第六章函数-选择题

合集下载

C语言程序设计 第六章 函数 试题及答案

C语言程序设计 第六章 函数 试题及答案
A)实参可以是常量、变量或表达式
B)形参可以是常量、变量或表达式
C)实参可以是任意类型
D)实参应与其对应的形参类型一致
参考答案:B
6.8以下正确的说法是。
A)定义函数时,形参的类型说明可以放在函数体内
B)return后面的值不能为表达式
C)如果函数的类型与返回值类型不一致,以函数类型为准
D)如果形参与实参的类型不一致,以实参类型为准
A)float型B)int型C)long型D)double型
参考答案:B
6.12 C语言规定,函数返回值的类型是由所决定。
A)return语句中的表达式类型
B)调用该函数时的主调函数类型
C)调用该函数是系统临时指定
D)在定义该函数时所指定的函数类型
参考答案:D
*6.13下面函数调用语句含有实参的个数为。
if(m!=-1) n=m;
}
printf("\nn=%d",n);
}
【1】A)k*10 B)k%10 C)k/10 D)k*10%10
【2】A)a2*10 B)a2 C)a2/10 D)a2%10
参考答案:【1】C【2】A
6.18以下是有关汉诺塔问题的程序段,若在main函数中有调用语句hanoi(3,'A','B','C');则符合程序段运行结果的选项是。
A-->C A-->C B-->C B-->C
A-->B A-->B A-->C A-->C
参考答案:C
6.19若用数组名作为函数调用的实参,传递给形参的是。
A)数组的首地址B)数组第一个元素的值
C)数组中全部元素的值D)数组元素的个数

职中数学第六章 三角函数

职中数学第六章   三角函数

第六章 三角函数1、函数x y cos =的图象与函数)2sin(π+=x y 的图象相同。

( )2、函数x x y cos sin +=的最大值是2。

( )3、1arcsin 的取值可以大于中αα。

( )( ) 4.y=sinx 的图像关于原点对称( ) 5.α、β均为钝角,且cos α>cos β,则α>β ( ) 6.4sin α=5( ) 7.y=cosx 是偶函数1、第一象限的角一定是锐角。

( )2、按顺时针方向旋转而成的角是正角。

( )3、1rad=π180( )4、)4(π-Sin 是第四象限的角。

( )5、如果是第二象限的角则是ααα0cos 00 Sin 。

( )6、23313的值为πSin。

( ) 7、的函数值相等的函数值0025cos 115Sin 。

( ) 8、3215tan 0-的函数值为。

( ) 9、π22的周期为x Sin y =。

( ) 10、已知030,21==αα则Sin 。

( )2.COS(-617π)= _________________3.函数y=5sin(62π+x )的最小正周期是________________4.求函数y=sin 4x+cos 4x 的周期,最大值和最小值。

(13分)5.已知sin αcos α=2512,0<α<4π,求tan2α和tan α的值。

(12分)6.已知sin α+sin β+sinr=0,且cos α+cos β+cosr=0, 求证:cos(α-β)=-21 (13分)1.终边在y 轴上的角的集合是___________________________。

2. 若31cos sin =+αα,则_________________cos sin =α。

3. 计算:00009cos 69sin 81cos 21sin -___________________________。

4. 化简)322cos()629tan()310sin()7cos(ππππ--=__________________________。

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)

九年级数学上册第六章《反比例函数》测试卷-北师大版(含答案)(满分 120 分)一、选择题(每题3分,共30分) 1.下列函数中,是反比例函数的是( )A. y = -2xB. y =-12xC. y =11x- D. y =21x 2.已知点 P (-1,4)在反比例函数y = kx(k =0)的图象上,则K 值是( ) A. -14B.14 C. 4 D. -4 3.下列各点中,在函数y = -6x图象上的是( )A. (-2,-4)B.(2,3)C.(-1,6)D.(-12,3)4.反比例函数y =5m x-的图象在第二、四象限内,那么m 的取值范围是( ) A. m <0B. m >0C.m >5D. m <55. 函数4y=-x,当x >0时的图象为下图中的( )6.已知点(1,y 1),B (2,y 2),C (-3,y 3)都在反比例函数y =6x 的图象上,则y 1,y 2 ,y 3;的大小关系是( ) A. y 3<y 1 <y 2; B. y 1<y 2<y 3; C. y 2,y 1,y 3; D. y 3<y 2<y 1;7.关于反比例函数y = 4x的图象,下列说法正确的是( ) A.必经过点(1,1)B.两个分支分布在第二、四象限C.两个分支关于x 轴成轴对称D.两个分支关于原点成中心对称8.三角形的面积为4 c m²,底边上的高y(c m)与底边x(c m)之间的函数关系图象大致应为()9. 函数y= ax与y=αx-a(a≠0)在同一坐标系中的大致图象是()10.如图,函数y1=x-1和函数y2=-2x的图象相交于点M(2,m),N(-1,n),若y1<y2,则x的取值范围是()A.x<-1或0<x<2B.x<-1或x>2C.-1<x<0或0<x<2D.-1<x<0或x>2二、填空题(每题4分,共28分)11.反比例函数y=- 1x的图象在第__________象限,在每个象限内,y随x的增大而________ .12. 反比例函数y= kx过A(-1,4)和B(2,m)两点,则m= ___________________.13.对于函数y= 3x,当x>0时y__________0,这部分图象在第_____________象限.14.完成某项任务可获得500 元报酬,考虑由x人完成这项任务,试写出人均报酬y(元)与人数x(人)之间的函数关系式_________________________________.15.若点P(1,m),P,(2,n)在反比例函数y=kx(k<0)的图象上,则m_____n(填">""<"或"=").16.如图,已知点A在反比例函数图象上,A M⊥x轴于点M,且⊥AO M的面积为1,则反比例函数的解析式为______________________.17.如图,一次函数y= kx+b与反比例函数y=mx的图象交于A(2,1),B(-1,n)两点.连接OA,OB,则三角形OAB 的面积为____________.三、解答题(一)(每题6分,共18 分)18.某打印店要完成一批电脑打字任务,如果每天完成100 页,需8天完成任务.(1)每天完成的页数y与所需天数x之间是什么函数关系?(2)要求4天完成,每天应完成几页?19.已知反比例函数y =kx(k为常数,k≠0)的图象经过A(2,3).(1)求这个函数的解析式;(2)判断点B(-1,6)是否在这个函数的图象上,并说明理由.20.如图,反比例函数y =kx(k为常数,且k≠0)经过点A(1,3).(1)求反比例函数的解析式;(2)在x轴正半轴上有一点B,若⊥AOB 的面积为6,求直线AB的解析式.四、解答题(二)(每题8 分,共24 分)21.码头工人以每天30 吨的速度往一艘轮船上装载货物,装载完毕恰好用了8 天时间.(1)轮船到达目的地后开始卸货,卸货速度ν(单位:吨/天)与卸货时间t(单位:天)之间有怎样的函数关系?(2)由于遇到紧急情况,船上的货物必须在不超过5天内卸载完毕,那么平均每天至少要卸多少吨货物?22.如图,已知A (-4,2),B (n ,-4)是一次函数y =kx +b 的图象与反比例函数y =mx的图象的两个交点. (1)求此反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值小于反比例函数的值的x 的取值范围.23.如图,已知在平面直角坐标系x O y 中,0是坐标原点,点A (2,5)在反比例函数y =kx的图象上,过点A 的直线y =x +b 交x 轴于点 B. (1)求k 和b 的值; (2)求⊥OAB 的面积;(3)当-3≤x ≤-1时,反比例函数值的范围为_________________.五、解答题(三)(每题10 分,共 20 分) 24.一次函数y =k 1x +b 与反比例函数y =2k x(x <0)的图象相交于A ,B 两点,且与坐标轴的交点为(-6,0),(0,6),点B 的横坐标为-4. (1)试确定反比例函数的解析式;(2)求⊥AOB 的面积; (3)直接写出不等式后k 1x +b>2k x的解.25.对教室进行"薰药消毒".已知药物在燃烧释放过程中,室内空气中每立方米含药量y (毫克)与燃烧时间x (分钟)之间的关系如图所示(即图中线段 OA 和双曲线在 A 点及其右侧的部分),根据图象所示信息,解答下列问题: (1)写出从药物释放开始,y 与x 之间的函数关系式及自变量的取值范围; (2)据测定,当空气中每立方米的含药量低于 2 毫克时,对人体无毒害作用,那么从消毒开始,至少在多长时间内,师生不能进入教室?参考答案一、1.B 2.D 3.C 4.D 5.B 6.D 7.D 8.B 9.A 10. A 二、11.二、四 增大 12. -2 13. > 一 14.500y x= 15. <16. y =-2x 17. 32三、18.解:(1)800y x=,反比例函数 (2)当x =4,800y x== 200(页) 19.解:(1) 6y x= (2)不在,理由如下: 当x = -1,61y =-= -6≠6 ⊥点B(-1,6)不在y =6x 的图象上。

