高中数学必修易错题精选(含部分答案)

合集下载

(易错题)高中数学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)

(易错题)高中数学必修第一册第一单元《集合与常用逻辑用语》测试(含答案解析)

一、选择题1.“21x >”是“2x >”的( ).A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 2.已知命题“x R ∀∈,2410ax x +-<”是假命题,则实数a 的取值范围是( )A .(),4-∞-B .(),4-∞C .[)4,-+∞D .[)4,+∞3.已知全集U =R ,集合M ={x |x 2+x ﹣2≤0},集合N ={y |y },则(C U M )∪N 等于( ) A .{x |x <﹣2或x ≥0} B .{x |x >1} C .{x |x <﹣1或1<x ≤3} D .R4.设原命题:若2a b +≥,则,a b 中至少有一个不小于1,则原命题与其逆命题的真假状况是( )A .原命题与逆命题均为真命题B .原命题真,逆命题假C .原命题假,逆命题真D .原命题与逆命题均为真命题 5.设集合{1,2,3,4}A =,{1,0,2,3}B =-,{|12}C x R x =∈-≤<,则()A B C ⋃⋂=A .{1,1}-B .{0,1}C .{1,0,1}-D .{2,3,4}6.设集合{}125S x x x =-++>,{}4T x x a =-≤,S T R ⋃=,则a 的取值范围为( ) A .2a ≤-或1a ≥ B .21a -≤≤C .21a -<<D .2a <-或1a >7.已知下列命题:①“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”;②已知,p q 为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题; ③“2019a >”是“2020a >”的充分不必要条件; ④“若0xy =,则0x =且0y =”的逆否命题为真命题. 其中真命题的序号为( ) A .③④B .①②C .①③D .②④8.已知命题2:230p x x +->;命题:q x a >,且q ⌝的一个充分不必要条件是p ⌝,则a 的取值范围是( )A .(],1-∞B .[)1,+∞C .[)1,-+∞D .(],3-∞9.已知1:12p x ≥-,:||2q x a -<,若p 是q 的充分不必要条件,则实数a 的取值范围为( )A .(,4]-∞B .[1,4]C .(1,4]D .(1,4)10.已知在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则“113a =”是“数列{}n a 唯一”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.若集合1|,6 A x x m m Z ⎧⎫==+∈⎨⎬⎩⎭, 1|,23n B x x n Z ⎧⎫==-∈⎨⎬⎩⎭,1|,26p C x x p Z ⎧⎫==+∈⎨⎬⎩⎭,则A ,B ,C 之间的关系是( )A .ABC ==B .AB C = C .ABC D .B CA12.在下列三个结论中,正确的有( ) ①x 2>4是x 3<-8的必要不充分条件;②在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充要条件; ③若a ,b ∈R ,则“a 2+b 2≠0”是“a ,b 不全为0”的充要条件. A .①② B .②③ C .①③D .①②③二、填空题13.给出下列三种说法:①命题p :∃x 0∈R ,tan x 0=1,命题q :∀x ∈R ,x 2-x +1>0,则命题“p ∧(q ⌝)”是假命题.②已知直线l 1:ax +3y -1=0,l 2:x +by +1=0,则l 1⊥l 2的充要条件是ab=-3. ③命题“若x 2-3x +2=0,则x =1”的逆否命题为“若x≠1,则x 2-3x +2≠0”. 其中所有正确说法的序号为________________.14.已知集合{}3A x x =≤,{}2B x x =<,则RAB =__________.15.已知1a ≤,集合{}2x a x a ≤≤-中有且仅有三个整数,则实数a 的取值范围为________.16.已知集合{}{}10|133xA aB x =-=,,,<<,若A B ⋂=∅,则实数a 的取值范围是______.17.已知数集{}{},,,1,2,3,4a b c d =,且有下列说法:①1a =;②2>c ;③4d ≠,则满足(),,,a b c d 的数值有________组.18.若集合A ={x|2≤x≤3},集合B ={x|ax -2=0,a ∈Z},且B ⊆A ,则实数a =________. 19.已知集合{}{}22,1,A B a==,若{}0,1,2AB =,则实数a =________.20.已知()2:9p x a -<,()3:log 21q x +<.若p ⌝是q ⌝的充分不必要条件,则a 的取值范围是________.三、解答题21.已知集合()(){}10A x x a x a =-++≤,{3B x x =≤或}6x ≥. (1)当4a =时,求AB ;(2)当0a >时,若“x A ∈”是“x B ∈”的充分条件,求a 的取值范围. 22.已知集合411A x x ⎧⎫=>⎨⎬+⎩⎭,集合{}22220,B x x x a a a R =+-+<∈.(1)求集合A ;(2)若x B ∈是x A ∈的必要条件,求实数a 的取值范围. 23.知2:8150p x x -+≤,(): q xx a a -+-≤>222100.(Ⅰ)若p 为真命题,求实数x 的取值范围;(Ⅱ)若p 为q 成立的充分不必要条件,求实数a 的取值范围. 24.设集合{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-. (1)若B A ⊆,求实数m 的取值范围; (2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,不存在元素x 使x A ∈与x B ∈同时成立,求实数m 的取值范围. 25.已知0a >,设p :实数x 满足22430x ax a -+<,q :实数x 满足()231x -<.(1)若1a =,且p q ∧为真,求实数x 的取值范围; (2)若p ⌝是q ⌝的充分不必要条件,求实数a 的取值范围. 26.已知集合121284x A x⎧⎫=≤≤⎨⎬⎩⎭,21log ,,328B y y x x ⎧⎫⎡⎤==∈⎨⎬⎢⎥⎣⎦⎩⎭. (1)若{}122C x m x m =+<≤-,()C A B ⊆⋂,求实数m 的取值范围;(2)若{}61D x x m =>+,且()AB D =∅,求实数m 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】设{}21A x x =>,{}2B x x =>,然后根据集合包含关系分析充分性和必要性. 【详解】设{}{211A x x x x =>=>或}1x <-,设{}2B x x =>,可得B A ,所以“21x >”是“2x >”的必要不充分条件. 故选:B . 【点睛】方法点睛:充分性和必要性的判断方法:1、定义法,2、命题法,3、传递法,4、集合法.2.C解析:C 【分析】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题,分0x =和0x ≠两种情况讨论,结合参变量分离法可求得实数a 的取值范围. 【详解】由题意可知,命题“x R ∃∈,2410ax x +-≥”是真命题. 当0x =时,则有10-≥,不合乎题意;当0x ≠时,由2410ax x +-≥,可得214ax x ≥-,则有221414x a x x x-≥=-, 22141244x x x ⎛⎫-=--≥- ⎪⎝⎭,当且仅当12x =时,等号成立, 所以,4a ≥-.综上所述,实数a 的取值范围是[)4,-+∞. 故选:C. 【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解: (1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.3.A解析:A 【分析】解出不等式x 2+x ﹣2≤0的解集,求出补集,根据集合的运算法则求解. 【详解】解不等式x 2+x ﹣2≤0得:-2≤x ≤1,C U M=()(),21,-∞-+∞,N ={y |y }[)0,=+∞, (C U M )∪N={x |x <﹣2或x ≥0}. 故选:A 【点睛】此题考查集合的基本运算,关键在于准确求解二次不等式,根据集合的运算法则求解.4.B解析:B 【分析】写出原命题的逆否命题,判断其逆否命题为真,从而得到原命题也为真. 【详解】原命题的逆否命题为:若,a b 中没有一个大于等于1,则2a b +<,等价于“若1,1a b <<,则2a b +<”,显然这个命题是对的,所以原命题正确; 原命题的逆命题为:“若,a b 中至少有一个不小于1,则2a b +≥”,取5,5a b ==-则,a b 中至少有一个不小于1,但0a b +=,所以原命题的逆命题不正确. 【点睛】至少有一个的否定为“0个”,“不小于”等价于“大于等于”,同时注意若原命题的真假性不好判断,而等价于判断其逆否命题.5.C解析:C 【解析】分析:由题意首先进行并集运算,然后进行交集运算即可求得最终结果. 详解:由并集的定义可得:{}1,0,1,2,3,4A B =-,结合交集的定义可知:(){}1,0,1A B C =-.本题选择C 选项.点睛:本题主要考查并集运算、交集运算等知识,意在考查学生的计算求解能力.6.B解析:B 【解析】{|32},[4,=4]S x x x T a a =-=-或 ,所以432142a a a -≤-⎧⇒-≤≤⎨+≥⎩ ,选A. 点睛:形如|x -a |+|x -b |≥c (或≤c )型的不等式主要有三种解法:(1)分段讨论法,利用绝对值号内式子对应方程的根,将数轴分为(-∞,a ],(a ,b ],(b ,+∞)(此处设a <b )三个部分,在每个部分上去掉绝对值号分别列出对应的不等式求解,然后取各个不等式解集的并集;(2)几何法,利用|x -a |+|x -b |>c (c >0)的几何意义:数轴上到点x 1=a 和x 2=b 的距离之和大于c 的全体;(3)图象法:作出函数y 1=|x -a |+|x -b |和y 2=c 的图象,结合图象求解.7.B解析:B 【分析】由命题的否定,复合命题的真假,充分必要条件,四种命题的关系对每个命题进行判断. 【详解】“2,56x R x x ∀∈+>”的否定是“2,56x R x x ∃∈+≤”,正确;已知为两个命题,若“p q ∨”为假命题,则“()()p q ⌝∧⌝”为真命题,正确; “2019a >”是“2020a >”的必要不充分条件,错误;“若0xy =,则0x =且0y =”是假命题,则它的逆否命题为假命题,错误. 故选:B . 【点睛】本题考查命题真假判断,掌握四种命题的关系,复合命题的真假判断,充分必要条件等概念是解题基础.8.B解析:B 【分析】解一元二次不等式化简命题p ,再利用集合间的基本关系,求得参数a 的取值范围. 【详解】由2:230p x x +->,知3x <-或1x >, 则p ⌝为31x -≤≤,q ⌝为x a ≤, p ⌝是q ⌝的充分不必要条件,∴1{|}3x x ≤≤-{|}x x a ≤∴1a ≥.故选:B. 【点睛】本题考查利用命题的充分不必要条件求参数的取值范围,考查转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意将充分不必要条件转化为真子集的关系.9.C解析:C【分析】求出p ,q 的等价条件,根据充分条件和必要条件的定义即可得到结论. 【详解】由112x ≥-,即302x x -≤-,解得23x <≤, 由||2x a -<得22a x a -<<+,若p 是q 的充分不必要条件,则2223a a -≤⎧⎨+>⎩,解得14a <≤,实数a 的取值范围为(]1,4, 故选:C. 【点睛】本题主要考查充分条件和必要条件的应用,属于中档题.10.C【分析】根据条件“在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项”求解数列{}n a ,然后由充分必要条件的定义判断.【详解】在等比数列{}n a 中,120,2a a >+是11a +与33a +的等比中项,则2213(2)(1)(3)a a a +=++,22213134433a a a a a a ++=+++, 设{}n a 的公比为q ,则22222111114433a q a q a q a a q ++=+++,211430q q a -+-=(*),10a >,因为1114164(3)40a a ∆=--=+>,所以此方程一定有两不等实解,当等比数列{}n a 只有一解时,方程(*)的两解中一解为0q =需舍去,此时113a =; 若113a =,方程(*)有一个解是0q =,另一解4q =.数列{}n a 只有一解, 由上分析知113a =是数列{}n a 唯一的充要条件. 故选:C . 【点睛】本题考查充分必要条件的判断,掌握充分必要条件的定义是解题关键.11.B解析:B 【分析】分别将集合中的元素表示为61,6m x x m Z ⎧⎫+=∈⎨⎬⎩⎭,31|,6t x x t Z +⎧⎫=∈⎨⎬⎩⎭和31|,6p x x p Z +⎧⎫=∈⎨⎬⎩⎭即可得结果. 【详解】 ∵161|,,66m A x x m m Z x x m Z ⎧⎫+⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭, 13231|,|,|,2366n n t B x x n Z x x n Z x x t Z -+⎧⎫⎧⎫⎧⎫==-∈==∈==∈⎨⎬⎨⎬⎨⎬⎩⎭⎩⎭⎩⎭,131|,|,266p p C x x p Z x x p Z +⎧⎫⎧⎫==+∈==∈⎨⎬⎨⎬⎩⎭⎩⎭显然A B C =,故选:B.本题主要考查集合间的包含关系的判断,考查集合的包含关系等基础知识,属于基础题.12.C解析:C 【分析】①,证明x 2>4是x 3<-8的必要不充分条件.所以该命题正确;②,在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误;③,证明“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 【详解】①,x 2>4即2x >或2x <-,x 3<-8即2x <-,因为2x >或2x <-成立时,2x <-不一定成立,所以x 2>4是x 3<-8的不充分条件;因为2x <-成立时,2x >或2x <-一定成立,所以x 2>4是x 3<-8的必要条件.即x 2>4是x 3<-8的必要不充分条件.所以该命题正确. ②, AB 2+BC 2=AC 2成立时,ABC 为直角三角形一定成立;当ABC 为直角三角形成立时,AB 2+BC 2=AC 2不一定成立,所以在ABC 中,AB 2+AC 2=BC 2是ABC 为直角三角形的充分不必要条件,所以该命题错误.③,即判断“0,0a b ==”是“a 2+b 2=0”的什么条件,由于a 2+b 2=0即0,0a b ==,所以“0,0a b ==”是“a 2+b 2=0”的充要条件,所以“a 2+b 2≠0”是“a ,b 不全为0”的充要条件,所以该命题正确. 故选:C. 【点睛】本题主要考查充分必要条件的判定,考查逆否命题和原命题的等价性,意在考查学生对这些知识的理解掌握水平.二、填空题13.①③【解析】试题分析:①若命题p :存在x ∈R 使得tanx=1;命题q :对任意x ∈Rx2-x+1>0则命题p 且¬q 为假命题此结论正确对两个命题进行研究发现两个命题都是真命题故可得p 且¬q 为假命题②已知解析:①③ 【解析】试题分析:①若命题p :存在x ∈R ,使得tanx=1;命题q :对任意x ∈R ,x 2-x+1>0,则命题“p 且¬q”为假命题,此结论正确,对两个命题进行研究发现两个命题都是真命题,故可得“p 且¬q”为假命题.②已知直线l 1:ax+3y-1=0,l 2:x+by+1=0.则l 1⊥l 2的充要条件为ab =−3,若两直线垂直时,两直线斜率存在时,斜率乘积为a b =−3,当a=0,b=0时,此时两直线垂直,但不满足a b=−3,故本命题不对.③命题“若x 2-3x+2=0,则x=1”的逆否命题为:“若x≠1则x 2-3x+2≠0”,由四种命题的书写规则知,此命题正确;考点:复合命题的真假;四种命题14.【分析】根据集合的交集补集运算即可求解【详解】因为所以因此故答案为【点睛】本题主要考查了集合的补集交集运算属于中档题 解析:[]2,3【分析】根据集合的交集补集运算即可求解. 【详解】因为{}2B x x =<, 所以RB ={}2x x ≥因此RAB ={}{}32=[2,3]x x x x ≤⋂≥.故答案为[]2,3 【点睛】本题主要考查了集合的补集,交集运算,属于中档题.15.【分析】首先分析出集合里面必有元素1再讨论集合为三种情况讨论求的取值范围【详解】所以集合里的元素一定有1集合有3个元素当集合是时有集合是空集;当集合是时有解得:;当集合是时有集合是空集;综上:的取值 解析:(]1,0-【分析】首先分析出集合里面必有元素1,再讨论集合为{}1,2,3,{}0,1,2,{}1,0,1- 三种情况讨论,求a 的取值范围. 【详解】1a ≤ ,21a ∴-≥ ,所以集合里的元素一定有1, 集合有3个元素,当集合是{}1,2,3时,有01324a a <≤⎧⎨≤-<⎩,集合是空集;当集合是{}0,1,2时,有10223a a -<≤⎧⎨≤-<⎩,解得:10a -<≤ ;当集合是{}1,0,1-时,有21122a a -<≤-⎧⎨≤-<⎩ ,集合是空集;综上:a 的取值范围是(]1,0- 故答案为(]1,0- 【点睛】本题考查根据集合的元素个数求参数的取值范围,意在考查分类,转化,和计算求解能力,属于中档题型.16.或或【解析】【分析】由指数不等式的解法得由集合的运算及集合元素的互异性可得实数的取值范围是或或【详解】解:解不等式可得即又且则或或故答案为:或或【点睛】本题考查了指数不等式的解法及集合的运算重点考查解析:1a <-或 10a -<<或1a ≥ 【解析】 【分析】由指数不等式的解法得{}|01B x x =<<,由集合的运算及集合元素的互异性可得实数a 的取值范围是1a <-或10a -<<或1a ≥. 【详解】解:解不等式133x <<可得01x <<,即{}|01B x x =<<, 又{}1,0,A a =-,且A B φ⋂=,则1a <-或10a -<<或1a ≥, 故答案为:1a <-或 10a -<<或1a ≥. 【点睛】本题考查了指数不等式的解法及集合的运算,重点考查了集合元素的互异性,属基础题.17.【分析】列举出符合条件的数组即可【详解】则的取值可以是或①时即数组为;②时则或即数组为和因此符合题中条件的数组有组故答案为:【点睛】本题主要考查集合相等的应用根据条件进行分类讨论是解本题的关键考查分 解析:3【分析】列举出符合条件的数组(),,,a b c d 即可. 【详解】1a =,2>c ,4d ≠,则c 的取值可以是3或4.①3c =时,4b =,2d =,即数组为()1,4,3,2;②4c =时,则2b =,3d =或3b =,2d =,即数组为()1,2,4,3和()1,3,4,2. 因此,符合题中条件的数组(),,,a b c d 有3组,故答案为:3. 【点睛】本题主要考查集合相等的应用,根据条件进行分类讨论是解本题的关键,考查分类讨论数学思想,属于中等题.18.0或1【分析】根据B ⊆A 讨论两种情况:①B=∅;②B≠∅分别求出a 的范围;【详解】∵B ⊆A 若B=∅则a=0;若B≠∅则因为若2∈B ∴2a ﹣2=0∴a=1若3∈B 则3a ﹣2=0∴a=∵a ∈Z ∴a≠∴a解析:0或1 【分析】根据B ⊆A ,讨论两种情况:①B=∅;②B≠∅,分别求出a 的范围;【详解】∵B ⊆A ,若B=∅,则a=0;若B≠∅,则因为若2∈B ,∴2a ﹣2=0,∴a=1,若3∈B ,则3a ﹣2=0,∴a=32,∵a ∈Z ,∴a≠32, ∴a=0或1,故答案为a=0或1.【点睛】此题主要考查集合关系中的参数的取值问题,此题是一道基础题,注意a 是整数. 19.0【解析】分析:根据集合的并集的含义有集合A 或B 必然含有元素0又由集合AB 可得从而求得结果详解:根据题意若则A 或B 必然含有元素0又由则有即故答案是0点睛:该题考查的是有关集合的运算问题利用两个集合的 解析:0.【解析】分析:根据集合的并集的含义,有集合A 或B 必然含有元素0,又由集合A,B 可得20a =,从而求得结果.详解:根据题意,若{}=0,1,2A B ⋃,则A 或B 必然含有元素0,又由{}{}22,1,A B a ==,则有20a =,即0a =,故答案是0.点睛:该题考查的是有关集合的运算问题,利用两个集合的并集中的元素来确定有关参数的取值问题,属于基础题目.20.【分析】解不等式和由题意可得是的必要不充分条件转化为两集合的包含关系由此可求得实数的取值范围【详解】因为是的充分不必要条件所以是的必要不充分条件解不等式得解不等式解得所以即因此实数的取值范围是故答解析:[]2,1-【分析】解不等式()29x a -<和()3log 21x +<,由题意可得p 是q 的必要不充分条件,转化为两集合的包含关系,由此可求得实数a 的取值范围.【详解】因为p ⌝是q ⌝的充分不必要条件,所以p 是q 的必要不充分条件,解不等式()29x a -<,得33a x a -<<+,解不等式()3log 21x +<,解得21x -<<. :33p a x a -<<+,:21q x -<<,{}33x a x a ∴-<<+ {}21x x -<<,所以3231a a -≤-⎧⎨+≥⎩,即21a -≤≤.因此,实数a 的取值范围是[]2,1-.故答案为:[]2,1-.【点睛】本题考查利用充分不必要条件求参数,解答的关键就是转化为集合的包含关系来处理,考查分析问题和解决问题的能力,属于中等题. 三、解答题21.(1){4A B x x ⋃=≤或}6x ≥;(2)(]0,3.【分析】(1)当4a =时,解出集合A ,计算A B ; (2)由集合法判断充要条件,转化为A B ⊆,进行计算. 【详解】解:(1)当4a =时,由不等式()()450-+≤x x ,得54x -≤≤,故{}54A x x =-≤≤, 又{3B x x =≤或}6x ≥, 所以{4A B x x ⋃=≤或}6x ≥.(2)若“x A ∈”是“x B ∈”的充分条件,等价于A B ⊆,因为0a >,由不等式()()10x a x a -++≤,得{}1A x a x a =--≤≤, 又{3B x x =≤或}6x ≥,要使A B ⊆,则3a ≤或16a --≥,综合可得a 的取值范围为(]0,3.【点睛】结论点睛:有关充要条件类问题的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)若p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,q 对应集合与p 对应集合互不包含.22.(1)()13A ,=-;(2)(][),35,-∞-+∞.【分析】 (1)解分式不等式411x >+可得集合A ; (2)由已知条件可得出A B ⊆,对a -和2a -的大小关系进行分类讨论,结合A B ⊆可得出实数a 所满足的不等式(组),综合可解得实数a 的取值范围.【详解】(1)因为411x >+,所以431011x x x --=>++, 所以()()130x x +-<,所以13x,故()13A ,=-; (2)由22220x x a a +-+<得()()20x a x a +-+<,由x B ∈是x A ∈的必要条件,知A B ⊆.①当2a a -<-,即1a >时,{}2B x a x a =-<<-,则1231a a a >⎧⎪-≥⎨⎪-≤-⎩,解得5a ≥;②当2a a ->-,即1a <时,{}2B x a x a =-<<-,则1321a a a <⎧⎪-≥⎨⎪-≤-⎩,解得3a ≤-;③当2a a =-,即1a =时,B =∅,不满足A B ⊆.综上可得,实数a 的取值范围为(][),35,-∞-+∞. 【点睛】结论点睛:本题考查利用充分条件求参数,一般可根据如下规则求解:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件,则q 对应集合与p 对应集合互不包含. 23.(Ⅰ)[]3,5;(Ⅱ)[)4,+∞.【分析】(Ⅰ)解不等式28150x x -+≤即得;(Ⅱ)再求出不等式()222 x x a a -+-≤>100的解,由充分不必要条件与集合包含的关系得出不等关系,可求得结论.【详解】(Ⅰ)若p 为真命题,解不等式28150x x -+≤得35x ≤≤,实数x 的取值范围是[]3,5.(Ⅱ)解不等式()222 x x a a -+-≤>100得11a x a -≤≤+, p 为q 成立的充分不必要条件,[]3,5∴是[]1,1a a -+的真子集.1315a a -≤⎧∴⎨+≥⎩且等号不同时取到,得4a ≥. ∴实数a 的取值范围是[)4,+∞.【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.24.(1){}3|m m ≤(2)254 (3){}|24m m m <>或【分析】(1)对集合B 分空集和非空集两种情况讨论得解;(2)当x ∈Z 时,{}2,1,0,1,2,3,4,5A =--,再求A 的非空真子集个数;(3)分B =∅和B ≠∅两种情况讨论得解.【详解】(1)当121m m +>-,即2m <时,B =∅,满足B A ⊆.当121m m +≤-,即2m ≥时,要使B A ⊆成立,只需12,215,m m +≥-⎧⎨-≤⎩即23m ≤≤. 综上,当B A ⊆时,m 的取值范围是{}3|m m ≤.(2)当x ∈Z 时,{}2,1,0,1,2,3,4,5A =--,∴集合A 的非空真子集个数为822254-=.(3)∵x ∈R ,且{}|25A x x =-≤≤,{}|121B x m x m =+≤≤-,又不存在元素x 使x A ∈与x B ∈同时成立,∴当B =∅,即121m m +>-,得2m <时,符合题意;当B ≠∅,即121m m +≤-,得2m ≥时,2,15,m m ≥⎧⎨+>⎩或2,212,m m ≥⎧⎨-<-⎩解得4m >. 综上,所求m 的取值范围是{}|24m m m <>或.【点睛】本题主要考查集合的关系和真子集的个数的计算,考查集合的元素和集合的关系,意在考查学生对这些知识的理解掌握水平.25.(1) 23x <<;(2) 4,23⎡⎤⎢⎥⎣⎦. 【解析】试题分析:(1)p 为真时实数x 的取值范围是13x <<,q 为真时实数x 的取值范围是,然后求交集即可;(2)p ⌝是q ⌝的充分不必要条件即即q 是p 的充分不必要条件,易得:2a ≤且43a ≤.试题(1)由22430x ax a -+<得()()30x a x a --<当1a =时,13x <<,即p 为真时实数x 的取值范围是13x <<.由()231x -<,得24x <<,即q 为真时实数x 的取值范围是24x << 因为p q ∧为真,所以p 真且q 真,所以实数x 的取值范围是23x <<.(2)由22430x ax a -+<得()()30x a x a --<,所以,p 为真时实数x 的取值范围是3a x a <<.因为 p ⌝是q ⌝的充分不必要条件,即q 是p 的充分不必要条件所以2a ≤且43a ≤所以实数a 的取值范围为:4,23⎡⎤⎢⎥⎣⎦. 26.(1)7,2⎛⎤-∞ ⎥⎝⎦;(2)[)1,+∞ 【分析】结合指数函数和对数函数性质可分别求得集合A 和集合B ;(1)由交集定义得到A B ,分别在C =∅和C ≠∅两种情况下构造不等式求得结果; (2)由并集定义得到A B ,根据交集结果可构造不等式求得结果.【详解】 {}[]12128272,74x A x x x ⎧⎫=≤≤=-≤≤=-⎨⎬⎩⎭ {}[]21log ,,32353,58B y y x x y y ⎧⎫⎡⎤==∈=-≤≤=-⎨⎬⎢⎥⎣⎦⎩⎭ (1)[]2,5A B =-当C =∅时,122+≥-m m ,解得:3m ≤,满足()C A B ⊆⋂当C ≠∅时,12212225m m m m +<-⎧⎪+≥-⎨⎪-≤⎩,解得:732<≤m 综上所述:实数m 的取值范围为7,2⎛⎤-∞ ⎥⎝⎦(2)[]3,7A B =-()A B D =∅ 617m ∴+≥,解得:m 1≥∴实数m 的取值范围为[)1,+∞【点睛】本题考查根据集合包含关系、交集结果求解参数范围的问题,涉及到指数函数和对数函数性质的应用;易错点是在根据包含关系求参数范围时,忽略子集可能为空集的情况,造成范围求解错误.。

高一数学必修一易错题汇总

高一数学必修一易错题汇总

集合部分错题库1.若全集{}{}0,1,2,32U U C A ==且,则集合A 的真子集共有( )A .3个B .5个C .7个D .8个2.已知集合M ={(x ,y)|x +y =3},N ={(x ,y)|x -y =5},那么集合M ∩N 为 A.x =4,y =-1 B.(4,-1) C.{4,-1} D.{(4,-1)}3.已知集合A ={x|x 2-5x+6<0},B ={x|x< a2},若A B ,则实数a 的范围为A.[6,+∞)B.(6,+∞)C.(-∞,-1)D.(-1,+∞) 4.满足{x|x 2-3x +2=0}M {x ∈N|0<x<6}的集合M 的个数为 A.2 B.4 C.6 D.85.图中阴影部分所表示的集合是( )A .)]([C A C B U ⋃⋂ B.)()(C B B A ⋃⋃⋃ C.)()(B C C A U ⋂⋃ D. )]([C A C B U ⋂⋃6.高一某班有学生45人,其中参加数学竞赛的有32人,参加物理竞赛的有28人,另外有5人两项竞赛均不参加,则该班既参加数学竞赛又参加物理竞赛的有__________人.7.已知集合12,6A x x N N x ⎧⎫=∈∈⎨⎬-⎩⎭用列举法表示集合A 为8. 已知集合{}2210,A x ax x x R =++=∈,a 为实数(1)若A 是空集,求a 的取值范围(2)若A 是单元素集,求a 的值(3)若A 中至多只有一个元素,求a 的取值范围9.判断如下集合A 与B 之间有怎样的包含或相等关系: (1)A={x|x=2k-1,k ∈Z},B={x|x=2m+1,m ∈Z}; (2)A={x|x=2m,m ∈Z},B={x|x=4n,n ∈Z}.10.集合A={x|-2≤x ≤5},B={x|m+1≤x ≤2m-1}, (1)若B ⊆A,求实数m 的取值范围;(2)当x ∈Z 时,求A 的非空真子集个数;(3)当x ∈R 时,没有元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围.函数概念部分错题库1、与函数32y x =-有相同图象的一个函数是( ) A. 32y x =- B. 2y x x =-C.y =- D. y x =2、为了得到函数(2)y f x =-的图象,可以把函数(12)y f x =-的图象适当平移,这个平移是( )A .沿x 轴向右平移1个单位B .沿x 轴向右平移12个单位C .沿x 轴向左平移1个单位D .沿x 轴向左平移12个单位3、若函数()y f x =的定义域是[0,2],则函数(2)()1f xg x x =-的定义域是A .[0,1]B .[0,1)C . [0,1)(1,4]D .(0,1)4、若函数()y f x =的值域是1[,3]2,则函数1()()()F x f x f x =+的值域是( )A .1[,3]2B .10[2,]3C .510[,]23D .10[3,]35、已知函数f (x )=221x x +,那么f (1)+f (2)+f (21)+f (3)+f (31)+f (4)+f (41)=_____.6、已知⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式(2)(2)5x x f x ++⋅+≤的解集是 。

高中数学必修一第四章指数函数与对数函数易错题集锦(带答案)

高中数学必修一第四章指数函数与对数函数易错题集锦(带答案)

高中数学必修一第四章指数函数与对数函数易错题集锦单选题1、若ln2=a,ln3=b,则log818=()A.a+3ba3B.a+2b3aC.a+2ba3D.a+3b3a答案:B分析:先换底,然后由对数运算性质可得.log818=ln18ln8=ln(32×2)ln23=2ln3+ln23ln2=2b+a3a.故选:B2、设函数f(x)=lg(x2+1),则使得f(3x−2)>f(x−4)成立的x的取值范围为()A.(13,1)B.(−1,32)C.(−∞,32)D.(−∞,−1)∪(32,+∞)答案:D分析:方法一 :求出f(3x−2),f(x−4)的解析式,直接带入求解.方法二 : 设t=x2+1,则y=lgt,判断出f(x)=lg(x2+1)在[0,+∞)上为增函数,由f(3x−2)>f(x−4)得|3x−2|>|x−4|,解不等式即可求出答案.方法一 :∵f(x)=lg(x2+1)∴由f(3x−2)>f(x−4)得lg[(3x−2)2+1]>lg[(x−4)2+1],则(3x−2)2+1>(x−4)2+1,解得x<−1或x>32.方法二 :根据题意,函数f(x)=lg(x2+1),其定义域为R,有f(−x)=lg(x2+1)=f(x),即函数f(x)为偶函数,设t=x2+1,则y=lgt,在区间[0,+∞)上,t=x2+1为增函数且t≥1,y=lgt在区间[1,+∞)上为增函数,则f(x)=lg(x2+1)在[0,+∞)上为增函数,f(3x−2)>f(x−4)⇒f(|3x−2|)>f(|x−4|)⇒|3x−2|>|x−4|,解得x <−1或x >32, 故选:D .3、Logistic 模型是常用数学模型之一,可应用于流行病学领域.有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I (t )(t 的单位:天)的Logistic 模型:I(t)=K1+e −0.23(t−53),其中K 为最大确诊病例数.当I (t ∗)=0.95K 时,标志着已初步遏制疫情,则t ∗约为( )(ln19≈3)A .60B .63C .66D .69答案:C分析:将t =t ∗代入函数I (t )=K 1+e −0.23(t−53)结合I (t ∗)=0.95K 求得t ∗即可得解. ∵I (t )=K 1+e −0.23(t−53),所以I (t ∗)=K 1+e −0.23(t ∗−53)=0.95K ,则e 0.23(t∗−53)=19, 所以,0.23(t ∗−53)=ln19≈3,解得t ∗≈30.23+53≈66.故选:C. 小提示:本题考查对数的运算,考查指数与对数的互化,考查计算能力,属于中等题.4、若x 1,x 2是二次函数y =x 2−5x +6的两个零点,则1x 1+1x 2的值为( )A .−12B .−13C .−16D .56答案:D分析:解方程可得x 1=2,x 2=3,代入运算即可得解.由题意,令x 2−5x +6=0,解得x =2或3,不妨设x 1=2,x 2=3,代入可得1x 1+1x 2=12+13=56. 故选:D.5、已知9m =10,a =10m −11,b =8m −9,则( )A .a >0>bB .a >b >0C .b >a >0D .b >0>a答案:A分析:法一:根据指对互化以及对数函数的单调性即可知m =log 910>1,再利用基本不等式,换底公式可得m >lg11,log 89>m ,然后由指数函数的单调性即可解出.[方法一]:(指对数函数性质)由9m =10可得m =log 910=lg10lg9>1,而lg9lg11<(lg9+lg112)2=(lg992)2<1=(lg10)2,所以lg10lg9>lg11lg10,即m >lg11,所以a =10m −11>10lg11−11=0.又lg8lg10<(lg8+lg102)2=(lg802)2<(lg9)2,所以lg9lg8>lg10lg9,即log 89>m ,所以b =8m −9<8log 89−9=0.综上,a >0>b .[方法二]:【最优解】(构造函数)由9m =10,可得m =log 910∈(1,1.5).根据a,b 的形式构造函数f(x)=x m −x −1(x >1) ,则f ′(x)=mx m−1−1,令f ′(x)=0,解得x 0=m 11−m ,由m =log 910∈(1,1.5) 知x 0∈(0,1) .f(x) 在 (1,+∞) 上单调递增,所以f(10)>f(8) ,即 a >b ,又因为f(9)=9log 910−10=0 ,所以a >0>b .故选:A.【整体点评】法一:通过基本不等式和换底公式以及对数函数的单调性比较,方法直接常用,属于通性通法; 法二:利用a,b 的形式构造函数f(x)=x m −x −1(x >1),根据函数的单调性得出大小关系,简单明了,是该题的最优解.6、若2x =3,2y =4,则2x+y 的值为( )A .7B .10C .12D .34答案:C分析:根据指数幂的运算性质直接进行求解即可.因为2x =3,2y =4,所以2x+y =2x ⋅2y =3×4=12,故选:C7、在新冠肺炎疫情防控期间,某超市开通网上销售业务,每天能完成1200份订单的配货,由于订单量大幅增加,导致订单积压.为解决困难,许多志愿者踊跃报名参加配货工作.已知该超市某日积压500份订单未配货,预计第二天的新订单超过1600份的概率为0.05,志愿者每人每天能完成50份订单的配货,为使第二天完成积压订单及当日订单的配货的概率不小于0.95,则至少需要志愿者( )A.10名B.18名C.24名D.32名答案:B分析:算出第二天订单数,除以志愿者每天能完成的订单配货数即可.由题意,第二天新增订单数为500+1600−1200=900,90050=18,故至少需要志愿者18名.故选:B【点晴】本题主要考查函数模型的简单应用,属于基础题.8、已知实数a,b∈(1,+∞),且log2a+log b3=log2b+log a2,则()A.a<√b<b B.√b<a<b C.b<√a<a D.√a<b<a答案:B分析:对log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,结合y=x−1x 的单调性判断b<a,同理利用换底公式得log2a−1log2a<log3b−1log3b,即log2a>log3b,再根据对数运算性质得log2a>log2√b,结合y=log2x单调性,a>√b,继而得解.由log2a+log b3=log2b+log a2,变形可知log2a−log a2<log2b−log b2,利用换底公式等价变形,得log2a−1log2a <log2b−1log2b,由函数f(x)=x−1x在(0,+∞)上单调递增知,log2a<log2b,即a<b,排除C,D;其次,因为log2b>log3b,得log2a+log b3>log3b+log a2,即log2a−log a2>log3b−log b3,同样利用f(x)=x−1x的单调性知,log2a>log3b,又因为log3b=log√3√b>log2√b,得log2a>log2√b,即a>√b,所以√b<a<b.故选:B.多选题9、已知函数f(x)=log2x,g(x)=2x+a,若存在x1,x2∈[1,2],使得f(x1)=g(x2),则a的取值可以是()A.-4B.-2C.2D.3答案:AB分析:根据条件求出两个函数的值域,结合若存在x1,x2∈[1,2],使得f(x1)=g(x2),等价为两个集合有公共元素,然后根据集合的关系进行求解即可.当1≤x≤2时,0≤log2x≤1,即0≤f(x)≤1,则f(x)的值域为[0,1],当1≤x≤2时,2+a≤g(x)≤4+a,则g(x)的值域为[2+a,4+a],若存在x1,x2∈[1,2],使得f(x1)=g(x2),则[2+a,4+a]∩[0,1]≠∅,若[2+a,4+a]∩[0,1]=∅,则2+a>1或4+a<0,解得a>−1或a<−4.所以当[2+a,4+a]∩[0,1]≠∅时,a的取值范围为−4≤a≤−1.故选:AB10、已知函数y=log a(x+c)(a,c为常数,其中a>0,a≠1)的图象如图,则下列结论成立的是()A.a>1B.0<a<1C.c>1D.0<c<1答案:BD分析:根据对数函数的图象判断.由图象知0<a<1,可以看作是y=log a x向左移动c个单位得到的,因此0<c<1,故选:BD .11、已知函数f (x )={(12)x−1,x ≤0x 12,x >0,则下列结论中错误的是( ) A .f (x )的值域为(0,+∞)B .f (x )的图象与直线y =2有两个交点C .f (x )是单调函数D .f (x )是偶函数答案:ACD分析:利用指数函数、幂函数的性质画出f (x )的图象,由图象逐一判断即可.函数f (x )的图象如图所示,由图可知f (x )的值域为[0,+∞),结论A 错误,结论C ,D 显然错误,f (x )的图象与直线y =2有两个交点,结论B 正确.故选:ACD填空题12、函数f (x )=log 12(x 2−5x +6)的单调递减区间为___________.答案:(3,+∞)分析:利用对数型复合函数性质求解即可.由题知:x 2−5x +6>0,解得x >3或x <2.令t =x 2−5x +6,则y =log 12t 为减函数.所以t ∈(−∞,2),t =x 2−5x +6为减函数,f (x )=log 12(x 2−5x +6)为增函数,t ∈(3,+∞),t =x 2−5x +6为增函数,f (x )=log 12(x 2−5x +6)为减函数.所以函数f (x )=log 12(x 2−5x +6)的单调递减区间为(3,+∞).所以答案是:(3,+∞)13、解指数方程2x+3=3x 2−9:__________.答案:x =−3或x =3+log 32分析:直接对方程两边取以3为底的对数,讨论x +3=0和x +3≠0,解出方程即可. 由2x+3=3x2−9得log 32x+3=log 33x 2−9,即(x +3)log 32=(x −3)(x +3),当x +3=0即x =−3时,0=0显然成立;当x +3≠0时,log 32=x −3,解得x =log 32+3;故方程的解为:x =−3或x =3+log 32. 所以答案是:x =−3或x =3+log 32.14、设x 13=2,则√x 53⋅x −1=___________.答案:4分析:由根式与有理数指数幂的关系,结合指数幂的运算性质,求值即可.由√x 53⋅x −1=x 53⋅x −1=x 23=(x 13)2=22=4. 所以答案是:4.解答题15、证明:函数f (x )=log 3(1+x )的图象与g (x )=log 2x 的图象有且仅有一个公共点. 答案:证明见解析分析:把要证两函数的图象有且仅有一个公共点转化为证明方程log 3(1+x )=log 2x 有且仅有一个实根.易观察出x =2为其一根,再假设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点,然后得出矛盾即可. 要证明两函数f (x )和g (x )的图象有且仅有一个公共点,只需证明方程log 3(1+x )=log 2x 有且仅有一个实根,观察上述方程,显然有f (2)=g (2),则两函数的图象必有交点(2,1).设(x 0,y 0)(x 0≠2)是函数图象的另一个公共点.则log 3(1+x 0)=log 2x 0,1+x 0=3y 0,x 0=2y 0,∴1+2y 0=3y 0,即(13)y 0+(23)y 0=1, 令M (x )=(13)x +(23)x ,易知函数M (x )=(13)x +(23)x 为指数型函数.显然M (x )在(−∞,+∞)内是减函数,且M (1)=1,故方程(13)y 0+(23)y 0=1有唯一解y 0=1,从而x 0=2,与x 0≠2矛盾, 从而知两函数图象仅有一个公共点.。

(易错题)高中数学必修五第三章《不等式》测试题(含答案解析)(4)

(易错题)高中数学必修五第三章《不等式》测试题(含答案解析)(4)

