen in 9,000 to 10,000gallons of air is required .Four-Stroke CycleGasoline by itself will not burn ,it must be mixed with oxygen (air ) .This burning is called combustion and is a way of releasing the energy stored in the air-fuel mixture .To do any useful work in an engine ,the air-fuel mixture must be compressed and burned in a sealed chamber .Here the combustion energy can work on the movable piston to produce mechanical energy .The combustion chamber must be sealed as tightly as possible for efficient engine operation .Any leakage from the combustion chamber allows part of the combustion energy to dissipate without adding to the mechanical energy developed by the piston movement .The 4-stroke engine is also called the Otto cycle engine ,in honor of the German engineer ,Dr. Nikolaus Otto ,who first applied the principle in 1876 .In the 4-stroke engine ,four strokes of the piston in the cylinder are required to complete one full operating cycle :two strokes up and two strokes down .Each stroke is named after the action it performs-intake ,compression ,power ,and exhaust :1、Intake Stroke As the piston moves down ,the vaporized ,mixture of fuel ;and air enters the cylinder past the open intake valve .2、Compression Stroke The piston returns up ,the intake valve closes ,the mixture is compressed within the combustion chamber ,and ignited by a spark .3、Power Stroke The expanding gases of combustion force the piston down in the cylinder .The exhaust valve opens near the bottom of the stroke .4、Exhaust Stroke The piston moves back up with the exhaust valve open ,and the burned gases are pushed out to prepare for the next intake stroke .The intake valve usually opens just before the top of the exhaust stroke .This 4-stroke cycle is continuously repeated in every cylinder as long as the engine remains running .Two-Stroke-CycleThe two-stroke-cycle diesel engine completes all four events:intake,compression, power ,and exhaust. in one revolution of the crankshaft or two strokes of the piston .A series of ports or openings is arranged around the cylinder in such a position that the ports are open when the piston is at the bottom of its stroke .A blower forces air into the cylinder through the open ports .expelling all remaining exhaust gases past the open exhaust valves and filling the cylinder with air .This is called scavenging .As the piston moves up ,the exhaust valves close and the piston covers the ports .The air trapped above the piston is compressed ton covers the ports .The air trapped above the piston is compressed since the exhaust valve is closed .Just before the piston reaches top dead center ,the required amount of fuel is injected into the cylinder .The heat generated by compressing the air ignites the fuel almost immediately .Combustion continues until the fuel injected has been burned .The pressure resulting from combustion forces the piston downward on the power stroke .When the piston is approximately falfway down ,the exhaust valves are opened ,allowing the exhaust gases to escape .Further downward movement uncovers the inlet ports ,causing fresh air to enter the cylinder and expel the exhaust gases .The entire procedure is then repeated ,as the engine continues to run .The differences of the two intenal combustion engineIt could be assumed that a two-cycle engine with the same number of cylinders ,the same displacement ,compression ratio ,and speed as a four-cycle engine would have twice the power since it has twice as many power .However ,this is not the case ,since both the power and compression strokes are shortened to allow scavenging to take place .Thetwo-cycle engine also requires a blower ,which takes engine power to drive .About 160 degrees out of each 360 degrees of crankshaft rotation are required for exhaust gas expulsion and fresh air intake (scavenging )in a two-cycle engine .About 415 degrees of each 720 degrees of crankshaft rotation in a four-cycle engine are required forintake and exhaust .These figures indicate that about % of crank rotation is used for the power producing events in the two-cycle engine ,while about 59% of crank rotation is used for these purposes in the four-cycle engine .Friction losses are consequently greater in the four-cycle engine .Heat losses ,however ,are greater in the two-cycle engine though both the exhaust and the cooling systems .In spite of these differences ,both engine types enjoy prominent use worldwide .Engine constructionCylinder Block:The cylinder block is cast in one piece. Usually, this is the largest and the most complicated single piece of metal in the automobile.The cylinder block is a complicated casting made of gray iron (cast iron ) or aluminum. It contains the cylinders and the water jackets that surround them. To make the cylinder block, a sand form called a mold is made. Then molten metal is poured into the mold. When the metal has cooled the sand mold is broken up and removed. This leaves the tough cylinder-block casting. The casting. The casting is then cleaned and machined to make the finished block.Cylinder blocks for diesel engines are very similar to those for spark-ignition engines. The basic difference is that the diesel-engine cylinder block is heavier and stronger. This is because of the higher pressures developed in the diesel-engine cylinders.Several engines have aluminum cylinder blocks. Aluminum is relatively light metal, weighing much less than cast iron. also ,aluminum conducts heat more rapidly than cast soft to use as cylinder wall material. It wears too rapidly. Therefore, aluminum cylinder blocks must have cast-iron cylinder liners or be cast from an aluminum alloy that has silicon particles in it.Some manufactures make an aluminum cylinder block that does not have cylinder liners, or sleeves. Instead ,the aluminum is loaded with silicon particles. Silicon is a very hard material. After the cylinder block is cast, the cylinders are honed. Then they are treated with a chemical that etches eats away, the surface aluminum. This leaves only the silicon particles exposed. the piston and rings slide on the silicon with minimum wear. Piston:The piston converts the potential energy of the fuel into the kinetic energy that turns the crankshaft. The piston is a cylindrical shaped hollow part that moves up and down inside the engine’s cylinder. It has grooves around its perimeter near the top where thering are placed. The