第六章二次函数测试题

第六章二次函数测试题

第六章 二次函数巩固练习制卷:孙 祥 审核:谢 辉 时间:90分钟 分值:150分一、选择题(每小题3分,共30分)1.已知抛物线21y x x =--与x 轴的一个交点为(0)m ,,则代数式22008m m -+的值为( )A .2006 B .2007 C .2008 D .2009 2. 如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x 则c b a +-的值为( )A. 0B. -1C. 1D. 23.抛物线y=x 2-8x+c 的顶点在x 轴上,则c 等于( )4.若直线y=ax +b (a ≠0)在第二、四象限都无图像,则抛物线y=ax A.开口向上,对称轴是y 轴 B.开口向下,对称轴平行于y 轴 C.开口向上,对称轴平行于y 轴 D.开口向下,对称轴是y 轴5.一次函数y=ax+b 与二次函数y=ax 2+bx+c 在同一坐标系中的图像可能是 ( )6.已知抛物线y=-x 2+mx+n 的顶点坐标是(-1,- 3 ),则m 和n 的值分别是( )A.2,4B.-2,-4C.2,-4D.-2,07.对于函数y=-x 2+2x-2使得y 随x 的增大而增大的x 的取值范围是 ( )A.x>-1B.x ≥0C.x ≤0D.x<-18.抛物线y=x 2-(m+2)x+3(m-1)与x 轴( )A.一定有两个交点; B .只有一个交点; C .有两个或一个交点; D .没有交点9.二次函数y=2x 2+mx-5的图像与x 轴交于点A (x 1, 0)、B(x 2,0), 且x 12+x 22=294,则m 的值为( ) A.3 B.-3 C.3或-3 D.以上都不对10. 如图,正方形ABCD 的边长为10,四个全等的小正方形的对称中心分别在正方形ABCD 的顶点上,且它们的各边与正方形ABCD 各边平行或垂直.若小正方形的边长为x ,且010x <≤,阴影部分的面积为y ,则能反映y 与x 之间函数关系的大致图象是( )二、填空题(每小题4分,共40分)11.抛物线y=-2x+x 2+7的开口向 ,对称轴是 ,顶点是 .12.若二次函数y=mx 2-3x+2m-m 2的图像过原点,则m 的值是 .13. 已知抛物线322--=x x y ,若点P (2-,5)与点Q 关于该抛物线的对称轴对称,x A .x B .x C .xD .则点Q 的坐标是 .14. 抛物线在y=x 2-2x-3在x 15.抛物线228y x x m =++与x 16. 已知函数22y x x c =-++当x______时,y 随x 的增大而减小17.设矩形窗户的周长为6m 是 ,自变量x 18. 如图,小明的父亲在相距2是2.5较近的那棵树0.5最低点距地面的距离为 米.19. 一名男生推铅球,铅球行进高度y 平距离x (单位:m )之间的关系是y =则他将铅球推出的距离是 m 20. 初三数学课本上,用“描点法”画二次函数2的图象时,列了如下表格:根据表格上的信息回答问题:该二次函数y ax bx c =++在3x =y = .三、解答题 21. (12分)(2010年徐州中考)已知二次函数的图象以A (-1,4)为顶点,且过点B (2,-5)①求该函数的关系式;②求该函数图象与坐标轴的交点坐标;③将该函数图象向右平移,当图象经过原点时,A 、B 两点随图象移至A ′、B ′,求△O A ′B ′的面积.22.(10分)把抛物线y=ax 2+bx+c 向左平移2个单位,同时向下平移l 个单位后,恰好与抛物线y=2x 2+4x+1重合.请求出a 、b 、c 的值,并画出一个比较准确的示意图.23.(10分)已知二次函数2中,函数y 与自变量的部分对应值如下表:(1 (3)若1()A m y ,,2(1)B m y +,两点都在该函数的图象上,试比较1y 与2y 的大小.24.(12分)二次函数y=ax 2+bx+c 的图像的一部分如下图,已知它的顶点M 在第二象限,且该函数图像经过点A (l,0)和点B(0,1). (1)请判断实数a 的取值范围,并说明理由;(2)设此二次函数的图像与x 轴的另一个交点为c ,当△AMC 的面积为△ABC 面积的1.25倍时,求a 的值.25.(12分)某宾馆客房部有60个房间供游客居住,当每个房间的定价为每天200元时,房间可以住满.当每个房间每天的定价每增加10元时,就会有一个房间空闲.对有游客入住的房间,宾馆需对每个房间每天支出20元的各种费用.设每个房间每天的定价增加x 元.求:(1)房间每天的入住量y (间)关于x (元)的函数关系式. (2)该宾馆每天的房间收费z (元)关于x (元)的函数关系式.(3)该宾馆客房部每天的利润w (元)关于x (元)的函数关系式;当每个房间的定价为每天多少元时,w 有最大值?最大值是多少?26.(12分)桂林红桥位于桃花江上,是桂林两江四湖的一道亮丽的风景线,该桥的部分横截面如图所示,上方可看作是一个经过A、C、B三点的抛物线,以桥面的水平线为X轴,经过抛物线的顶点C与X轴垂直的直线为Y轴,建立直角坐标系,已知此桥垂直于桥面的相邻两柱之间距离为2米(图中用线段AD、CO、BE等表示桥柱)CO=1米,FG=2米(1)求经过A、B、C三点的抛物线的解析式。