一、选择题1.已知正数a 、b 满足1a b +=,则411a ba b+--的最小值是( ) A .1B .2C .4D .82.已知()22log 31ax ax ++>对于任意的x ∈R 恒成立,则实数a 的取值范围为( ) A .()0,4B .[)0,4C .()0,2D .[)0,23.实数x ,y 满足约束条件40250270x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则242x y z x +-=-的最大值为( )A .53-B .15-C .13D .954.实数x ,y 满足线性约束条件424x y x y x +≥⎧⎪-≥⎨⎪≤⎩,则2z x y =-的最小值为( )A .2-B .1-C .0D .15.已知函数()()log 31a f x x =+-(0a >且1a ≠)的图象恒过定点A ,若点A 在直线40mx ny ++=上,其中0mn >,则12m n+的最小值为( ) A .23B .43C .2D .46.当x ,y 满足不等式组11y x y x y ≤⎧⎪≥-⎨⎪+≤⎩时,目标函数2=+t x y 最小值是( )A .-4B .-3C .3D .327.已知实数x ,y 满足260,{0,2,x y x y x -+≥+≥≤若目标函数z mx y =-+的最大值为210m -+,最小值为22m --,则实数m 的取值范围是( ) A .[]2,1-B .[]1,3-C .[]1,2-D .[]2,38.下列函数中,最小值为4的是( ) A .4y x x=+B .()4sin 0πsin y x x x=+<< C .e 4e x x y -=+D.y =9.已知函数()3x f x -=,对任意的1x ,2x ,且12x x <,则下列四个结论中,不一定正确的是( )A .()()()1212f x x f x f x +=⋅B .()()()1212f x x f x f x ⋅=+C .()()()12120x x f x f x --<⎡⎤⎣⎦D .()()121222f x f x x x f ++⎛⎫<⎪⎝⎭10.已知4213332,3,25a b c ===,则 A .b a c << B .a b c << C .b c a <<D .c a b <<11.设a=3x 2﹣x+1,b=2x 2+x ,则( ) A .a >bB .a <bC .a≥bD .a≤b12.命题p :变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩,则y z x =的最小值为14,命题q :直线2x =的倾斜角为2π,下列命题正确的是( ) A .p q ∧B .()()p q ⌝∧⌝C .()p q ⌝∧D .()p q ∧⌝二、填空题13.若0x >,0y >,若()()144x y --=则x y +的最小值为_________.14.已知M ,N 为平面区域0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,向量()1,0a =,则MN a ⋅的最大值是______.15.满足关于x 的不等式()()20ax b x -->的解集为1{|2}2x x <<,则满足条件的一组有序实数对(),a b 的值可以是______.16.已知0,0a b >>,若313m a b a b+≥+恒成立,则m 的取值范围是_____. 17.已知正数a ,b 满足(1)(1)1a b --=,则4a b +的最小值等于________.18.已知正实数,x y 满足x y xy +=,则3211x yx y +--的最小值为______. 19.已知0m >,0n >,且111223m n +=++,则2m n +的最小值为________. 20.某港口的水深y (米)随着时间t (小时)呈现周期性变化,经研究可用sincos66y a t b t c ππ=++来描述,若潮差(最高水位与最低水位的差)为3米,则+a b的取值范围为_______.三、解答题21.已知函数2(1)()a x af x bx c-+=+(a ,b ,c 为常数).(1)当1,0b c ==时,解关于x 的不等式()1f x >;(2)当0,2b c a =>=时,若()1f x <对于0x >恒成立,求实数b 的取值范围. 22.已知函数()()20,,f x ax bx c a b R c R =++>∈∈.(1)若函数()f x 的最小值是()10f -=,且1c =,()()(),0,0f x x F x f x x ⎧>⎪=⎨-<⎪⎩,求()()22F F +-的值;(2)若1,0a c ==,且()1f x ≤在区间(]0,1上恒成立,试求b 的取值范围.23.若不等式2122x x mx -+>的解集为{}|02x x <<. (1)求m 的值;(2)已知正实数a ,b 满足4a b mab +=,求+a b 的最小值.24.(1)若关于x 的不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1恒成立,求实数m 的取值范围. (2)解关于x 的不等式(x ﹣1)(ax ﹣1)>0,其中a <1.25.某村计划建造一个室内面积为800平方米的矩形蔬菜温室,温室内沿左右两侧与后墙内侧各保留1米宽的通道,沿前侧内墙保留3米宽的空地.(1)设矩形温室的一边长为x 米,请用S 表示蔬菜的种植面积,并求出x 的取值范围; (2)当矩形温室的长、宽各为多少时,蔬菜的种植面积最大?最大种植面积为多少. 26.在等腰直角三角形ABC 中,AB =AC =3,点P 是边AB 上异于A ,B 的一点,光线从点P 出发,经BC ,CA 反射后又回到点P (如图),光线QR 经过ABC 的重心,若以点A 为坐标原点,射线AB ,AC 分别为x 轴正半轴,y 轴正半轴,建立平面直角坐标系.(1)AP 等于多少?(2)D (x ,y )是RPQ 内(不含边界)任意一点,求x ,y 所满足的不等式组,并求出D (x ,y )到直线2x +4y +1=0距离的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】 化简得出441511a b a b b a +=+---,将代数式14a b+与+a b 相乘,展开后利用基本不等式可求得411a b a b +--的最小值. 【详解】已知正数a 、b 满足1a b +=,则()414141511b a ba ab b a b a--+=+=+---()41454a b a b b a b a ⎛⎫=++-=+≥= ⎪⎝⎭,当且仅当2b a =时,等号成立,因此,411a ba b +--的最小值是4. 故选:C. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.2.B解析:B 【分析】由对数函数的单调性可得210ax ax ++>对于任意的x ∈R 恒成立,讨论0a =和0a ≠求解. 【详解】()22log 31ax ax ++>对于任意的x ∈R 恒成立,即232ax ax ++>,即210ax ax ++>对于任意的x ∈R 恒成立, 当0a =时,10>恒成立,满足题意,当0a ≠时,则240a a a >⎧⎨∆=-<⎩,解得04a <<, 综上,a 的取值范围为[)0,4. 故选:B. 【点睛】本题考查一元二次不等式的恒成立问题,解题的关键是得出210ax ax ++>对于任意的x ∈R 恒成立. 3.D解析:D 【分析】首先画出可行域,变形24222x y y z x x +-==+--,利用2yx -的几何意义求z 的最大值.【详解】24222x y yz x x +-==+--设2ym x =-,m 表示可行域内的点和()2,0D 连线的斜率, 4250x y x y +=⎧⎨-+=⎩,解得:1,3x y ==,即()1,3C , 250270x y x y -+=⎧⎨-+=⎩,解得:3,1x y =-=,即()3,1B -, 如图,101325BD k -==---,30312CD k -==--,所以m 的取值范围是13,5⎡⎤--⎢⎥⎣⎦,即z 的取值范围是91,5⎡⎤-⎢⎥⎣⎦,z 的最大值是95.故选:D 【点睛】关键点点睛:本题的关键是变形242 x yzx+-=-,并理解z的几何意义,利用数形结合分析问题.4.C解析:C【分析】作出约束条件的可行域,将目标函数转化为122zy x=-,利用线性规划即可求解.【详解】解:由2z x y=-得122zy x=-,作出x,y满足约束条件424x yx yx+≥⎧⎪-≥⎨⎪≤⎩对应的平面区域如图(阴影部分ABC):平移直线122zy x=-,由图象可知当直线122z y x =-过点C 时,直线122zy x =-的截距最大,此时z 最小, 420x x y =⎧⎨--=⎩,解得()4,2A .代入目标函数2z x y =-, 得4220z =-⨯=,∴目标函数2z x y =-的最小值是0.故选:C . 【点睛】本题考查简单的线性规划,解题的关键是作出约束条件的可行域,属于中档题.5.C解析:C 【分析】由对数函数的图象得出A 点坐标,代入直线方程得,m n 的关系,从而用凑出基本不等式形式后可求得最小值. 【详解】令31+=x ,2x =-,(2)1f -=-,∴(2,1)A --,点A 在直线40mx ny ++=上,则240m n --+=,即24m n +=, ∵0mn >,24m n +=,∴0,0m n >>,∴12112141(2)442444n m m n m n m n m n ⎛⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪ ⎝⎭⎝⎭⎝, 当且仅当4n mm n=,即1,2m n ==时等号成立. 故选:C . 【点睛】本题考查对数函数的性质,考查点在直线上,考查用基本不等式求最小值.是一道综合题,属于中档题.6.B解析:B 【详解】绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可得2=+t x y 在点(1,1)A --处取得最小值()()min 2113t =⨯-+-=-,本题选择B 选项.点睛:求线性目标函数z =ax +by (ab ≠0)的最值,当b >0时,直线过可行域且在y 轴上截距最大时,z 值最大,在y 轴截距最小时,z 值最小;当b <0时,直线过可行域且在y 轴上截距最大时,z 值最小,在y 轴上截距最小时,z 值最大.7.C解析:C 【解析】试题分析:画出可行域如下图所示,依题意可知,目标函数在点()2,10取得最大值,在点()2,2-取得最小值.由图可知,当0m ≥时,[]0,2m ∈,当0m <时,[)1,0m ∈-,故取值范围是[]1,2-.考点:线性规划.8.C解析:C 【分析】逐个分析每个选项,结合基本不等式和函数性质即可判断. 【详解】 A 项,4y x x=+没有最值,故A 项错误; B 项,令sin t x =,则01t <≤,4y t t=+,由于函数在(]0,1上是减函数, 所以min ()(1)5f x f ==,故B 项错误;C 项,4e 4e e 4e x x x xy -=+=+≥=,当且仅当4e e x x =, 即e 2x =时,等号成立,所以函数e 4e xxy -=+的最小值为4,故C 项正确;D 项,y =≥=,时,等号成立,所以函数y =D项错误. 故选:C . 【点睛】本题考查基本不等式的应用,属于基础题.9.B解析:B 【分析】将函数()3xf x -=代入选项,由指数幂的运算性质可判断A 、B ;由函数的单调性可判断C ;由基本不等式可判断D ;即可得解. 【详解】对于A ,1212)(1212()333()()x x x x f x x f x f x -+--=⋅=⋅+=,故A 一定正确;对于B ,()12123x x f x x -=⋅,1212()()33x x f x f x --++=,()()()1212f x x f x f x ⋅=+不一定成立,故B 不一定正确;对于C ,因为()3xf x -=为减函数,故满足1212()[()()]0x x f x f x --<,故C 一定正确;对于D ,因为12x x <,所以1212()()22332x x f x f x --++=>=1212232x x x x f +-+⎛⎫= ⎪⎝⎭=,故D 一定正确. 故选:B.【点睛】本题考查了指数函数性质及基本不等式的应用,考查了运算求解能力与转化化归思想,属于中档题.10.A解析:A 【详解】因为422233332=4,3,5a b c ===,且幂函数23y x =在(0,)+∞ 上单调递增,所以b <a <c . 故选A.点睛:本题主要考查幂函数的单调性及比较大小问题,解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用;三是借助于中间变量比较大小.11.C解析:C 【解析】试题分析:作差法化简a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0. 解:∵a=3x 2﹣x+1,b=2x 2+x , ∴a ﹣b=x 2﹣2x+1=(x ﹣1)2≥0, ∴a≥b , 故选C .考点:不等式比较大小.12.A解析:A 【分析】由约束条件作出可行域,由yz x=的几何意义求得最小值判断p 为真命题,由直线2x =的倾斜角判断q 为真命题,再由复合命题的真假判断得答案. 【详解】解:变量(),x y 满足约束条件3450y x x y ≤⎧⎪≤⎨⎪+-≥⎩作出可行域如图:目标式yz x=表示可行域内点(),x y 与()0,0的连线的斜率,由图可知,当过点()4,1D 时,min 14z =,即y z x =的最小值为14,命题p 为真命题; 直线2x =的倾斜角为2π正确,故命题q 为真命题. 所以p q ∧为真命题,()()p q ⌝∧⌝为假命题,()p q ⌝∧为假命题,()p q ∧⌝为假命题; 故选:A 【点睛】本题考查简单的线性规划,考查数形结合的解题思想方法,考查复合命题的真假判断,属于中档题.二、填空题13.【分析】先整理已知条件得则再利用基本不等式求解即可【详解】由得又得则当且仅当即时取等号故答案为:9【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件:(1)一正二定三相等一正就是各项解析:【分析】 先整理已知条件得411y x +=,则()41y x x y x y +⎛⎫+=+ ⎪⎝⎭,再利用基本不等式求解即可. 【详解】由()()144x y --=, 得40xy x y --=, 又0x >,0y >, 得411y x+=,则()445529 41x y x yx y x yy xx y xy+⎛⎫+=+=++≥+⨯=⎪⎝⎭,当且仅当4x yy x=即3,6x y==时取等号.故答案为:9.【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.14.2【分析】据题意由于MN为平面区域内的两个动点则不等式组表示的为三角形区域根据向量的数量积由于(当且仅当与共线同向时等号成立)从而求得最大值【详解】由作出可行域如图由条件可得由图知不等式组表示的为三解析:2【分析】据题意,由于M,N为平面区域401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩内的两个动点,则不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a⋅≤(当且仅当MN与a共线同向时等号成立)从而求得最大值.【详解】由401x yx yy-≥⎧⎪+-≤⎨⎪≥⎩作出可行域,如图由条件0401x y x y y -≥⎧⎪+-≤⎨⎪≥⎩可得()()()1,1,2,2,3,1A B C由图知,不等式组表示的为三角形区域,根据向量的数量积,由于MN a MN a MN ⋅≤=(当且仅当MN 与a 共线同向时等号成立), 即当MN 所在直线平行于=(1,0)a 所在直线且方向相同的时候得到大值,MN 的最大长度为直线=0x y -与1y =的交点(1,1)与直线4=0x y +-和1y =的交点(3,1)的距离.2=, 故答案为:2 【点睛】解决的关键是对于不等式区域的准确表示,同时能利用向量的数量积来表示得到目标函数,利用a b a b ⋅≤(当且仅当b 与a 共线同向时等号成立)得到结论.属于中档题.15.【分析】根据题意知不等式对应方程的实数根由此求出写出满足条件的一组有序实数对即可【详解】不等式的解集为方程的实数根为和2且即则满足条件的一组有序实数对的值可以是故答案为【点睛】本题考查了一元二次不等 解析:()2,1--【分析】根据题意知,不等式对应方程的实数根,由此求出20a b =<,写出满足条件的一组有序实数对即可. 【详解】不等式()()20ax b x -->的解集为1{|2}2x x <<, ∴方程()()20ax b x --=的实数根为12和2,且012a b a <⎧⎪⎨=⎪⎩,即20a b =<,则满足条件的一组有序实数对(),a b 的值可以是()2,1--. 故答案为()2,1--. 【点睛】本题考查了一元二次不等式与对应方程的关系应用问题,是基础题.16.【分析】先将问题转化为恒成立再结合基本不等式求解即可得答案【详解】解:根据题意若恒成立等价于恒成立由于当且仅当即时等号成立所以故答案为:【点睛】本题考查利用基本不等式解决恒成立问题是基础题解析:(],12-∞【分析】 先将问题转化为()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,再结合基本不等式求解即可得答案. 【详解】解:根据题意,0,0a b >>,若313m a b a b +≥+恒成立等价于()313a b m a b ⎛⎫++≥ ⎪⎝⎭恒成立,由于0,0a b >>,()31993336612b a a b a b a b a b a b ⎛⎫++=+++=++≥+= ⎪⎝⎭,当且仅当9b aa b=,即3a b =时等号成立. 所以12m ≤ 故答案为:(],12-∞ 【点睛】本题考查利用基本不等式解决恒成立问题,是基础题.17.9【分析】将已知等式变形为然后利用乘1法将进行变形利用基本不等式即可求得【详解】因为所以即又ab 为正数所以当且仅当时等号成立故的最小值等于故答案为:9【点睛】本题考查利用基本不等式求最值关键是将已知解析:9 【分析】 将已知等式变形为111a b+=,然后利用“乘1法”将4a b +进行变形,利用基本不等式即可求得. 【详解】因为(1)(1)1a b --=,所以0ab a b --=,即111a b+=.又a ,b 为正数,所以1144(4)1459b a a b a b a b a b ⎛⎫+=++=+++≥+= ⎪⎝⎭,当且仅当3a =,32b =时,等号成立. 故4a b +的最小值等于9. 故答案为:9 【点睛】本题考查利用基本不等式求最值,关键是将已知条件适当变形,得到111a b+=,以便利用“乘1法”,利用基本不等式求4a b +的最小值.利用基本不等式求最值要注意“正、定、等”的原则.18.【详解】正实数满足故得到等号成立的条件为点睛:在利用基本不等式求最值时要特别注意拆拼凑等技巧使其满足基本不等式中正(即条件要求中字母为正数)定(不等式的另一边必须为定值)等(等号取得的条件)的条件才解析:5+. 【详解】正实数,x y 满足x y xy +=,1111132321111111111x y x y x y x y x y yx ⎧=-⎪⎪+=⇒⇒+=+⎨--⎪--=-⎪⎩故得到113121323211=5++111111x 1111y x y x x y y x y x y⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭+=++≥------()()1111-y x ⎫⎫-⎪⎪⎭⎭. 点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.19.【分析】先换元令则;再采用乘1法求出的最小值即可得解【详解】解:令则且而当且仅当即时等号成立的最小值为故答案为:【点睛】本题考查利用基本不等式求最值采用换元法和乘1法是解题的关键考查学生的转化思想分解析:3+【分析】先换元,令2s m =+,2t n =+,则1113s t +=,226m n s t +=+-;再采用“乘1法”,求出2s t +的最小值即可得解.【详解】解:令2s m =+,2t n =+,则2s >,2t >,且1113s t +=,2(2)2(2)26m n s t s t ∴+=-+-=+-,而112223(2)()3(12)3(32)3(322)st s ts t s t s t t s t s+=++=+++⨯+=+,当且仅当2s tt s=,即s =时,等号成立. 2s t ∴+的最小值为3(3+,2263(322)63m n s t ∴+=+-+-=+故答案为:3+ 【点睛】本题考查利用基本不等式求最值,采用换元法和“乘1法”是解题的关键,考查学生的转化思想、分析能力和运算能力,属于中档题.20.【分析】由已知结合辅助角公式可求然后结合基本不等式即可求解【详解】由题意可知(为辅助角)由题意可得故由解得故答案为【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用属于中档题解析:22⎡-⎢⎣⎦【分析】由已知结合辅助角公式可求2294a b +=,然后结合基本不等式22222a b a b ++⎛⎫≤ ⎪⎝⎭即可求解. 【详解】由题意可知sincos666y a t b t c t c πππθ⎛⎫=++=++ ⎪⎝⎭,(θ为辅助角)由题意可得3=,故2294a b +=, 由2229228a b a b ++⎛⎫≤= ⎪⎝⎭,解得22a b -≤+≤,故答案为22⎡-⎢⎣⎦. 【点睛】本题主要考查了正弦函数的性质及基本不等式在求解最值中的应用,属于中档题.三、解答题21.(1)见解析(2)1b >+. 【分析】(1)原不等式转化为()()10-+<x a x 然后利用分类讨论思想进行分类求解; (2)原不等式转化22(0)1x b x x +>>+ ,设()()222151214x t g x x t t t+===≤+-++-11b =⇒>. 【详解】(1)当1,0b c ==时,()()()21100f x x a x a x >⇔---<≠()()10x a x ⇔-+<,讨论:①当1a <-时,原不等式的解集为(),1a -; ②当1a =-时,原不等式的解集为φ; ③当10a -<≤时,原不等式的解集为()1,a -; ④当0a >时,原不等式的解集为()()1,00,a -⋃. (2)当,2b c a ==时,()2211x f x bx b +<⇔<+22(0)1x b x x +⇔>>+ 设()221x g x x +=+,令()=22t x t +>, 则()()2221515512254214x t g x t x t t t+===≤=+=+--++-,时取等号, 故512b >+. 【点睛】关键点睛:解题的关键在于利用二次函数的性质,进行数形结合的讨论,难点在于对a 的分类讨论;由参变分离得到函数不等式区间D 上恒成立,一般有以下结论:min 1.():,()a f x x D a f x <∈<即可. max 2.():,()a f x x D a f x >∈>即可.22.(1) 8; (2)[]2,0-. 【分析】(1)根据函数()f x 的最小值是()10f -=且1c =,建立方程关系,求出a b 、的值,从而可求()()22F F +-的值;(2)将不等式()1f x ≤在区间(]0,1上恒成立等价于1b x x ≤-且1b x x ≥--恒成立,转化为求函数的最值即可得到结论. 【详解】 (1)由已知c =1,a -b +c =0,且,解得a =1,b =2,∴f (x )=(x +1)2.∴F (2)+F (-2)=(2+1)2+[-(-2+1)2]=8.(2)由a =1,c =0,得f (x )=x 2+bx ,从而|f (x )|≤1在区间(0,1]上恒成立等价于-1≤x 2+bx ≤1在区间(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立. 又1x -x 的最小值为0,-1x-x 的最大值为-2 ∴-2≤b ≤0.故b 的取值范围是[-2,0]. 【点睛】本题主要考查二次函数的解析式,求函数的最值以及不等式恒成立问题,属于难题.不等式恒成立问题常见方法:① 分离参数()a f x ≥恒成立(()max a f x ≥即可)或()a f x ≤恒成立(()min a f x ≤即可);② 数形结合(()y f x = 图象在()y g x = 上方即可);③ 讨论最值()min 0f x ≥或()max 0f x ≤恒成立;④ 讨论参数. 23.(1)1;(2)9. 【分析】(1)根据不等式与对应方程的关系,列方程求出m 的值; (2)先求得141b a+=,可得14()()a b a b b a +=++,展开后利用基本不等式求出+a b 的最小值. 【详解】 (1)不等式2122x x mx -+>可化为21(2)02x m x +-<,即[2(2)]0x x m +-<,所以不等式对应方程的两根为0和2(2)m --, 又不等式的解集为{|02}x x <<, 所以2(2)2m --=,解得1m =; (2)由正实数a ,b 满足4a b mab +=, 所以4a b ab +=,所以141b a+=, 所以1444()()5529b a b a b a b b a a b a +=++=+++, 当且仅当26a b ==时取等号, 所以+a b 的最小值为9. 【点睛】本题考查了一元二次不等式的解法,也考查了利用基本不等式求最值,是基础题. 24.(1) m 34->;(2)见解析 【分析】(1)利用△<0列不等式求出实数m 的取值范围;(2)讨论0<a <1、a =0和a <0,分别求出对应不等式的解集. 【详解】(1)不等式m 2x 2﹣2mx >﹣x 2﹣x ﹣1化为(m 2+1)x 2﹣(2m ﹣1)x +1>0, 由m 2+1>0知,△=(2m ﹣1)2﹣4(m 2+1)<0, 化简得﹣4m ﹣3<0,解得m 34->, 所以实数m 的取值范围是m 34->; (2)0<a <1时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)>0,且1a>1, 解得x <1或x 1a>, 所以不等式的解集为{x |x <1或x 1a>}; a =0时,不等式(x ﹣1)(ax ﹣1)>0化为﹣(x ﹣1)>0, 解得x <1,所以不等式的解集为{x |x <1};a <0时,不等式(x ﹣1)(ax ﹣1)>0化为(x ﹣1)(x 1a -)<0,且1a<1, 解得1a<x <1,所以不等式的解集为{x |1a<x <1}.综上知,0<a <1时,不等式的解集为{x |x <1或x 1a>}; a =0时,不等式的解集为{x |x <1}; a <0时,不等式的解集为{x |1a<x <1}. 【点睛】本题考查了不等式恒成立问题和含有字母系数的不等式解法与应用问题,是基础题. 25.(1)()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 4400x <<;(2)长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【分析】(1)根据矩形温室的一边长为xm ,求出另一边长,然后根据矩形的面积公式表示即可,再由解析式即可列出关于x 的不等式,从而得出x 的取值范围;(2)直接利用基本不等式可求出面积的最大值,注意等号成立的条件,进而得出矩形温室的长、宽. 【详解】解:(1)矩形的蔬菜温室一边长为x 米,则另一边长为800x米,因此种植蔬菜的区域面积可表示()80042S x x ⎛⎫=-⋅-⎪⎝⎭, 由4080020x x->⎧⎪⎨->⎪⎩得: 4400x <<;(2)()8001600 428082808S x x x x =-⋅-=-+≤⎛⎫⎛⎫⎪ ⎪⎝-⎝⎭⎭2808160648m =-=,当且仅当1600x x=,即()404,400x =∈时等号成立.因此,当矩形温室的两边长、宽分别为40米,20米时,蔬菜的种植面积最大,最大种植面积为2648m . 【点睛】本题考查了函数模型的选择与应用,以及利用基本不等式求函数的最值,属于中档题.26.(1)||1AP =;(2)x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩,D (x ,y )到直线2x +4y +1=0距离的取值范围为. 【分析】(1)建立坐标系,设点P 的坐标,可得P 关于直线BC 的对称点1P 的坐标,和P 关于y 轴的对称点2P 的坐标,由1P ,Q ,R ,2P 四点共线可得直线的方程,由于过ABC 的重心,代入可得关于a 的方程,解之可得P 的坐标,进而可得AP 的值;(2)先求出,,RQ PR PQ 所在直线的方程,即得x ,y 所满足的不等式组,再利用数形结合求出D (x ,y )到直线2x +4y +1=0距离的取值范围. 【详解】(1)以A 为原点,AB 为x 轴,AC 为y 轴建立直角坐标系如图所示. 则(0,0)A ,(3,0)B ,(0,3)C .设ABC ∆的重心为E ,则E 点坐标为(1,1),设P 点坐标为(,0)m ,则P 点关于y 轴对称点1P 为(,0)m -, 因为直线BC 方程为30x y +-=, 所以P 点关于BC 的对称点2P 为(3,3)m -,根据光线反射原理,1P ,2P 均在QR 所在直线上,∴12E P E P k k =, 即113113mm -+=+-,解得,1m =或0m =.当0m =时,P 点与A 点重合,故舍去.∴1m =.所以||1AP =.(2)由(1)得2P 为(3,2),又1(1,0)-P ,所以直线RQ 的方程为210x y -+=; 令210x y -+=中10,2x y =∴=,所以1(0,),2R 所以直线PR 的方程为210x y +-=; 联立直线BC 和RQ 的方程30210x y x y +-=⎧⎨-+=⎩得54(,)33Q ,所以直线PQ 的方程为220x y --=.D (x ,y )是RPQ 内(不含边界)任意一点,所以x ,y 所满足的不等式组为210210220x y x y x y -+>⎧⎪+->⎨⎪--<⎩. 直线2410x y ++=和直线PR 22351024+ 点Q 到直线2410x y ++=2254|2+4+1|293353024⨯⨯+所以D (x ,y )到直线2x +4y +1=0距离的取值范围为32955)1030,.【点睛】本题主要考查二元一次不等式组对应的平面区域,考查线性规划问题,考查解析法和直线方程的求法,意在考查学生对这些知识的理解掌握水平.。

(易错题)高中数学必修四第一章《三角函数》测试题(含答案解析)(2)

(易错题)高中数学必修四第一章《三角函数》测试题(含答案解析)(2)