piston fits snugly in the cylinder. It has grooves around its perimeter near the top where the rings are placed. The piston fits snugly in the cylinder. The pistons ate used to ensure a snug “air tight” fit.The piston in your engine’s cylinder are similar to your legs when you ride a bicycle. Think of your legs as pistons; they go up and down on the pedals, providing power. Pedals are like the connecting rods; they are “attached”to your legs. The pedals are attached to the bicycle crank which is like the crank shaft, because it turns the wheels.To reverse this, the pistons (legs) are attached to the connecting rods ( pedals ) which are attached to the crankshaft (the bicycle rank). The power from the combustion in the cylinders powers the from the combustion rods to turn the crankshaft. Connecting rod:The connecting rod shown in is made of forged high strength steel. It transmits force and motion from the piston to the crank pin on the crankshaft. A steel piston pin, or “wrist pin”, connects the small end of the connecting rod. Some rods have a lock bolt in the small end. As the piston moves up and down in the cylinder, the pin rocks back and forth in the hole, or bore, in the piston. The big end of the connecting rod is attached to a crank pin by a rod bearing cap.Connecting rod and rod-bearing caps are assembled during manufacture. Then the hold for the bearing is bored with the cap in place. This is called line-bring. It make each rod and its cap a matched set. Usually, the same number is stamped on the rod and cap. This prevents the caps setting mixed during engine service. If the caps are mixed, the bearing bore will not be round. An engine assembled with the rod bearing caps switched will probably lock the crankshaft. If the crankshaft turns, the bearing will probably have improper clearance and early bearing failure will result.Another reason for keeping the cap and rod matched is to prevent engine unbalance and unwanted vibration. All connecting rods in an engine must be as light as possible. But they must all weigh the same. If one rod is heavier than the other, the engine will vibrate. This could damage the engine.Crankshaft:The crankshaft then main rotating member, or shaft, in the engine. It has crank-pins, to which the connecting rod from the pistons are attached. During the power strokes, the connecting rods force the crank-pins and therefore the crankshaft to rotate. The reciprocating motion of the pistons is changed to rotary motion as the crankshaft spins. This rotary motion is transmitted through the power train to the car wheels.The crankshaft is a strong, one-piece casting, or forging, or heat-treated alloy steel. It must be strong to take the downward force of power strokes without excessive bending. It must be balanced so the engine will run without excessive vibration.Engine DisplacementThe frequently used engine specifications are engine displacement and compression ratio .Displacement and compression ration are related to each other ,as we will learn in the following paragraphs .By Displacement Engine displacement is the amount of air displaced by the piston when it moves fro .The electrical ignition system causes a spark across the spark plug electrodes in the cylinder at the end of the compression stroke ,which ignites the vaporized fuel and air mixture .m compressing the air to ignite the fuel when it is injected into the cylinder at the end of the compression ratios are much higher than gasoline engine compression ratios ,sufficient heat is generated by compressing the air to ignite the fuer of cylinders .engines are classified as low ,medium ,high ,and super high speed .Commonly used to indicate engine size ,this specification is really a measurement of cylinder volume ..The number of cylinders is a factor in determining displacement ,but the arrangement of the cylinders or valves is not .Engine displacement is calculated by multiplying the number of cylinders in the engine by the total engine displacement is the volume displaced by all the pistons .The displacement of one cylinder is the space through which the piston’s top surfa ce moves as it travels from the bottom of its stroke (bottom dead center )to the top of its stroke (top dead center ).It is the volume displaced by the cylinder by one piston stroke .Piston displacement can be calculated as follows :the bore (cylinder Diameter )by gives you the radius of the bore .the radius (multiply it by itself ).the square of the radius by (pi orπ)to find the area of the cylinder cross section .the area of the cylinder cross section by the length of the stroke .You now know the piston displacement for one cylinder .Multiply this by the number of cylinders to determine the total engine displaceme`nt .The formula for the complete procedure reads :R2*π*stroke* cylinders =displacementCompression RatioThis specification compares the total cylinder volume to the volume of only the combustion cylinder volume may seem to be the same as piston displacement ,but it is not .Total cylinder volume .The combustion chamber volume with the piston at top dead center is often called the clearance volume .Compression ratio is the total volume of a cylinder divided by its clearance volume .If the clearance volume is one-eighth of the total cylinder volume ,the compression ratio is 8 (8to1).The formula is as follows :olumeClearancev e Totalvolum =Compression ratio. In theory ,the higher the compression ratio ,the greater the efficiency of the engine ,and the more power an engine will develop from a given quantity of fuel .The reason for this is that combustion takes place faster because the fuel molecules are more tightly packed and the flame of combustion travels more rapidly .But there are practical limits to how high a compression ratio can be .Because of the unavailability of high octane fuel ,most gasolineburning engines are restricted to a compression ratio no greater than to this high ,however ,create high combustion chamber temperatures .This in turn creates oxides of nitrogen (NOx) ,a primary air pollutant .In the early 1970s ,compression ratios were lowered to around 8 to permit the use of lower octane low-lead or unleaded fuel ,and to reduce NOx formation .Advances in electronic engine control in the 1980s have allowed engineers to raise compression ratios to the 9and 10 to 1 range for optimum performance and economy发动机概述发动机是汽车的动力源。