2022秋七年级数学上册 第六章 一次函数达标检测 卷鲁教版五四制

2022秋七年级数学上册 第六章 一次函数达标检测 卷鲁教版五四制

第六章达标检测卷一、选择题(本大题共12道小题,每小题3分,共36分)1.函数y =x +3中自变量x 的取值范围在数轴上表示正确的是( )2.在平面直角坐标系中,一次函数y =x +1的图象是( )3.下列各选项中表示y 是x 的函数的是( )4.直线y =x +3与y 轴的交点坐标是( )A .(0,3)B .(0,1)C .(1,0)D .(3,0)5.函数的零点是指使函数值等于零的自变量的值,则下列函数中存在零点的是( ) A .y =x 2+x +2 B .y =x +1 C .y =x +1xD .y =|x |-16.下列函数:①y =3x ;②y =9x -8;③y =2x ;④y =35-23x ;⑤y =34x 2+12x +9.其中是一次函数的有( )A .①②③B .①②④C .②③④D .②④⑤7.一次函数y =mx +n 的图象如图所示,则关于x 的方程mx +n =0的解为( ) A .x =2 B .y =2 C .x =-3 D .y =-38.小明从家出发步行至学校,停留一段时间后乘车返回,则下列函数图象最能体现他离家的距离(s )与出发时间(t )之间的对应关系的是( )9.已知一次函数y =kx +b ,y 随着x 的增大而减小,且kb >0,则这个函数的大致图象是( )10.如果直线y =12x +n 与直线y =mx -1的交点坐标是(1,-2),那么m -n 的值为( )A.12 B .1 C.32 D.5211.数形结合思想是解决数学问题常用的思想方法.如图,直线y =x +5和直线y =ax +b 相交于点P ,根据图象可知,方程x +5=ax +b 的解是( )A .x =20B .x =5C .x =25D .x =1512.如图①,点P 从△ABC 的顶点A 出发,沿A →B →C 匀速运动到点C ,图②是点P 运动时线段CP 的长度y 随时间x 变化的关系图象,其中点Q 为曲线部分的最低点,则△ABC 的边AB 的长度为( ) A .12 B .8 C .10 D .13二、填空题(本大题共6道小题,每小题3分,共18分)13.点⎝ ⎛⎭⎪⎫-12,m 和点(2,n )在直线y =2x +b 上,则m 与n 的大小关系是________.14.如图,一次函数y =kx +b 的图象与x 轴的交点坐标为(2,0),则下列说法:①y 随x 的增大而减小;②b >0;③关于x 的方程kx +b =0的解为x =2.其中说法正确的有________(把你认为说法正确的序号都填上).15.若一次函数y =(2m -1)x +3-2m 的图象经过第一、二、四象限,则m 的取值范围是__________. 16.乐乐根据某个一次函数(y 关于x 的函数)的表达式填写了下表,其中有一格的数字不慎被墨汁遮住了,想想看,该空格里原来填的数是________.17.如图,l 1反映了某公司的销售收入与销售量的关系,l 2反映了该公司产品的销售成本与销售量的关系,当销售量x 满足____________时,该公司盈利(收入大于成本).18.经过点(2,0),且与坐标轴围成的三角形的面积为2的直线表达式是______________________. 三、解答题(本大题共7道题,19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.拖拉机开始工作时,油箱中有油40升,如果工作1小时耗油4升,求: (1)油箱中的余油量Q (升)与工作时间t (时)的函数关系式及自变量的取值范围; (2)当工作5小时时油箱的余油量.20.解答下列各题:(1)若点P (m ,3)在函数y =2x -3的图象上,求点P 的坐标;(2)已知y +2与x -1成正比例,且当x =2时y =6,求y 与x 的函数关系式.21.如图,一次函数y =kx +5的图象与y 轴交于点B ,与正比例函数y =32x 的图象交于点P (2,a ).(1)求k 的值; (2)求△POB 的面积.22.请你根据如图所示的图象提供的信息,解答下面问题:(1)分别写出直线l 1,l 2对应的函数中变量y 的值随x 的变化而变化的情况; (2)求出直线l 1对应的函数表达式.23.在平面直角坐标系中,过一点分别作坐标轴的垂线,若与坐标轴围成的长方形的周长与面积的数值相等,则这个点叫做和谐点.例如在图中,过点P分别作x轴、y轴的垂线,与坐标轴围成的长方形OAPB的周长与面积的数值相等,则点P是和谐点.(1)判断点M(1,2),N(4,4)是否为和谐点,并说明理由.(2)若和谐点P(a,3)在直线y=-x+b(b为常数)上,求a,b的值.24.如图,在平面直角坐标系中,直线l交x轴于点A,交y轴于点B(0,-1),且经过点(-1,2).若点P 在x轴上,且S△PAB=6S△OAB,求点P的坐标.25.周末,小明骑自行车从家里出发到野外郊游.从家出发0.5 h后到达甲地,游玩一段时间后按原速前往乙地.小明离家1 h 20 min后,妈妈驾车沿相同路线前往乙地.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象.已知妈妈驾车的速度是小明骑车的速度的3倍.(1)求小明骑车的速度和在甲地游玩的时间.(2)小明从家出发多少小时后被妈妈追上?此时离家多远?(3)若妈妈比小明早10 min到达乙地,求从家到乙地的路程.答案一、1.C 2.C 3.D 4.A 5.D 6.B 7.C 8.B 9.B 10.C 11.A12.C 【点拨】根据图②中的曲线可知:当点P 从△ABC 的顶点A 处,运动到点B 处时,图①中的AC =BC =13,当点P 运动到AB 中点时,此时CP ⊥AB ,根据图②中点Q 为曲线部分的最低点,得CP =12,所以根据勾股定理,得此时AP =132-122=5.所以AB =2AP =10. 二、13.m <n 14.①②③ 15.m <1216.2 17.x >418.y =x -2或y =-x +2三、19.解:(1)由题意可知Q =40-4t (0≤t ≤10); (2)把t =5代入Q =40-4t ,得油箱的余油量Q =20升.20.解:(1)将点P (m ,3)的坐标代入y =2x -3,得2m -3=3,解得m =3, 所以点P 的坐标为(3,3); (2)因为y +2与x -1成正比例, 所以设y +2=k (x -1), 当x =2时y =6,即6+2=k (2-1),解得k =8, 所以y +2=8(x -1), 即y =8x -10.所以y 与x 的函数关系式为y =8x -10.21.解:(1)把点P (2,a )的坐标代入y =32x ,得a =3,所以点P 的坐标为(2,3), 把点P (2,3)的坐标代入y =kx +5, 得2k +5=3,解得k =-1.(2)把x =0代入y =-x +5,得y =5, 所以点B 的坐标为(0,5),所以OB =5. 因为点P 的横坐标为2, 所以S △POB =12×5×2=5.22.解:(1)直线l 1对应的函数中,y 的值随x 的增大而增大;直线l 2对应的函数中,y 的值随x 的增大而减小.(2)设直线l 1对应的函数表达式为y =a 1x +b 1,由题意得a 1+b 1=1,b 1=-1, 可得a 1=2,所以直线l 1对应的函数表达式为y =2x -1.23.解:(1)点M 不是和谐点,点N 是和谐点.理由:因为1×2≠2×(1+2),4×4=2×(4+4), 所以点M 不是和谐点,点N 是和谐点.(2)由题意得,当a >0时,(a +3)×2=3a ,所以a =6. 又因为点P (a ,3)在直线y =-x +b 上, 所以-a +b =3,所以b =9. 当a <0时,(-a +3)×2=-3a , 所以a =-6.又因为点P (a ,3)在直线y =-x +b 上, 所以-a +b =3,所以b =-3.综上所述,a =6,b =9或a =-6,b =-3. 24.解:因为直线l 交y 轴于点B (0,-1). 所以可设直线l 对应的函数表达式为y =kx -1. 又因为直线l 经过点(-1,2), 所以2=-k -1. 解得k =-3.故直线l 对应的函数表达式为y =-3x -1. 对于y =-3x -1, 令y =0,得0=-3x -1, 解得x =-13,所以点A 的坐标为⎝ ⎛⎭⎪⎫-13,0, 所以S △OAB =12OA ·OB =12×13×1=16.设点P 的坐标为(m ,0),则S △PAB =12PA ·OB =12×⎪⎪⎪⎪⎪⎪m -⎝ ⎛⎭⎪⎫-13×1=12⎪⎪⎪⎪⎪⎪m +13.由S △PAB =6S △OAB ,得12⎪⎪⎪⎪⎪⎪m +13=6×16,从而得m +13=2或m +13=-2,所以m =53或m =-73,即点P 的坐标为⎝ ⎛⎭⎪⎫53,0或⎝ ⎛⎭⎪⎫-73,0.25.解:(1)观察图象,可知小明骑车的速度为100.5=20(km/h ),在甲地游玩的时间是1-0.5=0.5(h ).(2)妈妈驾车的速度为20×3=60(km/h ).如图,设直线BC 对应的函数表达式为y =20x +b 1, 把点B (1,10)的坐标代入函数表达式,得b 1=-10. 所以直线BC 对应的函数表达式为y =20x -10. 设直线DE 对应的函数表达式为y =60x +b 2,把点D ⎝ ⎛⎭⎪⎫43,0的坐标代入函数表达式, 得b 2=-80.所以直线DE 对应的函数表达式为y =60x -80.当小明被妈妈追上时,两人走过的路程相等,则20x -10=60x -80,解得x =1.75, 20×(1.75-1)+10=25(km).所以小明从家出发1.75 h 后被妈妈追上,此时离家25 km 远.(3)设从妈妈追上小明的地点到乙地的路程为z km ,根据题意,得z 20-z 60=1060,解得z =5,所以从家到乙地的路程为5+25=30(km).。