一、选择题1.已知函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,则下列结论正确的个数是( ) ①()f x 的最小值为2-; ②点,012π⎛⎫⎪⎝⎭是()f x 的图象的一个对称中心; ③()f x 的最小正周期为π; ④()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. A .1B .2C .3D .42.已知函数()sin 26f x x π⎛⎫=-⎪⎝⎭,若方程()35f x =的解为1x ,2x (120x x π<<<),则()12sin x x -=( )A .35B .45-C .3-D .3.已知函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,与函数sin 23y x π⎛⎫=+ ⎪⎝⎭的图象重合,则ϕ的值为( )A .56πB .56π-C .6π D .6π-4.声音是由物体振动产生的声波.我们听到的每个音都是由纯音合成的,纯音的数学模型是函数sin y A wt =.音有四要素:音调、响度、音长和音色,它们都与函数sin y A wt =中的参数有关,比如:响度与振幅有关,振幅越大响度越大,振幅越小响度越小;音调与频率有关,频率低的声音低沉,频率高的声音尖利.像我们平时听到乐音不只是一个音在响,而是许多音的结合,称为复合音.我们听到的声音函数是111sin sin 2sin 3sin 4234y x x x x =++++.结合上述材料及所学知识,你认为下列说法中正确的有( ).A .函数1111sin sin 2sin3sin 4sin100234100y x x x x x =+++++不具有奇偶性; B .函数111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增; C .若某声音甲对应函数近似为111()sin sin 2sin3sin 4234f x x x x x =+++,则声音甲的响度一定比纯音1()sin 22h x x =响度大; D .若某声音甲对应函数近似为1()sin sin 22g x x x =+,则声音甲一定比纯音1()sin33h x x =更低沉.5.如果一个函数在给定的区间上的零点个数恰好为8,则称该函数为“比心8中函数”.若函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上的“比心8中函数”,则ω的取值范围是( ) A .4149,66⎡⎫⎪⎢⎣⎭ B .4953,66⎡⎫⎪⎢⎣⎭ C .3741,66⎡⎫⎪⎢⎣⎭ D .[8,9)6.已知()()sin 6f x x a b x ππ⎛⎫=--+ ⎪⎝⎭,若()0f x ≤在[]1,1x ∈-上恒成立,则a b +=( ) A .56B .23C .1D .27.设函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减,则下述结论: ①()f x 关于,012π⎛⎫⎪⎝⎭中心对称;②()f x 关于直线23x π=轴对称; ③()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦;④方程()1f x =在[]0,2π有4个不相同的根. 其中正确结论的编号是( ) A .①②B .②③C .②④D .③④8.已知函数()sin()f x x ωϕ=+,具有以下性质:(1)对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π; (2)6f x π⎛⎫+⎪⎝⎭为奇函数; (3)任取12,0,4x x π⎡⎤∈⎢⎥⎣⎦,当12x x ≠时,都有()()()()11222112x f x x f x x f x x f x +>+.同时满足上述性质的一个函数可以是( ) A .4sin 23y x π⎛⎫=- ⎪⎝⎭ B .sin 23y x π⎛⎫=- ⎪⎝⎭C .2sin 23y x π⎛⎫=+⎪⎝⎭D .sin 26y x π⎛⎫=+⎪⎝⎭9.有以下四种变换方式:①向左平移12π个单位长度,再将每个点的横坐标伸长为原来的2倍;②向左平移6π个单位长度,再将每个点的横坐标伸长为原来的2倍;③再将每个点的横坐标伸长为原来的2倍,再向左平移6π个单位长度; ④再将每个点的横坐标伸长为原来的2倍,再向右平移6π个单位长度; 其中能将函数sin 26y x π⎛⎫=- ⎪⎝⎭的图象变为函数sin y x =图象的是( ) A .①③B .②③C .①④D .②④10.已知函数1,01()11sin ,14242x x f x x x π+≤≤⎧⎪=⎨+<≤⎪⎩,若不等式2()()20f x af x -+<在[]0,4x ∈上恒成立,则实数a 的取值范围为( )A .3a >B .23a <<C .22a >D .92a >11.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度12.已知定义在R 上的函数()sin()0,||2f x x πωϕωϕ⎛⎫=+>≤ ⎪⎝⎭在[]1,2上有且仅有3个零点,其图象关于点1,04⎛⎫⎪⎝⎭和直线14x =-对称,给出下列结论:①1222f ⎛⎫=⎪⎝⎭;②函数()f x 在[]0,1上有且仅有3个最值点;③函数()f x 在35,24⎛⎫-- ⎪⎝⎭上单调递增;④函数()f x 的最小正周期是2.其中所有正确结论的个数是( ) A .1B .2C .3D .4二、填空题13.已知函数273(0)()323(0)x x f x x x x ⎧+≤⎪=⎨⎪-++>⎩,()cos 4g x x x =++,若对任意[3,3]t ∈-,总存在0,2s π⎡⎤∈⎢⎥⎣⎦,使得()()f t a g s +≤成立,则实数a 的取值范围为__________.14.已知sin 78a =︒,cos10b =︒,tan55c =︒,则a ,b ,c 的大小关系为______. 15.已知函数()f x 的定义域为R ,且()2()f x f x π+=,当[0,)x π∈时,()sin f x x =.若存在0(,]x m ∈-∞,使得0()f x ≥m 的取值范围为________.16.已知函数()()2sin 0f x x ωω=>在区间,34ππ⎡⎤-⎢⎥⎣⎦上的最小值是-2,则ω的最小值等于__________.17.设函数()2sin()0,02f x x πωϕωϕ⎛⎫=+><<⎪⎝⎭的图象关于直线23x π=对称,它的周期为π,则下列说法正确是________(填写序号) ①()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; ②()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减;③()f x 的一个对称中心是5,012π⎛⎫⎪⎝⎭; ④将()f x 的图象向右平移ϕ个单位长度得到函数2sin 2y x =的图象. 18.已知函数f (x ),任意x 1,x 2∈,22ππ⎛⎫- ⎪⎝⎭(x 1≠x 2),给出下列结论:①f (x +π)=f (x );②f (-x )=f (x );③f (0)=1;④1212()()f x f x x x -->0;⑤1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭.当()tan f x x =时,正确结论的序号为________.19.如图,某地一天从614时的温度变化曲线近似满足函数()sin y A x b ωϕ=++,则这段曲线的函数解析式为______________.20.函数()()0,0,2(f x Asin x A πωϕωϕ=+>><)的部分图像如图所示.则()f x 的解析式是_____.三、解答题21.已知函数1()sin 22,23f x x x R π⎛⎫=-+∈ ⎪⎝⎭. (1)求()f x 的最小正周期; (2)求()f x 的单调递减区间; (3)求()f x 在区间,44ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值 22.如图,在扇形OMN 中,半径10OM =,圆心角6MON π∠=,D 是扇形弧上的动点,矩形ABCD 内接于扇形,记DON θ∠=,矩形ABCD 的面积为S .(1)用含θ的式子表示线段DC ,OB 的长; (2)求S 的最大值.23.已知函数()2sin()cos sin(2)(0)f x x x ωϕϕωϕω=+-+>在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递增.(1)求ω的取值范围;(2)当ω取最小正整数时,关于x 的方程211()()022f x f x --=在区间,6m π⎛⎫- ⎪⎝⎭上恰有5个实数根,求m 的取值范围.24.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示.(1)求()f x 的解析式;(2)将()f x 图象上所有点的横坐标变为原来的2倍(纵坐标不变),得到()g x 的图象.又()14g θ=求2114sin sin 63ππθθ⎛⎫⎛⎫-+- ⎪ ⎪⎝⎭⎝⎭的值.25.一只红蚂蚁与一只黑蚂蚁在一个圆(半径为1cm 的圆)的圆周上爬动,且两只蚂蚁均从点1,0A 同时逆时针匀速爬动,红蚂蚁每秒爬过α角,黑蚂蚁每秒爬过β角(其中0180αβ︒︒<<<).如果两只蚂蚁都在第14秒时回到A 点,并且在第2秒时均位于第二象限.(1)求α,β的值.(2)两只蚂蚁的爬行速度保持不变,若红蚂蚁从点A 逆时针...匀速爬行,黑蚂蚁同时从点A 顺时针...匀速爬行,求当它们从点A 出发后第一次相遇时,红蚂蚁爬过的距离. 26.函数()cos()(0)f x x ωφω=+>的部分图像如图所示.(1)求()f x 的表达式; (2)若[1,2]x ∈,求()f x 的值域;(3)将()f x 的图像向右平移112个单位后,再将所得图像横坐标伸长到原来的2倍,纵坐标不变,得到函数()y g x =的图像,求()g x 的单调递减区间.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】求出()min f x 可判断①的正误;利用正弦型函数的对称性可判断②的正误;求出()f x 的最小正周期可判断③的正误;利用正弦型函数的单调性可判断④的正误. 【详解】 对于①,()2sin 23f x x π⎛⎫=+ ⎪⎝⎭,()()min 212f x ∴=⨯-=-,①正确;对于②,2sin 22sin 20121232f ππππ⎛⎫⎛⎫=⨯+==≠ ⎪ ⎪⎝⎭⎝⎭,所以,点,012π⎛⎫⎪⎝⎭不是()f x 的图象的一个对称中心,②错误; 对于③,函数()f x 的最小正周期为22T ππ==,③正确; 对于④,当,06x π⎛⎫∈- ⎪⎝⎭时,2666x πππ-<+<,所以,函数()f x 在,06π⎛⎫- ⎪⎝⎭上单调递增. ④正确.因此,正确命题的序号为①③④. 故选:C.关键点点睛:对于正弦型函数基本性质的判断问题,一般将函数解析式化为()sin y A x b ωϕ=++或()cos y A x b ωϕ=++,将x ωϕ+视为一个整体,利用正弦函数或余弦函数的基本性质来求解.2.B解析:B 【分析】求出函数()f x 在(0,)π上的对称轴,然后由正弦函数性质得1223x x π+=,这样12sin()x x -化为2222sin(2)sin 2cos(2)336x x x πππ⎛⎫-=+=- ⎪⎝⎭,而已知条件为23sin(2)65x π-=,再由正弦函数性质确定226x π-的范围,从而由平方关系求得结论.【详解】函数()sin 26f x x π⎛⎫=-⎪⎝⎭的对称轴满足:()262x k k Z πππ-=+∈,即()23k x k Z ππ=+∈,令0k =可得函数在区间()0,π上的一条对称轴为3x π=,结合三角函数的对称性可知1223x x π+=,则:1223x x π=-,()122222sin sin 2sin 2cos 2336x x x x x πππ⎛⎫⎛⎫⎛⎫-=-=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由题意:0πx <<,则112666x πππ-<-<,23sin 265x π⎛⎫-= ⎪⎝⎭,120x x π<<<,则2226x πππ<-<,由同角三角函数基本关系可知:24cos 265x π⎛⎫-=- ⎪⎝⎭, 故选:B . 【点睛】关键点点睛:本题考查正弦函数的性质,考查平方关系.解题时根据自变量的范围求得此范围内函数的对称轴,从而得出两个变量12,x x 的关系,可化双变量为单变量,再根据函数值及函数性质确定出单变量的范围,从而求得结论.注意其中诱导公式的应用,目的是把求值式与已知条件中的角化为一致.3.A解析:A 【分析】根据三角函数的平移变换得到cos(2)y x ϕπ=+-后,再根据诱导公式变为sin(2)2y x πϕ=+-,然后利用图象重合列式可得结果.函数()cos 2y x ϕ=+()πϕπ-≤<的图象向右平移2π个单位后,得到cos[2()]cos(2)2y x x πϕϕπ=-+=+-sin(2)2x πϕπ=+-+sin(2)2x πϕ=+-,依题意可得223k ππϕπ-=+()k ∈Z ,所以526k πϕπ=+()k ∈Z 因为πϕπ-≤≤,所以0k =,56πϕ=. 故选:A. 【点睛】关键点点睛;经过平移变换后,利用诱导公式化为同名函数是解题关键,属于中档题.4.B解析:B 【分析】A.结合奇偶性的定义判断即可B.用正弦型函数的单调性作出判断 CD 可取特值说明 【详解】 A. ()1111sin sin 2sin 3sin 4sin100234100f x x x x x x =+++++()()()()()()()1111sin sin 2sin 3sin 4sin 100234100f x x x x x x f x -=-+-+-+-++-=-,()f x 为奇函数B. ,1616x ππ⎡⎤∈-⎢⎥⎣⎦时,2,88x ππ⎡⎤∈-⎢⎥⎣⎦,333,1616x ππ⎡⎤∈-⎢⎥⎣⎦,4,44x ππ⎡⎤∈-⎢⎥⎣⎦,故sin ,sin 2,sin 3,sin 4x x x x 在,1616ππ⎡⎤-⎢⎥⎣⎦上均为增函数故111()sin sin 2sin3sin 4234f x x x x x =+++在区间,1616ππ⎡⎤-⎢⎥⎣⎦上单调递增. C. ()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 434g x f x h x x x x =-=++()()11()sin sin 3sin 4034g f h ππππππ=-=++=故声音甲的响度不一定比纯音1()sin 22h x x =响度大 D. ()11()()sin sin 2sin 323h x g x h x x x x =-=+- ()11()()sin sin 2sin 3023h g h ππππππ=-=+-=甲不一定比纯音1()sin33h x x =更低沉 故选:B 【点睛】“新定义”主要是指即时定义新概念、新公式、新定理、新法则、新运算五种,然后根据此新定义去解决问题,有时还需要用类比的方法去理解新的定义,这样有助于对新定义的透彻理解.但是,透过现象看本质,它们考查的还是基础数学知识,所以说“新题”不一定是“难题”,掌握好三基,以不变应万变才是制胜法宝.5.A解析:A 【分析】根据题意问题转化为方程1sin()2x ωπ=在区间[0,1]上有8个解,根据正弦函数的图像与性质可求得1sin()2x ωπ=在区间[0,1]上取第8个解为416x ω=、第9个解为496x ω=,则4149166ωω≤<,解不等式即可. 【详解】根据题意,函数()2sin()1f x x ωπ=-,(0)>ω是区间[0,1]上零点个数为8,即方程1sin()2x ωπ=在区间[0,1]上有8个解, ∴26x k πωππ=+或52,6x k k Z πωππ=+∈, 当0k =时,1sin()2x ωπ=在区间[0,1]上取第1个解16x ω=,取第2个解56x ω=; 当1k =时,1sin()2x ωπ=在区间[0,1]上取第3个解136x ω=,取第4个解176x ω=; 当3k =时,1sin()2x ωπ=在区间[0,1]上取第7个解376x ω=,取第8个解416x ω=; 当4k =时,1sin()2x ωπ=在区间[0,1]上取第9个解496x ω=. 则4149166ωω≤<,解得414966ω≤<.故选:A6.A解析:A 【分析】根据题意分析可得当15,66x ⎡⎤∈-⎢⎥⎣⎦,0x a b --≤,当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦,0x a b --≥,从而可得506106a b a b ⎧--=⎪⎪⎨⎪---=⎪⎩,解方程即可求解.【详解】当15,66x ⎡⎤∈-⎢⎥⎣⎦,sin 06x ππ⎛⎫+≥ ⎪⎝⎭, 当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦时,sin 06x ππ⎛⎫+≤ ⎪⎝⎭,, 故当15,66x ⎡⎤∈-⎢⎥⎣⎦,0x a b --≤时, 当151,,166x ⎡⎤⎡⎤∈--⎢⎥⎢⎥⎣⎦⎣⎦时,0x a b --≥, 即506106a b a b ⎧--=⎪⎪⎨⎪---=⎪⎩,解得1312a b ⎧=⎪⎪⎨⎪=⎪⎩ ,所以56a b +=. 故选:A 【点睛】本题考查了三角函数的性质、不等式恒成立,考查了基本运算求解能力,属于中档题.7.D解析:D 【分析】利用题干中的已知条件求得2ω=,可得出()sin 216f x x π⎛⎫=-+ ⎪⎝⎭,利用正弦型函数的对称性可判断①②的正误,利用正弦型函数的值域可判断③的正误,求出方程()1f x =在[]0,2π上的解,可判断④的正误. 【详解】N ω*∈,由55,126x ππ⎡⎤∈⎢⎥⎣⎦可得55126666x πωπππωπω-≤-≤-,由于函数()()sin 16f x x N πωω*⎛⎫=-+∈ ⎪⎝⎭在55,126ππ⎡⎤⎢⎥⎣⎦上单调递减, 所以,()553,2,21266622k k k Z πωππωπππππ⎡⎤⎡⎤--⊆++∈⎢⎥⎢⎥⎣⎦⎣⎦,所以,521262532662k k ωππππωππππ⎧-≥+⎪⎪⎨⎪-≤+⎪⎩,解得()248121055k k k Z ω++≤≤∈,由248121055k k ++≤,解得16k ≤,N ω*∈且k Z ∈,0k ∴=,可得825ω≤≤,2ω∴=,则()sin 216f x x π⎛⎫=-+ ⎪⎝⎭.对于①,sin 2sin 00126ππ⎛⎫⨯-==⎪⎝⎭,所以,112f π⎛⎫= ⎪⎝⎭, 所以,函数()f x 的图象关于点,112π⎛⎫⎪⎝⎭成中心对称,①错误; 对于②,271sin 2sin 13662πππ⎛⎫⨯-==-≠± ⎪⎝⎭,②错误;对于③,当,2x ππ⎡⎤∈⎢⎥⎣⎦时,5112,666x πππ⎡⎤-∈⎢⎥⎣⎦,则11sin 262x π⎛⎫-≤-≤ ⎪⎝⎭, 所以,()302f x ≤≤,即()f x 在,2ππ⎡⎤⎢⎥⎣⎦上的值域为30,2⎡⎤⎢⎥⎣⎦,③正确; 对于④,当[]0,2x π∈时,232,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 令()1f x =,可得sin 206x π⎛⎫-= ⎪⎝⎭,206x π∴-=或26x ππ-=或226x ππ-=或236x ππ-=.所以,方程()1f x =在[]0,2π有4个不相同的根,④正确. 故选:D. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).8.B解析:B 【分析】根据题设的条件可得正弦型函数的周期、对称中心以及函数在0,4⎡⎤⎢⎥⎣⎦π上的单调性,再逐项检验各选项中的函数是否满足即可得到正确的选项. 【详解】因为对任意的x ∈R ,都有()()12()f x f x f x ≤≤,且12x x -的最小值为2π, 故()f x 的半周期为2π即周期为π,此时A B C D 各选项中的函数均满足. 因为6f x π⎛⎫+⎪⎝⎭为奇函数,故()f x 图象的对称中心为,06π⎛⎫⎪⎝⎭, 对于D 中的函数,因为sin 2166ππ⎛⎫⨯+= ⎪⎝⎭, 故,06π⎛⎫⎪⎝⎭不是sin 26y x π⎛⎫=+ ⎪⎝⎭图象的对称中心,故排除D . 因为()()()()11222112x f x x f x x f x x f x +>+等价于()()()12120x x f x f x -->⎡⎤⎣⎦, 故()f x 在0,4⎡⎤⎢⎥⎣⎦π上为增函数, 当0,4x π⎡⎤∈⎢⎥⎣⎦时,4452336x πππ-≤-≤-,而sin y u =在45,36ππ⎡⎤--⎢⎥⎣⎦为减函数, 故4sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍;当0,4x π⎡⎤∈⎢⎥⎣⎦时,2336x πππ-≤-≤,而sin y u =在,36ππ⎡⎤-⎢⎥⎣⎦为增函数, 故sin 23y x π⎛⎫=- ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为增函数,符合; 当0,4x π⎡⎤∈⎢⎥⎣⎦时,2272336x πππ≤+≤,而sin y u =在27,36ππ⎡⎤⎢⎥⎣⎦为减函数, 故2sin 23y x π⎛⎫=+ ⎪⎝⎭在0,4⎡⎤⎢⎥⎣⎦π为减函数,不合题意,舍;故选:B . 【点睛】方法点睛:已知检验给定的点是否正弦型函数的对称中心,可以用代入检验法,而单调性的研究则需结合“同增异减”的原则来判断.9.A解析:A 【分析】直接利用三角函数图像的平移变换和伸缩变换求出结果. 【详解】对于①:sin 26y x π⎛⎫=-⎪⎝⎭向左平移12π个单位长度得到sin 2+=sin2126y x x ππ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin y x =;故①正确;对于②:sin 26y x π⎛⎫=- ⎪⎝⎭向左平移6π个单位长度得到sin 2+=sin 2+666y x x πππ⎛⎫⎛⎫⎛⎫=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,再将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=+ ⎪⎝⎭;故②错误;对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=-⎪⎝⎭,再向左平移6π个单位长度,得到sin sin 66y x x ππ⎛⎫=+-= ⎪⎝⎭;故③正确; 对于③:sin 26y x π⎛⎫=- ⎪⎝⎭将每个点的横坐标伸长为原来的2倍,得到sin 6y x π⎛⎫=- ⎪⎝⎭,再向右平移6π个单位长度,得到sin sin()663y x x πππ⎛⎫=--=- ⎪⎝⎭;故④错误; 故选:A 【点睛】关于三角函数图像平移伸缩变换:先平移的话,如果平移a 个单位长度那么相位就会改变ωa ;而先伸缩势必会改变ω大小,这时再平移要使相位改变值仍为ωa ,那么平移长度不等于a .10.D解析:D 【分析】这是一个复合函数的问题,通过换元()t f x = ,可知新元的范围,然后分离参数,转为求函数的最大值问题,进而计算可得结果. 【详解】由题可知当[]0,1x ∈时,有[]()11,2f x x =+∈,当4](1,x ∈时,0sin14xπ≤≤,即111()sin,12422x f x π⎡⎤=+∈⎢⎥⎣⎦ 所以当[]0,4x ∈时,1,22()f x ⎡∈⎤⎢⎥⎣⎦,令()t f x =,则1,22t ⎡⎤∈⎢⎥⎣⎦,从而问题转化为不等式220t at -+<在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,即222t a t t t+>=+在1,22t ⎡⎤∈⎢⎥⎣⎦上恒成立,由2y t t =+ ,1,22t ⎡⎤∈⎢⎥⎣⎦,设1212t t <<<()()()1212121212122220t t f t f t t t t t t t t t --=-+-=->, 所以2y t t =+在12t ⎡∈⎢⎣是单调递减函数,122t t <<<,()()()1212121212122220t t f t f t t t t t t t t t --=-+-=-<, 所以2y t t=+在2t ⎤∈⎦是单调递增函数, 在1,22t ⎡⎤∈⎢⎥⎣⎦上先减后增,而2t t +在12t =时有最大值为92,所以92a >. 【点睛】本题考查含参数的恒成立问题,运用到分离参数法求参数范围,还结合双勾函数的单调性求出最值, 同时考查学生的综合分析能力和数据处理能力.11.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】 由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.12.B解析:B 【分析】由三角函数的图象与性质可得()sin 34f x x ππ⎛⎫=+⎪⎝⎭,代入即可判断①;令03,42()x k k Z ππππ+∈+=,化简即可判断②;令232,242k k x k Z ππππππ-≤+≤+∈+,化简即可判断③;由最小正周期的公式即可判断④. 【详解】∵函数()f x 的图象关于点1,04⎛⎫⎪⎝⎭对称,∴111,4k k Z ωϕπ+=∈,又函数()f x 的图象关于直线14x =-对称,∴221,42k k Z ππωϕ-+=+∈,∴()1221k k ωπ=--⎡⎤⎣⎦,即(21),n n Z ωπ=∈-, ∵函数()sin()f x x ωϕ=+在[]1,2上有且仅有3个零点, ∴24,)201(ππωωω<>≤-,即24πωπ≤<,所以3ωπ=,()()sin 3f x x πϕ=+, ∵104f ⎛⎫=⎪⎝⎭,∴3,4k k Z πϕπ+=∈,又||2πϕ≤,∴4πϕ=,∴()sin 34f x x ππ⎛⎫=+⎪⎝⎭;对于①,3sin 24122f ππ⎛⎫+ ⎪⎝⎛⎫==-⎪⎭⎝⎭,故①错误; 对于②,令03,42()x k k Z ππππ+∈+=,则01,31(2)Z k x k =+∈, 令101312k ≤+≤,则可取0,1,2k =, ∴0112x =,512,34,即函数()f x 在[]0,1上有且仅有3个最值点,故②正确; 对于③,令232,242k k x k Z ππππππ-≤+≤+∈+,则1212,43123k x k Z k -+≤≤∈+,当2k =-时,195,124⎡⎤--⎢⎥⎣⎦为()f x 的一个递增区间, 而35195,,24124⎛⎫⎡⎤--⊆-- ⎪⎢⎥⎝⎭⎣⎦,∴()f x 在35,24⎛⎫-- ⎪⎝⎭上单调递增,故③正确; 对于④,∵()sin 34f x x ππ⎛⎫=+⎪⎝⎭,∴函数的最小正周期2233T ππ==,故④错误. 综上所述,其中正确的结论的个数为2个. 故选:B. 【点睛】本题考查了三角函数解析式的确定及三角函数图象与性质的应用,考查了运算求解能力,属于中档题.二、填空题13.【分析】求出f (t )和g (s )的值域根据存在性和恒成立问题转化为求出a 的范围【详解】对于函数f (x )当x≤0时f (x )单调递增由﹣3≤t≤0可得f (t )∈﹣43当x >0时f (x )=﹣x2+2x+3= 解析:(],2-∞【分析】求出f (t )和g (s )的值域,根据存在性和恒成立问题,转化为()()()maxmaxf t ag s +≤求出a 的范围. 【详解】对于函数f (x ),当x ≤0时,f (x )733x =+单调递增,由﹣3≤t ≤0,可得f (t )∈[﹣4,3],当x >0时,f (x )=﹣x 2+2x +3=﹣(x ﹣1)2+4,由0<t ≤3,可得f (t )∈[0,4],∴对任意t ∈[﹣3,3],f (t )∈[﹣4,4],对于函数g (x )=x +cos x +4=2sin (x 6π+)+4, ∵s ∈[0,2π],∴s 6π+∈[6π,23π], ∴g (s )∈[5,6],∴对于s ∈[0,2π],使得g (s )∈[5,6],∵对任意t ∈[﹣3,3],总存在s ∈[0,2π],使得f (t )+a ≤g (s )成立,故()()()max maxf t ag s +≤∴a +4≤6,解得a ≤2, 故答案为:(],2-∞ 【点睛】结论点睛:本题考查不等式的恒成立与有解问题,可按如下规则转化:一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈ (1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()2max min f x g x <; (2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2max max f x g x <; (3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()2min min f x g x <; (4)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x =,则()f x 的值域是()g x 值域的子集 .14.【分析】同角三角函数关系知又由的区间单调性知根据的区间单调性知即可知的大小关系【详解】而∴故答案为:【点睛】本题考查了比较三角函数值的大小根据正弦函数正切函数的区间单调性及正弦函数的值域范围比较函数 解析:c b a >>【分析】同角三角函数关系知sin80b =︒,又由sin y x =的区间单调性知b a >,根据tan y x =的区间单调性知1c >,即可知a ,b ,c 的大小关系 【详解】cos10cos(9080)sin80sin 78b a =︒=︒-︒=︒>=︒,而tan55tan 451c =︒>︒=∴c b a >> 故答案为:c b a >> 【点睛】本题考查了比较三角函数值的大小,根据正弦函数、正切函数的区间单调性及正弦函数的值域范围,比较函数值的大小15.【分析】由f (x+)=2f (x )得f (x )=2f (x ﹣)分段求解析式结合图象可得m 的取值范围【详解】解:∵∴∵当时∴当时当时当时作出函数的图象:令解得:或若存在使得则故答案为:【点睛】本题考查函数与解析:10[,)3π+∞ 【分析】由f (x +π)=2f (x ),得f (x )=2f (x ﹣π),分段求解析式,结合图象可得m 的取值范围. 【详解】解:∵()()2f x f x π+=,∴()()2f x f x π=-, ∵当0,x时,()sin f x x =.∴当[),2x ππ∈时,()()2sin f x x π=-.当[)2,3x ππ∈时,()()4sin 2f x x π=-.当[)3,4x ππ∈时,()()8sin 3f x x π=-.作出函数的图象:令()8sin 343x π-=103x π=,或113π, 若存在(]0,x m ∈-∞,使得()043f x ≥,则103m π≥, 故答案为:10[,)3π+∞ 【点睛】本题考查函数与方程的综合运用,训练了函数解析式的求解及常用方法,考查数形结合的解题思想方法,属中档题.16.【分析】先根据函数在区间上的最小值是确定的取值范围进而可得到或求出的范围得到答案【详解】函数在区间上的最小值是则的取值范围是当时函数有最小值或或的最小值等于故答案为:【点睛】本题主要考查正弦函数的最解析:32【分析】先根据函数在区间[,]34ππ-上的最小值是2-确定x ω的取值范围,进而可得到32ωππ--或342ωππ,求出ω的范围得到答案. 【详解】函数()2sin (0)f x x ωω=>在区间[,]34ππ-上的最小值是2-, 则x ω的取值范围是[,]34ωπωπ-,当22x k πωπ=-+,k Z ∈时,函数有最小值2-,32ωππ∴--,或342ωππ,k Z ∈, ∴32ω≥,或6ω,k Z ∈, 0ω>,ω∴的最小值等于32.故答案为:32. 【点睛】本题主要考查正弦函数的最值的应用.考查基础知识的运用能力.三角函数式高考的重要考点,一定要强化复习.17.③【分析】先根据对称轴及最小正周期求得函数的解析式再结合正弦函数的图象与性质判断点是否在函数图象上求得函数的单调区间及对称中心判断选项由平移变换求得变化后的解析式并对比即可【详解】函数的最小正周期是解析:③ 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式.再结合正弦函数的图象与性质,判断点是否在函数图象上,求得函数的单调区间及对称中心判断选项,由平移变换求得变化后的解析式并对比即可. 【详解】函数()()2sin 0,0,2f x x πωϕωϕ⎛⎫⎛⎫=+>∈ ⎪ ⎪⎝⎭⎝⎭的最小正周期是π,所以22πωπ==,则()()2sin 2f x x ϕ=+,又()()2sin 2f x x ϕ=+图象关于直线23x π=对称,所以对称轴为2,2x k k Z πϕπ+=+∈,代入可得22,32k k Z ππϕπ⨯+=+∈,解得5,6k k Z πϕπ=-+∈, 因为0,2πϕ⎛⎫∈ ⎪⎝⎭,所以当1k =时, 6π=ϕ,则()2sin 26f x x π⎛⎫=+ ⎪⎝⎭,对于①,当0x =时,()02sin 16f π==,()f x 的图象不过点30,2⎛⎫⎪⎝⎭,所以①不正确;对于②,()2sin 26f x x π⎛⎫=+⎪⎝⎭的单调递减区间为3222,262k x k k Z πππππ+≤+≤+∈,解得2,63k x k k Z ππππ+≤≤+∈, 当0k =时,263x ππ≤≤,又因为126ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以②错误;对于③,()2sin 26f x x π⎛⎫=+⎪⎝⎭的对称中心为2,6x k k Z ππ+=∈,解得,122k x k Z ππ=-+∈,当1k =时,512x π=,所以5,012π⎛⎫⎪⎝⎭是()f x 的一个对称中心,所以③正确;对于④,将()2sin 26f x x π⎛⎫=+⎪⎝⎭向右平移6π个单位长度,可得2sin 22sin 2666y x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以不能得到2sin 2y x =的图象,所以④错误.综上可知,正确的为③. 故答案为: ③. 【点睛】本题考查了三角函数解析式的求法,正弦函数的图像与性质的综合应用,属于中档题. 18.①④【分析】根据正切函数的周期判断①是否正确正切函数的奇偶性判断②是否正确由判断③是否正确由正切函数的单调性判断④是否正确由正切函数的图象判断⑤是否正确【详解】由于f(x)=tanx 的周期为π故①正解析:①④ 【分析】根据正切函数()tan f x x =的周期判断①是否正确,正切函数的奇偶性判断②是否正确,由tan 00=判断③是否正确,由正切函数的单调性判断④是否正确,由正切函数的图象判断⑤是否正确. 【详解】由于f (x )=tan x 的周期为π,故①正确; 函数f (x )=tan x 为奇函数,故②不正确; f (0)=tan 0=0,故③不正确;④表明函数为增函数,而f (x )=tan x 为区间,22ππ⎛⎫- ⎪⎝⎭上的增函数,故④正确;⑤由函数f (x )=tan x 的图象可知,设A =12()()2f x f x +,B =122x x f +⎛⎫⎪⎝⎭故函数在区间,02π⎛⎫- ⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫> ⎪⎝⎭, 在区间0,2π⎛⎫⎪⎝⎭上有1212()()22x x f x f x f ++⎛⎫<⎪⎝⎭,故⑤不正确. 故答案为:①④ 【点睛】本题考查了正切函数的图象和性质,属于中档题.19.【分析】根据图象得出该函数的最大值和最小值可得结合图象求得该函数的最小正周期可得出再将点代入函数解析式求出的值即可求得该函数的解析式【详解】由图象可知从题图中可以看出从时是函数的半个周期则又得取所以解析:310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[]6,14x ∈ 【分析】根据图象得出该函数的最大值和最小值,可得max min 2y y A -=,max min2y y b +=,结合图象求得该函数的最小正周期T ,可得出2Tπω=,再将点()10,20代入函数解析式,求出ϕ的值,即可求得该函数的解析式.【详解】由图象可知,max 30y =,min 10y =,max min 102y y A -∴==,max min202y y b +==,从题图中可以看出,从614时是函数()sin y A x b ωϕ=++的半个周期,则()214616T =⨯-=,28T ππω∴==. 又10228k πϕππ⨯+=+,k Z ∈,得()324k k Z πϕπ=+∈,取34πϕ=, 所以310sin 2084y x ππ⎛⎫=++⎪⎝⎭,[]6,14x ∈. 故答案为:310sin 2084y x ππ⎛⎫=++ ⎪⎝⎭,[]6,14x ∈. 【点睛】本题考查由图象求函数解析式,考查计算能力,属于中等题.20.【分析】由图像对应横坐标可求再将代入可进一步求解由图像过点可求进而求解【详解】由解得又函数过所以解得又图像过可得解得故故答案为:【点睛】本题考查由三角函数图像求解析式属于中档题解析:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【分析】由34T 图像对应横坐标可求ω,再将6x π=代入可进一步求解ϕ,由图像过()0,1点可求A ,进而求解 【详解】由1132312644T πππω-==⋅,解得2ω=,又函数过()max ,6f x π⎛⎫⎪⎝⎭, 所以63A f Asin ππϕ⎛⎫⎛⎫= ⎪ ⎪⎝⎝⎭+⎭=,解得6π=ϕ,又图像过()0,1可得()106f Asin π==,解得2A =,故()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭故答案为:()2sin 26f x πx ⎛⎫+ ⎝=⎪⎭【点睛】本题考查由三角函数图像求解析式,属于中档题三、解答题21.(1)π;(2)()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦;(3)最小值为32;最大值为94. 【分析】(1)利用正弦型函数的周期公式可求得函数()f x 的最小正周期;(2)解不等式()3222232k x k k Z πππππ+≤-≤+∈,可得出函数()f x 的单调递减区间;(3)由44x ππ-≤≤求出23x π-的取值范围,利用正弦函数的基本性质可求得函数()f x 的最小值和最大值. 【详解】(1)因为1()sin 2223f x x π⎛⎫=-+ ⎪⎝⎭, 所以函数()f x 的最小正周期22T ππ==; (2)由()3222232k x k k Z πππππ+≤-≤+∈,得()5111212k x k k Z ππππ+≤≤+∈. 即函数()f x 的单调递减区间为()511,1212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦; (3)因为44x ππ-≤≤,所以52636πππ-≤-≤x ,所以, 当232x ππ-=-即12x π=-时,函数()f x 取最小值,()min 13sin 2222f x π⎛⎫=-+= ⎪⎝⎭; 当236x ππ-=即4x π=时,函数()f x 取最大值,()max 19sin 2264f x π=+=. 【点睛】方法点睛:求函数()()sin f x A x =+ωϕ在区间[],a b 上值域的一般步骤: 第一步:三角函数式的化简,一般化成形如()sin y A x k ωϕ=++的形式或()cos y A x k ωϕ=++的形式;第二步:由x 的取值范围确定x ωϕ+的取值范围,再确定()sin x ωϕ+(或()cos x ωϕ+)的取值范围;第三步:求出所求函数的值域(或最值).22.(1)10sin DC θ=,0,6πθ⎛⎫∈ ⎪⎝⎭;OB θ=,0,6πθ⎛⎫∈ ⎪⎝⎭;(2)max 100S =-【分析】(1)在Rt DCO 和Rt ABO 中利用三角函数的定义可表示出,DC OB ;(2)求出BC 后可得矩形面积S ,利用二倍角公式,两角和的正弦公式化函数为一个角的一个三角函数形式,然后由正弦函数性质可得最大值. 【详解】解:(1)在Rt DCO 中,10OD =,∴10sin DC θ=,0,6πθ⎛⎫∈ ⎪⎝⎭,又Rt ABO 中,6AOB π∠=,10sin AB DC θ==,∴OB θ==,0,6πθ⎛⎫∈ ⎪⎝⎭;(2)在Rt DOC 中,10cos OC θ=,∴10(cos )BC OC OB θθ=-=,∴100sin (cos )S AB BC θθθ=⋅=-11cos 2100sin 2100sin 2223θπθθ-⎛⎫⎛⎫=-=+- ⎪ ⎪⎝⎭⎝⎭∵06πθ<<,∴22333πππθ<+<,∴当232ππθ+=即12πθ=时,max 100S =-【点睛】关键点点睛:本题考查三角函数的应用,解题关键是用角表示出矩形面积,然后可利用三角函数的恒等变换公式如二倍角公式、两角和与差的正弦(余弦)公式、诱导公式等化函数为一个角的一个三角函数形式,即()sin()f x A x k ωϕ=++形式,最后利用正弦函数性质求得结论.23.(1)9(0,1],52⎡⎤⋃⎢⎥⎣⎦;(2)1923,66ππ⎛⎤⎥⎝⎦. 【分析】(1)先根据两角和的正弦公式将()f x 进行化简,再根据0>ω以及()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递增,即可求出ω的取值范围; (2)根据(1)中ω的取值范围,写出()f x 的解析式,再根据211()()022f x f x --=得出()1f x =或1()2f x =-,再结合在区间,6m π⎛⎫- ⎪⎝⎭上恰有5个实数根,即可求出m 的取值范围. 【详解】(1)()2sin()cos sin(2)f x x x ωϕϕωϕ=+-+2sin()cos sin()cos cos()sin x x x ωϕϕωϕϕωϕϕ=+-+-+ sin()cos cos()sin x x ωϕϕωϕϕ=+-+sin x ω=,()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递增,∴2 32222kk ωπππωπππ⎧≥-+⎪⎪⎨⎪≤+⎪⎩,k Z∈,解得:36142k kω-+≤≤+,k∈Z又0ω>,∴01ω<≤或952ω≤≤,即ω的取值范围为9(0,1],52⎡⎤⋃⎢⎥⎣⎦;(2)由(1)知[]21111,()()()1()0222f x f x f x f xω⎡⎤=--=-+=⎢⎥⎣⎦,解得:()1f x=或1()2f x=-,故在区间,6mπ⎛⎫- ⎪⎝⎭上,sin1x=或1sin2x=-时恰有5个实数根,5个实数根分别为2π,76π,116π,52π,196π.1sin62π⎛⎫-=-⎪⎝⎭,192366mππ∴<≤,即m的取值范围为1923,66ππ⎛⎤⎥⎝⎦.【点睛】方法点睛:已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.24.(1)()sin 26f x x π⎛⎫+ ⎝=⎪⎭;(2)1116.【分析】(1)由顶点及周期可得1A =,2ω=,再由sin 163f ππϕ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭,可得6π=ϕ,从而得解;(2)根据条件得1sin 64πθ⎛⎫+= ⎪⎝⎭,再结合诱导公式和同角三角函数关系可得解. 【详解】(1)由图可知1A =, 由311341264T πππ=-=,得2T ππω==,所以2ω=, 所以()()sin 2f x x ϕ=+, 因为sin 163f ππϕ⎛⎫⎛⎫=+=⎪ ⎪⎝⎭⎝⎭,所以2,32k k Z ππϕπ+=+∈,则2,6k k Z πϕπ=+∈, 因为2πϕ<,所以6π=ϕ, ()sin 26f x x π⎛⎫+ ⎝=⎪⎭,(2)由题意,()sin 6g x x π⎛⎫=+ ⎪⎝⎭,由()14g θ=,得1sin 64πθ⎛⎫+= ⎪⎝⎭, 221143sin sin sin[2()]sin [()]63662πππππθθπθθ⎛⎫⎛⎫-+-=-+++- ⎪ ⎪⎝⎭⎝⎭221111sin()cos ()sin()1sin ()1666641616ππππθθθθ=-+++=-++-+=-+-=.【点睛】方法点睛:确定()sin()(0,0)f x A x B A ωϕω=++>>的解析式的步骤:(1)求A ,B ,确定函数的最大值M 和最小值m ,则2M mA ,2M mB +=; (2)求ω,确定函数的周期T ,则2Tπω=; (3)求ϕ,常用方法有以下2种方法:①代入法:把图象上的一个已知点代入(此时要注意该点在上升区间上还是在下降区间上)或把图象的最高点或最低点代入;②五点法:确定ϕ值时,往往以寻找“五点法”中的特殊点作为突破口.25.(1)3607α⎛⎫= ⎪⎝⎭,5407β⎛⎫= ⎪⎝⎭;(2)45πcm .【分析】(1)根据题中条件,先设()36140k k Z α=⋅∈,()14360m m Z β=⋅∈,再由两只蚂蚁在第2秒时均位于第二象限,0180αβ︒︒<<<,列出不等式求解,得出k 和m 的值,即可得出结果;(2)先设它们从点A 出发后第一次相遇时,所用的时间为t 秒,根据题中条件求出t ,根据弧长的计算公式,即可求出结果. 【详解】(1)由题意可得,14α与14β都是360的整数倍, 不妨设()36140k k Z α=⋅∈,()14360m m Z β=⋅∈,则()1807k k Z α=⋅∈,()1807mm Z β=⋅∈, 又两只蚂蚁在第2秒时均位于第二象限,所以902180902180αβ⎧<<⎨<<⎩,即()()29018018072901801807k k Z m m Z ⎧<⋅<∈⎪⎪⎨⎪<⋅<∈⎪⎩,所以()()77427742k k Z m m Z ⎧<<∈⎪⎪⎨⎪<<∈⎪⎩, 因为0180αβ︒︒<<<,所以k m <,所以2k =,3m =, 即3607α⎛⎫=⎪⎝⎭,5407β⎛⎫= ⎪⎝⎭;(2)两只蚂蚁的爬行速度保持不变,若红蚂蚁从点A 逆时针...匀速爬行,黑蚂蚁同时从点A 顺时针...匀速爬行,设它们从点A 出发后第一次相遇时,所用的时间为t 秒, 则()360t αβ+=,即36054036077t ⎡⎤⎛⎫⎛⎫+=⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦,解得145t =, 所以红蚂蚁爬过的角度为144t α=, 因为圆的半径为1cm , 所以红蚂蚁爬过的距离为1444213605ππ⋅⋅=cm . 【点睛】 关键点点睛:求解本题第一问的关键在于根据任意角的概念以及题中条件,得到14α与14β都是360的整数倍,利用题中所给限制条件:第2秒时均位于第二象限,即可求解.26.(1)()cos 4f x x ππ⎛⎫=+ ⎪⎝⎭ (2)12⎡⎤-⎢⎥⎣⎦(3)154,4,33k k k Z ⎡⎤-+∈⎢⎥⎣⎦ 【分析】(1)由题意可得251244T πω⎛⎫==-⨯ ⎪⎝⎭,得ωπ=,又314f ⎛⎫=- ⎪⎝⎭可求出函数表达式. (2)当[1,2]x ∈时,52444x πππππ≤+≤+,由余弦函数图像可得答案. (3)先根据图象变换求出()g x 的解析式,再根据余弦型函数的单调减区间求解即可.【详解】(1)由题意可得251244T πω⎛⎫==-⨯ ⎪⎝⎭,得ωπ= 所以()()cos f x x πφ=+,又当1534424x +==时,314f ⎛⎫=- ⎪⎝⎭即33cos 144f πφ⎛⎫⎛⎫=+=-⎪⎪⎝⎭⎝⎭,则324k k Z πφππ+=+∈, 所以124k k Z φππ=+∈,, 所以()cos 2cos 44f x x k x πππππ⎛⎫⎛⎫=++=+ ⎪ ⎪⎝⎭⎝⎭(2)当[1,2]x ∈时,52444x πππππ≤+≤+cos 14x ππ⎛⎫≤+≤ ⎪⎝⎭所以当[1,2]x ∈时,()f x 的值域为12⎡⎤-⎢⎥⎣⎦(3)将()f x 的图像向右平移112个单位后可得:cos 6y x ππ⎛⎫=+ ⎪⎝⎭,再将所得图像横坐标伸长到原来的2倍,纵坐标不变得到:()1cos 26g x x ππ⎛⎫=+ ⎪⎝⎭, 由122,26k x k k Z πππππ≤+≤+∈ 1544,33k x k k Z -≤≤+∈所以()g x 的单调递减区间为:154,4,33k k k Z ⎡⎤-+∈⎢⎥⎣⎦。

(易错题)高中数学必修第二册第二单元《复数》检测(包含答案解析)

(易错题)高中数学必修第二册第二单元《复数》检测(包含答案解析)