汽车点火系统-图文详解

汽车点火系统-图文详解
统, 汽油发动机采用微机 控制点火系统能将点火提前角控制在最佳值, 使可燃混合气燃烧后 产生的温度和压力达到最大值, 从而提高发动机的动力性, 同时还 能提高燃油经济性和减少有害气体的排放量。
• 传统点火系统由于存在产生的高压电比较低、高速时工作不可靠、使 用过程中需经常检查和维护等缺点, 目前已被电子点火系统和微机 控制点火系统所取代。
• 2. 电子点火系统
上一页 下一页 返回
第一节 点火系统概述
• 电子点火系统以蓄电池和发电机为电源, 借助点火线圈和由半导体 器件(晶体三极管)组成的点火控制器将电源提供的低压电转变为高 压电, 再通过分电器分配到各缸火花塞, 使火花塞两电极之间产生 电火花, 点燃可燃混合气。
• 点火系统是汽油发动机重要的组成部分, 点火系统的性能良好与否 对发动机的功率、油耗和排气污染等影响很大。
• 二、点火系统的发展与类型
• 点火系统作为汽油发动机必不可少的组成部分, 伴随着汽车技术的 发展而不断完善, 并达到了很高的水平。
• 1886 年, 第一辆以四冲程内燃机为动力的汽车使用的是磁电机 点火系统。这种点火装置依赖于自身的发电来提供电能, 能满足单 缸或双缸汽油发动机的点火要求, 但对于运行平稳性和动力性要求 更高的多缸汽油发动机则不能适应。
• 普通电子点火系统按有无断电器触点又分为有触点式电子点火系统( 或晶体管辅助点火系统) 和无触点式电子点火系统两种, 如图3 - 2 (a) 和图3 -2 (b) 所示。
上一页 下一页 返回
第一节 点火系统概述
• 其中, 有触点式电子点火系统是电子点火系统发展的早期产品, 是 为了解决传统点火系统断电器触点烧蚀的问题, 而采用大功率晶体 管来控制电流较大的初级线圈电路的通和断, 将断电器触点放在控 制晶体管导通与截止的基极电路中, 由于基极电路电流较小, 所以 触点不容易烧蚀。伴随着电子技术的发展, 这种有触点式电子点火 系统早已不再应用。

机动车发动机点火系统原理概述说明书

机动车发动机点火系统原理概述说明书
If you’re checking a distributor-type ignition, clamp the simulator to a good
July 1999
ቤተ መጻሕፍቲ ባይዱ
39
ground and attach the coil wire to its terminal. If you’re troubleshooting DIS, install the simulator on one or two or more coils to check for spark to several cylinders. A healthy spark should appear from the center electrode of the simulator to the shell when you crank the engine. The presence or absence of that spark will determine your next troubleshooting steps.
Fat Spark=Good Primary
If the simulator produces a good spark from the coil wire but the engine still doesn’t fire, move the simulator to one or more individual plug wire connections and crank the engine again. If there’s no spark at a plug connection but there is spark from the coil, what have you learned?

发动机工作原理中英文对照解释

发动机工作原理中英文对照解释

发动机工作原理(中英文对照)发动机工作原理大多数汽车的发动机是内燃机,往复四冲程汽油机,但是也有使用其它类型的发动机,包括柴油机,转子发动机,二冲程发动机和分程燃烧发动机。

往复的意思就是上下运动或前后运动,在往复发动机中,气缸中活塞的上下运动产生发动机的动力,这种类型几乎所有的发动机都是依赖气缸体即发动机缸体,缸体是铸铁或铸铝制的,它包括发动机气缸和冷却液循环用的水套。

缸体的顶部是气缸盖,它组成了燃烧室,缸体底部是油底壳。

气缸内活塞的直线运动产生动力,然而,必须将直线运动转化成旋转运动,使汽车车轮转动,活塞销将活塞连接在连杆顶部,连杆底部与曲轴连接,使汽车车轮转动,活塞销将活塞连杆顶部,连杆底部与曲轴连接,连杆将活塞的往复运动传递给曲轴,曲轴将其转化为旋转运动,连杆是用连杆曲轴安装在曲轴上的,用类似的轴承即主轴承将曲轴固定在缸体内。