一次函数习题(有答案)

一次函数习题(有答案)

第六章《一次函数》班级:姓名:学号:成绩:一、填空题(共40分,每空2分)。

(1)点A在y 轴右侧,距y轴6个单位长度,距x 轴8个单位长度,则A点的坐标是,A点离开原点的距离是。

(2)点(-3,2),(a , a+1)在函数y=kx-1 的图像上,则k= a=(3)正比例函数的图像经过点(-3,5),则函数的关系式是。

(4)函数y=-5x+2 与x轴的交点是,与y轴的交点是,与两坐标轴围成的三角形面积是。

( 5)已知y与4x-1成正比例,且当x=3时,y=6,写出y与x的函数关系式。

(6)写出下列函数关系式①速度60千米的匀速运动中,路程S与时间t的关系②等腰三角形顶角y与底角x之间的关系③汽车油箱中原有油100升,汽车每行驶50千米耗油9升,油箱剩余油量y(升)与汽车行驶路程x(千米)之间的关系④矩形周长30,则面积y与一条边长x之间的关系在上述各式中,是一次函数,是正比例函数(只填序号)(7)正比例函数的图像一定经过点。

(8)若点(3,a )在一次函数y=3x+1 的图像上,则。

(9)一次函数y=kx-1的图像经过点(-3,0),则k= 。

(10)已知y与2x+1成正比例,且当x=3时,y=6,写出y与x的函数关系式。

(11)函数y=-x+m^2 与y=4x-1的图像交于轴,则m= 。

二、选择:(每题3分,共9分)(1)下面哪个点不在函数y=-2x+3 的图像上()A.(-5,13)B.(0.5,2)C(3,0)D(1,1)(2)下列函数关系中表示一次函数的有()①②③④⑤A.1个B.2个C.3个D.4个(3)下列函数中,y随x的增大而减小的有()①②③④A.1个B.2个C.3个D.4个三、(12分)在同一坐标系中作出y=2x+1, ,的图像;在上述三个函数的图像中,哪一个函数的值先达到30 ?四、(13分)某市自来水公司为限制单位用水,每月只给某单位计划内用水3000吨,计划内用水每吨收费0.5元,超计划部分每吨按0.8元收费。

第六章《一次函数》专练(选择、填空题)(含解析)

第六章《一次函数》专练(选择、填空题)(含解析)