一、选择题1.已知12,z z C ∈,121z z ==,12z z +=12z z -=( )A .0B .1C D .22.已知复数z 满足()20161i z i -=(其中i 为虚数单位),则z 的虚部为( )A .12B .12-C .12i D .12i -3.在复平面内,复数1i +与13i +分别对应向量OA 和OB ,其中O 为坐标原点,则AB =( )ABC .2D .44.复数z 满足5(3)2i z i ⋅+=-,则z 的虚部是( ) A .12B .12-C .12i -D .12i5.已知复数12z =-,则z z +=( )A .122i -- B .12-+ C .122i + D .122- 6.若复数()234sin 12cos z i θθ=-++为纯虚数,()0,θπ∈,则θ=( )A .6πB .3π C .23π D .3π或23π 7.已知复数2a ii+-是纯虚数(i 是虚数单位),则实数a 等于 A .-2B .2C .12D .-18.已知复数z 满足33z -=,则4z i -(i 为虚数单位)的取值范围为( )A .[]28,B .3⎤⎦C .[]1,9D .[]3,89.已知(,)a bi a b R +∈是11ii+-的共轭复数,则a b +=( ) A .1-B .12-C .12D .110.复数51i i-的虚部是( )A .12B .2i C .12-D .2i -11.设复数z 满足()1i i z +=,则z =( )A .22B .12C .2D .212.若复数z 满足(12)5z i +=,则它的共轭复数z 在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限二、填空题13.已知复数1510z i =+ ,234z i =-,复数z 满足12111z z z =+,则z =_____________.14.棣莫弗公式()cos sin cos sin nx i x nx i nx +=+(i 为虚数单位)是由法国数学家棣莫弗(1667~1754)发现的,根据棣莫弗公式可知,复数6cos sin 77i ππ⎛⎫+ ⎪⎝⎭在复平面内所对应的点位于第______象限.15.若132i ω=+(i 为虚数单位),则3ω=_______. 16.已知复数z 满足()14i z a i +=+(i 为虚数单位),且22z =,则实数a =________.17.复数1cos z i θ=+,2sin z i θ=-,则复数12z z -的模的最大值为________.18.设1x ,2x 是实系数一元二次方程20ax bx c ++=的两个根,若1x 是虚数,212x x 是实数,则24816321111112222221x x x x x x S x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++= ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭______.19.已知复数(,是虚数单位)的对应点在第四象限,且,那么点在平面上形成的区域面积等于____20.若复数 z =21ii-,则3z i + =__________ 三、解答题21.已知复数1z i =-. (1)设25341z z ω=+-+,求ω的值; (2332a ≥+的实数a 的取值范围. 22.已知:复数1z 与2z 在复平面上所对应的点关于y 轴对称,且12(1)(1)z i z i -=+(i 为虚数单位),|1z 2.(I )求1z 的值;(II )若1z 的虚部大于零,且11mz n i z +=+(m ,n ∈R ),求m ,n 的值. 23.已知复数2(1)2(5)3i i z i++-=+.(1)求||z ;(2)若()z z a b i +=+,求实数a ,b 的值.24.写出下列复数的实部与虚部,并指出哪些是实数,哪些是虚数,哪些是纯虚数.4,23i -,0,12i 23-+,5+,7i .25.已知1(3)(?4)z x y y x i =++-,2(42)(53)(,)z y x x y i x y R =--+∈,设12z z z =-,且132z i =+,求复数1z ,2z .26.已知1251034.z i z i =+=-,(1)若12z z ,若在复平面上对应的点分别为A,B ,求AB 对应用的复数 (2)若12111z z z z =+,求【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】利用复数加法、减法和模的运算化简已知条件,由此求得12z z -. 【详解】设12,z a bi z c di =+=+,则()()12z z a c b d i +=+++,()()12z z a c b d i -=-+-. 依题意得:22221,1a b c d +=+=,12z z +=⇒()()223a c b d +++=⇒()222223a b c d ac bd +++++=⇒()21ac bd +=.所以12z z -==1==.故选:B 【点睛】本小题主要考查复数运算,属于中档题.2.B解析:B 【分析】 根据题意求出1122z i =+,即可得到z ,得出虚部. 【详解】20164504=⨯,201641i i ∴==.111122z i i ∴==+-,1122z i ∴=-,z ∴的虚部为12-.故选:B. 【点睛】此题考查复数的运算和概念辨析,易错点在于没能弄清虚部的概念导致选错.3.C解析:C 【分析】利用复数的几何意义、向量的模长公式和坐标运算,即可求解,得到答案. 【详解】因为复数1i +与13i +分别对应向量OA 和OB , 所以向量(1,1)OA =和(1,3)OB =, 所以(0,2)AB OB OA =-=,则202AB AB ===,故选C . 【点睛】本题主要考查了复数的几何意义、向量的模长计算和坐标运算,着重考查了推理能力和计算能力,属于基础题.4.A解析:A 【解析】 【分析】通过5(3)2i z i ⋅+=-计算出z ,从而得到z ,根据虚部的概念即可得结果. 【详解】∵5(3)2i z i ⋅+=-,∴()()()()5232211333322i i i i z i i i i i ----====-+++-, ∴1122z i =+,即z 的虚部是12,故选A. 【点睛】本题主要考查了复数除法的运算,共轭复数的概念,复数的分类等,属于基础题.5.C【解析】分析:首先根据题中所给的复数z ,可以求得其共轭复数,并且可以求出复数的模,代入求得12z z +=+,从而求得结果.详解:根据122z =--,可得12z =-+,且1z ==,所以有1112222z z +=-++=+,故选C.点睛:该题考查的是有关复数的问题,涉及到的知识点有复数的共轭复数、复数的模、以及复数的加法运算,属于基础题目.6.B解析:B 【解析】分析:由题意得到关于sin ,cos θθ的方程组,求解方程组结合题意即可求得三角函数值,由三角函数值即可确定角的大小.详解:若复数()23412z sin cos i θθ=-++为纯虚数,则:234sin 012cos 0θθ⎧-=⎨+≠⎩,即:23sin 41cos 2θθ⎧=⎪⎪⎨⎪≠-⎪⎩, 结合()0,θπ∈,可知:sin 1cos 2θθ⎧=⎪⎪⎨⎪=⎪⎩,故3πθ=. 本题选择B 选项.点睛:本题主要考查纯虚数的概率,三角函数的性质及其应用等知识,意在考查学生的转化能力和计算求解能力.7.C解析:C 【解析】2a i i +-21255a a i -+=+是纯虚数,所以21210,0552a a a -+=≠∴=,选C. 8.A解析:A 【分析】利用复数模长的三角不等式可求得4z i -的取值范围.()()4334z i z i -=-+-,由复数模长的三角不等式可得()()334334334z i z i z i ---≤-+-≤-+-, 即35435z i -≤-≤+,即248z i ≤-≤, 因此,4z i -的取值范围是[]28,. 故选:A. 【点睛】本题考查复数模长的取值范围的计算,考查三角不等式的应用,考查计算能力,属于中等题.9.A解析:A 【解析】 【分析】先利用复数的除法运算法则求出11ii+-的值,再利用共轭复数的定义求出a +bi ,从而确定a ,b 的值,求出a +b . 【详解】()()21(1)21112i i ii i i ++===-+-i , ∴a +bi =﹣i , ∴a =0,b =﹣1, ∴a +b =﹣1, 故选:A . 【点睛】本题主要考查了复数代数形式的乘除运算,考查了共轭复数的概念,是基础题.10.A解析:A 【解析】 【分析】由题意首先化简所给的复数,然后确定其虚部即可. 【详解】由复数的运算法则可知:51i i -()()()1111122i i ii i +==-+-+,则复数51i i-的虚部是12.本题选择A 选项.本题主要考查复数的运算法则,虚部的定义等知识,意在考查学生的转化能力和计算求解能力.11.A解析:A 【解析】由()1i z i +=,得()()()i 1i i 11i 1i 1i 1i 22z -=+++-==,2z ∴==故选A . 12.A解析:A 【分析】根据复数的除法运算法则,可得12z i =-,求得12z i =+,结合复数的几何意义,即可求解. 【详解】由题意,复数z 满足(12)5z i +=,可得51212z i i==-+, 所以12z i =+,它在复平面内对应的点为(1,2)在第一象限.故选:A. 【点睛】本题主要考查了复数的除法运算法则,以及共轭复数的概念和复数的几何意义,其中解答中熟记复数的除法的运算法则,准确化简、运算是解答的关键,着重考查推理与运算能力.二、填空题13.【分析】根据复数的四则运算公式求得再结合复数的模的计算公式即可求解【详解】由题意复数则所以所以故答案为:【点睛】本题主要考查了复数的四则运算以及复数模的计算其中解答中熟记复数的四则运算公式以及复数模【分析】根据复数的四则运算公式,求得552z i =-,再结合复数的模的计算公式,即可求解. 【详解】由题意,复数1510z i =+ ,234z i =-,则()()()()1211111510344251034510510343425i i i z z z i i i i i i -++=+=+=+=+-+--+,所以()()()254225554242422i z i i i i ⨯-===-++-,所以2z ==.. 【点睛】本题主要考查了复数的四则运算,以及复数模的计算,其中解答中熟记复数的四则运算公式,以及复数模的计算公式,准确运算是解答的关键,着重考查推理与运算能力.14.二【分析】先根据棣莫弗公式得再根据三角函数确定符号根据复数集合意义得答案【详解】由得∵∴∴复数在复平面内所对应的点位于第二象限故答案为:二【点睛】本题考查复数的几何意义三角函数符号的判断是中档题解析:二 【分析】先根据棣莫弗公式得666cos sin cos sin 7777i i ππππ⎛⎫++ ⎪=⎝⎭,再根据三角函数确定符号,根据复数集合意义得答案. 【详解】 由()cos sin cos sin nx i x nx i nx +=+,得666cos sin cos sin7777i i ππππ⎛⎫++ ⎪=⎝⎭, ∵627πππ<<,∴6cos 07π<,6sin 07π>, ∴复数6cos sin 77i ππ⎛⎫+ ⎪⎝⎭在复平面内所对应的点位于第二象限.故答案为:二. 【点睛】本题考查复数的几何意义,三角函数符号的判断,是中档题.15.-1【分析】先把转化为复数的三角形式再利用复数三角形式乘法运算法则进行解题即可【详解】解:复数对应的点在第一象限则所以所以所以故答案为:-1【点睛】本题主要考查由复数的代数形式转化为复数三角形式以及解析:-1 【分析】先把122ω=+转化为复数的三角形式,再利用复数三角形式乘法运算法则进行解题即可. 【详解】解:复数122ω=+对应的点在第一象限,则1r ==,1cos 2θ=,所以arg 3z π=,所以1cos isin 2233i ππω=+=+, 所以33cos sin cos isin 133333333i ππππππππω⎛⎫⎛⎫⎛⎫=+=+++++=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:-1. 【点睛】本题主要考查由复数的代数形式转化为复数三角形式以及复数三角形式的乘法运算法则,属于基础题.16.0【分析】先化简再利用建立方程最后解得实数的值【详解】解:∵∴∵∴解得:故答案为:0【点睛】本题考查复数的运算复数的几何意义求参数是基础题解析:0 【分析】先化简4422a a z i +-=+,再利用z ==后解得实数a 的值. 【详解】解:∵ ()14i z a i +=+, ∴ ()()4(1)4(4)(4)4411(1)222a i i a i a a i a a z i i i i +-+++-+-====+++-∵z =,∴ z ==解得:0a =, 故答案为:0. 【点睛】本题考查复数的运算,复数的几何意义求参数,是基础题.17.【分析】先求再求模将其转化为角度的函数从而求最大值【详解】由题意可得因为故的最大值为故答案为:【点睛】考查向量的减法模的计算以及函数的最大值属综合基础题【分析】先求12z z -,再求模,将其转化为角度的函数,从而求最大值. 【详解】由题意可得12cos sin 2z z i θθ-=-+,12z z -==,因为45sin 26θ-, 故12z z -.. 【点睛】考查向量的减法、模的计算以及函数的最大值.属综合基础题.18.-2【分析】设(s )则则利用是实数可得于是取则代入化简即可得出【详解】设(s )则则∵是实数∴∴∴∴∴取则∴则故答案为:【点睛】本题考查了实系数一元二次方程的虚根成对定理考查了复数的概念考查了复数的性解析:-2 【分析】设1i x s t =+(s ,t ∈R ,0t ≠).则2i x s t =-.则122x x s +=,2212x x s t =+.利用212x x 是实数,可得223s t =.于是122x x s +=,2212x x s t =+.2112210x x x x ⎛⎫++= ⎪⎝⎭,取12x x ω=,则210ωω++=,31ω=.代入化简即可得出. 【详解】设1i x s t =+(s ,t ∈R ,0t ≠).则2i x s t =-.则122x x s +=,2212x x s t =+.∵()223223122222i 33i i s t x s st s t t x s t s t s t+--==+-++是实数, ∴2330s t t -=, ∴223s t =.∴122x x s +=,2212x x s t =+.∴()22221212121242s x x x x x x x x =+=++=,∴122110x x x x ++=, 取12x x ω=, 则210ωω++=, ∴31ω=. 则2481632248163211111122222211x x x x x x S x x x x x x ωωωωωω⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++++=++++++ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ 220ωωωω=++++2=-.故答案为:2-.【点睛】本题考查了实系数一元二次方程的虚根成对定理,考查了复数的概念,考查了复数的性质210ωω++=,属于中档题.19.π【分析】先把复数分母有理化再根据z 在第四象限和|z|≤2可得关于xy 的不等式组进而可得点P 在平面上形成的区域面积【详解】由题得z=x+yi1+i=x+y+(y-x)i2z 在第四象限则有x+y2>0解析:【分析】先把复数分母有理化,再根据z 在第四象限和,可得关于x ,y 的不等式组,进而可得点P 在平面上形成的区域面积.【详解】 由题得,z 在第四象限,则有,整理得,由得,化简得,则点在不等式组所表示的平面区域内,如图阴影部分:则其面积.【点睛】本题考查复数的运算和复数的模,与线性规划相结合,有一定综合性.20.【解析】分析:先化简复数z 再求再求 的值详解:由题得所以故答案为:点睛:(1)本题主要考查复数的运算共轭复数和复数的模的计算意在考查学生对这些知识的掌握水平和基本的运算能力(2)复数的共轭复数【解析】分析:先化简复数z,再求3z i +,再求3z i + 的值. 详解:由题得2i 2i(1i)22i 1i 1i (1i)(1i)2z +-+====-+--+,所以31312,3z i i i i z i +=--+=-+∴+==点睛:(1)本题主要考查复数的运算、共轭复数和复数的模的计算,意在考查学生对这些知识的掌握水平和基本的运算能力.(2) 复数(,)z a bi a b R =+∈的共轭复数,z a bi =-||z =三、解答题21.(1)5i ;(2)1(2,][1,)6-+∞.【分析】 (1)将复数1z i =-代入25341z z ω=+-+,利用复数乘方运算以及除法运算法则,计算化简即可,解题过程注意避免出现计算错误;(2)将复数1z i =-≥,转化为一元二次不等式求解即可,解题过程注意考虑二次根式的有意义的条件.【详解】(1)1z i =-.()()255314311211i i i i ω∴=++-=+---+ ()()()512311212i i i i +=+--+ 12315i i i =++-=;(2|1|a a i +-≥3≥, 即()2231220a a a a ⎧⎡⎤+-≥+⎪⎣⎦⎨⎪+>⎩,整理得26710a a -+≥且2a >-,解得126a -<≤或1a ≥, 所以实数a 的取值范围是[)12,1,6⎛⎤-⋃+∞ ⎥⎝⎦. 【点睛】本题综合考查复数的运算法则的应用,考查了复数的模的公式,同时考查一元二次不等式的解法,考查了运算求解能力,属于中档题.22.(I )11z i =-或11z i =-+(II )4,1m n =-=【分析】(I )设1z x yi =+,得出2z 的表达式,根据12(1)(1)z i z i -=+和1z =方程组求得,x y 的值,进而求得1z 的值.(II )根据(I )的结论确定1z 的值.代入11m z n i z +=+运算化简,根据复数相等的条件列方程组,解方程组求得,m n 的值. 【详解】解:(I )设1z x yi =+(x ,y ∈R ),则2z =-x+yi ,∵z 1(1-i )=2z (1+i ),|1z ,∴22()(1)()(1)2x yi i x yi i x y +-=-++⎧⎨+=⎩, ∴11x y =⎧⎨=-⎩或11x y =-⎧⎨=⎩,即11z i =-或11z i =-+ (II )∵1z 的虚部大于零,∴11z i =-+,∴11z i =--,则有(1)1m i n i i +--=+-+,∴12112m n m ⎧--=⎪⎪⎨⎪--=⎪⎩,∴41m n =-⎧⎨=⎩. 【点睛】本小题主要考查复数的概念,考查复数的模、复数相等、复数的虚部等知识,属于基础题. 23.(1;(2)7a =-,13b =-.【解析】试题分析:(1)利用复数的计算法则将其化简,即可求得z ;(2)利用复数的计算法则将等号左边化简,再根据等号左右两边实部虚部相等即可求解.试题(1)∵21021010(3)33310i i i z i i i +--====-++,∴z = (2)∵2(3)(3)(3)(3)83(6)i i a i i a a a i b i --+=-+-=+-+=+,∴837{{(6)113a b a a b +==-⇒-+==-. 考点:复数的计算.24.见解析【分析】形如(,)a bi a b R +∈的数叫复数,其中,a b 分别是它的实部和虚部,据此可得到各个复数的实部和虚部;(,)a bi a b R +∈,若0b =,则a bi +为实数,若0b ≠,则a bi +是虚数,若0,0a b =≠,则a bi +为纯虚数.【详解】4,23i -,0,1122-+i ,5+,7i 的实部分别是4,2,0,12-,5,0;4,23i -,0,1122-+i ,5+,7i 的虚部分别是0,3-,0,127. 其中,4,0是实数;23i -,1122-+i ,5,7i 是虚数; 7i 是纯虚数.【点睛】该题主要考查的是复数的基本概念,解答该题的关键是熟悉复数的概念.25.1z =59,i -287.z i =--【分析】明确复数1z ,2z 的实部与虚部,结合加减法的运算规则,即可求出复数z ,从而用,x y 表示出z ,接下来根据复数相等的充要条件列出关于,x y 的方程组求解,即可得出1z ,2z .【详解】∵12z z z =- ()()()()344253x y y x i y x x y i =++---++ ()()342x y y x ⎡⎤=+--⎣⎦ ()()453y x x y i ⎡⎤+-++⎣⎦ ()()534x y x y i =-++. ∴()()534z x y x y i =--+.又∵132z i =+∴531342x y x y -=⎧⎨+=-⎩∴21x y =⎧⎨=-⎩∴()()1321142z i =⨯-+--⨯ 59,i =-∴()()24122523187.z i i ⎡⎤⎡⎤=⨯--⨯-⨯+⨯-=--⎣⎦⎣⎦【点睛】本题主要考查复数代数形式的加减运算、共轭复数的定义以及复数相等的充要条件,属于中档题.复数相等的性质是:若两复数相等则它们的实部与虚部分别对应相等.26.(1)214i --(2)552i -【详解】 (1)()()2134i 510i 214.AB z z i =-=--+=--所以AB 对应用的复数为214i --. (2)由题得121212111z z z z z z z +=+= 1212552z z z i z z ∴==-+。

高一数学易错试题及答案

高一数学易错试题及答案

高一数学易错试题及答案一、选择题1. 已知函数f(x)=2x^2+3x-5,下列说法正确的是()A. 函数在x=-1处有最小值B. 函数在x=-1处有最大值C. 函数在x=-1处无极值D. 函数在x=-1处取得最小值答案:A2. 集合A={1,2,3},集合B={2,3,4},则A∩B等于()A. {1,2,3}B. {2,3}C. {1,4}D. {4}答案:B二、填空题1. 若直线y=2x+1与直线y=-x+4平行,则它们的斜率之比为______。

答案:12. 函数y=x^3-3x^2+4x-5的导数是______。

答案:3x^2-6x+4三、解答题1. 已知等差数列{an}的前三项依次为a1, a2, a3,且a1+a3=10,a2=6,求数列的通项公式。

答案:设等差数列的公差为d,则有a1+a1+2d=10,a1+d=6。

解得a1=4,d=2。

因此,数列的通项公式为an=4+2(n-1)=2n+2。

2. 已知函数f(x)=x^2-4x+3,求函数在区间[1,3]上的最大值和最小值。

答案:函数f(x)=x^2-4x+3的对称轴为x=2,且函数开口向上。

在区间[1,3]上,函数在x=1处取得最小值f(1)=0,在x=3处取得最大值f(3)=2。

四、证明题1. 已知三角形ABC中,角A、B、C的对边分别为a、b、c,且满足a^2+b^2=c^2,求证:三角形ABC是直角三角形。

答案:由题意知,a^2+b^2=c^2,根据勾股定理的逆定理,若三角形的三边满足a^2+b^2=c^2,则三角形ABC是直角三角形,其中角C为直角。

因此,三角形ABC是直角三角形。

(完整)高一数学必修一易错题集锦答案

(完整)高一数学必修一易错题集锦答案

高一数学必修一易错题集锦答案1. 已知集合M={y |y =x 2+1,x∈R },N={y|y =x +1,x∈R },则M∩N=( )解:M={y |y =x 2+1,x∈R }={y |y ≥1}, N={y|y=x +1,x∈R }={y|y∈R }.∴M∩N={y |y ≥1}∩{y|(y∈R)}={y |y ≥1},注:集合是由元素构成的,认识集合要从认识元素开始,要注意区分{x |y =x 2+1}、{y |y =x 2+1,x ∈R }、{(x ,y )|y =x 2+1,x ∈R },这三个集合是不同的.2 .已知A={x |x 2-3x +2=0},B={x |ax -2=0}且A∪B=A,求实数a 组成的集合C . 解:∵A∪B=A ∴B A 又A={x |x 2-3x +2=0}={1,2}∴B=或{}{}21或∴C={0,1,2}3 。

已知m ∈A,n ∈B, 且集合A={}Z a a x x ∈=,2|,B={}Z a a x x ∈+=,12|,又C={}Z a a x x ∈+=,14|,则有:m +n ∈ (填A,B,C 中的一个)解:∵m ∈A, ∴设m =2a 1,a 1∈Z , 又∵n B ∈,∴n =2a 2+1,a 2∈ Z ,∴m +n =2(a 1+a 2)+1,而a 1+a 2∈ Z , ∴m +n ∈B 。

4 已知集合A={x|x 2-3x -10≤0},集合B={x|p +1≤x≤2p-1}.若B A ,求实数p 的取值范围.解:①当B≠时,即p +1≤2p-1p≥2.由B A 得:-2≤p+1且2p -1≤5. 由-3≤p≤3.∴ 2≤p≤3②当B=时,即p +1>2p -1p <2.由①、②得:p≤3.点评:从以上解答应看到:解决有关A∩B=、A∪B=,A B 等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中要全方位、多角度审视问题.5 已知集合A={a,a +b,a +2b},B={a,ac,ac 2}.若A=B ,求c 的值.分析:要解决c 的求值问题,关键是要有方程的数学思想,此题应根据相等的两个集合元素完全相同及集合中元素的确定性、互异性,无序性建立关系式.解:分两种情况进行讨论.(1)若a +b=ac 且a +2b=ac 2,消去b 得:a +ac 2-2ac=0,a=0时,集合B 中的三元素均为零,和元素的互异性相矛盾,故a≠0.∴c 2-2c +1=0,即c=1,但c=1时,B 中的三元素又相同,此时无解.(2)若a +b=ac 2且a +2b=ac ,消去b 得:2ac 2-ac -a=0,∵a≠0,∴2c 2-c -1=0,即(c -1)(2c +1)=0,又c≠1,故c=-21.点评:解决集合相等的问题易产生与互异性相矛盾的增解,这需要解题后进行检验. 6 设A 是实数集,满足若a∈A,则a -11∈A ,1≠a 且1∉A.⑴若2∈A,则A 中至少还有几个元素?求出这几个元素⑵A 能否为单元素集合?请说明理由.⑶若a∈A,证明:1-a 1∈A.⑷求证:集合A 中至少含有三个不同的元素.解:⑴2∈A ⇒ -1∈A ⇒ 21∈A ⇒ 2∈A∴ A 中至少还有两个元素:-1和21⑵如果A 为单元素集合,则a =a -11即12+-a a =0该方程无实数解,故在实数范围内,A 不可能是单元素集⑶a∈A ⇒ a -11∈A ⇒ a--1111∈A ⇒111---a a∈A ,即1-a 1∈A⑷由⑶知a∈A 时,a -11∈A, 1-a 1∈A .现在证明a,1-a 1, a -11三数互不相等.①若a=a -11,即a2-a+1=0 ,方程无解,∴a ≠a -11②若a=1-a 1,即a 2-a+1=0,方程无解∴a ≠1-a 1③若1-a 1 =a -11,即a2-a+1=0,方程无解∴1-a 1≠a -11.综上所述,集合A 中至少有三个不同的元素.点评:⑷的证明中要说明三个数互不相等,否则证明欠严谨.7 设M ={a ,b ,c },N ={-2,0,2},求(1)从M 到N 的映射种数;(2)从M 到N 的映射满足 f (a)>f (b)≥f(c),试确定这样的映射f 的种数. 解:(1)由于M ={a ,b ,c },N ={-2,0,2},结合映射的概念,有一共有27个映射(2)符合条件的映射共有4个0222,2,2,0,0,2220a a a ab b b bc c c c →→→→⎧⎧⎧⎧⎪⎪⎪⎪→-→-→→⎨⎨⎨⎨⎪⎪⎪⎪→-→-→-→⎩⎩⎩⎩8.已知函数()f x 的定义域为[0,1],求函数(1)f x +的定义域解:由于函数()f x 的定义域为[0,1],即01x ≤≤∴(1)f x +满足011x ∴≤+≤ 10x -≤≤,∴(1)f x +的定义域是[-1,0]9根据条件求下列各函数的解析式:(1)已知()f x 是二次函数,若(0)0,(1)()1f f x f x x =+=++,求()f x .(2)已知1)f x x x =+,求()f x(3)若()f x 满足1()2(),f x f ax x +=求()f x解:(1)本题知道函数的类型,可采用待定系数法求解设()f x =2(0)ax bx c a ++≠由于(0)0f =得2()f x ax bx =+,又由(1)()1f x f x x +=++,∴22(1)(1)1a x b x ax bx x +++=+++即 22(2)(1)1ax a b x a b ax b x ++++=+++211021a b b a a b a b +=+⎧⎪∴≠∴==⎨⎪+=⎩ 因此:()f x =21122x x +(2)本题属于复合函数解析式问题,可采用换元法求解设22()(1)2(1)1(1)f u u u u u ∴=-+-=-≥∴()f x =21x - (1x ≥)(3)由于()f x 为抽象函数,可以用消参法求解用1x 代x 可得:11()2(),f f x a x x +=与 1()2()f x f ax x +=联列可消去1()f x 得:()f x =233a axx -.点评:求函数解析式(1)若已知函数()f x 的类型,常采用待定系数法;(2)若已知[()]f g x 表达式,常采用换元法或采用凑合法;(3)若为抽象函数,常采用代换后消参法. 10 已知x y x 62322=+,试求22y x +的最大值.分析:要求22y x +的最大值,由已知条件很快将22y x +变为一元二次函数,29)3(21)(2+--=x x f 然后求极值点的x 值,联系到02≥y ,这一条件,既快又准地求出最大值.解 由 x y x 62322=+得.20,0323,0.3232222≤≤∴≥+-∴≥+-=x x x y xx y 又,29)3(2132322222+--=+-=+x x x x y x∴当2=x 时,22y x +有最大值,最大值为.429)32(212=+--点评:上述解法观察到了隐蔽条件,体现了思维的深刻性.大部分学生的作法如下:由 x y x 62322=+得 ,32322x x y +-=1(0),1(1)u x x x u u =+≥=-≥,29)3(2132322222+--=+-=+∴x x x x y x ∴当3=x 时,22y x +取最大值,最大值为29 这种解法由于忽略了02≥y 这一条件,致使计算结果出现错误.因此,要注意审题,不仅能从表面形式上发现特点,而且还能从已知条件中发现其隐蔽条件,既要注意主要的已知条件,又要注意次要条件,甚至有些问题的观察要从相应的图像着手,这样才能正确地解题.. 11设()f x 是R 上的函数,且满足(0)1,f =并且对任意的实数,x y 都有()()(21)f x y f x y x y -=--+,求()f x 的表达式.解法一:由(0)1,f =()()(21)f x y f x y x y -=--+,设x y =,得(0)()(21)f f x x x x =--+,所以()f x =21x x ++解法二:令0x =,得(0)(0)(1)f y f y y -=--+即()1(1)f y y y -=--+又将y -用x 代换到上式中得()f x =21x x ++点评:所给函数中含有两个变量时,可对这两个变量交替用特殊值代入,或使这两个变量相等代入,再用已知条件,可求出未知的函数.具体取什么特殊值,根据题目特征而定. 12判断函数1()(1)1xf x x x -=++.解:1()(1)1x f x x x -=++有意义时必须满足10111xx x -≥⇒-<≤+即函数的定义域是{x |11x -<≤},由于定义域不关于原点对称,所以该函数既不是奇函数也不是偶函数13 判断22()log (1)f x x x =++的奇偶性.正解:方法一:∵)1(log )1)((log )(2222++-=+-+-=-x x x x x f =11log 22++x x =)1(log22++-x x =-)(x f ∴)(x f 是奇函数方法二:∵)1(log )1(log )()(2222++-+++=-+x x x x x f x f =01log )1()1[(log 2222==++-⋅++x x x x)()(x f x f -=- ∴)(x f 是奇函数14函数y=245x x --的单调增区间是_________. 解:y=245x x --的定义域是[5,1]-,又2()54g x x x =--在区间[5,2]--上增函数,在区间[2,1]-是减函数,所以y=245x x --的增区间是[5,2]--15已知奇函数f (x )是定义在(-3,3)上的减函数,且满足不等式f (x -3)+f (x 2-3)<0,求x 的取值范围.解:由⎩⎨⎧<<-<<⎩⎨⎧<-<-<-<-66603333332x x x x 得,故0<x<6,又∵f (x )是奇函数,∴f (x -3)<-f (x 2-3)=f (3-x 2),又f (x )在(-3,3)上是减函数,∴x -3>3-x 2,即x 2+x -6>0,解得x >2或x <-3,综上得2<x <6,即A ={x |2<x <6}, 16 作出下列函数的图像(1)y=|x-2|(x +1);(2)|lg |10x y =.分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.在变换函数解析式中运用了转化变换和分类讨论的思想.解:(1)当x ≥2时,即x-2≥0时,当x <2时,即x-2<0时,所以⎪⎪⎩⎪⎪⎨⎧<+--≥--=)2(49)21()2(49)21(22x x x x y这是分段函数,每段函数图像可根据二次函数图像作出(见图)(2)当x ≥1时,lgx ≥0,y =10lgx=x ;当0<x <1时,lgx <0,所以这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图)点评:作不熟悉的函数图像,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x ,y 的变化范围.因此必须熟记基本函数的图像.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数、反三角函数的图像.17若f(x)= 21++x ax 在区间(-2,+∞)上是增函数,求a 的取值范围解:设12121212112,()()22ax ax x x f x f x x x ++-<<-=-++12211212121221121122121212(1)(2)(1)(2)(2)(2)(22)(22)(2)(2)22(21)()(2)(2)(2)(2)ax x ax x x x ax x ax x ax x ax x x x ax x ax x a x xx x x x ++-++=+++++-+++=++--+--==++++由f (x )=21++x ax 在区间(-2,+∞)上是增函数得12()()0f x f x -<210a ∴-> ∴a >21点评:有关于单调性的问题,当我们感觉陌生,不熟悉或走投无路时,回到单调性的定义上去,往往给我们带来“柳暗花明又一村”的感觉.18已知函数f (x )在(-1,1)上有定义,f (21)=-1,当且仅当0<x <1时f (x )<0,且对任意x 、y ∈(-1,1)都有f (x )+f (y )=f (xy yx ++1),试证明:(1)f (x )为奇函数;(2)f (x )在(-1,1)上单调递减解:证明:(1)由f (x )+f (y )=f (xy yx ++1),令x =y =0,得f (0)=0,令y =-x ,得f (x )+f (-x )=f (21x xx --)=f (0)=0.∴f (x )=-f (-x ).∴f (x )为奇函数.(2)先证f (x )在(0,1)上单调递减.令0<x 1<x 2<1,则f (x 2)-f (x 1)=f (x 2)+f (-x 1)=f (21121x x x x --)∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0,又(x 2-x 1)-(1-x 2x 1)=(x 2-1)(x 1+1)<0∴x 2-x 1<1-x 2x 1,∴0<12121x x x x --<1,由题意知f (21121x x x x --)<0,即f (x 2)<f (x 1).∴f (x )在(0,1)上为减函数,又f (x )为奇函数且f (0)=0.∴f (x )在(-1,1)上为减函数.点评:本题知识依托:奇偶性及单调性定义及判定、赋值法及转化思想.对函数的奇偶性、单调性的判定以及运算能力和逻辑推理能力要求较高. 如果“赋值”不够准确,运算技能不过关,结果很难获得. 对于(1),获得f (0)的值进而取x =-y 是解题关键;对于(2),判定21121x x x x --的范围是解题的焦点.19已知18log 9,185,ba ==求36log 45解:∵185,b =∴18log 5b =∴1818183621818181818log 45log 5log 9log 451818log 36log 4log 92log ()2log ()99b ab a b a aa a++++=====+-++20知)2(log ax y a -=在[0,1]上是x 的减函数,则a 的取值范围是 解:∵)2(log ax y a -=是由u y a log =,ax u -=2复合而成,又a >0∴ax u -=2在[0,1]上是x 的减函数,由复合函数关系知u y a log =应为增函数,∴a >1又由于x 在[0,1]上时 )2(log ax y a -=有意义,ax u -=2又是减函数,∴x =1时,ax u -=2取最小值是a u -=2min >0即可, ∴a <2综上可知所求的取值范围是1<a <221已知函数()log (3)a f x ax =-.(1)当[0,2]x ∈时()f x 恒有意义,求实数a 的取值范围.(2)是否存在这样的实数a 使得函数()f x 在区间[1,2]上为减函数,并且最大值为1,如果存在,试求出a 的值;如果不存在,请说明理由.分析:函数()f x 为复合函数,且含参数,要结合对数函数的性质具体分析找到正确的解题思路,是否存在性问题,分析时一般先假设存在后再证明.解:(1)由假设,ax -3>0,对一切[0,2]x ∈恒成立,0,1a a >≠显然,函数g(x)= ax -3在[0,2]上为减函数,从而g(2)=32a ->0得到a <32∴a 的取值范围是(0,1)∪(1,32)(2)假设存在这样的实数a ,由题设知(1)1f =,即(1)log (3)a f a =-=1∴a =32此时3()log (3)2a f x x =-当2x =时,()f x 没有意义,故这样的实数不存在.点评:本题为探索性问题,应用函数、方程、不等式之间的相互转化,存在性问题一般的处理方法是先假设存在,结合已知条件进行推理和等价转化,若推出矛盾,说明假设不成立.即不存在,反之没有矛盾,则问题解决.22已知函数f (x )=1421lg 2+-⋅++a a ax x , 其中a 为常数,若当x ∈(-∞, 1]时, f (x )有意义,求实数a 的取值范围.分析:参数深含在一个复杂的复合函数的表达式中,欲直接建立关于a 的不等式(组)非常困难,故应转换思维角度,设法从原式中把a 分离出来,重新认识a 与其它变元(x )的依存关系,利用新的函数关系,常可使原问题“柳暗花明”. 解:14212+-⋅++a a ax x >0, 且a 2-a +1=(a -21)2+43>0,∴ 1+2x +4x ·a >0, a >)2141(x x +-,当x ∈(-∞, 1]时, y =x 41与y =x 21都是减函数,∴ y =)2141(x x +-在(-∞, 1]上是增函数,)2141(x x +-max =-43,∴ a >-43, 故a 的取值范围是(-43, +∞).点评:发掘、提炼多变元问题中变元间的相互依存、相互制约的关系、反客为主,主客换位,创设新的函数,并利用新函数的性质创造性地使原问题获解,是解题人思维品质高的表现.本题主客换位后,利用新建函数y =)2141(x x +-的单调性转换为函数最值巧妙地求出了实数a 的取值范围.此法也叫主元法.23若1133(1)(32)a a --+<-,试求a 的取值范围.解:∵幂函数13y x -=有两个单调区间,∴根据1a +和32a -的正、负情况,有以下关系10320.132a a a a +>⎧⎪->⎨⎪+>-⎩① 10320.132a a a a +<⎧⎪-<⎨⎪+>-⎩② 10.320a a +<⎧⎨->⎩③解三个不等式组:①得23<a <32,②无解,③a <-1∴a 的取值范围是(-∞,-1)∪(23,32)点评:幂函数13y x -=有两个单调区间,在本题中相当重要,不少学生可能在解题中误认为132a a +>-,从而导致解题错误.24 已知a>0 且a ≠1 ,f (log a x ) = 12-a a(x -x 1)(1)求f(x);(2)判断f(x)的奇偶性与单调性;(3)对于f(x) ,当x ∈(-1 , 1)时 , 有f( 1-m ) +f (1- m 2 ) < 0 ,求m 的集合M . 分析:先用换元法求出f(x)的表达式;再利用有关函数的性质判断其奇偶性和单调性;然后利用以上结论解第三问.解:(1)令t=log a x(t ∈R),则).(),(1)(),(1)(,22R x a a a a x f a a a a t f a x xx t t t ∈--=∴--==--,101,.)(,10,)(,01,1.)(,),()(1)()2(22<<><<-=>->∴∈-=--=---a a x f a a a x u a aa x f R x x f a a a a x f x x x x 或无论综上为增函数类似可判断时当为增函数时当为奇函数且f(x)在R 上都是增函数.)1,1().1()1(,)(,0)1()1()3(22-∈-<-∴<-+-x m f m f R x f m f m f 又上是增函数是奇函数且在.211111111122<<⇒⎪⎩⎪⎨⎧-<-<-<-<-<-∴m m m m m点评:对含字母指数的单调性,要对字母进行讨论.对本例的③不需要代入f (x )的表达式可求出m 的取值范围,请同学们细心体会.25已知函数2()3f x x ax a =++-若[2,2]x ∈-时,()f x ≥0恒成立,求a 的取值范围. 解:设()f x 的最小值为()g a(1)当22a-<-即a >4时,()g a =(2)f -=7-3a ≥0,得73a ≤故此时a 不存在;(2) 当[2,2]2a-∈-即-4≤a ≤4时,()g a =3-a -24a ≥0,得-6≤a ≤2又-4≤a ≤4,故-4≤a ≤2;(3)22a->即a <-4时,()g a =(2)f =7+a ≥0,得a ≥-7,又a <-4故-7≤a <-4综上,得-7≤a ≤226已知210mx x ++=有且只有一根在区间(0,1)内,求m 的取值范围. 解:设2()1f x mx x =++,(1)当m =0时方程的根为-1,不满足条件.(2)当m ≠0∵210mx x ++=有且只有一根在区间(0,1)内又(0)f =1>0∴有两种可能情形①(1)0f <得m <-2 或者②1(1)02f m =-且0<<1得m 不存在综上所得,m <-227.是否存在这样的实数k ,使得关于x 的方程x 2+(2k -3)x -(3k -1)=0有两个实数根,且两根都在0与2之间?如果有,试确定k 的取值范围;如果没有,试说明理由.解:令2()(23)(31)f x x k x k =+---那么由条件得到2(23)4(31)0(0)130(2)42(23)(31)023022k k f k f k k k ⎧∆=-+-≥⎪=->⎪⎪⎨=+--->⎪-⎪<<⎪⎩即24501313722k k k k ⎧+≥⎪⎪<⎪⎨>⎪⎪<<⎪⎩即此不等式无解即不存在满足条件的k 值.28已知二次函数2()f x ax bx c =++对于x 1、x 2∈R ,且x 1<x 2时12()()f x f x ≠,求证:方程()f x =121[()()]2f x f x +有不等实根,且必有一根属于区间(x 1,x 2).解:设F (x )=()f x -121[()()]2f x f x +,则方程 ()f x =121[()()]2f x f x + ①与方程 F (x )=0 ② 等价 ∵F (x 1)=1()f x -121[()()]2f x f x +=121[()()]2f x f x - F (x 2)=2()f x -121[()()]2f x f x +=121[()()]2f x f x -+∴ F (x 1)·F (x 2)=-2121[()()]4f x f x -,又12()()f x f x ≠∴F (x 1)·F (x 2)<0故方程②必有一根在区间(x 1,x 2)内.由于抛物线y =F (x )在x 轴上、下方均有分布,所以此抛物线与x 轴相交于两个不同的交点,即方程②有两个不等的实根,从而方程①有两个不等的实根,且必有一根属于区间(x 1,x 2).点评:本题由于方程是()f x =121[()()]2f x f x +,其中因为有()f x 表达式,所以解题中有的学生不理解函数图像与方程的根的联系,误认为证明()f x 的图像与x 轴相交于两个不同的点,从而证题中着眼于证1()f x 2()f x <0,使本题没法解决. 本题中将问题转化为F (x )=()f x -121[()()]2f x f x +的图像与x 轴相交于两个不同的两点是解题的关健所在. 29试确定方程322420x x x --+=最小根所在的区间,并使区间两个端点是两个连续的整数.分析:只要构造函数()f x =32242x x x --+,计算()f x 的自变量x 取整数值时的函数值,根据其符号,确定方程根的个数及根的分布. 解:令()f x =32242x x x --+∵(3)f -=-54-9+12+2=-49<0 (2)f -=-16-4+8+2=-10<0 (1)f -=-2-1+4+2=3>0,,(0)f =0-0-0+2=2>0 (1)f =2-1-4+2=-1<0, (2)f =16-4-8+2=6>0根据(2)f -·(1)f -<0,(0)f ·(1)f <0,(1)f ·(2)f <0 可知()f x 的零点分别在区间(-2,-1),(0,1),(1,2)内.因为方程是一个一元三次方程,所以它最多有三个根,所以原方程的最小根在区间(-2,-1)内.点评:计算一元高次函数值可借助于计算器来完成,在实数范围内一元n 次方程最多有n 个实根,当然本题也可以用因式分解方法来解.32242x x x --+221(21)2(21)2()(2)212()(2)(2)2x x x x x x x x =---=--=-所以32242x x x --+=0有三个根:12,22-30设二次函数2()(0),f x ax bx c a =++>方程0)(=-x x f 的两个根21,x x ,满足0<21x x <a1<. (1)当),0(1x x ∈时,证明1)(x x f x <<;(2)设函数2()(0),f x ax bx c a =++>的图像关于直线0x x =对称,证明:210x x <. 分析:(1)用作差比较法证明不等式1)(x x f x <<;(2)函数2()(0),f x ax bx c a =++>图像关于直线0x x =对称,实际直线0x x =就是二次函数的对称轴,即abx 20-=,然后用已知条件证明不等式即可. 证明:(1)依题意,设))(()()(21x x x x a x x f x F --=-= 当),0(1x x ∈时,由于21x x <,∴0))((21>--x x x x ,又0>a ∴))(()()(21x x x x a x x f x F --=-=>0即)(x f x <)1)(()1)(()()]([)(2121111ax x x ax ax x x x F x x x F x x x f x -->-+-=--=+-=-∵0<21x x x <<a1<.∴01,021>->-ax x x ∴0)(1>-x f x 综合得1)(x x f x << (2)依题意知a b x 20-=,又ab x x 121--=+ ∴aax ax a x x a a bx 2121)(221210-+=-+=-=∵,012<-ax ∴22110x a ax x =<点评:解决本题的关健有三:一是用作差比较法证明不等式;二是正确选择二次函数的表达式,即本题选用两根式表示;三要知道二次函数的图像关于直线对称,此直线为二次函数的对称轴,即ab x 20-= 31已知函数0)1(),1(2)(2=<<++=f b c c bx x x f ,且方程01)(=+x f 有实根. (1)求证:-3<c ≤-1,b ≥0.(2)若m 是方程01)(=+x f 的一个实根,判断)4(-m f 的正负并加以证明 分析:(1)题中条件涉及不等关系的有1<<b c 和方程01)(=+x f 有实根.及一个等式0)1(=f ,通过适当代换及不等式性质可解得;(2)本小题只要判断)4(-m f 的符号,因而只要研究出4-m 值的范围即可定出)4(-m f 符号. (1)证明:由0)1(=f ,得1+2b+c=0,解得21+-=c b ,又1<<b c , 1c c >+->21解得313-<<-c , 又由于方程01)(=+x f 有实根,即0122=+++c bx x 有实根, 故0)1(442≥+-=∆c b 即0)1(4)1(2≥+-+c c 解得3≥c 或1-≤c ∴13≤<-c ,由21+-=c b ,得b ≥0. (2)c bx x x f ++=2)(2=)1)(()1(2--=++-x c x c x c x ∵01)(<-=m f ,∴c<m<1(如图) ∴c —4<m —4<—3<c. ∴)4(-m f 的符号为正.点评:二次函数值的符号,可以求出其值判断,也可以灵活运用二次函数的图像及性质解题.32定义在R 上的函数()f x 满足:对任意实数,m n ,总有()()()f m n f m f n +=⋅,且当0x >时,()01f x <<.(1)试求()0f 的值;(2)判断()f x 的单调性并证明你的结论; (3)设()()()(){}()({}22,1,,21,A x y f x f y f B x y f ax y a R =⋅>=-=∈,若A B ⋂=∅,试确定a 的取值范围.(4)试举出一个满足条件的函数()f x .解:(1)在()()()f m n f m f n +=⋅中,令1,0m n ==.得:()()()110f f f =⋅.因为()10f ≠,所以,()01f =.(2)要判断()f x 的单调性,可任取12,x x R ∈,且设12x x <.在已知条件()()()f m n f m f n +=⋅中,若取21,m n x m x +==,则已知条件可化为:()()()2121f x f x f x x =⋅-.由于210x x ->,所以()2110f x x >->.为比较()()21f x f x 、的大小,只需考虑()1f x 的正负即可.在()()()f m n f m f n +=⋅中,令m x =,n x =-,则得()()1f x f x ⋅-=. ∵ 0x >时,()01f x <<, ∴ 当0x <时,()()110f x f x =>>-.又()01f =,所以,综上,可知,对于任意1x R ∈,均有()10f x >. ∴ ()()()()2112110f x f x f x f x x -=--<⎡⎤⎣⎦. ∴ 函数()f x 在R 上单调递减.(3)首先利用()f x 的单调性,将有关函数值的不等式转化为不含f 的式子.()()()222211f x f y f x y ⋅>+<即,(()210f ax y f -==,即20ax y -+=.由A B ⋂=∅,所以,直线20ax y -+=与圆面221x y +<无公共点.所以,2211a ≥+.解得 11a -≤≤.(4)如()12xf x ⎛⎫= ⎪⎝⎭.点评:根据题意,将一般问题特殊化,也即选取适当的特值(如本题中令1,0m n ==;以及21,m n x m x +==等)是解决有关抽象函数问题的非常重要的手段;另外,如果能找到一个适合题目条件的函数,则有助于问题的思考和解决. 33设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值.解:(1)当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(2)(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.点评:(1)探索函数的奇偶性,可依据定义,通过)()(x f x f =-代入有1||1||)(22+-+=+--+-a x x a x x ,即||||a x a x -=+可得,当0=a 时,||||a x a x -=+,函数)()(x f x f =-函数为偶函数. 通过)()(x f x f -=-可得 1||1||)(22----=+--+-a x x a x x 化得 ||||222a x a x x -++=+此式不管0=a 还是0≠a 都不恒成立,所以函数不可能是奇函数.(2)由于本题中含有绝对值,需要去掉,故分类讨论,既要对二次函数值域的研究方法熟练掌握,又要将结论综合,对学生的综合运用数学知识能力及数学思想作了较好的考查.34某公司为帮助尚有26.8万元无息贷款没有偿还的残疾人商店,借出20万元将该商店改建成经营状况良好的某种消费品专卖店,并约定用该店经营的利润逐步偿还债务(所有债务均不计利息).已知该种消费品的进价为每件40元;该店每月销售量q (百件)与销售价p (元/件)之间的关系用右图中的一条折线(实线)表示;职工每人每月工资为600元,该店应交付的其它费用为每月130元. (1)若当销售价p 为52元/件时,该店正好收支平衡,求该店的职工人数; (2)若该店只安排40名职工,则该店最早可在几年后还清所有债务,此时每件消费品的价格定为多少元?分析:本题题目的篇幅较长,所给条件零散杂乱,为此,不仅需要划分段落层次,弄清每一层次独立的含义和相互间的关系,更需要抓住矛盾的主要方面.由题目的问题找到关键词——“收支平衡”、“还清所有债务”,不难想到,均与“利润”相关.从阅读和以上分析,可以达成我们对题目的整体理解,明确这是一道函数型应用题.为此,首先应该建立利润与职工人数、月销售量q 、单位商品的销售价p 之间的关系,然后,通过研究解析式,来对问题作出解答.由于销售量和各种支出均以月为单位计量,所以,先考虑月利润. 解:(1)设该店的月利润为S 元,有职工m 名.则()4010060013200S q p m =-⨯--.124584060q p81又由图可知:()()2140, 405882 5881p p q p p -+≤≤⎧⎪=⎨-+<≤⎪⎩. 所以,()()()()()()21404010060013200 4058824010060013200 58<81p p m p S p p m p -+-⨯--≤≤⎧⎪=⎨-+-⨯--≤⎪⎩ 由已知,当52p =时,0S =,即()()214040100600132000p p m -+-⨯--=,解得50m =.即此时该店有50名职工.(2)若该店只安排40名职工,则月利润()()()()()()21404010037200 4058824010037200 58<81p p p S p p p -+-⨯-≤≤⎧⎪=⎨-+-⨯-≤⎪⎩. 当4058p ≤≤时,求得55p =时,S 取最大值7800元. 当5881p <≤时,求得61p =时,S 取最大值6900元. 综上,当55p =时,S 有最大值7800元.设该店最早可在n 年后还清债务,依题意,有 1278002680002000000n ⨯--≥. 解得5n ≥.所以,该店最早可在5年后还清债务,此时消费品的单价定为55元.点评:求解数学应用题必须突破三关:(1)阅读理解关:一般数学应用题的文字阅读量都比较大,要通过阅读审题,找出关键词、句,理解其意义.(2)建模关:即建立实际问题的数学模型,将其转化为数学问题. (3)数理关:运用恰当的数学方法去解决已建立的数学模型.。