气缸的直径称为发动机的内径,排量和压缩比是两个常用的发动机参数,排量是指发动机的大小,压缩比是气缸总容积与燃烧室压缩容积之比。

术语:冲程是用来说明活塞在气缸内的运动,也就是活塞行程的距离根据发动机类型的需要二冲程或四冲程来完成一个工作循环四冲程发动机也叫做奥托发动机,为了纪念德国工程师奥托,他是在1876年第一个应用该原理的,在四冲程发动机中,要求气缸活塞四冲程来完成一个完整的工作循环,每个冲程根据其行为命名分别为:进气冲程,压缩冲程,做功冲程和排气冲程。

1、进气冲程当活塞下移时,雾化后的可燃混合气通过打开的进气门进入气缸,为了达到最大的进气量,进气门在活塞到达上止点前10°打开,使进、排气门有20°打开重叠角,进气门一直打开到活塞到达下止点充分进入混合气之后50°左右。

2、压缩冲程活塞开始向上移动时,进气门关闭,混合气在燃烧室中压缩,根据不同因素包括压缩比,节气门开度,发动机转速压力上升到约1兆帕,接近冲程顶部时,火花塞产生的电火花击穿点火间隙点燃可燃混合气。

点火系统外文文献翻译、中英文翻译、外文翻译

点火系统外文文献翻译、中英文翻译、外文翻译

Ignition SystemThe purpose of the ignition system is to create a spark that will ignite the fuel-air mixture in the cylinder of an engine. It must do this at exactly the right instant and do it at the rate of up to several thousand times per minute for each cylinder in the engine. If the timing of that spark is off by a small fraction of a second, the engine will run poorly or not run at all.The ignition system sends an extremely high voltage to the spark plug in each cylinder when the piston is at the top of its compression stroke. The tip of each spark plug contains a gap that the voltage must jump across in order to reach ground. That is where the spark occurs.The voltage that is available to the spark plug is somewhere between 20,000 volts and 50,000 volts or better. The job of the ignition system is to produce that high voltage from a 12 volt source and get it to each cylinder in a specific order, at exactly the right time.The ignition system has two tasks to perform. First, it must create a voltage high enough (20,000+) to across the gap of a spark plug, thus creating a spark strong enough to ignite the air/fuel mixture for combustion. Second, it must control the timing of that the spark so it occurs at the exact right time and send it to the correct cylinder.The ignition system is divided into two sections, the primary circuit and the secondary circuit. The low voltage primary circuit operates at battery voltage (12 to 14.5 volts) and is responsible for generating the signal to fire the spark plug at the exact right time and sending that signal to the ignition coil. The ignition coil is the component that converts the 12 volt signal into the high 20,000+ volt charge. Once the voltage is stepped up, it goes to the secondary circuit which then directs the charge to the correct spark plug at the right time. The BasicsBefore we begin this discussion, let’s talk a bit about electricity in general. I know that this is basic stuff, but there was a time that you didn’t know about this and there are people who need to know the basics so that they could make sense of what follows.All automobiles work on DC (Direct Current). This means that current move in one direction, form the positive battery terminal to the negative battery terminal. In the case of the automobile, the negative battery terminal is connected by a heavy cable directly to the body and the engine block of the vehicle. The body and any metal component in contact with it is called the ground. This means that a circuit that needs to send current back to the negative side of the battery can be connected to any part of the vehicle’s metal body or the metal engine block.A good example to see how this works is the headlight circuit. The headlight circuit consists of a wire that goes from the positive battery terminal to the headlight switch. Another wire goes from the headlight switch to one of two terminals on the headlight bulb. Finally, a third wire goes from a second terminal on the bulb to the metal body of car. When you switch the headlight on, you are connecting the wire from the battery with the wire to the headlamps allowing battery current to go directly to the headlamp bulbs. Electricity passes through the filaments inside the bulb, then out the other wire to the metal body. From there, the current goes back to the negative terminal of the battery completing the circuit. Once the current is flowing through this circuit, the filament inside the headlamp gets hot and glows brightly. Let there be light.Now, back to the ignition system, the basic principle of the electrical spark ignition system has not changed for over 75 years. What has changed is the method by which the spark is created and how it is distribute.Currently, there are three distinct types of ignition system. The mechanical ignition system was used prior to 1975. It was mechanical and electrical and used no electronics. By understanding these early system, it will be easier to understand the new electronic and computer controlled ignition system, so don’t skip over it. The electronic ignition system started finding its way to production vehicles during the early 70s and became popular when better control and improved reliability became important with the advent of emission controls. Finally, the distributor less ignition system became available in the mid 80s. This system was always computer controlled and contained no moving parts, so reliability was greatly improved. Most of these systems required no maintenance except replacing the spark plugs at intervals from 60,000 to over 100,000 miles.Let’s take a detailed look at each system and see how they work.The Mechanical Ignition SystemThe distributor is the nerve center of the mechanical ignition system and has two tasks to perform. First, it is responsible for triggering coil to generate a spark at the precise instant that it is required (which varies depending how fast the engine is turning and how much load it is under). Second, the distributor is responsible for directing that spark to the proper cylinder (which is why it is called a distributor).The circuit that powers the ignition system is simple and straight forward. When you insert the key in the ignition switch and turn the key to the Run position, you are sending current from the battery through a wire directly to the positive (+) side of the ignition coil. Inside the coil is a series of copper windings that loop around the coil over a hundred times before exiting out the negative (-) side of the coil. From there, a