第六章《一次函数》专练(选择、填空题)一.选择题1.(2018•呼和浩特)若以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,则常数b=()A.B.2C.﹣1D.1 2.(2018•荆门)在函数y=中,自变量x的取值范围是()A.x≥1B.x>1C.x<1D.x≤1 3.(2018•徐州)若函数y=kx+b的图象如图所示,则关于x的不等式kx+2b<0的解集为()A.x<3B.x>3C.x<6D.x>6 4.(2018•青海)均匀地向一个容器注水,最后将容器注满.在注水过程中,水的高度h随时间t的变化规律如图所示,这个容器的形状可能是()A.B.C.D.5.(2018•镇江)甲、乙两地相距80km,一辆汽车上午9:00从甲地出发驶往乙地,匀速行驶了一半的路程后将速度提高了20km/h,并继续匀速行驶至乙地,汽车行驶的路程y(km)与时间x(h)之间的函数关系如图所示,该车到达乙地的时间是当天上午()A.10:35B.10:40C.10:45D.10:50 6.(2018•葫芦岛)如图,直线y=kx+b(k≠0)经过点A(﹣2,4),则不等式kx+b>4的解集为()A.x>﹣2B.x<﹣2C.x>4D.x<4 7.(2018•赤峰)有一天,兔子和乌龟赛跑.比赛开始后,兔子飞快地奔跑,乌龟缓慢的爬行.不一会儿,乌龟就被远远的甩在了后面.兔子想:“这比赛也太轻松了,不如先睡一会儿.”而乌龟一刻不停地继续爬行.当兔子醒来跑到终点时,发现乌龟已经到达了终点.正确反映这则寓言故事的大致图象是()A.B.C.D.8.(2018•宁夏)如图,一个长方体铁块放置在圆柱形水槽容器内,向容器内按一定的速度均匀注水,60秒后将容器内注满.容器内水面的高度h(cm)与注水时间t(s)之间的函数关系图象大致是()A.B.C.D.9.(2018•广元)小明和小华是同班同学,也是邻居,某日早晨,小明7:40先出发去学校,走了一段后,在途中停下吃了早餐,后来发现上学时间快到了,就跑步到学校;小华离家后直接乘公交汽车到了学校.如图是他们从家到学校已走的路程s(米)和所用时间t(分钟)的关系图.则下列说法中错误的是()A.小明吃早餐用时5分钟B.小华到学校的平均速度是240米/分C.小明跑步的平均速度是100米/分D.小华到学校的时间是7:5510.(2018•巴彦淖尔)如图是本地区一种产品30天的销售图象,图①是产品日销售量y(单位:件)与时间t(单位:天)的函数关系,图②是一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系,已知日销售利润=日销售量×一件产品的销售利润.下列结论错误的是()A.第24天的销售量为300件B.第10天销售一件产品的利润是15元C.第27天的日销售利润是1250元D.第15天与第30天的日销售量相等11.(2018•通辽)小刚从家去学校,先匀速步行到车站,等了几分钟后坐上了公交车,公交车匀速行驶一段时间后到达学校,小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是()A.B.C.D.12.(2018•湖北)甲、乙两车从A地出发,匀速驶向B地.甲车以80km/h的速度行驶1h后,乙车才沿相同路线行驶.乙车先到达B地并停留1h后,再以原速按原路返回,直至与甲车相遇.在此过程中,两车之间的距离y(km)与乙车行驶时间x(h)之间的函数关系如图所示.下列说法:①乙车的速度是120km/h;②m=160;③点H的坐标是(7,80);④n=7.5.其中说法正确的有()A.4个B.3个C.2个D.1个13.(2018•齐齐哈尔)如图是自动测温仪记录的图象,它反映了齐齐哈尔市的春季某天气温T如何随时间t的变化而变化,下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.0点到14点之间气温持续上升D.最高气温是8℃14.(2018•随州)“龟兔赛跑”这则寓言故事讲述的是比赛中兔子开始领先,但它因为骄傲在途中睡觉,而乌龟一直坚持爬行最终贏得比赛,下列函数图象可以体现这一故事过程的是()A.B.C.D.15.(2018•咸宁)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:①甲步行的速度为60米/分;②乙走完全程用了32分钟;③乙用16分钟追上甲;④乙到达终点时,甲离终点还有300米.其中正确的结论有()A.1个B.2个C.3个D.4个16.(2018•邵阳)小明参加100m短跑训练,2018年1~4月的训练成绩如下表所示:体育老师夸奖小明是“田径天才”,请你预测小明5年(60个月)后100m短跑的成绩为()(温馨提示;目前100m短跑世界纪录为9秒58)A.14.8s B.3.8sC.3s D.预测结果不可靠17.(2018•达州)如图,在物理课上,老师将挂在弹簧测力计下端的铁块浸没于水中,然后缓慢匀速向上提起,直至铁块完全露出水面一定高度,则下图能反映弹簧测力计的读数y(单位:N)与铁块被提起的高度x(单位:cm)之间的函数关系的大致图象是()A.B.C.D.18.(2018•长沙)小明家、食堂、图书馆在同一条直线上,小明从家去食堂吃早餐,接着去图书馆读报,然后回家,如图反映了这个过程中,小明离家的距离y与时间x之间的对应关系.根据图象,下列说法正确的是()A.小明吃早餐用了25minB.小明读报用了30minC.食堂到图书馆的距离为0.8kmD.小明从图书馆回家的速度为0.8km/min19.(2018•绍兴)如图,一个函数的图象由射线BA、线段BC、射线CD组成,其中点A(﹣1,2),B(1,3),C(2,1),D(6,5),则此函数()A.当x<1时,y随x的增大而增大B.当x<1时,y随x的增大而减小C.当x>1时,y随x的增大而增大D.当x>1时,y随x的增大而减小20.(2018•金华)某通讯公司就上宽带网推出A,B,C三种月收费方式.这三种收费方式每月所需的费用y(元)与上网时间x(h)的函数关系如图所示,则下列判断错误的是()A.每月上网时间不足25h时,选择A方式最省钱B.每月上网费用为60元时,B方式可上网的时间比A方式多C.每月上网时间为35h时,选择B方式最省钱D.每月上网时间超过70h时,选择C方式最省钱21.(2018•重庆)根据如图所示的程序计算函数y的值,若输入的x值是4或7时,输出的y值相等,则b等于()A.9B.7C.﹣9D.﹣7 22.(2018•滨州)如果规定[x]表示不大于x的最大整数,例如[2.3]=2,那么函数y=x﹣[x]的图象为()A.B.C.D.23.(2017•巴彦淖尔)为积极响应市委、市政府提出的“绿色发展,赛过江南”的号召,市园林队在某公园进行绿化,中间休息了一段时间.已知绿化面积S (单位:平方米)与工作时间t(单位:小时)的函数关系的图象如图所示,则休息后园林队每小时绿化面积为()A.25平方米B.50平方米C.75平方米D.100平方米24.小明同学从家里去学校,开始采用匀速步行,走了一段路后,发觉照这样走下去会迟到,于是匀速跑步完成余下的路程,下面坐标系中,横轴表示小明从家里出发后的时间t,纵轴表示小明距离学校的路程S,则S与t之间函数关系的图象大致是()A.B.C.D.25.某移动通讯公司有两种移动电话计费方式,这两种计费方式中月使用费y(元)与主叫时间x(分)的对应关系如图所示:(主叫时间不到1分钟,按1分钟收费)下列三个判断中正确的是()①方式一每月主叫时间为300分钟时,月使用费为88元②每月主叫时间为350分钟和600分钟时,两种方式收费相同③每月主叫时间超过600分钟,选择方式一更省钱A.①②B.①③C.②③D.①②③26.一列快车从甲地匀速驶往乙地,一列慢车从乙地匀速驶往甲地,慢车先出发一段时间,这辆列车之间的距离y(km)与慢车行驶的时间x(h)之间的函数关系如图所示,则慢车出发8h时,两列车相距()A.525km B.575.5km C.600km D.660km二.填空题27.(2018•济南)A、B两地相距20km,甲乙两人沿同一条路线从A地到B地.甲先出发,匀速行驶,甲出发1小时后乙再出发,乙以2km/h的速度度匀速行驶1小时后提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A 地的距离s(km)与时间t(h)的关系如图所示,则甲出发小时后和乙相遇.28.(2018•巴中)函数y=+中自变量x的取值范围是.29.(2018•阜新)甲、乙两人分别从A,B两地相向而行,他们距B地的距离s(km)与时间t(h)的关系如图所示,那么乙的速度是km/h.30.(2018•绍兴)实验室里有一个水平放置的长方体容器,从内部量得它的高是15cm,底面的长是30cm,宽是20cm,容器内的水深为x cm.