(完整版)高中数学易错题

(完整版)高中数学易错题

高中数学易错题数学概念的理解不透必修一(1)若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值范围( ) A.a ≤-21或a ≥21 B.a <21 C.-21≤a ≤21 D.a ≥ 21【错解】选A.由题意,方程ax 2+x+a=0的根的判别式20140a ∆<⇔-<⇔ a ≤-21或a ≥21,所以选A.【正确解析】D .不等式ax 2+x+a <0的解集为 Φ,若a=0,则不等式为x<0解集不合已知条件,则a 0≠;要不等式ax 2+x+a <0的解集为 Φ,则需二次函数y=ax 2+x+a 的开口向上且与x 轴无交点,所以a>0且20140120a a a ⎧∆≤⇔-≤⇔≥⎨>⎩.必修一(2)判断函数f(x)=(x -1)xx-+11的奇偶性为____________________【错解】偶函数.f(x)=(x -===,所以()()f x f x -===,所以f (x )为偶函数.【正解】非奇非偶函数.y=f(x)的定义域为:(1)(1)01011101x x xx x x +-≥⎧+≥⇔⇔-≤<⎨-≠-⎩,定义域不关于原点对称,所以此函数为非奇非偶函数.1) 必修二(4)1l ,2l ,3l 是空间三条不同的直线,则下列命题正确的是( ) (A)12l l ⊥,23l l ⊥13//l l ⇒ (B )12l l ⊥,3//l l ⇒13l l ⊥(C)123////l l l ⇒ 1l ,2l ,3l 共面 (D )1l ,2l ,3l 共点⇒1l ,2l ,3l 共面 【错解】错解一:选A.根据垂直的传递性命题A 正确; 错解二:选C.平行就共面;【正确解答】选B.命题A 中两直线还有异面或者相交的位置关系;命题C 中这三条直线可以是三棱柱的三条棱,因此它们不一定共面;命题D 中的三条线可以构成三个两两相交的平面,所以它们不一定共面.必修五(5)x=ab 是a 、x 、b 成等比数列的( )A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件 【错解】C.当.x=ab 时,a 、x 、b 成等比数列成立;当a 、x 、b 成等比数列时,x=ab 成立 .【正确解析】选D.若x=a=0,x=ab 成立,但a 、x 、b 不成等比数列, 所以充分性不成立;反之,若a 、x 、b成等比数列,则2x ab x =⇔=x=ab 不一定成立,必要性不成立.所以选D.排列组合(6)(1)把三枚硬币一起掷出,求出现两枚正面向上,一枚反面向上的概率. 分析:(1)【错解】三枚硬币掷出所有可能结果有2×2×2=8种,而出现两正一反是一种结果,故所求概率P=.81【正解】在所有的8种结果中,两正一反并不是一种结果,而是有三种结果:正、正、反,正、反、正,反、正、正,因此所求概率,83=P 上述错解在于对于等可能性事件的概念理解不清,所有8种结果的出现是等可能性的,如果把上述三种结果看作一种结果就不是等可能性事件了,应用求概率的基本公式n m P =自然就是错误的.公式理解与记忆不准(7)若1,0,0=+>>y x y x ,则yx41+的最小值为___________.【错解】 y x 41+8)2(14422=+≥≥y x xy ,错解原因是忽略等号成立条件. 【正解】yx 41+=945)(4≥++=+++yx xy yy x xy x(8)函数y=sin 4x+cos 4x -43的相位____________,初相为__________ .周期为_________,单调递增区间为____________.【错解】化简y=sin 4x+cos 4x -43=1cos 44x ,所以相位为4x ,初相为0,周期为2π,增区间为….【正确解析】y=sin 4x+cos 4x -43=11cos 4sin(4)442x x π=+.相位为42x π+,初相为2π,周期为2π,单调递增区间为21[,]()42k k k Z ππ-∈. 审题不严 (1)读题不清必修五(9)已知()f x 是R 上的奇函数,且当0x >时,1()()12x f x =+,则()f x 的反函数的图像大致是【错解】选B.因为1()2x y =在0x >内递减,且1()()12x f x =+过点(0,2),所以选B. 【正确解答】A .根据函数与其反函数的性质,原函数的定义域与值域同其反函数的值域、定义域相同.当10,0()1,122x x y ><<⇒<<,所以选A.或者首先由原函数过点(0,2),则其反函数过点(2,0),排除B 、C ;又根据原函数在0x >时递减,所以选A. 排列组合(10)一箱磁带最多有一盒次品.每箱装25盒磁带,而生产过程产生次品磁带的概率是0.01.则一箱磁带最多有一盒次品的概率是 .【错解】一箱磁带有一盒次品的概率240.01(10.01)⨯-,一箱磁带中无次品的概率25(10.01)-,所以一箱磁带最多有一盒次品的概率是240.01(10.01)⨯-+25(10.01)-.【正确解析】一箱磁带有一盒次品的概率124250.01(10.01)C ⋅⨯-,一箱磁带中无次品的概率02525(10.01)C ⋅-,所以一箱磁带最多有一盒次品的概率是124250.01(10.01)C ⋅⨯-+02525(10.01)C ⋅-.(2)忽视隐含条件必修一(11)设βα、是方程0622=++-k kx x 的两个实根,则22)1()1(-+-βα的最小值是( )不存在)D (18)C (8)B (449)A (-【错解】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--选A.【正确解析】利用一元二次方程根与系数的关系易得:,6,2+==+k k αββα2222(1)(1)2121αβααββ∴-+-=-++-+2()22()2αβαβαβ=+--++23494().44k =--Θ 原方程有两个实根βα、,∴0)6k (4k 42≥+-=∆ ⇒.3k 2k ≥-≤或当3≥k 时,22)1()1(-+-βα的最小值是8;当2-≤k 时,22)1()1(-+-βα的最小值是18.选B. 必修一(12)已知(x+2)2+ y 24=1, 求x 2+y 2的取值范围.【错解】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328, ∴当x=-83 时,x 2+y 2有最大值283 ,即x 2+y 2的取值范围是(-∞, 283].【正确解析】由已知得 y 2=-4x 2-16x -12,因此 x 2+y 2=-3x 2-16x -12=-3(x+38)2+328 由于(x+2)2+ y 24 =1 ⇒ (x+2)2=1- y 24≤1 ⇒ -3≤x ≤-1,从而当x=-1时x 2+y 2有最小值1.∴ x 2+y 2的取值范围是[1, 283 ].(此题也可以利用三角函数和的平方等于一进行求解)必修一(13) 方程1122log (95)log (32)20x x ------=的解集为___________________- 【错解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=11111122log (95)log 4(32)954(32)(31)(33)0x x x x x x -------=-⇔-=-⇔--=1310x --=或1330x --=所以x=1或x=2.所以解集为{1,2}.【正解】111122222log (95)log (32)20log (95)log (32)log 40x x x x --------=⇔----=111111221954(32)log (95)log 4(32)3203302950x x x x x x x x -------⎧-=-⎪-=-⇔->⇔-=⇔=⎨⎪->⎩所以解集为{2}.字母意义含混不清(14)若双曲线22221x y a b -=-的离心率为54,则两条渐近线的方程为( )A.0916x y ±= B.0169x y ±= C.034x y ±= D.043x y±= 【错解】选D.22222222252593310416164443c c a b b b b x y e y x a a a a a a +==⇒===+⇒=⇒=±⇒=±⇒±=,选D. 【正确解析】2222222211x y y x a b b a-=-⇒-=,与标准方程中字母a,b 互换了.选C.4.运算错误(1)数字与代数式运算出错若)2,1(),7,5(-=-=b a ρρ,且(b a ρρλ+)b ρ⊥,则实数λ的值为____________.【错解】(5,72)a b λλλ+=--+r r ,则(b a ρρλ+)()052(72)03b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r.【正确解析】(5,72)a b λλλ+=--+r r,(ba ρρλ+)19()052(72)05b a b b λλλλ⊥⇔+⋅=⇔-+-+=⇒=r r r r必修二18. 已知直线l 与点A (3,3)和B (5,2)的距离相等,且过二直线1l :3x -y -1=0和2l:x+y-3=0的交点,则直线l的方程为_______________________【错解】先联立两直线求出它们交点为(1,2),设所求直线的点斜式,再利用A、B到12k=⇔=-,所以所求直线为x+2y-5=0.【正确解析】x-6y+11=0或x+2y-5=0.联立直线1l:3x-y-1=0和2l:x+y-3=0的方程得它们的交点坐标为(1,2),令过点(1,2)的直线l为:y-2=k(x-1)(由图形可看出直线l的斜率必然存在),11,62k k=⇔==-,所以直线l的方程为:x-6y+11=0或x+2y-5=0.(2)运算方法(如公式、运算程序或运算方向等)选择不当导致运算繁杂或不可能得解而出错必修二19. 已知圆(x-3)2+y2=4和直线y=mx的交点分别为P,Q两点,O为坐标原点,则OQOP⋅的值为.【运算繁杂的解法】联立直线方程y=mx与圆的方程(x-3)2+y2=4消y,得关于x的方程22(1)650m x x+-+=,令1122(,),(,)P x y Q x y,则12122265,11x x x xm m+=⋅=++,则221212251my y m x xm==+,由于向量OPuuu r与向量OQuuu r共线且方向相同,即它们的夹角为0,所以212122255511mOP OQ OP OQ x x y ym m⋅=⋅=+=+=++u u u r u u u r.【正确解析】根据圆的切割线定理,设过点O的圆的切线为OT(切点为T),由勾股定理,则222325OP OQ OT⋅==-=.(3)忽视数学运算的精确性,凭经验猜想得结果而出错曲线x2-122=y的右焦点作直线交双曲线于A、B两点,且4=AB,则这样的直线有___________条.【错解】4条.过右焦点的直线,与双曲线右支交于A、B时,满足条件的有上、下各一条(关于x轴对称);与双曲线的左、右分别两交于A、B两点,满足条件的有上、下各一条(关于x 轴对称),所以共4条.【正解】过右焦点且与X 轴垂直的弦AB (即通径)为222241b a ⨯==,所以过右焦点的直线,与双曲线右支交于A 、B 时,满足条件的仅一条;与双曲线的左、右分别两交于A 、B 两点,满足条件的有上、下各一条(关于x 轴对称),所以共3条. 5.数学思维不严谨(1)数学公式或结论的条件不充分24.已知两正数x,y 满足x+y=1,则z=11()()x y x y++的最小值为 .【错解一】因为对a>0,恒有12a a +≥,从而z=11()()x y x y++≥4,所以z 的最小值是4.【错解二】22222()2x y xy z xy xy xy +-==+-≥21)-=,所以z 的最小值是1). 【正解】z=11()()x y x y ++=1y xxy xy x y+++=21()222x y xy xy xy xy xy xy +-++=+-,令t=xy, 则210()24x y t xy +<=≤=,由2()f t t t =+在10,4⎛⎤⎥⎝⎦上单调递减,故当t=14时 2()f t t t =+有最小值334,所以当12x y ==时z 有最小值334.(2)以偏概全,重视一般性而忽视特殊情况必修一(1)不等式|x+1|(2x -1)≥0的解集为____________解析:(1)【错解】1[,)2+∞.因为|x+1|≥0恒成立,所以原不等式转化为2x-1≥0,所以1[,)2x ∈+∞【正确解析】}1{),21[-⋃+∞.原不等式等价于|x+1|=0或2x-1≥0,所以解集为1[,){1}2x ∈+∞⋃-.必修一(2)函数y =的定义域为 .(2) 【错解】10(1)(1)011x x x x x+≥⇒+-≥⇒≥-或1x ≤-.【正解】(1)(1)0(1)(1)010111011x x x x x x x x x+-≥+-≤⎧⎧+≥⇒⇒⇒-≤<⎨⎨-≠≠-⎩⎩(3)解题时忽视等价性变形导致出错 27.已知数列{}n a 的前n 项和12+=n n S ,求.n a【错解】 .222)12()12(1111----=-=+-+=-=n n n n n n n n S S a 【正确解析】当1=n 时,113a S ==,n 2≥时,1111(21)(21)222nn n n n n n n a S S ----=-=+-+=-=.所以13(1)2(2)n n n a n -⎧=⎪=⎨≥⎪⎩.选修实数a 为何值时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点. 【错解】 将圆012222=-+-+a ax y x 与抛物线 x y 212=联立,消去y , 得 ).0(01)212(22≥=-+--x a x a x ①因为有两个公共点,所以方程①有两个相等正根,得⎪⎪⎩⎪⎪⎨⎧>->-=∆.01021202a a , 解之得.817=a【正确解析】要使圆与抛物线有两个交点的充要条件是方程①有一正根、一负根;或有两个相等正根.当方程①有一正根、一负根时,得⎩⎨⎧<->∆.0102a 解之,得.11<<-a因此,当817=a 或11<<-a 时,圆012222=-+-+a ax y x 与抛物线x y 212=有两个公共点.(1)设等比数列{}n a 的全n 项和为n S .若9632S S S =+,求数列的公比q .【错解】 ,2963S S S =+Θq q a q q a q q a --⋅=--+--∴1)1(21)1(1)1(916131, .012(363)=整理得--q q q1q 24q ,0)1q )(1q 2(.01q q 20q 33336=-=∴=-+∴=--≠或得方程由.【正确解析】若1=q ,则有.9,6,3191613a S a S a S ===但01≠a ,即得,2963S S S ≠+与题设矛盾,故1≠q .又依题意 963S 2S S =+ ⇒ q q a q q a q q a --⋅=--+--1)1(21)1(1)1(916131 ⇒ 01q q 2(q 363)=--,即,0)1)(12(33=-+q q 因为1≠q ,所以,013≠-q 所以.0123=+q 解得 .243-=q空间识图不准必修二直二面角α-l -β的棱l 上有一点A ,在平面α、β内各有一条射线AB ,AC 与l 成450,AB βα⊂⊂AC ,,则∠BAC= .【错解】如右图.由最小角定理,12221cos cos cos 23BAC BAC πθθ∠=⋅=⨯=⇒∠=. 【正确解析】3π或23π.如下图.当6CAF π∠=时,由最小角定理,时,12221cos cos cos 2223BAC BAC πθθ∠=⋅=⨯=⇒∠=;当AC 在另一边DA 位置23BAC π∠=.。

高中数学易错题精选

高中数学易错题精选

高中数学错题精选一:三角部分1.△ABC 中,已知cosA=135,sinB=53,则cosC 的值为( ) A 、6516 B 、6556 C 、6516或6556 D 、6516-2.为了得到函数⎪⎭⎫⎝⎛-=62sin πx y 的图象,可以将函数x y 2cos =的图象( ) A 向右平移6π B 向右平移3π C 向左平移6π D 向左平移3π3.若sin cos θθ+=1,则对任意实数n nn,sin cos θθ+的取值为() A. 1B. 区间(0,1)C.121n - D. 不能确定4.函数]),0[)(26sin(2ππ∈-=x x y 为增函数的区间是…………………( )A. ]3,0[πB. ]127,12[ππC. ]65,3[ππD. ],65[ππ 5.在锐角⊿ABC 中,若1tan +=t A ,1tan -=t B ,则t 的取值X 围为( )A 、),2(+∞B 、),1(+∞C 、)2,1(D 、)1,1(- 6.已知53sin +-=m m θ,524cos +-=m m θ(πθπ<<2),则=θtan (C ) A 、324--m m B 、m m 243--± C 、125- D 、12543--或7.曲线y=2sin(x+)4πcos(x-4π)和直线y=21在y 轴右侧的交点按横坐标从小到大依次记为P 1、P 2、P 3……,则|P 2P 4|等于 ( )A .πB .2πC .3πD .4π8.函数的图象的一条对称轴的方程是()9.先将函数y=sin2x 的图象向右平移π3个单位长度,再将所得图象作关于y 轴的对称变换,则所得函数图象对应的解析式为 ( ) A .y=sin(-2x+π3) B . y=sin(-2x -π3) C .y=sin(-2x+ 2π3)D . y=sin(-2x -2π3) 10.函数x x y cos sin =的单调减区间是( )A 、]4,4[ππππ+-k k (z k ∈) B 、)](43,4[z k k k ∈++ππππ C 、)](22,42[z k k k ∈++ππππ D 、)](2,4[z k k k ∈++ππππ11.已知奇函数()[]上为,在01-x f 单调减函数,又α,β为锐角三角形内角,则( ) A 、f(cos α)> f(cos β) B 、f(sin α)> f(sin β)C 、f(sin α)<f(cos β)D 、f(sin α)> f(cos β)高中数学错题精选二:不等式部分1、若不等式ax 2+x+a <0的解集为 Φ,则实数a 的取值X 围( )A a ≤-21或a ≥21 B a <21 C -21≤a ≤21 D a ≥21 正确答案:D 错因:学生对一元二次不等式与二次函数的图象之间的关系还不能掌握。

高中数学必修一第四章指数函数与对数函数易错知识点总结(带答案)

高中数学必修一第四章指数函数与对数函数易错知识点总结(带答案)

高中数学必修一第四章指数函数与对数函数易错知识点总结单选题1、将进货价为每个80元的商品按90元一个出售时,能卖出400个,每涨价1元,销售量就减少20个,为了使商家利润有所增加,则售价a (元/个)的取值范围应是( )A .90<a <100B .90<a <110C .100<a <110D .80<a <100答案:A分析:首先设每个涨价x 元,涨价后的利润与原利润之差为y 元,结合条件列式,根据y >0,求x 的取值范围,即可得到a 的取值范围.设每个涨价x 元,涨价后的利润与原利润之差为y 元,则a =x +90,y =(10+x)⋅(400−20x)−10×400=−20x 2+200x .要使商家利润有所增加,则必须使y >0,即x 2−10x <0,得0<x <10,∴90<x +90<100,所以a 的取值为90<a <100.故选:A2、满足函数f (x )=ln (mx +3)在(−∞,1]上单调递减的一个充分不必要条件是( )A .−4<m <−2B .−3<m <0C .−4<m <0D .−3<m <−1答案:D分析:根据复合函数的单调性,求出m 的取值范围,结合充分不必要条件的定义进行求解即可. 解:若f(x)=ln(mx +3)在(−∞,1]上单调递减,则满足m <0且m +3>0,即m <0且m >−3,则−3<m <0,即f(x)在(−∞,1]上单调递减的一个充分不必要条件是−3<m <−1,故选:D .3、已知函数f(x)={log 12x,x >0,a ⋅(13)x ,x ≤0,若关于x 的方程f[f(x)]=0有且只有一个实数根,则实数a 的取值范围是( )A .(−∞,0)∪(0,1)B .(−∞,0)∪(1,+∞)C .(−∞,0)D .(0,1)∪(1,+∞)答案:B分析:利用换元法设t =f (x ),则等价为f (t )=0有且只有一个实数根,分a <0,a =0,a >0 三种情况进行讨论,结合函数的图象,求出a 的取值范围.令f(x)=t ,则方程f[f(x)]=0等价于f(t)=0,当a =0时,此时当x ≤0时,f (x )=a ⋅(13)x =0,此时函数有无数个零点,不符合题意;当a ≠0,则f(x)=a ⋅(13)x≠0,所以由f(t)=log 12t =0,得t =1, 则关于x 的方程f[f(x)]=0有且只有一个实数根等价于关于x 的方程f(x)=1有且只有一个实数根,作出f(x)的图象如图:当a <0时,由图象可知直线y =1与y =f(x)的图象只有一个交点,恒满足条件;当a >0时,要使直线y =1与y =f(x)的图象只有一个交点,则只需要当x ≤0时,直线y =1与f(x)=a ⋅(13)x的图象没有交点, 因为x ≤0 时,f (x )=a ⋅(13)x ∈[a,+∞),此时f (x ) 最小值为a ,所以a >1,综上所述,实数a 的取值范围是(−∞,0)∪(1,+∞),故选:B.4、指数函数y =a x 的图象经过点(3,18),则a 的值是( )A .14B .12C .2D .4答案:B分析:将已知点的坐标代入指数函数的表达式,求得a 的值.因为y =a x 的图象经过点(3,18), 所以a 3=18,解得a =12, 故选:B.5、已知f (x )=a −x (a >0,且a ≠1),且f (-2)>f (-3),则a 的取值范围是( )A .a >0B .a >1C .a <1D .0<a <1答案:D分析:把f (-2),f (-3)代入解不等式,即可求得.因为f (-2)=a 2, f (-3)=a 3,f (-2)>f (-3),即a 2>a 3,解得:0<a <1.故选:D6、已知函数f(x)=9+x 2x ,g(x)=log 2x +a ,若存在x 1∈[3,4],对任意x 2∈[4,8],使得f(x 1)≥g(x 2),则实数a 的取值范围是( )A .(−∞,134]B .(134,+∞)C .(0,134)D .(1,4) 答案:A分析:将问题化为在对应定义域内f(x 1)max ≥g(x 2)max ,结合对勾函数和对数函数性质求它们的最值,即可求参数范围.由题意知:f(x)在[3,4]上的最大值大于或等于g(x)在[4,8]上的最大值即可.当x ∈[3,4]时,f(x)=9x +x ,由对勾函数的性质得:f(x)在[3,4]上单调递增,故f(x)max =f(4)=94+4=254.当x ∈[4,8]时,g(x)=log 2x +a 单调递增,则g(x)max =g(8)=log 28+a =3+a ,所以254≥3+a ,可得a ≤134.故选:A7、已知函f (x )=log 2(√1+4x 2+2x)+3,且f (m )=−5,则f (−m )=( )A .−1B .−5C .11D .13答案:C分析:令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,则先判断函数g (−x )+g (x )=0,进而可得f (−x )+f (x )=6,即f (m )+f (−m )=6,结合已知条件即可求f (−m )的值.令g (x )=log 2(√1+4x 2+2x),则f (x )=g (x )+3,因为g (x )+g (−x )=log 2(√1+4x 2+2x)+log 2(√1+4x 2−2x)=log 2(1+4x 2−4x 2)=0,所以f (−x )+f (x )=g (−x )+3+g (x )+3=6,则f (m )+f (−m )=6,又因为f (m )=−5,则f (−m )=11,故选:C.8、函数f (x )={|2x −1|,x ≤2−x +5,x >2,若函数g (x )=f (x )−t (t ∈R )有3个不同的零点a ,b ,c ,则2a +2b +2c 的取值范围是( )A .[16,32)B .[16,34)C .(18,32]D .(18,34)答案:D分析:作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,利用图象得出a,b,c 的性质、范围,从而可求得结论.作出函数y =f(x)的图象和直线y =t ,它们的交点的横坐标即为g(x)的零点,如图,则1−2a =2b −1,4<c <5,2a +2b =2,2c ∈(16,32),所以18<2a +2b +2c <34.故选:D .小提示:关键点点睛:本题考查函数零点问题,解题关键是把函数零点转化为函数图象与直线的交点的横坐标,从而可通过作出函数图象与直线,得出零点的性质与范围.多选题9、已知函数f(x)={|lnx|,x>0−x2+1,x≤0,若存在a<b<c,使得f(a)=f(b)=f(c)成立,则()A.bc=1B.b+c=1C.a+b+c>1D.abc<−1答案:AC分析:采用数形结合可知−1<a≤0,1e≤b<1,1<c≤e,然后简单计算可知b+c>1,bc=1,a+b+ c>1,故可知结果.如图:可知−1<a≤0,1e≤b<1,1<c≤e,则b+c>c>1,且−lnb=lnc,所以lnb+lnc=lnbc=0,即bc=1.因为bc=1,所以abc=a∈(−1,0],a+b+c=a+1c+c>a+2>1.故选:AC.10、(多选)某食品的保鲜时间t (单位:小时)与储藏温度x (单位:℃)满足函数关系t ={64,x ≤0,2kx+6,x >0,且该食品在4 ℃的保鲜时间是16小时.已知甲在某日上午10时购买了该食品,并将其遗放在室外,且此日的室外温度随时刻的变化如图所示,则下列结论中正确的是( )A .该食品在6 ℃的保鲜时间是8小时B .当x ∈[-6,6]时,该食品的保鲜时间t 随着x 的增大而逐渐减少C .到了此日13时,甲所购买的食品还在保鲜时间内D .到了此日14时,甲所购买的食品已然过了保鲜时间答案:AD分析:由题设可得k =−12即可写出解析式,再结合各选项的描述及函数图象判断正误即可. 由题设,可得24k+6=16,解得k =−12, ∴t ={64,x ≤026−x 2,x >0, ∴x =6,则t =23=8,A 正确;x ∈[−6,0]时,保鲜时间恒为64小时,x ∈(0,6]时,保鲜时间t 随x 增大而减小,B 错误;此日11时,温度超过11度,其保鲜时间不超过2小时,故到13时甲所购食品不在保鲜时间内,C 错误; 由上分析知:此日14时,甲所购食品已过保鲜时间,D 正确.故选:AD.11、已知函数f (x )={−2−x +a,x <0,2x −a,x >0.(a ∈R ),下列结论正确的是( ) A .f (x )是奇函数B .若f (x )在定义域上是增函数,则a ≤1C .若f (x )的值域为R ,则a ≥1D.当a≤1时,若f(x)+f(3x+4)>0,则x∈(−1,+∞)答案:AB分析:对于A利用函数奇偶性定义证明;对于B,由增函数定义知−2−0+a≤20−a即可求解;对于C,利用指数函数的单调性,求出分段函数每段函数上的值域,结合f(x)的值域为R,即可求解;对于D,将f(x)+ f(3x+4)>0等价于f(x)>f(−3x−4),利用函数定义域及单调性即可求解;对于A,当x<0时,−x>0,f(x)=−2−x+a,f(−x)=2−x−a=−(−2−x+a)=−f(x);当x>0时,−x<0,f(x)=2x−a,f(−x)=−2x+a=−(2x−a)=−f(x),所以f(x)是奇函数,故A正确;对于B,由f(x)在定义域上是增函数,知−2−0+a≤20−a,解得a≤1,故B正确;对于C,当x<0时,f(x)=−2−x+a在区间(−∞,0)上单调递增,此时值域为(−∞,a−1),当x>0时,f(x)=2x−a在区间(0,+∞)上单调递增,此时值域为(1−a,+∞),要使f(x)的值域为R,则a−1>1−a,解得a>1,故C错误;对于D,当a≤1时,由于−2−0+a≤20−a,则f(x)在定义域上是增函数,f(x)+f(3x+4)>0等价于f(x)>f(−3x−4),即{x≠0−3x−4≠0x>−3x−4,解得x∈(−1,0)∪(0,+∞),故D错误;故选:AB填空题12、不等式log4x≤12的解集为___________.答案:(0,2]分析:根据对数函数的单调性解不等式即可.由题设,可得:log4x≤log4412,则0<x≤412=2,∴不等式解集为(0,2].所以答案是:(0,2].13、若log2[log3(log4x)]=0,则x=________.答案:64分析:利用对数的运算性质以及指数式与对数式的互化即可求解.log 2[log 3(log 4x )]=0⇒log 3(log 4x )=1⇒log 4x =3⇒x =43=64.所以答案是:64小提示:本题考查了对数的运算性质以及指数式与对数式的互化,考查了基本运算求解能力,属于基础题.14、方程lg (x 2−x −2)=lg (6−x −x 2)的解为 __________ .答案:x =−2分析:由题意知lg (x 2−x −2)=lg (6−x −x 2),可求出x 的值,再结合真数大于零进行检验,从而可求出最终的解.由lg (x 2−x −2)=lg (6−x −x 2),得x 2−x −2=6−x −x 2,所以x =±2,又因为x 2−x −2>0且6−x −x 2>0,所以x =−2;所以答案是:x =−2.解答题15、已知函数f(x)=(12)x−a −b(a,b ∈R)的图象过点(1,0)与点(0,1).(1)求a ,b 的值;(2)若g(x)=4−x −4,且f(x)=g(x),满足条件的x 的值.答案:(1)a =1,b =1;(2)x =−log 23.分析:(1)由给定条件列出关于a ,b 的方程组,解之即得;(2)由(1)的结论列出指数方程,借助换元法即可作答.(1)由题意可得{(12)1−a −b =0(12)−a −b =1 ⇒{(12)−a −2b =0(12)−a −b =1 ⇒{b =12a =2 ,解得a =1,b =1, (2)由(1)可得f(x)=21−x −1,而g(x)=4−x −4,且f(x)=g(x),于是有21−x −1=4−x −4,设2−x =t ,t >0,从而得t 2−2t −3=0,解得t =3,即2−x =3,解得x =−log 23,所以满足条件的x=−log23.。

(易错题)高中数学必修一第一单元《集合》测试(含答案解析)

(易错题)高中数学必修一第一单元《集合》测试(含答案解析)

一、选择题1.若集合3| 01x A x x -=≥+⎧⎫⎨⎬⎩⎭,{|10}B x ax =+≤,若B A ⊆,则实数a 的取值范围是( ) A .1,13⎡⎫-⎪⎢⎣⎭B .1,13⎛-⎤⎥⎝⎦C .(,1)[0,)-∞-+∞ D .1[,0)(0,1)3-⋃2.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉3.已知区间1[,]3A m m =-和3[,]4B n n =+均为[]0,1的子区间,定义b a -为区间[],a b 的长度,则当A B 的长度达到最小时mn 的值为( )A .0B .112C .0或112D .0或14.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+, B .[)2∞+,C .()3∞-+,D .[)3∞-+,5.非空集合G 关于运算⊕满足:①对任意a 、b G ∈,都有a b G ⊕∈;②存在e G ∈使对一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合及运算中正确的说法有( )个(1)G 是非负整数集,⊕:实数的加法; (2)G 是偶数集,⊕:实数的乘法;(3)G 是所有二次三项式组成的集合,⊕多项式的乘法;(4){}|G x x a a b Q ==+∈,,⊕:实数的乘法. A .1 B .2 C .3 D .46.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤7.设U 为全集,()UBA B =,则A B 为( )A .AB .BC .UB D .∅8.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,y A ,则下列结论中正确的是( ) A .x y A +∈ B .x y A -∈ C .xy A ∈D .xA y∈ 9.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,110.已知集合{}1A x x =>,{}1B x x =≥,则( )A .A ⊆BB .B ⊆AC .A∩B=φD .A ∪B=R11.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<12.已知集合{0,1,2,3,4},{|21,}A B x x n n A ===+∈,则A B 等于( )A .{}1,3,5B .{}3C .{}5,7,9D .{}1,3二、填空题13.已知2{|31,},x A x x -+=≥∈R 21{|1,}3x B x x R x -=≤∈+,则A ∩B =______. 14.集合{(,)|||,}A x y y a x x R ==∈,{(,)|,}B x y y x a x R ==+∈,已知集合A B中有且仅有一个元素,则常数a 的取值范围是________15.非空集合G 关于运算⊕满足:①对任意,a b G ∈,都有a b G +∈;②存在e G ∈使得对于一切a G ∈都有a e e a a ⊕=⊕=,则称G 是关于运算⊕的融洽集,现有下列集合与运算:①G 是非负整数集,⊕:实数的加法;②G 是偶数集,⊕:实数的乘法;③G 是所有二次三项式构成的集合,⊕:多项式的乘法;④{},G x x a a b Q ==+∈,⊕:实数的乘法;其中属于融洽集的是________(请填写编号)16.若{}2230P x x x =--<,{}Q x x a =>,且PQ P =,则实数a 的取值范围是______.17.已知集合A ={x |x ≥2},B ={x ||x ﹣m |≤1},若A ∩B =B ,则实数m 的取值范围是______. 18.已知集合()(){}250M x x x =+->,集合()(){}10N x x a x a =---<,若M N N =,则实数a 的取值范围是_____________19.设全集U =R ,1|11A x x ⎧⎫⎪⎪=<⎨⎬-⎪⎪⎩⎭,{}2|540B x x x =-+>,则()U AC B =______.20.已知集合{1,2,3},{1,2}A B ==,则满足A C B C ⋂=⋃的集合C 有_______个.三、解答题21.已知集合{}43A x x =-≤≤,集合{}121B x m x m =-≤≤+. (1)若B A ⊆,求实数m 的取值范围;(2)若不存在实数x 使x A ∈,x B ∈同时成立,求实数m 的取值范围. 22.已知集合{}2210,A x ax x a R =++=∈. (1)若A 中只有一个元素,求a 的值; (2)若A 中至少有一个元素,求a 的取值范围; (3)若A 中至多有一个元素,求a 的取值范围. 23.在①A ∩B =A ,②A ∩(R B )=A ,③A ∩B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{|123}A x a x a =-<<+,{}2|280B x x x =--≤.(1)当2a =时,求A ∪B ; (2)若______,求实数a 的取值范围.注:如果选择多个条件分别解答按第一个解答计分.24.已知集{}28A x x =≤≤,{}26B x x m =≤≤-,{}112C x m x m =-≤≤+,U =R .(1)若()UA B =∅,求m 的取值范围;(2)若BC ≠∅,求m 的取值范围.25.已知集合{|37},{|210},{|}A x x B x x C x x a =≤≤=<<=<,全集为实数集R . (1)求AB ,()R A B ⋂;(2)若A C ⋂≠∅,求a 的取值范围.26.已知集合{}123A x a x a =-<<+,{}24B x x =-≤≤ (1)2a =时,求AB ;(2)若x A ∈是x B ∈的充分条件,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题1.A 解析:A 【分析】先根据分式不等式求解出集合A ,然后对集合B 中参数a 与0的关系作分类讨论,根据子集关系确定出a 的范围. 【详解】因为301x x -≥+,所以()()10310x x x +≠⎧⎨-+≥⎩,所以1x <-或3x ≥,所以{|1A x x =<-或}3x ≥,当0a =时,10≤不成立,所以B =∅,所以B A ⊆满足, 当0a >时,因为10ax +≤,所以1x a≤-, 又因为B A ⊆,所以11-<-a,所以01a <<, 当0a <时,因为10ax +≤,所以1x a≥-, 又因为B A ⊆,所以13a -≥,所以103a -≤<, 综上可知:1,13a ⎡⎫∈-⎪⎢⎣⎭. 故选:A. 【点睛】本题考查分式不等式的求解以及根据集合间的包含关系求解参数范围,难度一般.解分式不等式的方法:将分式不等式先转化为整式不等式,然后根据一元二次不等式的解法或者高次不等式的解法(数轴穿根法)求出解集.2.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xy z x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈.【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.3.C解析:C 【分析】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时AB 的长度最小,解出方程组即可得结果.【详解】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时A B 的长度最小,解得1314m n ⎧=⎪⎪⎨⎪=⎪⎩或10m n =⎧⎨=⎩,即112mn =或0,故选C. 【点睛】本题主要考查集合的表示方法,两个集合的交集的定义,充分理解区间长度的定义是解题的关键,属于中档题.4.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围. 【详解】解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.5.B【分析】根据新定义运算⊕判断. 【详解】(1)任意两个非负整数的和仍然是非负整数,对任意a G ∈,0G ∈,00a a a +=+=,(1)正确;(2)任意两个偶数的积仍然是偶数,但不存在e G ∈,对任意a G ∈,使ae ea a ==,(2)错误;(3)21x x -+和21x x +-是两个二次三项式,它们的积2242(1)(1)21x x x x x x x -++-=-+-不是二次三项式,(3)错误;(4)设x a y c =+=+,,,a b c d Q ∈,则2(xy ac bd ad bc G =+++,而且1G ∈,11x x x ⋅=⋅=,(4)正确.∴正确的有2个. 故选:B. 【点睛】本题考查新定义,解题关键是对新定义的理解与应用.6.B解析:B 【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.7.D解析:D 【分析】根据题意作出“韦恩图”,得出集合A 与集合B 没有公共元素,即可求解. 【详解】由题意,集合U 为全集,()UBA B =,如图所示,可得集合A 与集合B 没有公共元素,即A B =∅,故选D.【点睛】本题主要考查了集合的运算及应用,其中解答中根据题设条件,作出韦恩图确定两集合的关系是解答的关键,着重考查了推理与论证能力,属于基础题.8.C解析:C 【分析】 设22x m n =+,22N,N N,,,N n b b ya m a ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.9.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.10.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.11.C解析:C 【分析】化简集合,根据集合的并集补集运算即可. 【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-, 所以AB {|3}x x =>-,()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.12.D解析:D 【分析】首先求得集合B ,然后进行交集运算即可. 【详解】由题意可得:{}1,3,5,7,9B =,则{}1,3A B =.故选D . 【点睛】本题主要考查集合的表示方法,交集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】根据指数函数的单调性解不等式化简集合A 解分式不等式化简集合B 求交集即可【详解】由得:解得故由得:解得故所以A∩B=【点睛】本题主要考查了指数不等式分式不等式集合的交集运算属于中档题 解析:(]3,2-【分析】根据指数函数的单调性解不等式化简集合A ,解分式不等式化简集合B ,求交集即可.由231x -+≥得:20x -+≥, 解得2x ≤, 故{|2}A x x =≤, 由2113x x -≤+得:403x x -≤+, 解得34x,故{|34}B x x =-<≤, 所以A ∩B = (]3,2- 【点睛】本题主要考查了指数不等式,分式不等式,集合的交集运算,属于中档题.14.【分析】若中有且仅有一个元素则方程有且仅有一个解进而求解即可【详解】由题因为中有且仅有一个元素则方程有且仅有一个解当时则当时则由已知得或或或解得故答案为:【点睛】本题考查由交集结果求参数范围考查分类 解析:[1,1]-【分析】 若AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解,进而求解即可【详解】 由题,因为AB 中有且仅有一个元素,则方程a x x a =+有且仅有一个解, 当0x ≥时,ax x a =+,则1ax a =-, 当0x <时,ax x a -=+,则1a x a =-+, 由已知得0101a a a a ⎧≥⎪⎪-⎨⎪-≥⎪+⎩或0101aa a a ⎧<⎪⎪-⎨⎪-<⎪+⎩或101a a a =⎧⎪⎨-<⎪+⎩或011a a a ⎧≥⎪-⎨⎪=-⎩, 解得11a -≤≤, 故答案为:[]1,1- 【点睛】本题考查由交集结果求参数范围,考查分类讨论思想和转化思想15.①④【分析】逐一验证每个选项是否满足融洽集的两个条件若两个都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意的两非负整数仍为非负整数所以取及任意的非负整数则因此是非负整数集:实数的加法是融洽集解析:①④逐一验证每个选项是否满足“融洽集”的两个条件,若两个都满足,是“融洽集”,有一个不满足,则不是“融洽集”. 【详解】①对于任意的两非负整数,,a b a b +仍为非负整数, 所以a b G +∈,取0e =及任意的非负整数a , 则00a a a +=+=,因此G 是非负整数集,⊕:实数的加法是“融洽集”;②对于任意的偶数a ,不存在e G ∈,使得a e e a a ⊕=⊕=成立, 所以②的G 不是“融洽集”; ③对于{G二次三项式},若任意,a b G ∈时,则,a b 其积就不是二次三项式,故G 不是“融洽集”;④{},G x x a a b Q ==+∈,设1,x a a b Q =+∈,212,,(,x c c d Q x x a c b d a c b d Q =+∈+=+++++∈,所以12x x G +∈;取1e =,任意,11a G a a a ∈⨯=⨯=, 所以④中的G 是“融洽集”. 故答案为:①④. 【点睛】本题考查对新定义的理解,以及对有关知识的掌握情况,关键是看所给的数集是否满足“融洽集”的两个条件,属于中档题.16.【分析】先求出集合由已知条件中即可求出实数a 的取值范围【详解】由解得又因为且则所以即实数a 的取值范围是故答案为:【点睛】本题考查了集合的交集运算在解答此类题目的方法是将其转化为子集问题在取答案时可以 解析:(],1-∞-【分析】先求出集合P ,由已知条件中P Q P =,即可求出实数a 的取值范围.【详解】由{}2230P x x x =--<,解得{}13P x x =-<<,又因为{}Q x x a =>,且PQ P =,则P Q ⊆,所以1a ≤-,即实数a 的取值范围是(],1-∞-.故答案为:(],1-∞- 【点睛】本题考查了集合的交集运算,在解答此类题目的方法是将其转化为子集问题,在取答案时可以画出数轴来得到结果,本题较为基础.17.3+∞)【分析】先求出集合再利用交集定义和不等式性质求解【详解】∵集合解得∴实数m 的取值范围是故答案为:【点睛】本题考查实数的取值范围的求法解题时要认真审题注意不等式性质的合理运用是基础题解析:[3,+∞)【分析】先求出集合B ,再利用交集定义和不等式性质求解.【详解】∵集合{|2}A x x =≥,{|||1}{|11}B x x m x m x m =-≤=-≤≤+,A B B =,12m ∴-≥,解得3m ≥,∴实数m 的取值范围是[)3,+∞.故答案为:[)3,+∞.【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意不等式性质的合理运用,是基础题. 18.【分析】解一元二次不等式求得集合根据列不等式组解不等式求得的取值范围【详解】由解得或由解得由于所以或即或故答案为:【点睛】本小题主要考查一元二次不等式的解法考查根据集合交集的结果求参数的取值范围属于解析:(][)35-∞-⋃+∞,, 【分析】解一元二次不等式求得集合,M N ,根据MN N =列不等式组,解不等式求得a 的取值范围.【详解】由()()250x x +->解得2x <-或5x >.由()()10x a x a ---<解得1a x a <<+.由于M N N =,所以12a +≤-或5a ≥,即3a ≤-或5a ≥.故答案为:(][)35-∞-⋃+∞,, 【点睛】本小题主要考查一元二次不等式的解法,考查根据集合交集的结果求参数的取值范围,属于基础题. 19.【分析】解不等式求出集合根据补集与交集的定义写出【详解】全集;∴∴故答案为:【点睛】本题考查集合的运算解题是先解不等式确定集合然后再根据集合运算的定义计算解析:{}|24x x <≤【分析】解不等式求出集合A 、B ,根据补集与交集的定义写出()U A C B ⋂.【详解】全集U =R ,{}1|1|111A x x x x ⎧⎫⎪⎪=<=->⎨⎬-⎪⎪⎩⎭{}|02x x x =<>或; {}{}2|540|14B x x x x x x =-+>=<>或,∴{}|14U C B x x =≤≤,∴(){}|24U AC B x x =<≤.故答案为:{}|24x x <≤. 【点睛】本题考查集合的运算,解题是先解不等式确定集合,A B ,然后再根据集合运算的定义计算.20.2【分析】由题意首先确定集合ABC 的关系然后结合子集个数公式即可确定集合C 的个数【详解】由条件可知:则符合条件的集合C 的个数即为集合{3}的子集的个数共个事实上满足题意的集合C 为:或故答案为2【点睛解析:2【分析】由题意首先确定集合ABC 的关系,然后结合子集个数公式即可确定集合C 的个数.【详解】由条件A C B C ⋂=⋃可知:()()()()B B C A C C B C A C A ⊆⋃=⋂⊆⊆⋃=⋂⊆,则符合条件的集合C 的个数即为集合{3}的子集的个数,共122=个.事实上,满足题意的集合C 为:{}1,2C =或{}1,2,3C =.故答案为2.【点睛】本题主要考查集合的包含关系,子集个数公式及其应用等知识,意在考查学生的转化能力和计算求解能力.三、解答题21.(1)1m ;(2)2m <-或4m >.【分析】(1)分B =∅和B ≠∅两种情况讨论,结合B A ⊆可得出关于实数m 的不等式组,由此可解得实数m 的取值范围;(2)由题意可得AB =∅,分B =∅和B ≠∅两种情况讨论,结合已知条件可得出关于实数m 的不等式组,由此可解得实数m 的取值范围.【详解】(1)当121m m ->+,即2m <-时,B A =∅⊆,故2m <-符合题意;当B ≠∅且B A ⊆时,有12114213m m m m -≤+⎧⎪-≥-⎨⎪+≤⎩,解得21m -≤≤.综上可知,m 的取值范围是1m ;(2)因为不存在实数x 使得x A ∈且x B ∈,所以AB =∅.当B =∅时,有2m <-; 当B ≠∅且A B =∅时,有12113m m m -≤+⎧⎨->⎩或121214m m m -≤+⎧⎨+<-⎩,解得4m >. 故实数m 的取值范围是2m <-或4m >.【点睛】易错点点睛:在利用集合的包含关系以及集合运算求参数时,不能忽略对含参数的集合为空集的情况的讨论,从而导致解题不完整.22.(1)0a =或1a =;(2)1a ≤;(3)0a =或1a ≥.【分析】根据集合中元素的个数以及方程的解即可确定a 的取值范围.【详解】解:(1)若A 中只有一个元素,则当0a =时,原方程变为210x +=,此时12x =-符合题意, 当0a ≠时,方程2210ax x ++=为二元一次方程,440a ∆=-=,即1a =, 故当0a =或1a =时,原方程只有一个解;(2)A 中至少有一个元素,即A 中有一个或两个元素,由0∆>得1a <综合(1)当1a ≤时A 中至少有一个元素;(3)A 中至多有一个元素,即A 中有一个或没有元素当44a 0∆=-<,即1a >时原方程无实数解,结合(1)知当0a =或1a ≥时A 中至多有一个元素.【点睛】关键点点睛:本题解题的关键是理解集合中的元素与方程的根之间的关系.23.(1)A ∪B ={}|27x x -≤<;(2)答案见解析.【分析】(1)先化简集合,A B ,再求A ∪B ;(2)对集合A 分空集和非空集两种情况讨论,列不等式组即得解.【详解】(1)2a =时,集合{|17}A x x =<<,{|24}B x x =-≤≤,A ∪B ={}|27x x -≤<(2)若选择①A ∩B =A ,则A B ⊆,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足12234a a -≥-⎧⎨+≤⎩,解得:112a -≤≤; 综上知,实数a 的取值范围是(-∞,-4]∪112⎡⎤-⎢⎥⎣⎦,. 若选择②A ∩(R B )=A ,则A 是R B 的子集,R B =(-∞,-2)∪(4,+∞),当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩解得:-4<a ≤52-或a ≥5, 综合得:a 的取值范围是:(-∞,52-]∪[5,+ ∞) 若选择③A ∩B =∅,则当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩解得:-4<a ≤52-或a ≥5 综上知,实数a 的取值范围是:(-∞,52-]∪[5,+∞). 【点睛】易错点点睛:本题容易忽略集合A 是空集的情况,导致出错.空集是任何集合的子集,是任何非空集合的真子集.解答集合的关系和运算问题时,不要忽略了空集这种情况. 24.(1)2m ≥-;(2)1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【分析】(1)当()U A B =∅,在B A ⊆,然后针对B =∅与B ≠∅分类讨论求解;(2)若BC ≠∅,则B ≠∅,C ≠∅,若B C ≠∅,则只需1612m m m -≤-≤+或2126m m ≤+≤-,然后解出m 的取值范围.【详解】 解:(1)∵{}28A x x =≤≤,∴{U |2A x x =<或}8x >, ∵()U A B =∅,则B A ⊆,当B =∅时,62m -<,即4m >,当B ≠∅时,62m -≥,68m -≤,解得24m -≤≤.综上所述:2m ≥-.(2)由题可知,B ≠∅,C ≠∅,62,121,m m m -≥⎧⎨+≥-⎩解得24m -≤≤. 若B C ≠∅时,则只需:1612m m m -≤-≤+或2126m m ≤+≤-,解得:1722m ≤≤. ∴ 当BC ≠∅,m 的取值范围为1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【点睛】 本题考查集合的运算结果求参数的取值范围问题,难度一般,解答时,因为空集是任何集合的子集,所以解答时注意空集的特殊性.25.(1){}210A B x x ⋃=<<,()R A B ={}23710x x x <<<<或;(2)3a >.【分析】(1)利用集合交并补的定义进行计算即可;(2)利用A C ⋂≠∅结合数轴,可求得a 的取值范围.【详解】(1)∵{}37A x x =≤≤,{}210B x x =<<, ∴{}210A B x x ⋃=<<.∵{}37A x x =≤≤,∴{|3R C A x x =<或}7x >,∴()R A B ={|3x x <或}7x >{}210x x ⋂<<{}23710x x x =<<<<或. (2)如图所示,当3a >时,A C ⋂≠∅(或用补集思想)3a ∴>.【点睛】本题考查集合的交并补运算,考查利用集合间的关系求参数范围,属于基础题. 26.(1){}|27A B x x ⋃=-≤<;(2)()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【分析】(1)把2a =代入A 确定出A ,求出AB 即可; (2)由x A ∈是x B ∈成立的充分条件,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可.【详解】(1)当2a =时,{}17A x x =<<,则{}|27A B x x ⋃=-≤<;(2)x A ∈是x B ∈成立的充分条件,A B ∴⊆,①若A =∅,则123a a ->+,解得4a ;②若A ≠∅,由A B ⊆得到,12312234a a a a -+⎧⎪--⎨⎪+⎩解得:112a -, 综上:a 的取值范围是()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦. 【点睛】本题考查了交、并、补集的混合运算,考查充分必要条件的应用,熟练掌握运算法则是解本题的关键,属于中档题.。