wire takes this current over to the distributor and is connected to a special on/off switch, called the points. When the points are closed, this current goes directly to ground. When current flows from the ignition switch, through the windings in the coil, then to ground, it builds a strong magnetic field inside the coil.The points are made up of a fixed contact point that is fastened to a plate inside the distributor, and a movable contact point mounted on the end of a spring loaded arm. The movable point rides on a 4, 6, or 8 lobe cam (depending on the number of cylinder in the engine) that is mounted on a rotating shaft inside the distributor. This distributor cam rotates in time with the engine, making one complete revolution for every two revolutions of the engine. As it rotates, the cam pushes the points open and closed. Every time the points open, the flow of current is interrupted through the coil, thereby collapsing the magnetic field and releasing a high voltage surge through the secondary coil windings. This voltage surge goes out the top of the coil and through the high-tension coil wire.Now, we have the voltage necessary to fire the spark plug, but we still have to get it to the correct cylinder. The coil wire goes from the coil directly to the distributor cap. Under the cap is a rotor that is mounted on top of the rotating shaft. The rotor has a metal strip on the top that is in constant contact with the center terminal of the distributor cap. It receives the high voltage surge from the coil wire and sends it to the other end of the rotor which rotates past each spark plug terminal inside the cap. As the rotor turns on the shaft, it sends the voltage tothe correct spark plug wire, which in turn sends it to the spark plug. The voltage enters the spark plug at the terminal at the top and travels down the core until it reaches the tip. It then jumps across the tip of the spark plug, creating a spark suitable to ignite the fuel-air mixture inside that cylinder.The description I just provided is the simplified version, but should be helpful to visualize the process, but we left out a few things that make up this type of ignition system. For instance, we didn’t talk about the condenser that is connected to the point, nor did we talk about the system to advance the timing. Let’s take a look at each section and explore it in more detail.The Ignition SwitchThere are two separate circuits that go from the ignition switch to the coil. One circuit runs through a resistor in order to step down the voltage about 15% in order to protect the points from premature wear. The other circuit sends full battery voltage to the coil. The only time this circuit is used is during cranking. Since the starter draws a considerable amount of current to crank the engine, additional voltage is needed to power the coil. So when the key is turned to the spring-loaded start position, full battery voltage is used. As soon as the engine is running, the driver releases the key to the run position which directs current through the primary resistor to the coil.On some vehicles, the primary resistor is mounted on the firewall and is easy to replace if it fails. On other vehicles, most notably vehicles manufactured by GM, the primary resister is a special resister wire and is bundled in the wiring harness with other wires, making it more difficult to replace, but also more durable.Ignition CoilThe ignition coil is nothing more that an electrical transformer. It contains both primary and secondary winding circuit. The coil primary winding contains 100 to 150 turns of heavy copper wire. This wire must be insulated so that the voltage does not jump from loop to loop, shorting it out. If this happened, it could not create the primary magnetic field that is required. The primary circuit wire goes into the coil through the positive terminal, loops around the primary windings, then exits through the negative terminal.The coil secondary winding circuit contains 15,000 to 30,000 turns of fine copper wire, which also must be insulated from each other. The secondary windings sit inside the loops of the primary windings. To further increase the coils magnetic field the windings are wrapped around a soft iron core. To withstand the heat of the current flow, the coil is filled with oil which helps keep it cool.The ignition coil is the heart of the ignition system. As current flows through the coil a strong magnetic field is build up. When the current is shut off, the collapse of this magnetic field to the secondary windings induces a high voltage which is released through the large center terminal. This voltage is then directed to the spark plugs through the distributor. Ignition TimingThe timing is set by loosening a hold-down screw and rotating the body of the distributor. Since the spark is triggered at the exact instant that the points begin to open, rotating the distributor body (which the point are mounted on) will change the relationship between the position and the position of the distributor cam, which is on the shaft that is geared to the engine rotation.While setting the initial or base timing is important, for an engine to run properly, the timing needs to change depending on the speed of the engine and the load that it is under. If we can move the plate that the points are mounted on, or we could change the position of the distributor cam in relation to the gear that drives it, we can alter the timing dynamically to suit the needs of the engine.Ignition WiresThese cables are designed to handle 20,000 to more than 50,000 volts, enough voltage to toss you across the room if you were to be exposed to it. The job of the spark plug wires is to get that enormous power to the spark plug without leaking out. Spark plug wires have to endure the heat of a running engine as well as the extreme changes in the weather. In order to do their job, spark plug wires are fairly thick, with most of that thickness devoted to insulation with a very thin conductor running down the