现往容器内放入如图的长方体实心铁块(铁块一面平放在容器底面),过顶点A的三条棱的长分别10cm,10cm,y cm(y≤15),当铁块的顶部高出水面2cm时,x,y 满足的关系式是.31.(2018•十堰)如图,直线y=kx+b交x轴于点A,交y轴于点B,则不等式x (kx+b)<0的解集为.32.(2018•邵阳)如图所示,一次函数y=ax+b的图象与x轴相交于点(2,0),与y轴相交于点(0,4),结合图象可知,关于x的方程ax+b=0的解是.33.(2018•杭州)某日上午,甲,乙两车先后从A地出发沿同一条公路匀速前往B地,甲车8点出发,如图是其行驶路程s(千米)随行驶时间t(小时)变化的图象.乙车9点出发,若要在10点至11点之间(含10点和11点)追上甲车,则乙车的速度v(单位:千米/小时)的范围是.34.(2018•陇南)如图,一次函数y=﹣x﹣2与y=2x+m的图象相交于点P(n,﹣4),则关于x的不等式组的解集为.35.(2018•重庆)A,B两地相距的路程为240千米,甲、乙两车沿同一线路从A地出发到B地,分别以一定的速度匀速行驶.甲车先出发40分钟后,乙车才出发.途中乙车发生故障,修车耗时20分钟,随后,乙车车速比发生故障前减少了10千米/小时(仍保持匀速前行),甲、乙两车同时到达B地.甲、乙两车相距的路程y(千米)与甲车行驶时间x(小时)之间的关系如图所示,求乙车修好时,甲车距B地还有千米.36.(2018•重庆)一天早晨,小玲从家出发匀速步行到学校,小玲出发一段时间后,她的妈妈发现小玲忘带了一件必需的学习用品,于是立即下楼骑自行车,沿小玲行进的路线,匀速去追小玲,妈妈追上小玲将学习用品交给小玲后,立即沿原路线匀速返回家里,但由于路上行人渐多,妈妈返回时骑车的速度只是原来速度的一半,小玲继续以原速度步行前往学校,妈妈与小玲之间的距离y(米)与小玲从家出发后步行的时间x(分)之间的关系如图所示(小玲和妈妈上、下楼以及妈妈交学习用品给小玲耽搁的时间忽略不计).当妈妈刚回到家时,小玲离学校的距离为米.37.(2018•衢州)星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是千米.38.(2016•黄冈校级自主招生)如图,在一次自行车越野赛中,甲、乙两名选手所走的路程y(千米)随时间x(分钟)变化的图象(全程)分别用实线(O→A→B→C)与虚线(OD)表示,那么,在本次比赛过程中,乙领先甲时的x的取值范围是.39.一辆快车从甲地开往乙地,一辆慢车从乙地开往甲地,两车同时出发,分别以各自的速度在甲乙两地间匀速行驶,行驶1小时后,快车司机发现有重要文件遗忘在出发地,便立即返回出发地,拿上文件后(取文件时间不计)立即再从甲地开往乙地,结果快车先到达乙地,慢车继续行驶到甲地.设慢车行驶时间x(h),两车之间的距离为y(km),y与x的函数图象如图所示,则a=.40.一辆货车从A地匀速驶往相距350km的B地,当货车行驶1小时经过途中的C地时,一辆快递车恰好从C地出发以另一速度匀速驶往B地,当快递车到达B地后立即掉头以原来的速度匀速驶往A地.(货车到达B地,快递车到达A地后分别停止运动)行驶过程中两车与B地间的距离y(单位:km)与货车从出发所用的时间x(单位:h)间的函数关系如图所示.则货车到达B 地后,快递车再行驶h到达A地.答案与解析一.选择题1.【分析】直线解析式乘以2后和方程联立解答即可.【解答】解:因为以二元一次方程x+2y﹣b=0的解为坐标的点(x,y)都在直线y=﹣x+b﹣1上,直线解析式乘以2得2y=﹣x+2b﹣2,变形为:x+2y﹣2b+2=0所以﹣b=﹣2b+2,解得:b=2,故选:B.【点评】此题考查一次函数与二元一次方程问题,关键是直线解析式乘以2后和方程联立解答.2.【分析】根据被开方数大于等于0,分母不等于0列式求解即可.【解答】解:根据题意得x﹣1≥0,1﹣x≠0,解得x>1.故选:B.【点评】本题主要考查了函数自变量的取值范围的确定,根据分母不等于0,被开方数大于等于0列式计算即可,是基础题,比较简单.3.【分析】由一次函数图象过(3,0)且过第二、四象限知b=﹣3k、k<0,代入不等式求解可得.【解答】解:∵一次函数y=kx+b经过点(3,0),∴3k+b=0,且k<0,则b=﹣3k,∴不等式为kx﹣6k<0,解得:x>6,故选:D.【点评】本题主要考查一次函数与一元一次不等式,解题的关键是掌握一次函数的图象与性质及解一元一次不等式的能力.4.【分析】根据每一段函数图象的倾斜程度,反映了水面上升速度的快慢,再观察容器的粗细,作出判断.【解答】解:注水量一定,从图中可以看出,OA上升较快,AB上升较慢,BC 上升最快,由此可知这个容器下面容积较大,中间容积最大,上面容积最小,故选:D.【点评】本题考查利用函数的图象解决实际问题,正确理解函数的图象所表示的意义是解题的关键,注意容器粗细和水面高度变化的关系.5.【分析】根据速度之间的关系和函数图象解答即可.【解答】解:因为匀速行驶了一半的路程后将速度提高了20km/h,所以1小时后的路程为40km,速度为40km/h,所以以后的速度为20+40=60km/h,时间为分钟,故该车到达乙地的时间是当天上午10:40;故选:B.【点评】此题主要考查了函数的图象值,根据速度之间的关系和函数图象解答是解题关键.6.【分析】结合函数的图象利用数形结合的方法确定不等式的解集即可.【解答】解:观察图象知:当x>﹣2时,kx+b>4,故选:A.【点评】本题考查了一次函数与一元一次不等式的知识,解题的关键是根据函数的图象进行解答.7.【分析】根据题意得出兔子和乌龟的图象进行解答即可.【解答】解:乌龟运动的图象是一条直线,兔子运动的图象路程先增大,而后不变,再增大,并且乌龟所用时间最短,故选:D.【点评】此题考查函数图象问题,本题需先读懂题意,根据实际情况找出正确函数图象即可.8.【分析】根据实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢进行分析即可.【解答】解:根据题意可知,刚开始时由于实心长方体在水槽里,长方体底面积减小,水面上升的速度较快,水淹没实心长方体后一直到水注满,底面积是圆柱体的底面积,水面上升的速度较慢,故选:D.【点评】此题考查函数的图象问题,关键是根据容器内水面的高度h(cm)与注水时间t(s)之间的函数关系分析.9.【分析】根据函数图象中各拐点的实际意义求解可得.【解答】解:A、小明吃早餐用时13﹣8=5分钟,此选项正确;B、小华到学校的平均速度是1200÷(13﹣8)=240(米/分),此选项正确;C、小明跑步的平均速度是(1200﹣500)÷(20﹣13)=100(米/分),此选项正确;D、小华到学校的时间是7:53,此选项错误;故选:D.【点评】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键.10.【分析】A、利用图象①即可解决问题;B、利用图象②求出函数解析式即可判断;C、求出销售量以及每件产品的利润即可解决问题;D、求出第15天与第30天的日销售量比较即可;【解答】解:A、根据图①可得第24天的销售量为300件,故正确;B、设当0≤t≤20,一件产品的销售利润z(单位:元)与时间t(单位:天)的函数关系为z=kx+b,把(0,25),(20,5)代入得:,解得:,∴z=﹣x+25,当x=10时,y=﹣10+25=15,故正确;C、当24≤t≤30时,设产品日销售量y(单位:件)与时间t(单位;天)的函数关系为y=k1t+b1,把(30,200),(24,300)代入得:,解得:,∴y=﹣t+700,当t=27时,y=250,∴第27天的日销售利润为;250×5=1250(元),故C正确;D、当0<t<24时,可得y=t+100,t=15时,y≠200,故D错误,故选:D.【点评】本题考查一次函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题,属于中考常考题型.11.【分析】根据小刚行驶的路程与时间的关系,确定出图象即可.【解答】解:根据题意得:小刚从家到学校行驶路程s(单位:m)与时间t(单位:min)之间函数关系的大致图象是故选:B.【点评】此题考查了函数的图象,由图象理解对应函数关系及其实际意义是解本题的关键.12.【分析】根据题意,两车距离为函数,由图象可知两车起始距离为80,从而得到乙车速度,根据图象变化规律和两车运动状态,得到相关未知量.【解答】解:由图象可知,乙出发时,甲乙相距80km,2小时后,乙车追上甲.则说明乙每小时比甲快40km,则乙的速度为120km/h.①正确;由图象第2﹣6小时,乙由相遇点到达B,用时4小时,每小时比甲快40km,则此时甲乙距离4×40=160km,则m=160,②正确;当乙在B休息1h时,甲前进80km,则H点坐标为(7,80),③正确;乙返回时,甲乙相距80km,到两车相遇用时80÷(120+80)=0.4小时,则n=6+1+0.4=7.4,④错误.