高一数学易错题85道(经典)

高一数学易错题85道(经典)

则.故
44. 函数的单调减区间为

解答:,令,函数的定义域为函数的单调减区间为
说明:此题考查基本函数的导数及导数的运算法则
45. 一个膨胀中的球形气球,其体积的膨胀率恒为,则但其半径增至
时,半径的增长率是
.
解答:
说明:考查对导数概念的理解能力
46. 若函数在内单调递减,则实数a的范围为____________.
判断角所在的象限.
23. 已知
.
说明:本题考查了倍角公式的应用,在公式应用是注意符号的取
舍,特别关注的是角的范围.
24. 已知
.
说明:本题通过降冪联想到三角函数的基本公式和倍角公式进行化
简求值.
25. 要得到函数只需将函数的图像
.
解:,图像向右平移个单位就得到的图像.
说明:本题考查三角函数的平移变换,掌握“左加右减”法则,以及正
可取回的钱的总数(元)为

正确答案:] 错因: 学生对存款利息的计算方法没掌握。
43. 定义一个“等积数列”:在一个数列中,如果每一项与它后一项的积
都是同一常数,那么这个数列叫“等积数列”,这个常数叫做这个数列的
公积.
已知数列是等积数列,且,公积为5,则这个数列的前项和的计算
公式为:

解:这个数列为2,,2,,2,,…,若是偶数,则,若是奇数,
余弦之间的转化是解决问题的关键.
26. 已知有最小值,无最大值,则

说明:本题考查正弦的对称轴及周期,以及正弦图像的知识。
27. 将全体正整数排成一个三角形数阵:
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15

高中数学必修一第三章函数的概念与性质易错题集锦(带答案)

高中数学必修一第三章函数的概念与性质易错题集锦(带答案)

高中数学必修一第三章函数的概念与性质易错题集锦单选题1、现有下列函数:①y =x 3;②y =(12)x;③y =4x 2;④y =x 5+1;⑤y =(x −1)2;⑥y =x ;⑦y =a x (a >1),其中幂函数的个数为( )A .1B .2C .3D .4答案:B分析:根据幂函数的定义逐个辨析即可幂函数满足y =x a 形式,故y =x 3,y =x 满足条件,共2个故选:B2、若函数f (x +1x )=x 2+1x 2,且f (m )=4,则实数m 的值为( )A .√6B .√6或−√6C .−√6D .3答案:B分析:令x +1x =t ,配凑可得f (t )=t 2−2,再根据f (m )=4求解即可令x +1x =t (t ≥2或t ≤−2),x 2+1x 2=(x +1x )2−2=t 2−2,∴f (t )=t 2−2,f (m )=m 2−2=4,∴m =±√6.故选;B3、已知函数f (x )={x 2+a,x ≤0,2x ,x >0.若f[f (−1)]=4,且a >−1,则a =( ) A .−12B .0C .1D .2 答案:C分析:根据函数的解析式求出f(−1)=1+a ,结合1+a >0即可求出f[f(−1)],进而得出结果. 由题意知,f(−1)=(−1)2+a =1+a ,又a >−1,所以1+a >0,所以f[f(−1)]=f(1+a)=21+a =4,解得a =1.故选:C4、已知f(x)是一次函数,且f(x −1)=3x −5,则f(x)=( )A .3x −2B .2x +3C .3x +2D .2x −3答案:A分析:设一次函数y =ax +b(a ≠0),代入已知式,由恒等式知识求解.设一次函数y =ax +b(a ≠0),则f(x −1)=a(x −1)+b =ax −a +b ,由f(x −1)=3x −5得ax −a +b =3x −5,即{a =3b −a =−5 ,解得{a =3b =−2,∴f(x)=3x −2. 故选:A .5、已知幂函数的图象经过点P (4,12),则该幂函数的大致图象是( ) A .B .C .D .答案:A 分析:设出幂函数的解析式,利用函数图象经过点求出解析式,再由定义域及单调性排除CDB 即可. 设幂函数为y =x α,因为该幂函数得图象经过点P (4,12),所以4α=12,即22α=2−1,解得α=−12,即函数为y =x −12,则函数的定义域为(0,+∞),所以排除CD ,因为α=−12<0,所以f(x)=x−12在(0,+∞)上为减函数,所以排除B,故选:A6、已知函数f(x)=2x2−6x+3,x∈[−1,2],则函数的值域是()A.[−32,11)B.[32,11)C.[ −1,11]D.[−32,11]答案:D分析:根据二次函数的对称轴和端点处的值即可求解值域.∵f(x)=2x2−6x+3=2(x−32)2-32,对称轴x=32,当x∈[−1,2],f(x)min=f(32)=−32,又因为f(−1)=11,f(2)=1,∴f(x)max=f(−1)=11,所以函数的值域为[−32,11].故选:D7、已知函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),当x∈(0,1]时,f(x)=x2,则f(−2021)+f(2022)=()A.−4B.4C.−1D.1答案:C分析:由已知条件可得x>1时f(x+2)=f(x),然后利用f(−2021)+f(2022)=−f(1)+f(0)求解即可.因为函数f(x)是定义在R上的奇函数,且x>1时,满足f(2−x)=−f(x),所以f(0)=0,f(2−x)=−f(x)=f(−x),即可得x>1时f(x+2)=f(x),因为当x∈(0,1]时,f(x)=x2,所以f(−2021)+f(2022)=−f(2×1010+1)+f(2×1011+0)=−f(1)+f(0)=−1+0=−1,故选:C8、若函数y=√ax2+4x+1的值域为[0,+∞),则a的取值范围为()A.(0,4)B.(4,+∞)C.[0,4]D.[4,+∞)答案:C分析:当a=0时易知满足题意;当a≠0时,根据f(x)的值域包含[0,+∞),结合二次函数性质可得结果. 当a=0时,y=√4x+1≥0,即值域为[0,+∞),满足题意;若a≠0,设f(x)=ax2+4x+1,则需f(x)的值域包含[0,+∞),∴{a>0Δ=16−4a≥0,解得:0<a≤4;综上所述:a的取值范围为[0,4].故选:C.多选题9、幂函数f(x)=(m2−5m+7)x m2−6在(0,+∞)上是增函数,则以下说法正确的是()A.m=3B.函数f(x)在(−∞,0)上单调递增C.函数f(x)是偶函数D.函数f(x)的图象关于原点对称答案:ABD分析:根据幂函数的定义与性质得到方程(不等式)组,解得m=3,即可得到f(x),从而判断可得;解:因为幂函数f(x)=(m2−5m+7)x m2−6在(0,+∞)上是增函数,所以{m 2−5m+7=1m2−6>0,解得m=3,所以f(x)=x3,所以f(−x)=(−x)3=−x3=−f(x),故f(x)=x3为奇函数,函数图象关于原点对称,所以f(x)在(−∞,0)上单调递增;故选:ABD10、定义在R上的偶函数f(x)满足f(x+1)=−f(x),且在[−1,0]上是增函数,则()A.f(x)的图象关于直线x=1对称B.f(x)在[0,1]上是增函数C.f(x)在[1,2]上是减函数D.f(2)=f(0)答案:AD分析:由题可得分析可得f(x+1)=f(1−x),进而可判断AD,利用函数的对称性结合条件可判断BC. 因为f(x+1)=−f(x),f(x)是偶函数,所以f(−x)=−f(−x +1)=f(x),即f(x +1)=f(1−x),所以函数f(x)的图象关于直线x =1对称,故A 正确;由偶函数在对称区间上的单调性相反,得f(x)在[0,1]上是减函数,故B 错误; 因为函数f(x)的图象关于直线x =1对称,且f(x)在[0,1]上是减函数,所以f(x)在[1,2]上是增函数,故C 错误;由f(x +1)=f(1−x),可得f(2)=f(0),故D 正确.故选:AD.11、设α∈{−1,1,12,3},则使函数y =x α的定义域为R 且为奇函数的所有α的值有( ) A .−1B .1C .3D .12 答案:BC分析:根据α的取值,结合幂函数的性质,判断选项.α=−1时,y =x −1的定义域是(−∞,0)∪(0,+∞),不正确;α=1时,函数y =x 的定义域是R ,且是奇函数,故正确;α=3是,函数y =x 3的定义域是R ,且是奇函数,故正确;α=12时,函数y =x 12的定义域是[0,+∞),不正确.故选:BC填空题12、若函数f (x )=(m -1)x 2+(m -2)x +(m 2-7m +12)为偶函数,则m 的值是________. 答案:2分析:根据f (x )= f (-x ),简单计算可得结果.∵f (x )为偶函数,∴对于任意x ∈R ,有f (-x )=f (x ),即(m -1)(-x )2+(m -2)(-x )+(m 2-7m +12)=(m -1)x 2+(m -2)x +(m 2-7m +12), ∴2(m -2)x =0对任意实数x 均成立,∴m =2.所以答案是:2小提示:本题考查根据函数奇偶性求参数,掌握概念,细心计算,属基础题.13、(1)函数y=x45的定义域是________,值域是________;(2)函数y=x−25的定义域是________,值域是________;(3)函数y=x 32的定义域是________,值域是________;(4)函数y=x−34的定义域是________,值域是________.答案:R[0,+∞)(−∞,0)∪(0,+∞)(0,+∞)[0,+∞)[0,+∞)(0,+∞)(0,+∞)分析:画出对应幂函数的图像,结合幂函数的图像特征,写出定义域与值域(1)幂函数y=x 45图像如图所示,定义域为R,值域为[0,+∞),(2)幂函数y=x−25图像如图所示,定义域为(−∞,0)∪(0,+∞),值域为(0,+∞),(3)幂函数y=x 32图像如图所示,定义域为[0,+∞),值域为[0,+∞),(4)幂函数y=x−34图像如图所示,定义域为(0,+∞),值域为(0,+∞),所以答案是:(1)R;[0,+∞),(2)(−∞,0)∪(0,+∞);(0,+∞),(3)[0,+∞);[0,+∞),(4)(0,+∞);(0,+∞).14、若函数f(x)=(2m−1)x m是幂函数,则实数m=______.答案:1分析:根据幂函数定义列方程求解可得.因为f(x)=(2m−1)x m是幂函数,所以2m−1=1,解得m=1. 所以答案是:1解答题15、已知函数f(x)=x−1x+2,x∈[3,5].(1)判断函数f(x)的单调性,并证明;(2)求函数f(x)的值域.答案:(1)单调递增,证明见解析;(2)[25,4 7 ]分析:(1)利用函数单调性的定义即可证明函数f(x)在区间[3,5]上的单调性;(2)根据函数f(x)在区间[3,5]上的单调性即可求其值域.(1)f(x)=x−1x+2=x+2−3x+2=1−3x+2在区间[3,5]上单调递增,证明如下:任取x1,x2∈[3,5]且x1<x2,f(x1)−f(x2)=(1−3x1+2)−(1−3x2+2)=3x2+2−3x1+2=3(x1+2)−3(x2+2) (x1+2)(x2+2)=3(x1−x2)(x1+2)(x2+2),因为3≤x1<x2≤5,所以x1−x2<0,x1+2>0,x2+2>0,所以f(x1)−f(x2)<0,即f(x1)<f(x2),所以函数f(x)在区间[3,5]上单调递增.(2)由(1)知:f(x)在区间[3,5]上单调递增,所以f(x)min=f(3)=3−13+2=25,f(x)max=f(5)=5−15+2=47,所以函数f(x)的值域是[25,4 7 ].。

(易错题)高中数学必修四第一章《三角函数》测试题(包含答案解析)(3)

(易错题)高中数学必修四第一章《三角函数》测试题(包含答案解析)(3)

一、选择题1.若函数()sin 2f x x =与()2cos g x x =都在区间(),a b 上单调递减,则b a -的最大值是( ) A .π4B .π3C .π2D .2π32.斐波那契螺线又叫黄金螺线,广泛应用于绘画、建筑等,这种螺线可以按下列方法画出:如图,在黄金矩形ABCD (512AB BC -=)中作正方形ABFE ,以F 为圆心,AB 长为半径作圆弧BE ;然后在矩形CDEF 中作正方形DEHG ,以H 为圆心,DE 长为半径作圆弧EG ;……;如此继续下去,这些圆弧就连成了斐波那契螺线.记圆弧BE ,EG ,GI 的长度分别为,,l m n ,对于以下四个命题:①l m n =+;②2m l n =⋅;③2m l n =+;④211m l n=+.其中正确的是( )A .①②B .①④C .②③D .③④3.函数()sin()(0||)2,f x x πωϕωϕ=+><的部分函数图象如图所示,将函数()f x 的图象先向右平移3π个单位长度,然后向上平移1个单位长度,得到函数()g x 的解析式为( )A .()sin 21g x x =-B .()sin 21g x x =+C .()sin(2)13g x x π=--D .()sin(2)13g x x π=-+4.一观览车的主架示意图如图所示,其中O 为轮轴的中心,距地面32m (即OM 长),巨轮的半径长为30m ,2AM BP m ==,巨轮逆时针旋转且每12分钟转一圈,若点M 为吊舱P 的初始位置,经过t 分钟,该吊舱P 距离地面的高度为( )A .30sin 30122t ππ⎛⎫-+ ⎪⎝⎭B .30sin 3062t ππ⎛⎫-+⎪⎝⎭ C .30sin 3262t ππ⎛⎫-+⎪⎝⎭D .30sin 62t ππ⎛⎫-⎪⎝⎭ 5.设函数()3sin()10,2f x x πωϕωϕ⎛⎫=++><⎪⎝⎭的最小正周期为π,其图象关于直线3x π=对称,则下列说法正确是( )A .()f x 的图象过点30,2⎛⎫ ⎪⎝⎭; B .()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上单调递减; C .()f x 的一个对称中心是7,012π⎛⎫⎪⎝⎭; D .将()f x 的图象向左平移12ϕ个单位长度得到函数3sin 21y x =+ 的图象. 6.若函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,则ω=( ) A .34B .14C .32D .127.已知函数sin()0,0,||2y A x b A πωϕωϕ⎛⎫=++>>< ⎪⎝⎭的图象上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭,则函数()f x 的单调增区间为( )A .222,3939k k ππππ⎛⎫-+ ⎪⎝⎭,k Z ∈ B .242,3939k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ C .227,318318k k ππππ⎛⎫++⎪⎝⎭,k Z ∈ D .272,318318k k ππππ⎛⎫--⎪⎝⎭,k Z ∈ 8.函数3cos 2cos 2sin cos cos510y x x x ππ=-的递增区间是( ) A .2[,]105k k ππππ-+(k Z ∈) B .2[,]510k k ππππ-+ (k Z ∈) C .3[,]510k k ππππ-- (k Z ∈) D .37[,]2020k k ππππ-+ (k Z ∈) 9.设函数()sin()(0,||)f x x ωϕωϕπ=+><.若5()8f x f π⎛⎫≤ ⎪⎝⎭对任意的实数x 都成立,且1108f π⎛⎫=⎪⎝⎭,()f x 在443,ππ⎛⎫-⎪⎝⎭单调,则( ) A .23ω=,12πϕ=B .23ω=,1112πϕ=- C .13ω=,1124πϕ=-D .13ω=,724πϕ= 10.已知函数()sin()f x A x ωϕ=+(0A >,0>ω,0ϕπ≤≤)的部分图象如图所示,则()f x 的解析式是( )A .()2sin 6f x x π⎛⎫=+⎪⎝⎭B .()2sin 3f x x π⎛⎫=+⎪⎝⎭C .()2sin 26f x x π⎛⎫=+ ⎪⎝⎭D .2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭11.函数()()sin 0,2f x x πωϕωϕ⎛⎫=+>< ⎪⎝⎭的部分图象如图所示,为了得sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()f x 的图象( )A .向右平移3π个单位长度 B .向右平移4π个单位长度 C .向左平移3π个单位长度D .向左平移4π个单位长度 12.函数22y cos x sinx =- 的最大值与最小值分别为( )A .3,-1B .3,-2C .2,-1D .2,-2二、填空题13.当ϕ=___________时,函数()()sin f x x ϕ=+在区间4,33ππ⎛⎫⎪⎝⎭上单调(写出一个值即可).14.“一湾如月弦初上,半壁澄波镜比明”描述的是敦煌八景之一的月牙泉.如图所示,月牙泉由两段在同一平面内的圆弧形岸连接围成.两岸连接点间距离为603米.其中外岸为半圆形,内岸圆弧所在圆的半径为60米.某游客绕着月牙泉的岸边步行一周,则该游客步行的路程为_______米.15.函数()()sin f x x ωϕ=+的部分图象如图所示,则()f x 的单调递增区间为___________.16.sin 75=______.17.如图,从气球A 上测得正前方的B ,C 两点的俯角分别为75︒,30,此时气球的高是60m ,则BC 的距离等于__________m .18.关于函数()sin |||sin |f x x x =+有下述四个结论: ①()f x 是偶函数;②()f x 在区间,2ππ⎛⎫⎪⎝⎭单调递增; ③()f x 在[],ππ-有4个零点;④()f x 的最大值为2; 其中所有正确结论的编号是_________. 19.已知将函数()sin()(06,)22f x x ππωθωθ=+<<-<<的图象向右平移3π个单位长度得到画()g x 的图象,若()f x 和()g x 的图象都关于4x π=对称,则ωθ⋅=________.20.已知函数()3)cos(2)(0)f x x x ϕϕϕπ=+-+<<是定义在R 上的奇函数,则()8f π-的值为______.三、解答题21.已知()2sin 216f x x a π⎛⎫=-++⎪⎝⎭(a 为常数). (1)求()f x 的最小正周期和单调递增区间;(2)若当0,2x π⎡⎤∈⎢⎥⎣⎦时,()f x 的最大值为4,求a 的值. 22.如图,某公园摩天轮的半径为40m ,圆心O 距地面的高度为50m ,摩天轮做匀速转动,每3min 转一圈,摩天轮上的点P 的起始位置在距地面最近处.(1)已知在(min)t 时点P 距离地面的高度为()sin()0,0,||2f t A t h A πωϕωϕ⎛⎫=++>>≤ ⎪⎝⎭,求2020t =时,点P 距离地面的高度;(2)当离地面(50203)m +以上时,可以看到公园的全貌,求转一圈中在点P 处有多少时间可以看到公园的全貌.23.把()cos()(0,||)2f x x πωϕωϕ=+><的图象纵坐标保持不变,横坐标变为原来的2倍得()g x 的图象,已知()g x 图象如图所示(1)求函数()f x 的解析式; (2)若()()2()6h x f x g x π=-+,求()h x 在0,2π⎡⎤⎢⎥⎣⎦上的值域. 24.海水受日月的引力,在一定的时候发生涨落的现象叫潮,一般地,早潮叫潮,晚潮叫汐.在通常情况下,船在涨潮时驶进航道,靠近码头;在落潮时返回海洋.下面是某港口在某季节每天的时间和水深关系表: 时刻 2:00 5:00 8:00 11:00 14:00 17:00 20:00 23:00 水深/米7.05.03.05.07.05.03.05.0()()sin ,0,2f t A t B A πωϕωϕ⎛⎫=++>< ⎪⎝⎭来描述.(1)根据以上数据,求出函数()()sin f t A t B ωϕ=++的表达式;(2)一条货船的吃水深度(船底与水面的距离)为4.0米,安全条例规定至少要有2米的安全间隙(船底与洋底的距离),该船在一天内(0:00~24:00)何时能进入港口然后离开港口?每次在港口能停留多久?25.函数()sin()f x A x ωϕ=+(0,0,[0,2))A ωϕπ>>∈的图象如图所示:(1)求()f x 的解析式; (2)()f x 向左平移12π个单位后得到函数()g x ,求()g x 的单调递减区间;(3)若,2x ππ⎡⎤∈-⎢⎥⎣⎦且()32f x ≥,求x 的取值范围.26.已知函数()2sin 1f x x =-.(1)求函数f (x )的最大值,并求此时x 的值; (2)写出()0f x >的解集.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据题意求出(),()f x g x 原点附近的单调递减区间,根据递减区间分析可得max 3π4b =,min π4a =,相减即可. 【详解】解:由题意函数()sin 2f x x =在π3π,44⎛⎫⎪⎝⎭上单调递减,函数()2cos g x x =在()0,π上单调递减, 所以则max 3π4b =,min π4a =,所以b a -的最大值为3πππ442-=. 故选:C. 【点睛】求三角函数单调区间的2种方法:(1)代换法:就是将比较复杂的三角函数处理后的整体当作一个角u (或t ),利用基本三角函数的单调性来求所要求的三角函数的单调区间;(2)图象法:函数的单调性表现在图象上是从左到右,图象上升趋势的区间为单调递增区间,图象下降趋势的区间为单调递减区间,画出三角函数的图象,结合图象易求它的单调区间.2.A解析:A 【分析】设1AB =,则2BC =,再由14圆弧分别求出,,l m n ,再逐项判断即可得正确选项. 【详解】不妨设1AB =,则2BC =,所以)12l BE π==⨯,)213ED =-=所以(32m EG π==⨯,(134CG =-=,所以())422n GI ππ==⨯=,所以(())341222m n l πππ⨯+⨯=⨯==+,故①正确;(222234m π⨯==,))2122l n ππ⨯⨯=⋅=, 所以2m l n =⋅,故②正确;))122l n ππ⨯++==,((22332m ππ=⨯⨯-=-, 所以2m l n ≠+,故③不正确;11l nl n l n++===⋅(1132mπ==⨯,所以211m l n≠+,故④不正确;所以①②正确,故选:A【点睛】关键点点睛:本题解题的关键是读懂题意,正确求出扇形的半径,利用弧长公式求出弧长即,,l m n的值.3.D解析:D【分析】由周期求出ω,由五点法作图求出ϕ的值,可得()f x的解析式,再根据函数sin()y A xωϕ=+的图象变换规律,得出结论.【详解】根据函数()sin()(0f x xωϕω=+>,||)2πϕ<的部分函数图象,1274123πππω⋅=-,2ω∴=.再根据五点法作图,23πϕπ⨯+=,3πϕ∴=,()sin(2)3f x xπ=+.将函数()f x的图象先向右平移3π个单位长度,可得sin(2)3y xπ=-的图象.然后向上平移1个单位长度,得到函数()g x的解析式为()sin(2)13g x xπ=-+,故选:D【点睛】关键点睛:解答本题的关键在于准确地根据三角函数的图象求出三角函数sin()y A xωϕ=+的解析式,一般根据周期求出ω的值,根据最值求出A的值,根据最值点求出ϕ的值. 4.B解析:B【分析】先通过计算得出转动的角速度,然后利用三角函数模型表示在转动的过程中点B的纵坐标满足的关系式,则吊舱到底面的距离为点B的纵坐标减2.【详解】如图所示,以点M为坐标原点,以水平方向为x轴,以OM所在直线为y轴建立平面直角坐标系.因为巨轮逆时针旋转且每12分钟转一圈,则转动的角速度为6π每分钟, 经过t 分钟之后,转过的角度为6BOA t π∠=,所以,在转动的过程中,点B 的纵坐标满足:3230sin 30sin 322662y t t ππππ⎛⎫⎛⎫=--=-+ ⎪ ⎪⎝⎭⎝⎭则吊舱距离地面的距离30sin 32230sin 306262h t t ππππ⎛⎫⎛⎫=-+-=-+ ⎪ ⎪⎝⎭⎝⎭. 故选:B . 【点睛】建立三角函数模型解决实际问题的一般步骤: (1)审题:审清楚题目条件、要求、理解数学关系; (2)建模:分析题目变化趋势,选择合适的三角函数模型; (3)求解:对所建立的数学模型进行分析研究,从而得到结论.5.D解析:D 【分析】先根据对称轴及最小正周期,求得函数()f x 的解析式,再结合正弦函数的图象与性质,判断点是否在函数图象上可判断A ,求得函数的单调区间及对称中心即可判断选项BC ,由平移变换求得变化后的解析式并对比即可判断D. 【详解】函数()3sin()10,2f x x πωϕωϕ⎛⎫=++>< ⎪⎝⎭的最小正周期是π 所以22πωπ==,则()()3sin 21f x x ϕ=++,()()3sin 21f x x ϕ=++图象关于直线3x π=对称,对称轴为2,2x k k Z πϕπ+=+∈,代入可得2,32k k Z ππϕπ⨯+=+∈,解得,6k k Z πϕπ=-+∈,因为,22ππϕ⎛⎫∈- ⎪⎝⎭,所以当0k =时, 6πϕ=-, 则()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭,对于A,当0x =时,()3103sin 11622f π=-+=-+=- ,所以错误; 对于B,()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的单调递减区间为3222,262k x k k πππππ+-+∈Z ≤≤, 解得5,36k x k k Z ππππ+≤≤+∈,因为123ππ<,则()f x 在2,123ππ⎡⎤⎢⎥⎣⎦上不是减函数,所以错误; 对于C ,773sin 213sin 11012126f ππππ⎛⎫⎛⎫=⨯-+=+=≠⎪ ⎪⎝⎭⎝⎭,所以7,012π⎛⎫ ⎪⎝⎭不是()f x 的一个对称中心,所以错误; 对于D ,1212πϕ=,将()3sin 216f x x π⎛⎫=-+ ⎪⎝⎭的图象向左平移12π个单位长度得到可得3sin 213sin 21126y x x ππ⎡⎤⎛⎫=-++=+ ⎪⎢⎥⎝⎭⎣⎦,所以能得到3sin 21y x =+的图象,所以正确. 故选: D. 【点睛】本题考查了正弦函数的图象与性质的综合应用,关键点是根据已知条件先求出正弦函数的解析式,还要熟练掌握三角函数的性质才能正确的解题,属于中档题.6.C解析:C 【分析】由0,3x π⎡⎤∈⎢⎥⎣⎦计算出x ω的取值范围,可得出0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,再由函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减可得出关于ω的等式,由此可解得实数ω的值. 【详解】0ω>,当0,3x π⎡⎤∈⎢⎥⎣⎦时,0,3x πωω⎡⎤∈⎢⎥⎣⎦, 由于函数()()sin 0f x x ωω=>在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,则0,0,32πωπ⎡⎤⎡⎤⊆⎢⎥⎢⎥⎣⎦⎣⎦,所以,032πωπ<≤,由于函数()f x 在区间,32ππ⎡⎤⎢⎥⎣⎦上单调递减,所以,函数()f x 在3x π=处取得最大值,则()232k k N πωππ=+∈,又032πωπ<≤,所以,32πωπ=,解得32ω=. 故选:C. 【点睛】关键点点睛:本题通过正弦型函数在区间上的单调性求参数值,解题的就是将函数在区间上的单调性转化为两个区间的包含关系,并且分析出函数()f x 的一个最大值点,进而列出关于ω的等式求解.7.A解析:A 【分析】由最大值点和对称中心的坐标可以求出()f x 的解析式,利用三角函数的性质,整体代换得出该复合函数的单调增区间. 【详解】图像上相邻的一个最大值点与对称中心分别为2,39π⎛⎫⎪⎝⎭,,018π⎛⎫⎪⎝⎭, 3A ∴=,0b =且124918T ππ=-,可得23T π=, 23Tπω∴==, 3sin(3)y x ϕ∴=+ 将2,39π⎛⎫⎪⎝⎭代入可得3sin(3)3y x ϕ=+=, 可得22,32k k Z ππϕπ+=+∈,且2πϕ<, 6πϕ∴=-,可得()3sin(3)6f x x π=-,令6232,22k x k k Z πππππ-+≤-≤+∈,可得222+9393k x k ππππ-≤≤, 故选:A.【点睛】方法点睛:根据图像求函数()sin()f x A x k ωϕ=++的解析式,根据最高点和对称中心的纵坐标可求出A 和k ,根据横坐标可求出周期T ,进而求出ω.求该函数的单调区间时,用整体代换的思想,借助正弦函数的单调区间,用解不等式的方法求复合函数的单调区间.8.C解析:C 【分析】利用三角恒等变换的公式,化简得由函数cos(2)5y x π=+,再根据余弦型函数的性质,即可求解函数的单调递增区间,得到答案. 【详解】由函数3cos 2cos2sin cos cos cos 2cos sin 2sin cos(2)510555y x x x x x x πππππ=-=-=+, 令222,5k x k k Z ππππ-+≤+≤∈,整理得3,510k x k k Z ππππ-+≤≤-+∈, 所以函数的单调递增区间为3[,],510k k k Z ππππ-+-+∈,故选C. 【点睛】本题主要考查了三角恒等变换的化简,以及三角函数的性质的应用,其中解答中根据三角恒等变换的公式,化简得到函数的解析式,再利用三角函数的性质求解是解答的关键,着重考查了运算与求解能力,属于基础题.9.A解析:A 【分析】5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,可得 58x π=时函数取得最大值,则函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调,再利用排除法可得答案. 【详解】 因为5()8f x f π⎛⎫≤⎪⎝⎭对任意的实数x 都成立,则58x π=时函数取得最大值, 所以函数满足518f π⎛⎫= ⎪⎝⎭,1108f π⎛⎫= ⎪⎝⎭,且()f x 在443,ππ⎛⎫-⎪⎝⎭单调, 对于A ,若23ω=,12πϕ=,可得2()sin 312f x x π⎛⎫=+ ⎪⎝⎭,5sin 182f ππ⎛⎫== ⎪⎝⎭,11sin 08f ππ⎛⎫== ⎪⎝⎭,3254412,,4,31222x x πππππππ⎛⎫⎛⎫⎡⎤∈-⇒+∈-⊆- ⎪⎪⎢⎥⎝⎭⎝⎭⎣⎦,则2()sin 312f x x π⎛⎫=+ ⎪⎝⎭在443,ππ⎛⎫- ⎪⎝⎭单调递增,故A 符合题意; 对于B ,若23ω=,1112πϕ=-,可得211()sin 312f x x π⎛⎫=- ⎪⎝⎭,5sin 1182f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故B 不符合题意; 对于C ,若13ω=,1124πϕ=-,可得111()sin 324f x x π⎛⎫=-⎪⎝⎭,5sin 1842f ππ⎛⎫⎛⎫=-=-≠ ⎪ ⎪⎝⎭⎝⎭,故C 不符合题意; 对于D ,若13ω=,724πϕ=,可得17()sin 324f x x π⎛⎫=+ ⎪⎝⎭,113sin 0842f ππ⎛⎫==≠ ⎪⎝⎭,故D 不符合题意; 故选:A. 【点睛】方法点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前n 项和公式问题等等.10.D解析:D 【分析】结合图象,依次求得,,A ωϕ的值. 【详解】 由图象可知2A =,2,,22362T T πππππωω⎛⎫=--==== ⎪⎝⎭,所以()()2sin 2f x x ϕ=+,依题意0ϕπ≤≤,则2333πππϕ-≤-≤, 2sin 0,0,6333f ππππϕϕϕ⎛⎫⎛⎫-=-+=-+== ⎪ ⎪⎝⎭⎝⎭,所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.故选:D. 【点睛】方法点睛:根据三角函数()()sin f x A x b ωϕ=++或的部分图象求函数解析式的方法:(1)求A 、()()max min:2f x f x b A -=,()()max min2f x f x b +=;(2)求出函数的最小正周期T ,进而得出2Tπω=; (3)取特殊点代入函数可求得ϕ的值.11.B解析:B 【分析】首先根据图象求函数的解析式,再根据左右平移规律判断选项. 【详解】 由图象可知37341264T T ππππ⎛⎫=--=⇒= ⎪⎝⎭, 即22ππωω=⇒=,当6x π=-时,22,6k k Z πϕπ⎛⎫⨯-+=∈ ⎪⎝⎭, 解得:2,3k k Z πϕπ=+∈,2πϕ<,3πϕ∴=,()sin 23f x x π⎛⎫∴=+⎪⎝⎭, 22643x x πππ⎛⎫-=-+ ⎪⎝⎭, ∴ 要得到sin 26y x π⎛⎫=- ⎪⎝⎭的图象,只需将()sin 23f x x π⎛⎫=+ ⎪⎝⎭的图象向右平移4π个单位. 故选:B 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.12.D解析:D 【解析】分析:将2cos x 化为21sin x -,令()sin 11x t t =-≤≤,可得关于t 的二次函数,根据t的取值范围,求二次函数的最值即可.详解:利用同角三角函数关系化简,22cos 2sin sin 2sin 1y x x x x =-=--+ 设()sin 11x t t =-≤≤,则()()22211211y t t t t =--+=-++-≤≤,根据二次函数性质当1t =-时,y 取最大值2,当1t =时,y 取最小值2-. 故选D.点睛:本题考查三角函数有关的最值问题,此类问题一般分为两类,一种是解析式化为2sin sin y A x B x C =++的形式,用换元法求解;另一种是将解析式化为()sin y A x k ωϕ=++的形式,根据角的范围求解.二、填空题13.(集合或中的任何一个值都行)【分析】由函数的周期和区间长度可以确定和是单调区间的端点值由此列式求值【详解】的周期是而区间的长度是个单位长度则一个周期内完整的一个单调增区间或减区间当时所以解得:或解得解析:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【分析】由函数的周期,和区间长度可以确定3π和43π是单调区间的端点值,由此列式,求ϕ值. 【详解】()f x 的周期是2π,而区间4,33ππ⎛⎫ ⎪⎝⎭的长度是π个单位长度,则4,33ππ⎛⎫⎪⎝⎭一个周期内完整的一个单调增区间或减区间, 当433x ππ<<时,433x ππϕϕϕ+<+<+, 所以2324232k k ππϕπππϕπ⎧+=-+⎪⎪⎨⎪+=+⎪⎩ ,解得:52,6k k Z πϕπ=-+∈, 或23243232k k ππϕπππϕπ⎧+=+⎪⎪⎨⎪+=+⎪⎩,解得:26k πϕπ=+,k Z ∈,所以其中一个6π=ϕ, 故答案为:6π(集合5{26k πϕϕπ=-+或2,}6k k Z πϕπ=+∈中的任何一个值都行 ) 【点睛】关键点点睛:本题考查三角函数的性质,求参数的取值范围,本题的关键是确定3π和43π是单调区间的端点值,列式后就比较容易求解.14.【分析】如图作出月牙湖的示意图由题意可得可求的值进而由图利用扇形的弧长公式可计算得解【详解】如图是月牙湖的示意图是的中点连结可得由条件可知所以所以所以月牙泉的周长故答案为:【点睛】关键点点睛:本题的 解析:(40303)π+【分析】如图,作出月牙湖的示意图,由题意可得3sin QPO ∠=,可求,QPO QPT ∠∠的值,进而由图利用扇形的弧长公式可计算得解. 【详解】如图,是月牙湖的示意图,O 是QT 的中点,连结PO ,可得PO QT ⊥,由条件可知603QT =,60PQ = 所以3sin 2QPO ∠=,所以3QPO π∠=,23QPT π∠=,所以月牙泉的周长(260303403033l πππ=⨯+⨯=+. 故答案为:(40303π+ 【点睛】关键点点睛:本题的关键是根据实际问题抽象出图象,再根据数形结合分析问题.15.【分析】由图象知三角函数的周期结合函数图象及写出单调递增区间【详解】由图象知:∴的单调递增区间为故答案为:【点睛】思路点睛:1看图定周期特殊函数值:2结合图象由周期对称轴写出增区间解析:37[2,2],44k k k Z ++∈【分析】由图象知,三角函数的周期2T =,结合函数图象及15()()044f f ==,写出单调递增区间.【详解】 由图象知:22||T πω==, 15()()044f f ==, ∴()f x 的单调递增区间为37[2,2],44k k k Z ++∈, 故答案为:37[2,2],44k k k Z ++∈ 【点睛】 思路点睛:1、看图定周期、特殊函数值:2T =,15()()044f f ==.2、结合图象,由周期、对称轴写出增区间. 16.【解析】试题分析:将非特殊角化为特殊角的和与差是求三角函数值的一个有效方法考点:两角和的正弦 解析:【解析】 试题分析:232162sin 75sin(4530)sin 45cos30cos 45sin 3022224︒︒︒︒︒︒︒=+=+=⨯+=将非特殊角化为特殊角的和与差,是求三角函数值的一个有效方法. 考点:两角和的正弦17.【分析】由题意画出图形由两角差的正切求出的正切值然后通过求解两个直角三角形得到和的长度作差后可得答案【详解】由图可知在中在中河流的宽度等于故答案为:【点睛】本题给出实际应用问题求河流在两地的宽度着重 解析:120(31)【分析】由题意画出图形,由两角差的正切求出15︒的正切值,然后通过求解两个直角三角形得到DC 和DB 的长度,作差后可得答案. 【详解】由图可知,15DAB ∠=︒()tan 45tan 30tan15tan 4530231tan 45tan 30︒-︒︒=︒-︒==-+︒︒在Rt ADB 中,60AD =(tan156023120603DB AD ∴=⋅︒=⨯=-在Rt ADC 中,60,60DAC AD ∠=︒=tan 60603DC AD ∴=⋅︒=()()1201201BC DC DB m ∴=-=-=∴河流的宽度BC 等于)1201m故答案为:1) 【点睛】本题给出实际应用问题,求河流在,B C 两地的宽度,着重考查了三角函数的定义、正余弦定理解三角形的知识,属于中档题.18.①④【分析】结合题意得出函数的奇偶性根据奇偶性研究函数在时的性质对结论逐一判断即可【详解】解:∵定义域为∴∴函数是偶函数故①对;当时∴由正弦函数的单调性可知函数在区间上单调递减故②错;当时由得根据偶解析:①④ 【分析】结合题意,得出函数的奇偶性,根据奇偶性研究函数在0x >时的性质对结论逐一判断即可. 【详解】解:∵()sin |||sin |f x x x =+,定义域为R ,∴()()sin |||sin |f x x x -=-+-sin sin ()x x f x =+=, ∴函数()f x 是偶函数,故①对;当[]0,x π∈时,()sin |||sin |f x x x =+sin sin 2sin x x x =+=, ∴由正弦函数的单调性可知,函数()f x 在区间,2ππ⎛⎫⎪⎝⎭上单调递减,故②错; 当[]0,x π∈时,由()2sin 0f x x ==得0x =,x π=,根据偶函数的图象和性质可得,()f x 在[),0π-上有1个零点x π=- , ∴()f x 在[],ππ-有3个零点,故③错;当0x ≥时,()sin |||sin |f x x x =+sin sin x x =+2sin ,sin 00,sin 0x x x ≥⎧=⎨<⎩, 根据奇偶性可得函数()f x 的图象如图,∴当sin 1x =时,函数()f x 有最大值()max 2f x =,故④对; 故答案为:①④. 【点睛】本题主要考查与三角函数有关的命题的真假判断,结合绝对值的应用以及利用三角函数的性质是解决本题的关键,属于中档题.19.【分析】和的图象都关于对称所以①②由①②结合即可得到答案【详解】由题意因为和的图象都关于对称所以①②由①②得又所以将代入①得注意到所以所以故答案为:【点睛】本题考查正弦型函数的性质涉及到函数图象的平解析:34π-【分析】()f x 和()g x 的图象都关于4x π=对称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②结合06,22ππωθ<<-<<即可得到答案.【详解】由题意,()()sin()33g x f x x ππωωθ=-=-+,因为()f x 和()g x 的图象都关于4x π=对 称,所以11,42k k Z ππωθπ+=+∈①,22,432k k Z πππωωθπ-+=+∈②,由①②,得12123(),,k k k k Z ω=-∈,又06ω<<,所以3ω=,将3ω=代入①,得11,4k k Z πθπ=-∈,注意到22ππθ-<<,所以4πθ=-,所以34ωθπ⋅=-.故答案为:34π- 【点睛】本题考查正弦型函数的性质,涉及到函数图象的平移、函数的对称性,考查学生的运算求解能力,是一道中档题.20.【分析】利用辅助角公式化简根据正弦型函数为奇函数可构造方程求得进而得到解析式代入即可求得结果【详解】为上的奇函数解得:又故答案为:【点睛】本题考查根据正弦型函数的奇偶性求解参数值已知解析式求解三角函解析:【分析】利用辅助角公式化简()f x ,根据正弦型函数为奇函数可构造方程求得ϕ,进而得到()f x 解析式,代入8x π=-即可求得结果.【详解】()()()2cos 22sin 26f x x x x πϕϕϕ⎛⎫=+-+=-+ ⎪⎝⎭,()f x 为R 上的奇函数,()6k k Z πϕπ∴-=∈,解得:()6k k Z πϕπ=+∈,又0ϕπ<<,6πϕ∴=,()2sin 2f x x ∴=,2sin 84f ππ⎛⎫⎛⎫∴-=-= ⎪ ⎪⎝⎭⎝⎭故答案为:. 【点睛】本题考查根据正弦型函数的奇偶性求解参数值、已知解析式求解三角函数值的问题;关键是能够通过辅助角公式将函数化简为正弦型函数,进而利用奇偶性构造方程求得参数.三、解答题21.(1)π,5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z ;(2)2a =. 【分析】(1)利用诱导公式化简函数的解析式,再根据正弦函数的周期性和单调性求解. (2)根据0,2x π⎡⎤∈⎢⎥⎣⎦得到52,666x πππ⎡⎤-∈-⎢⎥⎣⎦,然后利用正弦函数的性质求解. 【详解】 (1)()2sin 212sin 2166f x x a x a ππ⎛⎫⎛⎫=-++=--++ ⎪ ⎪⎝⎭⎝⎭,它的最小正周期为22ππ=. 令3222262k x k πππππ+≤-≤+,解得536k x k ππππ+≤≤+, 所以函数的单调递增区间为5,,36k k k ππππ⎡⎤++∈⎢⎥⎣⎦Z . (2)因为0,2x π⎡⎤∈⎢⎥⎣⎦时, 所以52,666x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以()f x 的最大值为42sin 16a π⎡⎤⎛⎫=-⨯-++ ⎪⎢⎥⎝⎭⎣⎦, 解得2a =. 【点睛】方法点睛:1.讨论三角函数性质,应先把函数式化成y =A sin(ωx +φ)(ω>0)的形式; 2.函数y =A sin(ωx +φ)和y =A cos(ωx +φ)的最小正周期为2πω,y =tan(ωx +φ)的最小正周期为πω;3.对于函数的性质(定义域、值域、单调性、对称性、最值等)可以通过换元的方法令t =ωx +φ,将其转化为研究y =sin t 的性质. 22.(1)70m ;(2)0.5min . 【分析】(1)根据题意,确定()sin()f t A t h ωϕ=++的表达式,代入2020t =运算即可;(2)要求()50f t >+2cos 3t π<,解不等式即可. 【详解】(1)依题意,40A =,50h =,3T =, 由23πω=得23πω=,所以2()40sin 503f t t πϕ⎛⎫=++⎪⎝⎭. 因为(0)10f =,所以sin 1ϕ=-,又||2πϕ≤,所以2πϕ=-.所以2()40sin 50(0)32f t t t ππ⎛⎫=-+≥ ⎪⎝⎭,所以2(2020)40sin 2020507032f ππ⎛⎫=⨯-+= ⎪⎝⎭.即2020t =时点P 距离地面的高度为70m .(2)由(1)知22()40sin 505040cos (0)323f t t t t πππ⎛⎫=-+=-≥ ⎪⎝⎭.令()50f t >+2cos 32t π<-, 从而()*52722N 636k t k k πππππ+<<+∈, ∴()*5733N 44k t k k +<<+∈. ∵()*751330.5N 442k k k ⎛⎫+-+==∈ ⎪⎝⎭, ∴转一圈中在点P 处有0.5min 的时间可以看到公园的全貌. 【点睛】本题考查了已知三角函数模型的应用问题,解答本题的关键是能根据题目条件,得出相应的函数模型,作出正确的示意图,然后再由三角函数中的相关知识进行求解,解题时要注意综合利用所学知识与题中的条件,是中档题. 23.(1)1()cos(2)3f x x π=-;(2)3,12⎡⎤--⎢⎥⎣⎦. 【分析】(1)由伸缩变换得1()cos()2g x x ωϕ=+,由()g x 的图像的周期为54()263T πππ=-=,解得2ω=,由()g x 图像过点(,1)3π,求得ϕ,进而得到()g x ,()f x 的解析式.(2)易得()22cos ()2cos()166h x x x ππ=----,令cos()6t x π=-,利用二次函数的性质求解. 【详解】(1)由题意1()cos()2g x x ωϕ=+, 由()g x 的图像可得:函数()g x 的周期为54()263T πππ=-=, 解得2ω=, ∴()cos )(g x x ϕ=+, 由图知()g x 图像过点(,1)3π,所以cos()13πϕ+=,则23k πϕπ=-+,k Z ∈,因为||2ϕπ<,取0k =得3πϕ=-,所以()cos()3g x x π=-,从而函数()f x 的解析式为()cos(2)3f x x π=-.(2)()()2()cos(2)2cos()636h x f x g x x x πππ=-+=---, 22cos ()2cos()166x x ππ=----,令cos()6t x π=-,由0,2x π⎡⎤∈⎢⎥⎣⎦,得,663x πππ⎡⎤-∈-⎢⎥⎣⎦, 所以1,12t ⎡⎤∈⎢⎥⎣⎦, 则22132212()22y t t t =--=--,1,12t ⎡⎤∈⎢⎥⎣⎦, 当12t =时,y 有最小值32-,此时,1cos()62x π-=,63x ππ-=,即2x π=,当1t =时有最大值1-,此时cos()16x π-=,06x π-=,即6x π=.所以函数()h x 的值域为3,12⎡⎤--⎢⎥⎣⎦. 【点睛】方法点睛:求解三角函数的值域(最值)常见到以下几种类型:①形如y =a sin x +b cos x +c 的三角函数化为y =A sin(ωx +φ)+k 的形式,再求最值(值域);②形如y =a sin 2x +b sin x +c 的三角函数,可先设sin x =t ,化为关于t 的二次函数求值域(最值);③形如y =a sin x cos x +b (sin x ±cos x )+c 的三角函数,可先设t =sin x ±cos x ,化为关于t 的二次函数求值域(最值). 24.(1)()2sin 566f t t ππ⎛⎫=++⎪⎝⎭;(2)在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【分析】由表格易知()()max min 7,3f t f t ==,由()()()()max minmax min,22f t f t f t f t A B -+==,求得A ,B ,再根据14212T =-=和2t =时,函数取得最大值,分别求得,ωϕ即可.(2)根据货船需要的安全水深度为6,由()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭求解. 【详解】由表格可知()()max min 7,3f t f t ==,, 则()()()()max minmax min2,522f t f t f t f t A B -+====,又214212,6T T ππω=-===, 当2t =时,()22sin 2576f πϕ⎛⎫=⨯++= ⎪⎝⎭, 即sin 13πϕ⎛⎫+= ⎪⎝⎭, 所以232k ππϕπ+=+,又2πϕ<,所以6π=ϕ, 所以()2sin 566f t t ππ⎛⎫=++ ⎪⎝⎭.(2)因为货船需要的安全水深度为6,所以()2sin 5666f t t ππ⎛⎫=++≥ ⎪⎝⎭,即1sin 662t ππ⎛⎫+≥ ⎪⎝⎭, 所以5226666k t k ππππππ+≤+≤+, 即12412k t k ≤≤+, 又因为[]0,24t ∈,当0k =时,[]0,4t ∈,当1k =时,[]12,16t ∈,所以在0时进港4时出港或12时进港16时出港,每次在港内可停留4个小时. 【点睛】方法点睛:由函数y =A sin(ωx +φ)的图象或表格确定A ,ω,φ的题型,常常以“五点法”中的五个点作为突破口,要从图象的升降情况找准“零点”或“最大(小)值点”的位置.要善于抓住特殊量和特殊点.25.(1)()23f x x π⎛⎫=+⎪⎝⎭;(2),,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3){},66πππ⎡⎤-⋃⎢⎥⎣⎦. 【分析】(1)利用题中图象可知A =,44T π=,结合周期公式求得=2ω,再由3x π=代入计算得=3πϕ即得解析式;(2)根据三角函数平移的方法求得()g x ,再利用整体代入法求单调递减区间即可;(3)先由()32fx ≥可得sin 232x π⎛⎫+≥ ⎪⎝⎭,再由,2x ππ⎡⎤∈-⎢⎥⎣⎦得到23x π+的前提范围,结合正弦函数性质得到不等式中23x π+的范围,再计算x 范围即可.【详解】解:(1)由题中图象可知:A =,741234T πππ=-=, 2T ππω∴==,即2ω=,又由图象知,3x π=时,223k πϕππ⋅+=+,即23k πϕπ=+,k Z ∈,又02ϕπ≤<,∴=3πϕ,()23f x x π⎛⎫∴=+ ⎪⎝⎭;(2)()f x 向左平移12π个单位后得到函数()g x ,故()2221232g x x x x πππ⎡⎤⎛⎫⎛⎫=++=+= ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由余弦函数性质知,令222,k x k k Z πππ≤≤+∈,得减区间,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z , ∴()g x 的单调递减区间为,,2πππ⎡⎤+∈⎢⎥⎣⎦k k k Z ;(3)由题意知:()3232fx x π⎛⎫=+≥ ⎪⎝⎭,即sin 23x π⎛⎫+≥ ⎪⎝⎭,由,2x ππ⎡⎤∈-⎢⎥⎣⎦,知[]0,x π∈,2,2333x ππππ⎡⎤+∈+⎢⎥⎣⎦,由正弦函数图象性质可知,22333x πππ≤+≤或2233x πππ+=+ 即06x π≤≤或x =π,又,2x ππ⎡⎤∈-⎢⎥⎣⎦,得x 的取值范围为{},66x πππ⎡⎤∈-⋃⎢⎥⎣⎦.【点睛】 方法点睛:求三角函数()()sin f x A x b ωϕ=++性质问题时,通常利用整体代入法求解单调性、对称性,最值等性质,或者整体法求三角不等式的解. 26.(1)最大值1,2,2x k k Z ππ=+∈;(2)5{|22,}66x k x k k Z ππππ+≤≤+∈. 【分析】(1)当sin 1x =时,函数取最大值得解; (2)根据三角函数的图象解不等式得解集. 【详解】(1)当sin 1x =即2,2x k k Z ππ=+∈时,()2111max f x =⨯-=;(2)由题得1sin 2x >,所以不等式的解集为5{|22,}66x k x k k Z ππππ+≤≤+∈. 【点睛】关键点睛:解答这类题的关键是熟练掌握三角函数的图象和性质,再灵活利用其解题.。