center. Eventually, the insulation will succumb to the elements and the heat of the engine and begins to harden, crack, dry out, or otherwise break down. When that happens, they will not be able to deliver the necessary voltage to the spark plug and a misfire will occur. That is what is meant by “Not running on all cylinders”. To correct this problem, the spark plug wires would have to be replaced.Spark plug wires are routed around the engine very carefully. Plastic clips are often used to keep the wires separated so that they do not touch together. This is not always necessary, especially when the wires are new, but as they age, they can begin to leak and crossfire on damp days causing hard starting or a rough running engine.Spark plug wires go from the distributor cap to the spark plugs in a very specific order. This is called the “firing order” and is part of the engine design. Each spark plug must only fire at the end of the compression stroke. Each cylinder has a compression stroke at a different time, so it is important for the individual spark plug wire to be routed to the correct cylinder.For instance, a popular V8 engine firing order is 1, 8, 4, 3, 6, 5, 7, 2. The cylinders are numbered from the front to the rear with cylinder #1 on the front-left of the engine. So the cylinders on the left side of the engine are numbered 1, 3, 5, 7while the right side are numbered 2, 4, 6, 8. On some engine, the right bank is 1, 2, 3, 4 while the left bank is 5, 6, 7, 8. A repair manual will tell you the correct firing order and cylinder layout for a particular engine.The next thing we need to know is what direction the distributor is rotating in, clockwise or counter-clockwise, and which terminal on the distributor caps that #1 cylinder is located. Once we have this information, we can begin routing the spark plug wires.If the wires are installed incorrectly, the engine may backfire, or at the very least, not run on all cylinders. It is very important that the wires are installed correctly.Spark PlugsThe ignition system’s sole reason for being is to service the spark plug. It must provide sufficient voltage to jump the gap at the tip of the spark plug and do it at the exact right time, reliably on the order of thousands of times per minute for each spark plug in the engine.The modern spark plug is designed to last many thousands of miles before it requires replacement. These electrical wonders come in many configurations and heat ranges to work properly in a given engine.The heat range of a spark plug dictates whether it will be hot enough to burn off any residue that collects on the tip, but not so hot that it will cause pre-ignition in the engine.Pre-ignition is caused when a spark plug is so hot, that it begins to glow and ignite the fuel-air mixture prematurely, before the spark. Most spark plugs contain a resistor to suppress radio interference. The gap on a spark plug is also important and must be set before the spark plug is installed in the engine. If the gap is too wide, there may not be enough voltage to jump the gap, causing a misfire. If the gap is too small, the spark may be inadequate to ignite a lean fuel-air mixture also causing a misfire.The Electronic Ignition SystemThis section will describe the main differences between the early point & condenser systems and the newer electronic systems. If you are not familiar with the way an ignition system works in general, I strongly recommend that you first read the previous section The Mechanical Ignition System.In the electronic ignition system, the points and condenser were replaced by electronics. On these systems, there were several methods used to replace the points and condenser in order to trigger the coil to fire. One method used a metal wheel with teeth, usually one for each cylinder. This is called an armature. A magnetic pickup coil senses when a tooth passes and sends a signal to the control module to fire the coil.Other systems used an electric eye with a shutter wheel to send a signal to the electronics that it was time to trigger the coil to fire. These systems still need to have the initial timing adjusted by rotating the distributor housing.The advantage of this system, aside from the fact that it is maintenance free, is that the control module can handle much higher primary voltage than the mechanical point. V oltage can even be stepped up before sending it to the coil, so the coil can create a much hotter spark, on the order of 50,000 volts that is common with the mechanical systems. These systems only have a single wire from the ignition switch to the coil since a primary resistor is not longer needed.On some vehicles, this control module was mounted inside the distributor where the points used to be mounted. On other designs, the control module was mounted outside the distributor with external wiring to connect it to the pickup coil. On many General Motors engines, the control module was inside the distributor and the coil was mounted on top of the distributor for a one piece unitized ignition system. GM called it high energy ignition or HEI for short. The higher voltages that these systems provided allow the use of a much wider gap on the spark plugs for a longer, fatter spark. This larger sparks also allowed a leaner mixture for better fuel economy and still insure a smooth running engine.The early electronic systems had limited or no computing power, so timing still a centrifugal and vacuum advance built into the distributor.On some of the later systems, the inside of the distributor is empty and all triggering is performed by a sensor that watches a notched wheel connected to either the crankshaft or the camshaft. These devices are called crankshaft position sensor or camshaft position sensor. In these systems, the job of the distributor is solely to distribute the spark to the correct cylinder through the distributor cap and rotor. The computer handles the timing and any timing advance necessary for the smooth running of the engine.点火系统点火系统的作用是产生点燃发动机气缸里可燃混合物的火花。