故选:B.【点评】本题以函数图象为背景,考查双动点条件下,两点距离与运动时间的函数关系,解答时既要注意图象变化趋势,又要关注动点的运动状态.13.【分析】根据齐齐哈尔市某一天内的气温变化图,分析变化趋势和具体数值,即可求出答案.【解答】解:A、由函数图象知4时气温达到最低,此选项错误;B、最低气温是零下3℃,此选项错误;C、4点到14点之间气温持续上升,此选项错误;D、最高气温是8℃,此选项正确;故选:D.【点评】本题考查了函数图象,由纵坐标看出气温,横坐标看出时间是解题关键.14.【分析】根据兔子的路程在一段时间内保持不变、乌龟比兔子所用时间少逐一判断即可得.【解答】解:由于兔子在途中睡觉,所以兔子的路程在一段时间内保持不变,所以D选项错误;因为乌龟最终赢得比赛,即乌龟比兔子所用时间少,所以A、C均错误;故选:B.【点评】本题主要考查函数图象,解题的关键是弄清函数图象中横、纵轴所表示的意义及实际问题中自变量与因变量之间的关系.15.【分析】根据题意和函数图象中的数据可以判断各个小题中的结论是否正确,从而可以解答本题.【解答】解:由图可得,甲步行的速度为:240÷4=60米/分,故①正确,乙走完全程用的时间为:2400÷(16×60÷12)=30(分钟),故②错误,乙追上甲用的时间为:16﹣4=12(分钟),故③错误,乙到达终点时,甲离终点距离是:2400﹣(4+30)×60=360米,故④错误,故选:A.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.16.【分析】由表格中的数据可知,每加1个月,成绩提高0.2秒,所以y与x 之间是一次函数的关系,可设y=kx+b,利用已知点的坐标,即可求解.【解答】解:(1)设y=kx+b依题意得(1分),解答,∴y=﹣0.2x+15.8.当x=60时,y=﹣0.2×60+15.8=3.8.因为目前100m短跑世界纪录为9秒58,显然答案不符合实际意义,故选:D.【点评】本题考查一次函数的应用、待定系数法等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.17.【分析】根据题意,利用分类讨论的数学思想可以解答本题.【解答】解:由题意可知,铁块露出水面以前,F拉+F浮=G,浮力不变,故此过程中弹簧的度数不变,当铁块慢慢露出水面开始,浮力减小,则拉力增加,当铁块完全露出水面后,拉力等于重力,故选:D.【点评】本题考查函数图象,解答本题的关键是明确题意,利用数形结合和分类讨论的数学思想解答.18.【分析】根据函数图象判断即可.【解答】解:小明吃早餐用了(25﹣8)=17min,A错误;小明读报用了(58﹣28)=30min,B正确;食堂到图书馆的距离为(0.8﹣0.6)=0.2km,C错误;小明从图书馆回家的速度为0.8÷10=0.08km/min,D错误;故选:B.【点评】本题考查的是函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合题意正确计算是解题的关键.19.【分析】根据函数图象和题目中的条件,可以写出各段中函数图象的变化情况,从而可以解答本题.【解答】解:由函数图象可得,当x<1时,y随x的增大而增大,故选项A正确,选项B错误,当1<x<2时,y随x的增大而减小,当x>2时,y随x的增大而增大,故选项C、D错误,故选:A.【点评】本题考查函数的图象,解答本题的关键是明确题意,利用数形结合的思想解答.20.【分析】A、观察函数图象,可得出:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可得出:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、利用待定系数法求出:当x≥25时,y A与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=35时y A的值,将其与50比较后即可得出结论C正确;D、利用待定系数法求出:当x≥50时,y B与x之间的函数关系式,再利用一次函数图象上点的坐标特征可求出当x=70时y B的值,将其与120比较后即可得出结论D错误.综上即可得出结论.【解答】解:A、观察函数图象,可知:每月上网时间不足25 h时,选择A方式最省钱,结论A正确;B、观察函数图象,可知:当每月上网费用≥50元时,B方式可上网的时间比A方式多,结论B正确;C、设当x≥25时,y A=kx+b,将(25,30)、(55,120)代入y A=kx+b,得:,解得:,∴y A=3x﹣45(x≥25),当x=35时,y A=3x﹣45=60>50,∴每月上网时间为35h时,选择B方式最省钱,结论C正确;D、设当x≥50时,y B=mx+n,将(50,50)、(55,65)代入y B=mx+n,得:,解得:,∴y B=3x﹣100(x≥50),当x=70时,y B=3x﹣100=110<120,∴结论D错误.故选:D.【点评】本题考查了函数的图象、待定系数法求一次函数解析式以及一次函数图象上点的坐标特征,观察函数图象,利用一次函数的有关知识逐一分析四个选项的正误是解题的关键.21.【分析】先求出x=7时y的值,再将x=4、y=﹣1代入y=2x+b可得答案.【解答】解:∵当x=7时,y=6﹣7=﹣1,∴当x=4时,y=2×4+b=﹣1,解得:b=﹣9,故选:C.【点评】本题主要考查函数值,解题的关键是掌握函数值的计算方法.22.【分析】根据定义可将函数进行化简.【解答】解:当﹣1≤x<0,[x]=﹣1,y=x+1当0≤x<1时,[x]=0,y=x当1≤x<2时,[x]=1,y=x﹣1……故选:A.【点评】本题考查函数的图象,解题的关键是正确理解[x]的定义,然后对函数进行化简,本题属于中等题型.23.【分析】根据休息后2小时的绿化面积100平方米,即可判断;【解答】解:休息后园林队每小时绿化面积为==50平方米.故选:B.【点评】本题考查函数的图象,解题的关键是读懂图象信息,属于中考常考题型.24.【分析】根据去学校,可得与学校的距离逐渐减少,根据跑步比步行快,可得答案.【解答】解:由题意,得步行时,小明距离学校的路程S缓慢减少,匀速跑步时,小明距离学校的路程S迅速减少直至为零,故D符合题意,故选:D.【点评】本题考查了函数图象,理解题意与学校的距离逐渐减少是解题关键.25.【分析】①根据待定系数法求出方式一,当x≥200时的一次函数解析式,再求出y=88时x的值即可求解;②得出两交点坐标即可求解;③观察函数图形即可求解.【解答】解:①当x≥200时,设方式一的一次函数解析式为y=kx+b,依题意有,解得.则当x≥200时,方式一的一次函数解析式为y=0.2x+18,当y=88时,0.2x+18=88,解得x=350.故方式一每月主叫时间为350分钟时,月使用费为88元.题干原来的说法是错误的;②观察图形可知两交点坐标分别是(350,88),(600,138),故每月主叫时间为350分钟和600分钟时,两种方式收费相同.题干原来的说法是正确的;③观察图形可知每月主叫时间超过600分钟,选择方式一更省钱.题干原来的说法是正确的.故选:C.【点评】考查了一次函数的应用,渗透了函数与方程的思想,关键是求出x≥200时的一次函数解析式.26.【分析】根据图象得:甲乙两地相距900km,慢车12小时到达甲地,慢车的速度=900÷12=75km/h,由图象可得快车在慢车出发6.5小时时,到达乙地.那么慢车8h时,两车的距离就是慢车8h的路程.【解答】解:根据图象得:甲乙两地相距900km,慢车12小时到达甲地,慢车的速度=900÷12=75km/h,由图象可得快车在慢车出发6.5小时时,到达乙地,所以慢车出发8h时,两车相距75×8=600km.故选:C.【点评】本题是一道典型的识图题,考查学生结合实际情况从图中挖掘信息的能力,知道图象中每个数据表示的意义是解题关键二.填空题27.【分析】由图象得出解析式后联立方程组解答即可.【解答】解:由图象可得:y甲=4t(0≤t≤5);y乙=;由方程组,解得t=.故答案为.【点评】此题考查一次函数的应用,关键是由图象得出解析式解答.28.【分析】根据被开方数大于等于0,分母不等于0列不等式计算即可得解.【解答】解:由题意得,解得:x≥1且x≠2,故答案为:x≥1且x≠2.【点评】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.29.【分析】根据题意,甲的速度为6km/h,乙出发后2.5小时两人相遇,可以用方程思想解决问题.【解答】解:由题意,甲速度为6km/h.当甲开始运动时相距36km,两小时后,乙开始运动,经过2.5小时两人相遇.设乙的速度为xkm/h2.5×(6+x)=36﹣12解得x=3.6故答案为:3.6。