(完整版)高中数学易错题(含答案)

(完整版)高中数学易错题(含答案)

高中数学易错题一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.52.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=06.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是_________.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=_________.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是_________.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是_________.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为_________.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为_________.13.△ABC中,AB=AC,,则cosA的值是_________.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为_________.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为_________.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=_________.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.高中数学易错题参考答案与试题解析一.选择题(共6小题)1.已知在△ABC中,∠ACB=90°,BC=4,AC=3,P是AB上一点,则点P到AC,BC的距离乘积的最大值是()A.2B.3C.4D.5考点:三角形中的几何计算.专题:计算题.分析:设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,进而求得x和y的关系式,进而表示出xy的表达式,利用二次函数的性质求得xy的最大值.解答:解:如图,设点P到AC,BC的距离分别是x和y,最上方小三角形和最大的那个三角形相似,它们对应的边有此比例关系,即=4,所以4x=12﹣3y,y=,求xy最大,也就是那个矩形面积最大.xy=x•=﹣•(x2﹣3x),∴当x=时,xy有最大值3故选B.点评:本题主要考查了三角函数的几何计算.解题的关键是通过题意建立数学模型,利用二次函数的性质求得问题的答案.2.在△ABC中,边AB=,它所对的角为15°,则此三角形的外接圆直径为()A.缺条件,不能求出B.C.D.考点:三角形中的几何计算.专题:计算题.分析:直接利用正弦定理,两角差的正弦函数,即可求出三角形的外接圆的直径即可.解答:解:由正弦定理可知:====.故选D.点评:本题是基础题,考查三角形的外接圆的直径的求法,正弦定理与两角差的正弦函数的应用,考查计算能力.3.在△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,则d的取值范围是()A.3<d<4 B.C.D.考点:三角形中的几何计算.专题:数形结合;转化思想.分析:画出图形,利用点到直线的距离之间的转化,三角形两边之和大于第三边,求出最小值与最大值.解答:解:由题意△ABC中,边a,b,c分别为3、4、5,P为△ABC内任一点,点P到三边距离之和为d,在图(1)中,d=CE+PE+PF>CD==,在图(2)中,d=CE+EP+FP<CE+EG<AC=4;∴d的取值范围是;故选D.点评:本题是中档题,考查不等式的应用,转化思想,数形结合,逻辑推理能力,注意,P为△ABC内任一点,不包含边界.4.在平面直角坐标系xoy中,已知△ABC的顶点A(﹣6,0)和C(6,0),顶点B在双曲线的左支上,则等于()A.B.C.D.考点:三角形中的几何计算.专题:计算题.分析:由题意可知双曲线的焦点坐标就是A,B,利用正弦定理以及双曲线的定义化简即可得到答案.解答:解:由题意可知双曲线的焦点坐标就是A,B,由双曲线的定义可知BC﹣AB=2a=10,c=6,===;故选D.点评:本题是基础题,考查双曲线的定义,正弦定理的应用,考查计算能力,常考题型.5.(2009•闸北区二模)过点A(1,﹣2),且与向量平行的直线的方程是()A.4x﹣3y﹣10=0 B.4x+3y+10=0 C.3x+4y+5=0 D.3x﹣4y+5=0考点:三角形中的几何计算.专题:计算题.分析:通过向量求出直线的斜率,利用点斜式方程求出最新的方程即可.解答:解:过点A(1,﹣2),且与向量平行的直线的斜率为﹣,所以所求直线的方程为:y+2=﹣(x﹣1),即:3x+4y+5=0.故选C.点评:本题是基础题,考查直线方程的求法,注意直线的方向向量与直线的斜率的关系,考查计算能力.6.(2011•江西模拟)下面命题:①当x>0时,的最小值为2;②过定点P(2,3)的直线与两坐标轴围成的面积为13,这样的直线有四条;③将函数y=cos2x的图象向右平移个单位,可以得到函数y=sin(2x﹣)的图象;④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12.其中正确的命题是()A.①②④B.②④C.②③D.③④考点:三角形中的几何计算;恒过定点的直线.专题:应用题.分析:①由于基本不等式等号成立的条件不具备,故的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程,求出它与两坐标轴的交点,根据条件可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条.③将函数y=cos2x的图象向右平移个单位,可以得到函数y﹣sin(2x﹣)的图象,故③不正确.④若△ABC中,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形.解答:解:①∵≥2=2,(当且仅当x=0时,等号成立),故当x>0时,的最小值大于2,故①不正确.②设过定点P(2,3)的直线的方程为y﹣3=k(x﹣2),它与两坐标轴的交点分别为(2﹣,0),(0,3﹣2k),根据直线与两坐标轴围成的面积为13=,化简可得4k2+14k+9=0,或4k2﹣38k+9=0.而这两个方程的判别式都大于0,故每个方程都有两个解,故满足条件的直线有四条,故②正确.③将函数y=cos2x的图象向右平移个单位,可以得到函数y=cos2(x﹣)=sin[﹣(2x﹣)]=sin()=﹣sin(2x﹣)的图象,故③不正确.④已知△ABC,∠A=60°,a=4,则此三角形周长可以为12,此时,三角形是等边三角形,故④正确.故选B.点评:本题基本不等式取等号的条件,过定点的直线,三角函数的图象变换,诱导公式的应用,检验基本不等式等号成立的条件,是解题的易错点.二.填空题(共10小题)7.Rt△ABC中,AB为斜边,•=9,S△ABC=6,设P是△ABC(含边界)内一点,P到三边AB,BC,AC的距离分别为x,y,z,则x+y+z的取值范围是[,4].考点:向量在几何中的应用;三角形中的几何计算.专题:综合题.分析:设三边分别为a,b,c,利用正弦定理和余弦定理结合向量条件利用三角形面积公式即可求出三边长.欲求x+y+z的取值范围,利用坐标法,将三角形ABC放置在直角坐标系中,通过点到直线的距离将求x+y+z的范围转化为,然后结合线性规划的思想方法求出范围即可.解答:解:△ABC为Rt△ABC,且∠C=90°,设三角形三内角A、B、C对应的三边分别为a,b,c,∵(1)÷(2),得,令a=4k,b=3k(k>0)则∴三边长分别为3,4,5.以C为坐标原点,射线CA为x轴正半轴建立直角坐标系,则A、B坐标为(3,0),(0,4),直线AB方程为4x+3y﹣12=0.设P点坐标为(m,n),则由P到三边AB、BC、AB的距离为x,y,z.可知,且,故,令d=m+2n,由线性规划知识可知,如图:当直线分别经过点A、O时,x+y+z取得最大、最小值.故0≤d≤8,故x+y+z的取值范围是.故答案为:[].点评:本题主要考查了解三角形中正弦定理、余弦定理、平面向量数量积的运算、简单线性规划思想方法的应用,综合性强,难度大,易出错.8.(2011•武进区模拟)在△ABC中,,且△ABC的面积S=asinC,则a+c的值=4.考点:二倍角的余弦;三角形中的几何计算.专题:计算题.分析:首先根据三角形的面积公式求出b的值,然后将所给的式子写成+=3进而得到acosC+ccosA+a+c=6,再根据在三角形中acosC+ccosA=b=2,即可求出答案.解答:解:∵S=absinC=asinC∴b=2∴acos2+ccos2=3∴+=3即a(cosC+1)+c(cosA+1)=6∴acosC+ccosA+a+c=6∵acosC+ccosA=b=2∴2+a+c=6∴a+c=4故答案为:4.点评:本题考查了二倍角的余弦以及三角形中的几何运算,解题的关键是巧妙的将所给的式子写成+=3的形式,属于中档题.9.锐角三角形ABC中,角A,B,C所对的边分别是a,b,c.边长a,b是方程的两个根,且,则c边的长是.考点:三角形中的几何计算.专题:计算题.分析:先根据求得sin(A+B)的值,进而求得sinC的值,根据同角三角函数的基本关系求得cosC,根据韦达定理求得a+b和ab的值,进而求得a2+b2,最后利用余弦定理求得c的值.解答:解:∵,∴sin(A+B)=∴sinC=sin(π﹣A﹣B)=sin(A+B)=∴cosC==∵a,b是方程的两根∴a+b=2,ab=2,∴a2+b2=(a+b)2﹣2ab=8∴c===故答案为:点评:本题主要考查了三角形中的几何计算,余弦定理的应用,韦达定理的应用.考查了考生综合运用基础知识的能力.10.已知在△ABC中,,M为BC边的中点,则|AM|的取值范围是.考点:三角形中的几何计算;正弦定理.专题:计算题;解三角形.分析:构造以BC为正三角形的外接圆,如图满足,即可观察推出|AM|的取值范围.解答:解:构造以BC为正三角形的外接圆,如图,显然满足题意,由图可知红A处,|AM|值最大为,A与B(C)接近时|AM|最小,所以|AM|∈.故答案为:.点评:本题考查三角形中的几何计算,构造法的应用,也可以利用A的轨迹方程,两点减距离公式求解.11.一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为2,则该三角形的斜边长为2.考点:棱柱的结构特征;三角形中的几何计算.专题:计算题.分析:由于正三棱柱的底面ABC为等边三角形,我们把一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,结合图形的对称性可得,该三角形的斜边EF上的中线DG的长等于底面三角形的高,从而得出等腰直角三角形DEF的中线长,最后得到该三角形的斜边长即可.解答:解:一个等腰直角三角形DEF的三个顶点分别在正三棱柱的三条侧棱上,∠EDF=90°,已知正三棱柱的底面边长为AB=2,则该三角形的斜边EF上的中线DG=,∴斜边EF的长为2.故答案为:2.点评:本小题主要考查棱柱的结构特征、三角形中的几何计算等基础知识,考查空间想象力.属于基础题.12.三角形ABC中,若2,且b=2,一个内角为300,则△ABC的面积为1或.考点:三角形中的几何计算.专题:计算题.分析:先利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2;再分∠A=30°以及∠C=30°两种情况分别求出对应的面积.解答:解:因为2,转化为边长和角所以有2acosB=c可得:cosB==⇒a2=b2⇒a=b=2.当∠A=30°=∠B时,∠C=120°,此时S△ABC=×2×2×sinC=;当∠C=30°时,∠A=∠B=75°,此时S△ABC=×2×2×sinC=1.故答案为:或1.点评:本题主要考查余弦定理的应用以及三角形中的几何计算.解决本题的关键在于利用2,转化得到2acosB=c;再借助于余弦定理得a=b=2.13.△ABC中,AB=AC,,则cosA的值是.考点:三角形中的几何计算.专题:计算题.分析:根据AB=AC可推断出B=C,进而利用三角形内角和可知cosA=cos(π﹣2B)利用诱导公式和二倍角公式化简整理,把cosB的值代入即可.解答:解:∵AB=AC,∴B=C∴cosA=cos(π﹣2B)=cos2B=2cos2B﹣1=﹣1=﹣故答案为:﹣点评:本题主要考查了三角形中的几何计算,二倍角公式的应用.考查了学生综合运用三角函数基础知识的能力.14.(2010•湖南模拟)已知点P是边长为2的等边三角形内一点,它到三边的距离分别为x、y、z,则x、y、z 所满足的关系式为x+y+z=3.考点:三角形中的几何计算.专题:计算题.分析:设等边三角形的边长为a,高为h将P与三角形的各顶点连接,进而分别表示出三角形三部分的面积,相加应等于总的面积建立等式求得x+y+z的值.解答:解:设等边三角形的边长为a,高为h将P与三角形的各顶点连接根据面积那么:ax+ay+az=ah所以x+y+z=h因为等边三角形的边长为2,所以高为h=3所以x.y.z所满足的关系是为:x+y+z=3故答案为:3点评:本题主要考查了三角形中的几何计算.考查了学生综合分析问题的能力和转化和化归的思想.15.(2013•东莞二模)如图,已知△ABC内接于⊙O,点D在OC的延长线上,AD切⊙O于A,若∠ABC=30°,AC=2,则AD的长为.考点:三角形中的几何计算.专题:计算题.分析:根据已知可得△AOC是等边三角形,从而得到OA=AC=2,则可以利用勾股定理求得AD的长.解答:解:(2)∵OA=OC,∠AOC=60°,∴△AOC是等边三角形,∴OA=AC=2,∵∠OAD=90°,∠D=30°,∴AD=•AO=.故答案为:.点评:本题考查和圆有关的比例线段,考查同弧所对的圆周角等于弦切角,本题在数据运算中主要应用含有30°角的直角三角形的性质,本题是一个基础题.16.三角形ABC中,三个内角B,A,C成等差数列,∠B=30°,三角形面积为,则b=.考点:三角形中的几何计算.专题:计算题.分析:先利用三个内角成等差数列求得A,根据,∠B=30°求得C,然后利用tan30°=表示出a,代入三角形面积公式求得b.解答:解:三角形ABC中,三个内角A,B,C成等差数列A+B+C=3A=180°∴∠A=60°∵∠A=30°,∴C=90S=ab=∵tan30°=∴a=∴b=故答案为:点评:本题主要考查了三角形的几何计算.考查了学生基础知识综合运用的能力.三.解答题(共12小题)17.在△ABC中,AC=b,BC=a,a<b,D是△ABC内一点,且AD=a,∠ADB+∠C=π,问∠C为何值时,四边形ABCD的面积最大,并求出最大值.考点:三角形中的几何计算.专题:计算题.分析:设出BD,利用余弦定理分别在△ABC,△ABD中表示出AB,进而建立等式求得b﹣x=2acosC代入四边形ABCD的面积表达式中,利用正弦函数的性质求得问题的答案.解答:解:设BD=x,则由余弦定理可知b2+a2﹣2abcosC=AB2=a2+x2+2axcosC∴b﹣x=2acosC.∵S=(absinC)﹣(axsinC)=a(b﹣x)sinC=a2•sin2C,∴当C=时,S有最大值.点评:本题主要考查了三角形的几何计算.注意灵活利用正弦定理和余弦定理以及其变形公式.18.(2010•福建模拟)在△ABC中,角A,B,C所对的边分别是a,b,c,.(1)求sinC;(2)若c=2,sinB=2sinA,求△ABC的面积.考点:三角形中的几何计算;二倍角的正弦.专题:计算题.分析:(1)利用同角三角函数关系及三角形内角的范围可求;(2)利用正弦定理可知b=2a,再利用余弦定理,从而求出a、b的值,进而可求面积.解答:解:(1)由题意,,∴(2)由sinB=2sinA可知b=2a,又22=a2+b2﹣2abcosC,∴a=1,b=2,∴点评:此题考查学生灵活运用三角形的面积公式,灵活运用正弦、余弦定理求值,是一道基础题题.19.已知外接圆半径为6的△ABC的边长为a、b、c,角B、C和面积S满足条件:S=a2﹣(b﹣c)2和sinB+sinC=(a,b,c为角A,B,C所对的边)(1)求sinA;(2)求△ABC面积的最大值.考点:三角形中的几何计算;正弦定理的应用;余弦定理的应用.专题:计算题;综合题.分析:(1)由三角形的面积公式,结合余弦定理求出的值,进而有sinA=.(2)利用,结合正弦定理,求出b+c的值,利用三角形的面积公式和基本不等式求出面积的最大值.解答:解:(1)得进而有(2)∵,∴即所以故当b=c=8时,S最大=.点评:本题是中档题,考查三角函数的化简,正弦定理、余弦定理的应用,三角形的面积公式以及基本不等式的应用,考查计算能力,逻辑推理能力.20.(2010•东城区模拟)在△ABC中,A,B,C是三角形的三个内角,a,b,c是三个内角对应的三边,已知b2+c2﹣a2=bc.(1)求角A的大小;(2)若sin2B+sin2C=2sin2A,且a=1,求△ABC的面积.考点:三角形中的几何计算;正弦定理.专题:计算题.分析:(1)利用余弦定理和题设等式求得cosA的值,进而求得A.(2)利用正弦定理把题设中的正弦转化成边的关系,进而求得bc的值,最后利用三角形面积公式求得答案.解答:解:(1)因为b2+c2﹣a2=2bccosA=bc所以所以(2)因为sin2B+sin2C=2sin2A所以b2+c2=2a2=2因为b2+c2﹣a2=bc所以bc=1所以=点评:本题主要考查了正弦定理和余弦定理的应用.注意挖掘题设中关于边,角问题的联系.21.小迪身高1.6m,一天晚上回家走到两路灯之间,如图所示,他发现自己的身影的顶部正好在A路灯的底部,他又向前走了5m,又发现身影的顶部正好在B路灯的底部,已知两路灯之间的距离为10m,(两路灯的高度是一样的)求:(1)路灯的高度.(2)当小迪走到B路灯下,他在A路灯下的身影有多长?考点:三角形中的几何计算.专题:综合题.分析:(1)由题意画出简图,设CN=x,则QD=5﹣x,路灯高BD为h,利用三角形相似建立方程解德;(2)由题意当小迪移到BD所在线上(设为DH),连接AH交地面于E,则DE长即为所求的影长,利用三角形相似建立方程求解即可.解答:解:如图所示,设A、B为两路灯,小迪从MN移到PQ,并设C、D分别为A、B灯的底部.由题中已知得MN=PQ=1.6m,NQ=5m,CD=10m(1)设CN=x,则QD=5﹣x,路灯高BD为h∵△CMN∽△CBD,即⇒又△PQD∽△ACD即⇒由①②式得x=2.5m,h=6.4m,即路灯高为6.4m.(2)当小迪移到BD所在线上(设为DH),连接AH交地面于E.则DE长即为所求的影长.∵△DEH∽△CEA⇒⇒解得DE=m,即他在A路灯下的身影长为m.点评:此题考查了学生理解题意的能力,还考查了利用三角形相似及方程思想求解变量及学生的计算能力.22.(2008•徐汇区二模)在△ABC中,已知.(1)求AB;(2)求△ABC的面积.考点:三角形中的几何计算.专题:计算题.分析:(1)求AB长,关键是求sinB,sinC,利用已知条件可求;(2)根据三角形的面积公式,故关键是求sinA的值,利用sinA=sin(B+C)=sinBcosC+cosBsinC可求解答:解:(1)设AB、BC、CA的长分别为c、a、b,,∴,∴.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(6分)(2)因为.∴sinA=sin(B+C)=sinBcosC+cosBsinC=﹣﹣﹣﹣﹣﹣﹣(12分)故所求面积﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣(14分)点评:本题的考点是三角形的几何计算,主要考查正弦定理得应用,考查三角形的面积公式,关键是正确记忆公式,合理化简.23.在△ABC中,已知.(1)求出角C和A;(2)求△ABC的面积S;(3)将以上结果填入下表.C A S情况①情况②考点:三角形中的几何计算.专题:计算题;分类讨论.分析:(1)先根据正弦定理以及大角对大边求出角C,再根据三角形内角和为180°即可求出角A.(2)分情况分别代入三角形的面积计算公式即可得到答案;(3)直接根据前两问的结论填写即可.解答:解:(1)∵,…(2分)∵c>b,C>B,∴C=60°,此时A=90°,或者C=120°,此时A=30°…(2分)(2)∵S=bcsinA∴A=90°,S=bcsinA=;A=30°,S=bcsinA=.…(2分)(3)点评:本题主要考查三角形中的几何计算.解决本题的关键在于根据正弦定理以及大角对大边求出角C.24.(2007•上海)通常用a、b、c表示△ABC的三个内角∠A、∠B、∠C所对边的边长,R表示△ABC外接圆半径.(1)如图所示,在以O为圆心,半径为2的⊙O中,BC和BA是⊙O的弦,其中BC=2,∠ABC=45°,求弦AB 的长;(2)在△ABC中,若∠C是钝角,求证:a2+b2<4R2;(3)给定三个正实数a、b、R,其中b≤a,问:a、b、R满足怎样的关系时,以a、b为边长,R为外接圆半径的△ABC 不存在,存在一个或两个(全等的三角形算作同一个)?在△ABC存在的情况下,用a、b、R表示c.考点:三角形中的几何计算;解三角形.专题:计算题;数形结合.分析:(1)由正弦定理知===2R,根据题目中所给的条件,不难得出弦AB的长;(2)若∠C是钝角,故其余弦值小于0,由余弦定理得到a2+b2<c2<(2R)2,即可证得结果;(3)根据图形进行分类讨论判断三角形的形状与两边a,b的关系,以及与直径的大小的比较,分成三类讨论即可.解答:解:(1)在△ABC中,BC=2,∠ABC=45°===2R⇒b=2sinA=∵A为锐角∴A=30°,B=45°∴C=75°∴AB=2Rsin75°=4sin75°=;(2)∠C为钝角,∴cosC<0,且cosC≠1cosC=<0∴a2+b2<c2<(2R)2即a2+b2<4R2(8分)(3)a>2R或a=b=2R时,△ABC不存在当时,A=90,△ABC存在且只有一个∴c=当时,∠A=∠B且都是锐角sinA=sinB=时,△ABC存在且只有一个∴c=2RsinC=2Rsin2AC=当时,∠B总是锐角,∠A可以是钝角,可是锐角∴△ABC存在两个∠A<90°时,c=∠A>90°时,c=点评:本题考查三角形中的几何计算,综合考查了三角形形状的判断,解三角形,三角形的外接圆等知识,综合性很强,尤其是第三问需要根据a,b两边以及直径的大小比较确定三角形的形状.再在这种情况下求第三边的表达式,本解法主观性较强.难度较大.25.(2010•郑州二模)在△ABC中,a、b、c分别是角A、B、C的对边,=(2b﹣c,cosC),=(a,cosA),且∥.(Ⅰ)求角A的大小;(Ⅱ)求2cos2B+sin(A﹣2B)的最小值.考点:三角形中的几何计算.专题:计算题.分析:(Ⅰ)根据∥和两向量的坐标可求得,利用正弦定理把边转化成角的正弦,然后利用两角和公式化简整理求得cosA的值,进而求得A(Ⅱ)把A的值代入,利用两角和公式整理后,利用正弦函数的性质求得2cos2B+sin(A﹣2B)的最小值.解答:解:(Ⅰ)由得.由正弦定理得,.∴.∵A,B∈(0,π),∴sinB≠0,,∴.(Ⅱ)解:∵∴2cos2B+sin(A﹣2B)==,.2cos2B+sin(A﹣2B)的最小值为点评:本题主要考查了三角形中的几何计算,正弦定理的应用和两角和公式的化简求值.注意综合运用三角函数的基础公式,灵活解决三角形的计算问题.26.在△ABC中,A、B、C是三角形的内角,a、b、c是三内角对应的三边,已知,.(1)求∠A;(2)求△ABC的面积S.考点:正弦定理的应用;三角形中的几何计算.专题:计算题.分析:(1)由已知结合正弦与余弦定理=化简可求b,由余弦定理可得,cosA=代入可求cosA,及A(2)代入三角形的面积公式可求解答:解:(1)∵∵∴=化简可得,b2﹣2b﹣8=0∴b=4由余弦定理可得,cosA==∴;(2)==点评:本题主要考查了解三角形的基本工具:正弦定理与余弦定理的应用,解题的关键是具备综合应用知识解决问题的能力27.在△ABC中,a、b、c分别是角A、B、C的对边,且(2a+c)cosB+bcosC=0.(Ⅰ)求角B的值;(Ⅱ)若a+c=4,求△ABC面积S的最大值.考点:三角函数中的恒等变换应用;三角形中的几何计算.专题:计算题.分析:(Ⅰ)利用正弦定理化简(2a+c)cosB+bcosC=0,得到三角形的角的关系,通过两角和与三角形的内角和,求出B的值;(Ⅱ)通过S=,利用B=以及a+c=4,推出△ABC面积S的表达式,通过平方法结合a的范围求出面积的最大值.解答:解(Ⅰ)由正弦定理得(2sinA+sinC)cosB+sinBcosC=0,即2sinAcosB+sinCcosB+cosCsinB=0得2sinACcosB+sin(C+B)=0,因为A+B+C=π,所以sin(B+C)=sinA,得2sinAcosB+sinA=0,因为sinA≠0,所以cosB=﹣,又B为三角形的内角,所以B=.(Ⅱ)因为S=,由B=及a+c=4得S===,又0<a<4,所以当a=2时,S取最大值…(3分)点评:本题是中档题,考查三角形面积的最值,三角形的边角关系,三角函数的公式的灵活应用,考查计算能力.28.已知△ABC的外接圆半径,a、b、C分别为∠A、∠B、∠C的对边,向量,,且.(1)求∠C的大小;(2)求△ABC面积的最大值.考点:三角函数的恒等变换及化简求值;三角形中的几何计算.专题:综合题.分析:(1)由,推出,利用坐标表示化简表达式,结合余弦定理求角C;(2)利用(1)中c2=a2+b2﹣ab,应用正弦定理和基本不等式,求三角形ABC的面积S的最大值.解答:解答:解:(1)∵∴且,由正弦定理得:化简得:c2=a2+b2﹣ab由余弦定理:c2=a2+b2﹣2abcosC∴,∵0<C<π,∴(2)∵a2+b2﹣ab=c2=(2RsinC)2=6,∴6=a2+b2﹣ab≥2ab﹣ab=ab(当且仅当a=b时取“=”),所以,.点评:本题考查数量积判断两个平面向量的垂直关系,正弦定理,余弦定理的应用,考查学生分析问题解决问题的能力,是中档题.。