汽车点火系统图解

汽车点火系统图解

汽车点火系统图解汽车点火系统图解中文名:汽车点火系统外文名: Battery-operated ignition下设:电子点火系统原理:由曲轴带动分电器轴转动1.传统点火系统:蓄电池点火系(Battery-operated ignition)磁电机点火系(Magneto systems)2.电子点火系统(Electronic ignition):(1)晶体管点火系TI-B(Breaker-Triggered transistorized Ignition)(2)半导体点火系SI(semiconductor Ignition)(3)无分电器点火系DIS(Distributorless Ignition System)传统点火机械式点火系统工作过程是由曲轴带动分电器轴转动,分电器轴上的凸轮转动,使点火线圈初级触点接通与闭合而产生高压电。

这个点火高压电通过分电器轴上的分火头,根据发动机工作要求按顺序送到各个气缸的火花塞上,火花塞发出电火花点燃燃烧室内的气体。

分电器壳体可以手动转动来调节基本的点火提前角(即怠速运转时的点火提前角),同时还有真空提前装置,它根据进气管内真空度的变化提供不同的提前角。

电子点火电子点火系统与机械式点火系统完全不同,它有一个点火用电子控制装置,内部有发动机在各种工况下所需的点火控制曲线图(MAP 图)。

通过一系列传感器如发动机转速传感器、进气管真空度传感器(发动机负荷传感器)、节气门位置传感器、曲轴位置传感器等来判断发动机的工作状态,在MAP图上找出发动机在此工作状态下所需的点火提前角,按此要求进行点火。

然后根据爆震传感器信号对上述点火要求进行修正,使发动机工作在最佳点火时刻。

电子点火系统也有闭环控制与开环控制之分:带有爆震传感器,能根据发动机是否发生爆震及时修正点火提前角的`电控系统称为闭环控制系统;不带爆震传感器,点火提前控制仅根据电控单元内设定的程序控制的称为开环控制系统。

汽车发动机点火系统工作原理

汽车发动机点火系统工作原理

汽车发动机点火系统工作原理电喷车点火系统的工作原理从1957年美国公司推出了电子控制汽油喷射系统,这就是所谓的电子喷射,简称电喷。

电喷技术为发动机,乃致整个运输事业的发展开创了一个新纪元。

起先是用的类比电子喷射,后来发展到数位电子喷射。

它的基本原理是微电脑(ecu)根据各种感测器传来的讯号,通过分析、计算、判断,从而精确地控制和选择最佳点火和喷油时刻及喷油量。

电子控制汽油喷油喷射的优点主要表现为:一是对各种工况都能根据特定的目标对燃油定量实现最精确的优化,且各工况之间能做到最佳匹配;二是可实现闭合控制,防止喷射密度的变化所带来的喷油量偏差。

在汽油机中,气缸内的可燃混合气是由电火花点燃的,在汽车发动机点火系统中,点火线圈是为点燃发动机汽缸内空气和燃油混合物提供点火能量的执行部件。

它基于电磁感应的原理,通过关断和开启点火线圈的初级迴路,初级迴路中的电流增加然后又突然减小,这样在次级就会感应产生点燃火花塞所需的高电压。

点火线圈可以认为是一种特殊的脉冲变压器,它将10-12v的低电压转换成25000v或更高的电压。

为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内。

能够按规定的时间在火花塞电极间产生电火花的全部装置称为点火系统,点火系统通常由蓄电池、发电机、分电器、点火线圈和火花塞等组成。

对于早期的机械触点断路器(即白金点火)和通过无分布器电晶体点火的机械高压分布帽点火。

以及后来的双火花线圈。

属于微机控制点火系,主要由下列元件组成,监测发动机执行状况的感测器、处理讯号、发出指令的微处理机(ecu)、响应微机指令的点火器、点火线圈等。

微机控制点火系统由于不再配置真空离心点火提前调节装置,点火提前角由微机控制,从而使发动机在各种情况下都可最佳地调整点火时刻,使点火提前到发动机刚好不发生爆震的範围。

微机控制的点火系统具有能量损失小、高速效能好、电磁干扰少及点火精度高等诸多优点,目前在中高档车上的应用越来越多。

《汽车点火系统》PPT课件

《汽车点火系统》PPT课件
采用各种形式的点火 发生器来代替断电器触 电,由信号发生器触发 或控制点火信号,经过 点火器内的放大等电路, 最后控制点火器内大功 率晶体管的通断和截止, 达到控制点火线圈一次 电流线圈通断的目的。
内装信号发生器 ,配送高压电
控制点火 线圈通断
第二节 普通电子点火系统
1 磁感应式电子点火系统(丰田、切诺基等) 2 霍尔效应式电子点火系统(桑塔纳、奥迪等) 3 光电式电子点火系统(日产) 4 三种电感储能无触点点火系统比较 5 点火系统一次回路开闭时间计算
触点 副3与 活动 托板2 固结
触点提前开启,点 火提前角变大
第二节 普通电子点火系统
一 概述 二 电感储能电子点火
第二节 普通电子点火系统
一 概述
1 传统点火系统存在的问题 2 电子点火系统的优点 3 电子点火系统的分类 4 电容放电式电子点火系统(赛车)
第二节 普通电子点火系统
第一节 传统点火系统
(3)电容对二次电压的影响
理论上, C1和C2越小,二次电压最大值越大。实际上,C1 过小将不能起到吸收断电器触点火花的作用,二次电压也会下降。 C2(耐压500V)受点火系统的限制以及减小无线电的干扰,不能 太小。
U 2max