微积分第六章练习题答案

微积分第六章练习题答案

第六单练习题第六单练习题一、选择题一、选择题1、在球x 2+y 2+z 2-2z =0内部的点是(内部的点是( C )A 、(0,0,0)B 、(0,0,-2)C 、111,,222æöç÷èø D 、111,,222æö--ç÷èø 2、点(1,1,1)关于xy 平面的对称点是(平面的对称点是( B )A 、(-1,1,1) B 、(1,1,-1) C 、(-1,-1,-1) D 、(1,-1,1) 3、设函数z =f (x ,y )在点(x 0,y 0)处存在对x ,y 的偏导数,则00(,)x f x y ¢=( B ) A 、00000(2,)(,)lim x f x x y f x y x D ®-D -D B 、00000(,)(,)lim x f x y f x x y x D ®--D D C 、00000(,)(,)lim xf x x y y f x y x D ®+D +D -D D 、0000(,)(,)lim x x f x y f x y x x ®-- 4、函数z =f (x ,y )在点(x 0,y 0)处可微的充分条件是(处可微的充分条件是( D )A 、f (x ,y )在点(x 0,y 0)处连续处连续B 、f (x ,y )在点(x 0,y 0)处存在偏导数处存在偏导数C 、00000lim (,)(,)0x y z f x y x f x y y r ®¢¢éùD -D -D =ëû D 、00000(,)(,)lim 0x y z f x y x f x y y r r ®¢¢D -D -D éù=êúëû其中22x y r =+ 5、已知函数22(,)f x y x y x y +-=-,则(,)(,)f x y f x y x y ¶¶+=¶¶( B ) A 、22x y - B 、x y + C 、22x y + D 、x y -6、平行于z 轴且过点(1,2,3)和(-1,4,5)的平面方程是()的平面方程是( A ). A 、03=-+y x B 、03=++y x C 、01=+-z y D 、5=z7、二元函数224),(y x y x f z +==在点(0,0)处()处( D ) A 、连续、偏导数不存在、连续、偏导数不存在 B 、不连续、偏导数存在、不连续、偏导数存在 C 、连续,偏导数存在但不可微、连续,偏导数存在但不可微 D 、可微、可微8、若可微函数),(y x f z =在点),(000y x P 有极值,则(有极值,则( C ). A 、两个偏导数都大于零、两个偏导数都大于零 B 、两个偏导数都小于零、两个偏导数都小于零C 、两个偏导数在点),(0y x P 的值都等于零的值都等于零D 、两个偏导数异号、两个偏导数异号 9、二重积分òò+=Ddxdy y x I )sin(1,òò+=Ddxdy y x I )(sin 22,其中D是由是由1,21,0,0=+=+==y x y x y x 围成,则(围成,则( C ). A 、21I I = B 、21I I < C 、21I I > D 、以上都不对、以上都不对 10、设方程2222xyz x y z +++=确定了函数z =z (x ,y ),则z =z (x ,y )在点在点(1,0,-1)处的全微分dz =( D )A 、2dx dy +B 、2dx dy -+C 、2dx dy --D 、2dx dy - 11、二元函数3322339z x y x y x =-++-的极小值点是(的极小值点是( A ) A 、(1,0) B 、(1,2) C 、(-3,0) D 、(-3,2) 12、点00(,)x y 使(,)0x f x y ¢=且(,)0y f x y ¢=成立,则(成立,则( D )A 、00(,)x y 是(,)f x y 的极值点的极值点B 、00(,)x y 是(,)f x y 的最小值点C 、00(,)x y 是(,)f x y 的最大值点D 、00(,)x y 可能是(,)f x y 的极值点的极值点13、设区域D 是单位圆221x y +£在第一象限的部分,则二重积分Dxyd s =òò( C ) A 、22110y x dxxydy --òòB 、21100y dx xydy -òòC 、21100y dy xydx -òòD 、12201sin 22d r dr pq q òò14、110(,)xdx f x y dy -=òò( D )A 、11(,)xdy f x y dx -òò B 、110(,)x dy f x y dx -òò C 、11(,)dy f x y dx òò D 、110(,)ydy f x y dx -òò15、若1Ddxdy =òò,则积分域D 可以是(可以是( C )A 、由x 轴,y 轴及20x y +-=所围成的区域所围成的区域B 、由x =1,x =2,及y =2,y =4所围成的区域所围成的区域C 、由11,22x y ==所围成的区域所围成的区域D 、由1,1x y x y +=-=所围成的区域所围成的区域 二、填空题1、设)ln(22y x z +=,则xz¶¶= .222y x x + 2、交换二次积分的次序òò101),(xdy y x f dx = .òò12),(y dx y x f dy3、若òò=--Ddxdy y x a p 222,则=a ,其中D是由222a y x =+围成的区域.323 4、òòDd y x f s ),(在极坐标系下的二次积分为在极坐标系下的二次积分为 ,其中D是由422=+y x 围成的区域.òòp q q q 202)sin ,cos (rdr r r f d四、计算题四、计算题1、.求由方程xyz e z=所确定的函数),(y x f z =的偏导数x z ¶¶,y x z ¶¶¶2解:设xyz e z y x F z -=),,(,则yzFx-=,xy e F z z -= xy e yz F F x zzz x -=-=¶¶ 22)()())(()(xy e x yz e yz xy e y z y z xy e yz y x z z z z y z --¶¶--¶¶+=¢-=¶¶¶ 322322)(xy e e z y z xy z y e xyz e z e z zz z z ---+-= 2、设vuz arctan =,其中y x v y x u -=+=,23,求全微分dz解: xv v z x u u z x z ¶¶¶¶+¶¶¶¶=¶¶ 22223v u uv u v +-+×+= 2222)()23(23)()23()(3y x y x y x y x y x y x -+++--++-=y vv z y u u z y z ¶¶¶¶+¶¶¶¶=¶¶ )1(22222-×+-+×+=vu u v u v2222)()23(23)()23()(2y x y x yx y x y x y x -++++-++-=dy y z dx x z dz ¶¶+¶¶=dx y x y x y x y x y x y x ])()23(23)()23()(3[2222-+++--++-= dy y x y x y x y x y x y x ])()23(23)()23()(2[2222-++++-++-+3、设2z u v =,其中y x v y x u -=+=,23,求全微分dz 解:xvv z x u u z x z ¶¶¶¶+¶¶¶¶=¶¶ 232u uv +×=2)23())(23(6y x y x y x ++-+= y vv z y u u z y z ¶¶¶¶+¶¶¶¶=¶¶ )1(222-×+×=u uv 2)23())(23(4y x y x y x +--+=dy y z dx x z dz ¶¶+¶¶=dx y x y x y x ])23())(23(6[2++-+=dy y x y x y x ])23())(23(4[2+--++ 4、求函数22(,)4()f x y x y x y =---的极值的极值解:x f x 24-=,y f y 24--= 令0,0==yx f f 得2,2-==y x由2,0,2-====-==yy xy xx f C f B f A 知0>-B AC 且0<A 故),(y x f 在点(2,-2)处有极大值, 极大值为8)2,2(=-f5、、计算二重积分òò+Ddxdy y x )23(,其中D是由X 轴、Y 轴及直线2=+y x 所围成的区域成的区域解:òòòò+Ddxdy y x )23( òò-+=x dy y x dx 202)23(ò++-=202)422(dx x x =320解法二:原式òò-+=y dx y x dy 2020)23(ò+--=202)6221(dy y y320=6、、计算二重积分òòDdxdy x xsin ,其中D是由直线x y =和曲线2x y =所围成的闭区域.区域. 解:òòDdxdy xxsin òò=xxdy xx dx2sin 1dx x x xx)(sin 21-=ò dx x x x )sin (sin 10-=ò1sin 1-=7、计算二重积分2Dx ydxdy òò,其中D是由X 轴、Y 轴及直线2x y +=所围成的区域解:òòDydxdy x 2 òò-=x ydy x dx 202221ò=(22414x =31)y 08)535y -p 564=2、求由曲线2y x =和2x y =所围成的图形的面积以及由该图形绕Y轴旋转一周所产生的旋转体的体积(要求作出草图). 解:阴影部分面积ò-=12)(dx x x S01)3132(323x x -== 31旋转体的体积ò-=1222])()[(dy y y Vyp 01)5121(52y y -=pp 103=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章函数
二、选择题
1.C语言程序由函数组成。

正确的说法是____B______。

A)主函数写在必须写在其他函数之前,函数内可以嵌套定义函数
B)主函数可以写在其他函数之后,函数内不可以嵌套定义函数
C)主函数必须写在其他函数之前,函数内不可以嵌套定义函数
D)主函数必须在写其他函数之后,函数内可以嵌套定义函数
2.一个C语言程序的基本组成单位是_____C_____。

A)主程序B)子程序C)函数D)过程
3.以下说法正确的是____ C ______。

A)C语言程序总是从第一个定义的函数开始执行
B)C语言程序中,被调用的函数必须在main()函数中定义
C)C语言程序总是从主函数main()开始执行。

D)C程序中的main()函数必须放在程序的开始处
4.已知函数fun类型为void,则void的含义是____ A ______。

A)执行函数fun后,函数没有返回值B)执行函数fun后,可以返回任意类型的值
C)执行函数fun后,函数不再返回D)以上三个答案都是错误的
5.下列对C语言函数的描述中,正确的是____ A ______。

A)在C语言中,调用函数时只能将实参的值传递给形参,形参的值不能传递给实参B)函数必须有返回值
C)C语言函数既可以嵌套定义又可以递归调用
D)C程序中有调用关系的所有函数都必须放在同一源程序文件中
6.以下叙述中错误的是_____ B _____。

A)函数形参是存储类型为自动类型的局部变量
B)外部变量的缺省存储类别是自动的。

C)在调用函数时,实参和对应形参在类型上只需赋值兼容
D)函数中的自动变量可以赋初值,每调用一次赋一次初值
7.C语言中的函数____D______。

A)不可以嵌套调用B)可以嵌套调用,但不能递归调用
C)可以嵌套定义D)嵌套调用和递归调用均可
8.C语言中函数返回值类型由____D_____决定。

A)调用该函数的主调函数类型B)函数参数类型
C)return语句中的表达式类型D)定义函数时指定的函数类型
9.C语言规定,调用一个函数,实参与形参之间的数据传递方式是___D_____。

A)由实参传给形参,并由形参传回来给实参B)按地址传递
C)由用户指定方式传递D)按值传递
10.下列叙述错误的是____C______。

A)形参是局部变量
B)复合语句中定义的变量只在该复合语句中有效
C)主函数中定义的变量在整个程序中都有效
D)其他函数中定义的变量在主函数中不能使用
11.若函数类型和return语句中的表达式类型不一致,则____B______。

A)运行时出现不确定结果B)返回值的类型以函数类型为准
C)编译时出错D)返回值的类型以return语句中表达式的类型为准12.下面函数定义正确的是_____C_____。

A)double fun(double u,v) B)double fun(double u;double v)
{return u+v;} {return u+v;}
C)double fun(float u,float v) D)double fun( u,v)
{return u+v;} { float u,v ;return u+v;}
13.以下函数fun的返回值类型为_____C_____。

fun(double x){ ……}
A)double B)void C)int D)无法确定类型。

相关文档
最新文档