部编版高中数学必修一第一章集合与常用逻辑用语带答案重点易错题

部编版高中数学必修一第一章集合与常用逻辑用语带答案重点易错题

(名师选题)部编版高中数学必修一第一章集合与常用逻辑用语带答案重点易错题单选题1、某中学的学生积极参加体育锻炼,其中有96%的学生喜欢足球或游泳,60%的学生喜欢足球,82%的学生喜欢游泳,则该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例是()A.62%B.56%C.46%D.42%2、设甲是乙的充分不必要条件,乙是丙的充要条件,丁是丙的必要不充分条件,则甲是丁的()条件A.充分不必要B.必要不充分C.充要D.既不充分也不必要3、已知A是由0,m,m2﹣3m+2三个元素组成的集合,且2∈A,则实数m为()A.2B.3C.0或3D.0,2,3均可4、已知集合M={x∣x2+x=0},则()A.{0}∈M B.∅∈M C.−1∉M D.−1∈M5、某班45名学生参加“3·12”植树节活动,每位学生都参加除草、植树两项劳动.依据劳动表现,评定为“优秀”、“合格”2个等级,结果如下表:A.5B.10C.15D.206、已知p:0<x<2,q:−1<x<3,则p是q的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分不必要条件7、已知a、b、c、d∈R,则“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的()注:max{p,q}表示p、q之间的较大者.A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8、命题“∃x>1,x2≥1”的否定是()A.∃x≤1,x2≥1B.∃x≤1,x2<1C.∀x≤1,x2≥1D.∀x>1,x2<1多选题9、对任意A,B⊆R,记A⊕B={x|x∈A∪B,x∉A∩B},并称A⊕B为集合A,B的对称差.例如,若A={1,2,3},B={2,3,4},则A⊕B={1,4},下列命题中,为真命题的是()A.若A,B⊆R且A⊕B=B,则A=∅B.若A,B⊆R且A⊕B=∅,则A=BC.若A,B⊆R且A⊕B⊆A,则A⊆BD.存在A,B⊆R,使得A⊕B=∁R A⊕∁R BE.存在A,B⊆R,使得A⊕B≠B⊕A10、已知集合A={y|y=x2+1},集合B={(x,y)|y=x2+1},下列关系正确的是().A.(1,2)∈B B.A=B C.0∉A D.(0,0)∉B11、若“∃x0∈(0,2),使得2x02−λx0+1<0成立”是假命题,则实数λ可能的值是()A.1B.2√2C.3D.3√2填空题12、已知p:−2≤x≤10,q:1−m≤x≤1+m(m>0),且q是p的必要不充分条件,则实数m的取值范围是____________.13、设P,Q为两个非空实数集合,P中含有0,2两个元素,Q中含有1,6两个元素,定义集合P+Q中的元素是a+b,其中a∈P,b∈Q,则P+Q中元素的个数是_________.部编版高中数学必修一第一章集合与常用逻辑用语带答案(三)参考答案1、答案:C分析:记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,然后根据积事件的概率公式P(A⋅B)=P(A)+P(B)−P(A+B)可得结果.记“该中学学生喜欢足球”为事件A,“该中学学生喜欢游泳”为事件B,则“该中学学生喜欢足球或游泳”为事件A+B,“该中学学生既喜欢足球又喜欢游泳”为事件A⋅B,则P(A)=0.6,P(B)=0.82,P(A+B)=0.96,所以P(A⋅B)=P(A)+P(B)−P(A+B)=0.6+0.82−0.96=0.46所以该中学既喜欢足球又喜欢游泳的学生数占该校学生总数的比例为46%.故选:C.小提示:本题考查了积事件的概率公式,属于基础题.2、答案:A分析:记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,根据题目条件得到集合之间的关系,并推出A D,,所以甲是丁的充分不必要条件.记甲、乙、丙、丁各自对应的条件构成的集合分别为A,B,C,D,由甲是乙的充分不必要条件得,A B,由乙是丙的充要条件得,B=C,由丁是丙的必要不充分条件得,C D,所以A D,,故甲是丁的充分不必要条件.故选:A.3、答案:B分析:由题意可知m=2或m2﹣3m+2=2,求出m再检验即可.∵2∈A,∴m=2 或m2﹣3m+2=2.当m=2时,m2﹣3m+2=4﹣6+2=0,不合题意,舍去;当m2﹣3m+2=2时,m=0或m=3,但m=0不合题意,舍去.综上可知,m=3.故选:B.4、答案:D分析:先求得集合M,再根据元素与集合的关系,集合与集合的关系可得选项.因为集合M={x∣x2+x=0}={0,−1},所以−1∈M,故选:D.5、答案:C分析:用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,易得它们的关系,从而得出结论.用集合A表示除草优秀的学生,B表示植树优秀的学生,全班学生用全集U表示,则∁U A表示除草合格的学生,则∁U B表示植树合格的学生,作出Venn图,如图,设两个项目都优秀的人数为x,两个项目都是合格的人数为y,由图可得20−x+x+30−x+y=45,x=y+5,因为y max=10,所以x max=10+5=15.故选:C.小提示:关键点点睛:本题考查集合的应用,解题关键是用集合A,B表示优秀学生,全体学生用全集表示,用Venn图表示集合的关系后,易知全部优秀的人数与全部合格的人数之间的关系,从而得出最大值.6、答案:A分析:根据充分和必要条件的定义即可求解.由p:0<x<2,可得出q:−1<x<3,由q:−1<x<3,得不出p:0<x<2,所以p是q的充分而不必要条件,故选:A.7、答案:B分析:利用特殊值法、不等式的基本性质结合充分条件、必要条件的定义判断可得出结论.充分性:取a=d=1,b=c=−1,则max{a,b}+max{c,d}=max{1,−1}+max{−1,1}=1+1>0成立,但max{a+c,b+d}=max{0,0}=0,充分性不成立;必要性:设max{a+c,b+d}=a+c,则max{a,b}≥a,max{c,d}≥c,从而可得max{a,b}+max{c,d}≥a+c>0,必要性成立.因此,“max{a,b}+max{c,d}>0”是“max{a+c,b+d}>0”的必要不充分条件.故选:B.小提示:方法点睛:判断充分条件和必要条件,一般有以下几种方法:(1)定义法;(2)集合法;(3)转化法.8、答案:D分析:根据含有一个量词的命题的否定,可直接得出结果.命题“∃x>1,x2≥1”的否定是“∀x>1,x2<1”,故选:D.9、答案:ABD解析:根据新定义判断.根据定义A⊕B=[(∁R A)∩B]∪[A∩(∁R B)],A.若A⊕B=B,则∁R A∩B=B,A∩∁R B=∅,∁R A∩B=B⇒B⊆∁R A,A∩∁R B=∅⇒A⊆B,∴A=∅,A正确;B.若A⊕B=∅,则∁R A∩B=∅,A∩∁R B=∅,A∩B=A=B,B正确;C. 若A⊕B⊆A,则∁R A∩B=∅,A∩∁R B⊆A,则B⊆A,C错;D.A=B时,A⊕B=∅,(∁R A)⊕(∁R B)=∅=A⊕B,D正确;E.由定义,A⊕B=[(∁R A)∩B]∪[A∩(∁R B)]=B⊕A,E错.故选:ABD.小提示:本题考查新定义,解题关键是新定义的理解,把新定义转化为集合的交并补运算.10、答案:ACD分析:根据集合的定义判断,注意集合中代表元形式.由已知集合A={y}y≥1}=[1,+∞),集合B是由抛物线y=x2+1上的点组成的集合,A正确,B错,C正确,D正确,故选:ACD.小提示:本题考查集合的概念,确定集合中的元素是解题关键.11、答案:AB解析:由题意可知,命题“∀x∈(0,2),2x2−λx+1≥0成立”,利用参变量分离法结合基本不等式可求得λ的取值范围,由此可得结果.由题意可知,命题“∀x∈(0,2),2x2−λx+1≥0成立”,所以,λx≤2x2+1,可得λ≤2x+1x,当x∈(0,2)时,由基本不等式可得2x+1x ≥2√2x⋅1x=2√2,当且仅当x=√22时,等号成立,所以,λ≤2√2.故选:AB.小提示:名师点评利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)∀x∈D,m≤f(x)⇔m≤f(x)min;(2)∀x∈D,m≥f(x)⇔m≥f(x)max;(3)∃x∈D,m≤f(x)⇔m≤f(x)max;(4)∃x∈D,m≥f(x)⇔m≥f(x)min.12、答案:[9,+∞)分析:设将满足p,q的x的集合即为A,B.已知条件转化为A⊊B,根据集合间的关系列式可解得结果. ∵“q是p的必要不充分条件”的等价命题是:p是q的充分不必要条件.设A={x|−2≤x≤10},B={x|1−m≤x≤1+m,m>0}.∵p是q的充分不必要条件,所以A⊊B.∴{m>0,1−m⩽−2,1+m⩾10.(两个等号不能同时取到),∴m≥9.所以答案是:[9,+∞).小提示:本题考查了转化化归思想,考查了充分不必要条件和必要不充分条件,考查了集合间的关系,属于基础题.13、答案:4分析:求得P+Q的元素,由此确定正确答案.依题意,0+1=1,0+6=6,2+1=3,2+6=8,所以P+Q共有4个元素.所以答案是:4。

(易错题)高中数学必修一第一单元《集合》测试(包含答案解析)

(易错题)高中数学必修一第一单元《集合》测试(包含答案解析)

一、选择题1.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( ) A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,2.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-23.设全集{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =,则()U AC B ⋂等于( ) A .{}2B .{}2,3C .{}3D .{}1,34.已知集合{|25}A x x =-≤≤,{|121}B x m x m =+≤≤-.若B A ⊆,则实数m 的取值范围为( ) A .3m ≥B .23m ≤≤C .3m ≤D .2m ≥5.已知集合302x A xx ⎧⎫+⎪⎪=⎨⎬-⎪⎪⎩⎭,{}B y y m =<,若A B ⊆,则实数m 的取值范围为( ) A .()2∞+, B .[)2∞+,C .()3∞-+,D .[)3∞-+,6.定义一个集合A 的所有子集组成的集合叫做A 的幂集,记为()P a ,用()n A 表示有限集A 的元素个数,给出下列命题:(1)对于任意集合A ,都有()A P A ∈;(2)存在集合A ,使得()3nP A =;(3)若AB =Φ,则()()P A P B ⋂=Φ;(4)若A B ⊆,则()()P A P B ⊆;(5)若()()1n A n B -=,则[][]()2()n P A n P B =.其中正确命题的序号为( )A .(1)(2)(5)B .(1)(3)(5)C .(1)(4)(5)D .(2)(3)(4)7.对于下列结论:①已知∅ 2{|40}x x x a ++=,则实数a 的取值范围是(],4-∞; ②若函数()1y f x =+的定义域为[)2,1-,则()y f x =的定义域为[)3,0-;③函数2y =的值域是(],1-∞;④定义:设集合A 是一个非空集合,若任意x A ∈,总有a x A -∈,就称集合A 为a 的“闭集”,已知集合{}1,2,3,4,5,6A ⊆,且A 为6的“闭集”,则这样的集合A 共有7个. 其中结论正确的个数是( ) A .0B .1C .2D .38.已知全集U =R ,集合(){}{}20,1A x x x B x x =+<=≤,则图中阴影部分表示的集合是( )A .()2,1-B .[][)1,01,2-C .()[]2,10,1--D .0,19.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .210.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤11.从含有3个元素的集合{},,a b c 的所有子集中任取一个,所取得子集是含有2个元素的集合的概率( ) A .310B .112C .4564D .3812.已知集合{0,1,2,3,4},{|21,}A B x x n n A ===+∈,则A B 等于( )A .{}1,3,5B .{}3C .{}5,7,9D .{}1,3二、填空题13.对于任意集合X 与Y ,定义:①{}|X Y x x X x Y -=∈∉且,②()()X Y X Y Y X =--△∪,(X Y △称为X 与Y 的对称差).已知{}{}2|2|33A y y x x x R B y y ==-∈=-,,≤≤,则A B =△______.14.设不等式20x ax b ++≤的解集为[]A m n =,,不等式()()2101x x x ++>-的解集为B ,若()(]213A B A B =-+∞=,,,∪∩,则m n +=__________.15.已知集合()2{}2|1A x log x =-<,{|26}B x x =<<,且AB =________.16.已知全集{}1,2,3,4,5,6U =,①A U ⊆;②若x A ∈,则2x A ∉;③若U x A ∈,则2Ux A ∉,则同时满足条件①②③的集合A 的个数为______17.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 18.已知全集U =R 集合1|1A x x ⎧⎫=≤⎨⎬⎩⎭,则UA_______.19.若集合2{320}A x ax x =++=中至多有一个元素,则a 的取值范围是__________.20.在整数集Z 中,被5除所得余数为k 的所有整数组成一个“类”,记为[k ],即[k ]={5n +k | n ∈Z},k =0,1,2,3,4.给出如下四个结论:①2 014∈[4]; ②-3∈[3]; ③Z =[0]∪[1]∪[2]∪[3]∪[4];④整数a ,b 属于同一“类”的充要条件是“a -b ∈[0]”.其中,正确的结论是________.三、解答题21.已知全集为R ,集合{}26A x x =≤≤, {}3782B x x x =-≥-. (1)求AB , ()RC A B ⋂;(2)若{}44M x a x a =-≤≤+,且R A C M ⊆,求a 的取值范围.22.在①{}23B x x =-<<,②{}35RB x x =-<<,③{}26B x x a =≥+且{}A B x x a ⋃=>这三个条件中任选一个,补充在下面的问题中,并解答该问题. 问题:已知非空集合{}8A x a x a =<<-,______,若A B =∅,求a 的取值集合.23.已知集合{}2230A x x x =--≤,{}22210B x x mx m =-+-≤. (1)若332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,求实数m 的值; (2)x A ∈是x B ∈的________条件,若实数m 的值存在,求出m 的取值范围;若不存在,说明理由.(请在①充分不必要,②必要不充分,③充要;中任选一个,补充到空白处) 24.已知命题p :x ∈A ={x|a -1<x <a +1,x ∈R},命题 q :x ∈B ={x|x 2-4x +3≥0}. (1)或A∩B =∅,A ∪B =R ,求实数a (2)若是p 的必要条件,求实数a.25.已知p :x ∈A={x|x 2﹣2x ﹣3≤0,x ∈R},q :x ∈B={x|x 2﹣2mx+m 2﹣9≤0,x ∈R ,m ∈R}. (1)若A∩B=[1,3],求实数m 的值;(2)若p 是¬q 的充分条件,求实数m 的取值范围.26.已知集合2211{|}A x x =-≤-≤,集合{}11B x a x a =-<<+.(1)若1a =,试通过运算验证:()()()RRR A B A B =;(2)若A B ⋂≠∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =; 综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.2.D解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值; 【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0;∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.3.D解析:D 【解析】 【分析】由集合的补集的运算,求得{1,3,4}U C B =,再利用集合间交集的运算,即可求解. 【详解】由题意,集合{}1,2,3,4,5U =,{}13,5A =,,{}2,5B =, 则{1,3,4}UC B =,所以(){}1,3U A C B ⋂=. 故选:D. 【点睛】本题主要考查了集合的混合运算,其中解答中熟记的集合的运算方法,准确运算是解答的关键,着重考查了推理与运算能力,属于基础题.4.C解析:C 【分析】讨论,B B =∅≠∅两种情况,分别计算得到答案. 【详解】当B =∅时:1212m m m +>-∴< 成立;当B ≠∅时:12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩解得:23m ≤≤.综上所述:3m ≤ 故选C 【点睛】本题考查了集合的关系,忽略掉空集的情况是容易发生的错误.5.B解析:B 【分析】求出集合A ,由A B ⊆,结合数轴,可得实数m 的取值范围.解不等式302x x +≤-,得32x -≤<,[)3,2A ∴=-. A B ⊆,可得2m ≥.故选:B . 【点睛】本题考查集合间的关系,属于基础题.6.C解析:C 【分析】直接利用新定义判断五个命题的真假即可. 【详解】由P (A )的定义可知①正确,④正确, 设n (A )=n ,则n (P (A ))=2n ,∴②错误, 若A ∩B =∅,则P (A )∩P (B )={∅},③不正确; n (A )﹣n (B )=1,即A 中元素比B 中元素多1个, 则n [P (A )]=2×n [P (B )].⑤正确, 故选:C . 【点睛】本题考查集合的子集关系,集合的基本运算,新定义的理解与应用.7.D解析:D 【分析】A .考虑方程有解的情况;B .根据抽象函数定义域求解方法进行分析;C .根据二次函数的取值情况分析函数值域;D .根据定义采用列举法进行分析. 【详解】①由∅ 2{|40}x x x a ++=可得²40x x a ++=有解,即2440a ∆=-,解得4a ≤,故①正确;②函数()1y f x =+的定义域为[)2,1-,则21x,故112x -≤+<,故()y f x =的定义域为[)1,2-,故②错误;③函数21y ==[)1,+∞,故(]2,1y =--∞,故③正确;④集合{}1,2,3,4,5,6A ⊆且A 为6的“闭集”,则这样的集合A 共有{}3,{}1,5,{}2,4,{}1,3,5,{}2,4,6,{}1,2,4,5,{}1,2,3,4,5共7个,故④正确.故正确的有①③④. 故选:D .本题考查命题真假的判定,考查集合之间的包含关系,考查函数的定义域与值域,考查集合的新定义,属于中档题.8.C解析:C 【分析】由集合描述求集合,A B ,结合韦恩图知阴影部分为()()U C A B A B ⋂⋂⋃,分别求出()U C A B 、()A B ⋃,然后求交集即可.【详解】(){}20{|20}A x x x x x =+<=-<<,{}1{|11}B x x x x =≤=-≤≤,由图知:阴影部分为()()U C A B A B ⋂⋂⋃,而{|10}A B x x ⋂=-≤<,{|21}A B x x ⋃=-<≤,∴(){|1U C A B x x ⋂=<-或0}x ≥,即()(){|21U C A B A B x x ⋂⋂⋃=-<<-或01}x ≤≤,故选:C 【点睛】本题考查了集合的基本运算,结合韦恩图得到阴影部分的表达式,应用集合的交并补混合运算求集合.9.A解析:A 【解析】 【分析】先确定集合M,N,再根据M N ⋂=∅确定实数a 的值. 【详解】由题得集合M 表示(32)3y x -=-上除去(2)3,的点集,N 表示恒过(10)-,的直线方程. 根据两集合的交集为空集:M N ⋂=∅.①两直线不平行,则有直线20ax y a ++=过(2)3,,将2x =,代入可得2a =-, ②两直线平行,则有32a-=即6a =-, 综上6a =-或2-, 故选:A . 【点睛】本题主要考查集合的化简和集合的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.10.C解析:C 【解析】|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.11.D解析:D 【分析】含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个,根据古典概型即可计算. 【详解】因为含有3个元素的集合{},,a b c 共有子集个数328=,含有2个元素的子集有3个, 所以38P =,故选D. 【点睛】本题主要考查了集合子集的概念,古典概型,属于中档题.12.D解析:D 【分析】首先求得集合B ,然后进行交集运算即可. 【详解】由题意可得:{}1,3,5,7,9B =,则{}1,3A B =.故选D . 【点睛】本题主要考查集合的表示方法,交集的定义与运算等知识,意在考查学生的转化能力和计算求解能力.二、填空题13.【分析】先求出和再计算【详解】由已知则∴故答案为:【点睛】本题考查集合的新定义解题关键是理解新定义运算把新运算转化为集合的运算 解析:[3,1)(3,)--+∞【分析】先求出A B -和B A -,再计算A B ∆ 【详解】由已知{|1}A y y =≥-,则{|3}(3,)A B y y -=>=+∞,{|31}[3,1)B A y y -=-≤<-=--,∴()()[3,1)(3,)A B A B B A ∆=--=--+∞, 故答案为:[3,1)(3,)--+∞【点睛】本题考查集合的新定义,解题关键是理解新定义运算,把新运算转化为集合的运算.14.【分析】计算得到根据得到得到答案【详解】则或即故故故答案为:【点睛】本题考查了不等式的解集根据集合的运算结果求参数意在考查学生的综合应用能力 解析:2【分析】计算得到()()2,11,B =--+∞,根据()(]213A B A B =-+∞=,,,∪∩得到[]1,3A =-,得到答案.【详解】()()2101x x x ++>-,则1x >或21x -<<-,即()()2,11,B =--+∞.()(]213A B A B =-+∞=,,,∪∩,故[]1,3A =-,故2m n +=. 故答案为:2. 【点睛】本题考查了不等式的解集,根据集合的运算结果求参数,意在考查学生的综合应用能力.15.【解析】【分析】求出中不等式的解集确定出找出与的交集即可【详解】解:∵∴解得∴∵∴故答案为:【点睛】此题考查了交集及其运算熟练掌握交集的定义是解本题的关键 解析:()2,5【解析】 【分析】求出A 中不等式的解集确定出A ,找出A 与B 的交集即可. 【详解】解:∵()2log 12x -<,∴1014x x ->⎧⎨-<⎩,解得15x <<,∴()1,5A =,∵2{|}()626B x x =<<=,,∴()2,5A B =,故答案为:()2,5. 【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.16.8【分析】由条件可得:当则即则即但元素3与集合的关系不确定3属于时6属于的补集;3属于的补集时6属于;而元素5没有限制【详解】由①;②若则;③若则当则即则即但元素3与集合的关系不确定3属于时6属于的解析:8 【分析】由条件可得:当1A ∈,则2A ∉,即2UA ∈,则4U A ∉,即4A ∈,但元素3与集合A的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ;而元素5没有限制. 【详解】由①A U ⊆;②若x A ∈,则2x A ∉;③若Ux A ∈,则2Ux A ∉.当1A ∈,则2A ∉,即2UA ∈,则4U A ∉,即4A ∈,但元素3与集合A 的关系不确定,3属于A 时,6属于A 的补集;3属于A 的补集时,6属于A ; 而元素5没有限制.{1,4,6},{2,3,5},{2,3},{1,4,5,6},{1,3,4},{2,4,5},{2,A ∴=6},{1,3,4,5},同时满足条件①②③的集合A 的个数为8个. 故答案为:8. 【点睛】本题考查了集合的运算性质、元素与集合的关系,考查了分类讨论思想方法、推理能力与计算能力,属于中档题.17.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案. 【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.18.【分析】先解分式不等式确定集合A 再求补集即可【详解】则故答案为:【点睛】本题考查补集运算准确求得集合A 是关键是基础题解析:[0,1)【分析】先解分式不等式确定集合A,再求补集即可【详解】()1|1=,0[1,)A x x ⎧⎫=≤-∞⋃+∞⎨⎬⎩⎭,则[0,1)U A故答案为:[0,1)【点睛】 本题考查补集运算,准确求得集合A 是关键,是基础题19.或【分析】分情况讨论:当时和当时两种情况;当时由即可求出答案分类讨论最后把的范围合并即可【详解】若则集合符合题意;若则解得故答案为:或【点睛】本题考查集合中元素个数问题;分类讨论和两种情况是求解本题 解析:98a ≥或0a = 【分析】分情况讨论:当0a =时和当0a ≠时两种情况;当0a ≠时由0∆≤即可求出答案.分类讨论最后把a 的范围合并即可.【详解】若0a =,则集合2{|320}3A x x ⎧⎫=+==-⎨⎬⎩⎭,符合题意;若0a ≠,则980a ∆=-≤,解得98a ≥. 故答案为:98a ≥或0a =. 【点睛】本题考查集合中元素个数问题;分类讨论0a =和0a ≠两种情况是求解本题关键; 0a =时易忽略;属于中档题,易错题. 20.①③④【分析】对各个选项分别进行分析利用类的定义直接求解【详解】在①中∵2014÷5=402…4∴2014∈4故①正确;在②中∵﹣3=5×(﹣1)+2∴﹣3∉3故②错误;在③中∵整数集中的数被5除的解析:①③④【分析】对各个选项分别进行分析,利用类的定义直接求解.在①中,∵2014÷5=402…4,∴2014∈[4],故①正确;在②中,∵﹣3=5×(﹣1)+2,∴﹣3∉[3],故②错误;在③中,∵整数集中的数被5除的数可以且只可以分成五类,∴Z =[0]∪[1]∪[2]∪[3]∪[4],故③正确;在④中,∵2015÷5=403,2010÷5=402,∴2015与2010属于同一个“类”[0],故④正确.故答案为①③④.【点睛】本题为同余的性质的考查,具有一定的创新,关键是对题中“类”的题解,属基础题.三、解答题21.(1){}2A B x x ⋃=≥, (){}6R C A B x x x ⋂=或(2) ()(),210,-∞-⋃+∞【分析】(1)先求出集合B ,于是可得A B ⋃和A B ⋂,进而得到()R C A B ⋂;(2)先求出R C M ,再将R A C M ⊆转化为不等式求解,可得所求范围.【详解】(1)∵{}{}37823B x x x x x =-≥-=≥, ∴{}2A B x x ⋃=≥,{}36A B x x ⋂=≤≤,∴(){}3,6R C A B x x x ⋂=或. (2)由题意知M φ≠,且{}4,4R C M x x a x a =-+或. ∵{}26A x x =≤≤,R A C M ⊆,∴46a ->或42a +<,解得10a >或2a <-.故实数a 的取值范围为()(),210,-∞-⋃+∞.【点睛】本题考查集合的基本运算,解题时根据要求逐步求解即可,其中解答(2)的关键是将集合间的包含关系转化为不等式来求解,容易出现的错误是忽视不等式中的等号能否成立. 22.答案见解析.【分析】选①:本题首先可根据A 是非空集合得出4a <,然后根据A B =∅得出3a ≥或82a -≤-,最后通过计算即可得出结果. 选②:本题首先可以根据A 是非空集合得出4a <,然后根据{}R35B x x =-<<求出集合B ,最后根据A B =∅列出不等式组,通过计算即可得出结果.选③:本题首先可以根据A 是非空集合得出4a <,然后根据题意得出268a a +=-,最后通过计算即可得出结果.【详解】选①:因为A 是非空集合,所以8a a ->,解得4a <, 因为{}23B x x =-<<,A B =∅,所以3a ≥或82a -≤-,解得3a ≥或10a ≥,综上所述,a 的取值集合是{}34a a ≤<.选②:因为A 是非空集合,所以8a a ->,解得4a <, 因为{}R 35B x x =-<<,所以{3B x x =≤-或}5x ≥,因为A B =∅,所以3854a a a ≥-⎧⎪-≤⎨⎪<⎩,解得34a ≤<,故a 的取值集合是{}34a a ≤<.选③:因为A 是非空集合,所以8a a ->,解得4a <,因为A B =∅,{}26B x x a =≥+,{}A B x x a ⋃=>,所以268a a +=-,解得2a =-或1,故a 的取值集合是{}2,1-.【点睛】关键点点睛:本题考查根据集合的运算结果求参数的取值范围,若两个集合的交集为空集,则这两个集合没有相同的元素,考查集合的混合运算,考查计算能力,是中档题. 23.(1)12-;(2)答案见解析. 【分析】(1)首先求出集合A 、B ,再根据并集的结果得到方程,解得即可;(2)若选①,则A B ,若选②,B A ,若选③,A B =,得到不等式组,解得即可;【详解】解:(1)对()()2:23013013A x x x x x --≤⇒+-≤⇒-≤≤ 即{}13A x x =-≤≤对()()22:210110B x mx m x m x m -+-≤⇔--⋅-+≤⎡⎤⎡⎤⎣⎦⎣⎦ 11m x m ⇒-≤≤+,即{}11B x m x m =-≤≤+332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,则312m -=-,即12m =- 经检验满足题意.(2)选①,1131m A B m -≤-⎧⇒⎨≤+⎩,此时m 必无解.即不存在实数m ,使得题意成立 选②,110213m B A m m -≤-⎧⇒⇒≤≤⎨+≤⎩ 选③,1113m A B m -=-⎧=⇒⇒⎨+=⎩此时m 无解,即不存在实数m ,使得题意成立; 【点睛】本题考查一元二次不等式的解法,并集的结果求参数的值,以及集合的包含关系求参数的取值范围,属于中档题.24.(1) a =2;(2) a =2【详解】解:(1)由题意得B ={x|x≥3或x≤1},由A∩B =∅,A ∪B =R ,可知A =∁R B =(1,3)∴⇒a =2-(2)∵B ={x|x≥3或x≤1},∴:x ∈{x|1<x <3}.∵是p 的必要条件.即p ⇒, ∴A ⊆∁R B =(1,3) ∴⇒2≤a≤2⇒a =2. 本试题主要考查了命题的真值,以及集合的运算的综合运用,以及二次不等式的求解问题.25.(1)m=4;(2) m >6,或m <﹣4.【解析】试题分析:(1)化简A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3},由A∩B=[1,3],得到:m=4;(2)若p 是¬q 的充分条件,即A ⊆C R B ,易得:m >6,或m <﹣4. 试题由已知得:A=x|﹣1≤x≤3},B=x|m ﹣3≤x≤m+3}.(1)∵A∩B=[1,3]∴ ∴, ∴m=4;(2)∵p 是¬q 的充分条件,∴A ⊆C R B ,而C R B=x|x <m ﹣3,或x >m+3}∴m ﹣3>3,或m+3<﹣1,∴m >6,或m <﹣4.26.(1)见解析;(2)3(,2)2-【分析】(1)先解不等式得集合A ,再分别求并集、补集、交集,根据结果进行验证; (2)结合数轴先求AB =∅情况,再根据补集得结果.【详解】 解:A ={2211}x x -≤-≤=1{|1}2x x -≤≤. (1)当1a =时,B ={02}x x <<∴A B =1{|1}2x x -≤≤{02}x x <<=1{|2}2x x -≤< ()R C A B =1{|2x x <-或2}x ≥ 又R C A =1{|2x x <-或1}x >,R C B ={|0x x ≤或2}x ≥ ∴()()R R C A C B =1{|2x x <-或2}x ≥ ∴()R C A B =()()R R C A C B . (2)若AB =∅,则:112a +≤-或11a -≥ ∴32a ≤-或2a ≥ ∴A B ⋂≠∅时,322a -<<,即实数a 的取值范围3(,2)2-. 【点睛】 本题考查集合交并补运算以及根据交集结果求参数,考查综合分析求解能力,属基础题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

必修2易错填空题集锦2011-10-261. 下列四个命题:① 两条直线和第三条直线成等角,则这两条直线平行;② 和两条异面直线都垂直的直线是这两条异面直线的公垂线;③ 平行移动两条异面直线中的任一条,它们所成的角不变;④ 四条边相等且四个角也相等的四边形是正方形。

其中错误的说法有 ①、② 、④。

2. 有下列四个命题:① 平行于同一条直线的两个平面平行; ② 平行于同一个平面的两个平面平行;③ 垂直于同一条直线的两个平面平行; ④ 与同一条直线成等角的两个平面平行。

其中正确的命题是 ②、③ 。

(写出所有正确命题的序号)3. 以下四个命题:① PA 、PB 是平面α的两条相等的斜线段,则它们在平面α内的射影必相等;② 平面α内的两条直线l 1、l 2,若l 1、l 2均与平面β平行,则α//β;③ 若平面α内有无数个点到平面β的距离相等,则α//β;④ α、β为两斜相交平面,面α内有一定直线a ,则在平面β内有无数条直线与a 垂直.其中正确命题的序号是 ④4. 两条异面直线在同一平面内的射影可能是:①两条平行线;②两条相交直线;③一条直线;④两个点;⑤一条直线和一个点。

上述五个结论正确的是 ①②⑤ 。

(写出所有正确结论的序号)5. 直线,l m 与平面,αβ满足,l m αβ⊥⊂,有下列命题:①//l m αβ⇒⊥ ;②//;l m αβ⊥⇒; ③//.l m αβ⇒⊥其中正确的命题是 ① ③ 。

(写出所有正确命题的序号)6. 已知m n 、是不重合的直线,αβ、是不重合的平面,有下列命题:(1)若,//n m n αβ=I ,则//,//m m αβ; (2)若,m m αβ⊥⊥,则//αβ;(3)若//,m m n α⊥,则n α⊥; (4)若,m n αα⊥⊂,则.m n ⊥其中所有正确命题的序号是 (2)(4)7. 已知直线a 、b 、c ,平面α、β、γ,并给出以下命题:①若α∥β,β∥γ,则α∥γ,②若a ∥b ∥c ,且α⊥a ,β⊥b ,γ⊥c ,则α∥β∥γ,③若a ∥b ∥c ,且a ∥α,b ∥β,c ∥γ,则α∥β∥γ;④若a ⊥α,b ⊥β,c ⊥γ,且α∥β∥γ,则a ∥b ∥c .其中正确的命题有 . ①②④8. 已知βα,,γ是三个互不重合的平面,l 是一条直线,给出下列四个命题:①若ββα⊥⊥l ,,则α//l ; ②若βα//,l l ⊥,则βα⊥;③若l 上有两个点到α的距离相等,则α//l ; ④若γαβα//,⊥,则βγ⊥。

其中正确命题的序号是 ②④9. 如图,M 是正方体1111ABCD A B C D -的棱1DD 的中点,给出下列命题中,其中真命题是①②④① 过M 点有且只有一条直线与直线AB 、11B C 都相交; ② 过M 点有且只有一条直线与直线AB 、11B C 都垂直; ③ 过M 点有且只有一个平面与直线AB 、11B C 都相交; ④ 过M 点有且只有一个平面与直线AB 、11B C 都平行. 10. 若∠ABC 和∠A ′B ′C ′的两边分别对应平行,且∠ABC=45°,则∠A ′B ′C ′= 。

45°或135°11. 若,m l 是两条异面直线,则过m 且与l 平行的平面有1 个。

12.若点P 是两条异面直线a ,b 外一点,则过P 且与a ,b 都平行的平面个数是 0,1 个 13.若直线l 与平面α不垂直,那么在平面α内与直线l 垂直的直线有 无数 条。

14.四面体中,是直角三角形的面最多 4 个 15.与空间四边形四个顶点距离相等的平面共有 7 个。

16. 已知点A 、B 到平面α的距离分别为4cm 和6cm ,则线段AB 的中点M 到平面α的距离是 。

5cm 或1cm17. 平面α上有不共线的三点到平面β的距离相等,则α与β的位置关系是 平行、相交18. 正三角形ABC 的边长为a ,沿高AD 把△ABC 折起,使得∠BDC=90°,则B 到AC 的距离为 。

19.自二面角的一个面上一点分别引另一个平面和公共棱的垂线度。

它们的长分别为和10,则二面角的大小为 60︒20. 已知正方形ABCD 所在的平面与正方形ABEF 所在的平面成60°的二面角,则异面直线AD 与BF 所成角的余弦值为.421. 沿对角线AC 将正方形ABCD 折成直二面角后,AB 与CD 所在的直线所成角的大小是 60° 。

22. 已知PA 垂直于平行四边形ABCD 所在的平面,若PC ⊥BD ,则平行四边形ABCD 一定是 菱形。

23.二面角内的一点到两个半平面的距离分别为、4,到棱的距离为则该二面角的大小为75︒。

24. 有一山坡,倾斜角是300,山坡上有条小路和斜坡底线成角600。

沿这条小路向上走80m 时,地面相对升高。

25. 已知二面角l αβ--的大小为600,m ,n 为异面直线,且,,m n αβ⊥⊥则m ,n 所成角的大小为 600 。

26.在正三棱柱ABC-A 1B 1C 1中,若BB 1,则AB 1与C 1B 所成角的大小为 90︒27. 以一张长、宽分别为8cm和4cm 的矩形硬纸板为侧面,将它折成正四棱柱,则此正四棱柱的对角线长为B 11MA BCA 1B 1C 128. 四面体S-ABC 的三组对棱分别相等,且长度依次为25,13,5,则该四面体外接球的表面积 29π 。

29. 如图,已知棱锥P-ABC 的侧面是全等的等腰直角三角形,∠APB =∠BPC =∠CP A =90︒,P A =PB =PC =a ,M 是AB 的中点。

一只小虫从点M 沿侧面爬到C 点,则小虫爬行的最短路程 10a 。

30. 如图,在斜三棱柱ABC-A 1B 1C 1中,AA 1=AC=BC=a ,∠A 1AC=∠C 1CB=60°,二面角A-CC 1-B 的大小为90°,此斜棱柱的侧面积为 21(623)2a 。

31. (2010高考)过正方体1111ABCD A B C D -的顶点A 作直线L ,使L 与棱1,,AB AD AA , 所成的角都相等,这样的直线L 可以作 4 条。

32. (2010高考)有四根长都为2的直铁条,若再选两根长都为a 的直铁条,使这六根铁条端点处相连能够焊接成一个三棱锥形的铁架,则a 的取值范围是 (6233. 若圆锥的表面积为a 平方米,且它的侧面展开图是一个半圆,则这个圆锥的底面的直径为33a ππ. 34. 如图,在多面体ABCDEF 中,已知平面ABCD 是边长为6的正方形,//EF AB ,3=EF ,且EF 与平面ABCD 的距离为4,则该多面体的体积为 60 .35. 如图,在长方形ABCD 中,2AB =,1BC =,E 为DC 的中点,F 为线段EC (端点除外)上一动点.现将AFD ∆沿AF 折起,使平面ABD ⊥平面ABC .在平面ABD 内过点D 作DK AB ⊥,K为垂足.设AK t =,则t 的取值范围是 1,12⎛⎫⎪⎝⎭ .36. 直线()0232=++-t y x t 不经过第二象限,则t 的取值范围是 230≤≤t . 37. 直线13kx y k -+=,当k 变化时,所有直线都通过一个定点,则这个定点的坐标是 (3,1) 。

M P C BA38. 当m= -1 时,直线1:(1)0l mx y m +-+=与2:20l x my m +-=互相平行。

39. 过点()4,2-且在两坐标轴上截距的绝对值相等的直线有3 条40. 过点()2,5A ,且在两坐标轴上截距互为相反数的直线l 的方程为03=--y x 或 052=-y x .41. 直线xcos α+ysin α+1=0,α)2,0(π∈的倾斜角为2π+α42. 已知θ∈R ,则直线|sin |10x θ+=的倾斜角的取值范围是000,30⎡⎤⎣⎦ .43. 已知432,4322211=-=-y x y x ,则过点()()2211,,,y x B y x A 的直线l 的方程是432=-y x .44. 已知直线l 过点P (-1,0),且与以A (2,3),B (3,0)为端点的线段AB 有公共点,则直线l 的斜率的取值范围是 [0,1] 。

45. 若平行于直线2510x y +-=的直线l 与坐标轴围成的三角形面积为5,则直线l 的方程为 。

25100x y +±=46. 直线02=+-b y x 与两坐标轴所围成的三角形的面积不大于1,那么b 的取值范围是[)(]2,00,2⋃-47. 过点P(2,1),作直线l 交x,y 正半轴于A,B 两点,当|PA|·|PB|取得最小值时,则直线l 的方程为x+y-3=048. 若直线y x b =+与曲线x =b 的取值范围是 (]{1,1-⋃49. 从点P (x ,5)作圆()()22231x y -+-=50. 设圆()()22235x y R -++=上有且只有两个点到直线4320x y --=的距离等于1,则半径R 的取值范围是 ()4,6 。

51. 若圆2221:24O x y mx m +++=与圆222:20O x y x ++=相交,则m 的取值范围是—(-2,0)∪(2,4) 。

52. 已知半径为1的动圆与圆()()225716x y -++=相切,则动圆圆心的轨迹方程为 :()()()()2222579,5725.x y x y -++=-++= 53. 已知点00(,)M x y ,圆C :222(0)x y a a +=>,直线l :200x x y y a +=(1)若点M 在圆C 外,则直线l 与圆C 的位置关系是 相交 ;(2)若点M 在圆C 上,则直线l 与圆C 的位置关系是 相切 ;(3)若点M 在圆C 内,则直线l 与圆C 的位置关系是 相离 。

54. 与圆()2221x y +-=相切,且在两坐标轴上截距相等的直线方程为 。

55. 已知点(1,0)A ,直线1l :240,x y +-=, 2l :3410,x y +-=l :220x y ++=。

①点A 关于直线l 的对称点的坐标是 ;②直线l 关于点A 对称的直线的方程是 ;③直线1l 关于直线l 对称的直线的方程是 ;④直线2l 关于直线l 对称的直线的方程是 。

56. 如果直线l 将圆()()22125x y -+-=平分,且不通过第四象限,那么直线l 的斜率的取值范围是[0,2];57. 已知(1,0),(0,2)A B -,点P 是圆()22:11C x y -+=上任意一点,则△PAB 面积的最小值是 。

相关文档
最新文档