U R
[1
R ( b120 )
e L zn ]
2 影响二次电压的其他因素
(1)汽缸数 (2)火花塞积炭 (3)电容对二次电压的影响 (4)触点间隙 (5)点火线圈温度
第一节 传统点火系统
1 传统点火 系统的工作 特性 指二 次电压U2max 与发动机转 速n的关系。
Ip

UB R
(1

e

汽车点火系统

汽车点火系统

2019/10/4
7
三、电子点火系的分类
2.按信号发生器型式分类

(1)磁感应式;

(2)霍尔式;

(3)光电式;
(4)电磁震荡式。
2019/10/4
8
四、点火系的要求
无论是哪一类的点火装置,均有共同的 技术性能要求,即应在发动机各种工况 和使用条件下保证可靠而准确地点火, 为此应满足以下三个方面的要求:
当发动机起动时,由于蓄电池的端电压会急剧下降, 致使初级电流减小,点火线圈不能供给足够的高电压 和点火能量。为了克服这一影响,在起动时将附加电 阻短路,以增大初 级电流,提高次级电压和火花能量, 从而改善了发动机的起动性能。
2019/10/4
27
附加电阻及恒流控制
附加电阻的作用 发动机在任何转
可过高
2019/10/4
25
附加电阻
附加电阻也称热敏电阻,它由低碳钢丝、 镍铬丝或纯镍丝制成,具有温度升高时 电阻迅速增大、温度降低时电阻迅速减 小的特点。发动机工作时,利用附加电 阻这一特点自动调节初级电流,可以改 善点火系的工作特性。
2019/10/4
26
附加电阻
当发动机低速工作时,初级电流增长时间长,电流大, 附加电阻受热阻值增大,避免了初级电流过大,防止 点火线圈过热;当发动机高速工作时,初级电流增长 时间短,电流小,附加电阻温度较低,可使初级电流 下降的少些,保证了发动机在高速工作时点火系统能 供给较强的高压电而不止断火。所以转速变化时,附 加电阻较好地解决了高速断火和低速点火线圈过热的 矛盾,改善了点火性能。
1.能产生足以击穿火花塞间隙的电压 2.火花应具有足够的能量 3.点火时刻应适应发动机的工作情况

The engine allumage system

The engine allumage system

微机控制点火系统
※、电源:蓄电池和发电机 ※、原理:微机控制点火系统与上述两种点火系统相同,也以蓄电池和发电机 为电源,借点火线圈将电源的低压电转变为高压电,再由分电器将高压电分配 到各缸火花塞,并由微机控制系统根据各种传感器提供的反映发动机工况的信 息,发出点火控制信号,控制点火时刻,点燃可燃混合气。它还可以取消分电 器,由微机控制系统直接将高压电分配给各缸。 ※、优点:是目前最新型的点火系统,已广泛应用于各种中、高级轿车中。
磁电机点火系统
由磁电机本身直接产生高压电,不需另设 低压电源。 优点:与传统蓄电池点火系统相比,磁电 机点火系统在发动机中、高转速范围内, 产生的高压电较高,工作可靠。 缺点:在发动机低转速时,产生的高压电 较低,不利于发动机起动。 应用:多用于主要在高速、满负荷下工作 的小型发动机,以及某些不带蓄电池的摩 托车发动机和大功率柴油机的起动发动机 上。
3. 点火时刻应与发动机的工作状况相适应 首先发动机的点火时刻应满足发动机工作循环的要求;其次可燃混合气在气缸 内从开始点火到完全燃烧需要一定的时间(千分之几秒),所以要使发动机产生 最大的功率,就不应在压缩行程终了(上止点)点火,而应适当地提前一个角度 。这样当活塞到达上止点时,混合气已经接近充分燃烧,发动机才能发出最大 功率。
磁电机结构 flywheel magneto
磁电机由五部分组成: 电枢。对于上面的磁电机,电枢的形状像一个 大写字母“U”。字母U的两端指向飞轮。 绕在 U型电枢一端的初级绕组,由约200匝粗线组成 。 绕在初级绕组上的次级绕组,由约20,000匝细 线组成。 通常称为“电子打火器”的简单电子控制单元 (或是一组断闭点和一个电容)。 一对嵌在发电机飞轮中的高磁性永磁体。
汽油机点火系统

汽车发动机点火系统原理(中英文对照)--同济大学共32页

汽车发动机点火系统原理(中英文对照)--同济大学共32页


26、要使整个人生都过得舒适、愉快,这是不可能的,因为人类必须具备一种能应付逆境的态度。——卢梭

27、只有把抱怨环境的心情,化为上进的力量,才是成功的保证。——罗曼·罗兰

28、知之者不如好之者,好之者不如乐之者。——孔子

29、勇猛、大胆和坚定的决心能够抵得上武器的精良。——达·芬奇
汽车发动机点火系统原理(中英文对 照)--同济大学
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们意志是一个强壮的盲人,倚靠在明眼的跛子肩上。——叔本华
谢谢!
32
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档