中考全等三角形专题
中考数学复习《全等三角形》专题(卷1)
《全等三角形》中考复习一. 选择题1. 如图,AB=AC,点D,E分别在AB,AC上,添加下列条件,不能判定△ABE≅△ACD的是( )A.BD=CEB.∠BDC=∠BECC.∠ACD=∠ABED.BE=CD2. 如下图,在△ABC中,∠C=90∘,∠B=30∘,以A为圆心,任意长为半径画弧分别交AB,AC于点M和N,再分别以M,N 为圆心,大于12MN的长为半径画弧,两弧交于点P ,连结AP 并延长交BC于点D.则下列说法中正确的是()①AD是∠BAC的角平分线;②∠ADC=60∘;③点D在AB的中垂线上;④S△DAC:S△ABC=1:3.A.①②③④B.②③④C.①②D.①②③3. 如图,若△MNP≅△MEQ,则点Q应是图中的()A.点AB.点BC.点CD.点D4. 全等三角形又叫做合同三角形,平面内的合同三角形分为真正合同三角形与镜面合同三角形,假设△ABC 和△A1B1C1是全等(合同)三角形,点A与点A1对应,点B与点B1对应,点C与点C1对应,当沿周界A→B→C→A,及A1→B1→C1→A1环绕时,若运动方向相同,则称它们是真正合同三角形如图①,若运动方向相反,则称它们是镜面合同三角形如图②,两个真正合同三角形都可以在平面内通过平移或旋转使它们重合如图①,两个镜面合同三角形要重合,则必须将其中一个翻转180∘如图②,下列各组合同三角形中,是镜面合同三角形的是( )A. B. C. D.5. 对下列生活现象的解释其数学原理运用错误的是()A.把一条弯曲的道路改成直道可以缩短路程是运用了“两点之间线段最短”的原理B.木匠师傅在刨平的木板上任选两个点就能画出一条笔直的墨线是运用了“直线外一点与直线上各点连接的所有线段中,垂线段最短”的原理C.将自行车的车架设计为三角形形状是运用了“三角形的稳定性”的原理D.将车轮设计为圆形是运用了“圆的旋转对称性”的原理6. 如图,已知∠AOB,用直尺和圆规按照以下步骤作图:①以O为圆心,任意长为半径画弧,分别交OA,OB于点C,D;②画射线O′A′,以O′为圆心,OC的长为半径画弧,交O′A′于点C′③以C′为圆心,CD的长为半径画弧,与第②步中所画的弧相交于点D′④过点D′画射线O′B′根据以上操作,可以判定△OCD≅ΔO′C′D′,其判定的依据是()A.SSSB.SASC.ASAD.HL7. 如图,在扇形OAB中,点C是弧AB上任意一点(不与点A,B重合),CD//OA交OB于点D,点I是△OCD 的内心,连结OI,BI,∠AOB=β,则∠OIB等于()A.180∘−βB.180∘−12β C.90∘+12β D.90∘+β8. 小明不慎将一块三角形的玻璃摔碎成如图所示的四块(即图中标有1,2,3,4的四块),你认为将其中的哪一块带去玻璃店,就能配一块与原来一样大小的三角形玻璃.应该带( )A.第1块B.第2块C.第3块D.第4块二. 填空题三角形具有稳定性,所以要使六边形木架不变形,至少要钉上________根木条.如图,在x、y轴上分别截取OA、OB,使OA=OB,再分别以点A、B 为圆心,以大于12AB的长度为半径画弧,两弧交于点C.若C的坐标为(3a,−a+8),则a=________.如图,在菱形ABCD中,已知AB=4,∠ABC=60∘,∠EAF=60∘,点E在CB的延长线上,点F在DC的延长线上,有下列结论:①BE=CF;②∠EAB=∠CEF;③△ABE∼△EFC;④若∠BAE=15∘,则点F到BC的距离为2√3−2.正确序号________.如图,△ABC中,点A的坐标为(0, 1),点C的坐标为(4, 3),如果要使△ABD与△ABC全等,那么点D的坐标是________.三. 解答题如图,小明用五根宽度相同的木条拼成了一个五边形,已知AE//CD,∠A=12∠C,∠B=120∘.(1)∠D+∠E=________度;(2)求∠A的度数;(3)要使这个五边形木架保持现在的稳定状态,小明至少还需钉上________根相同宽度的木条.根据要求完成下列各题.(1)如图1,在∠AOB的内部有一点P.①过点P画直线PC//OA交OB于点C;②过点P画直线PD⊥OA,垂足为D.(2)如图2,AB⊥BF,CD⊥BF,∠1=∠2,试说明∠3=∠E在下面解答中填空.解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠________=90∘(________),∴AB//CD(________)∵∠1=∠2(已知),∴AB//EF(________),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(________)如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF= BD,连接BF.(1)线段BD与CD有何数量关系,为什么?(2)当△ABC满足什么条件时,四边形AFBD是矩形?请说明理由.(3)当△ABC满足________条件时,四边形AFBD是正方形?(直接写出结论,不用说明理由)一条大河两岸的A、B处分别立着高压线铁塔,如图所示.假设河的两岸平行,你在河的南岸,请利用现有的自然条件、皮尺和标杆,并结合你学过的全等三角形的知识,设计一个不过河便能测量河的宽度的好办法.(要求,画出示意图,并标出字母,结合图形简要叙述你的方案)参考答案与试题解析一. 选择题1.【答案】D【解析】欲使△ABE≅△ACD,已知AB=AC,可根据全等三角形判定定理AAS、SAS、ASA添加条件,逐一证明即可.2.【答案】A【解析】①连接NP,MP,根据SSS定理可得△ANP≅△AMP,故可得出结论;②先根据三角形内角和定理求出∠CAB的度数,再由AD是∠BAC的平分线得出∠1=∠2=30∘,根据直角三角形的性质可知∠ADC=60∘;③根据∠1=∠B可知AD=BD,故可得出结论;④先根据直角三角形的性质得出∠2=30∘,CD=12AD,再由三角形的面积公式即可得出结论.3.【答案】D【解析】此题暂无解析4.【答案】B【解析】认真阅读题目,理解真正合同三角形和镜面合同三角形的定义,然后根据各自的定义或特点进行解答.5.【答案】B【解析】根据圆的有关定义、垂线段的性质、三角形的稳定性等知识结合生活中的实例确定正确的选项即可.6.【答案】A【解析】此题暂无解析7.【答案】B 【解析】此题暂无解析8.【答案】B【解析】本题应先假定选择哪块,再对应三角形全等判定的条件进行验证.二. 填空题【答案】3【解析】三角形具有稳定性,所以要使六边形木架不变形需把它分成三角形,即过六边形的一个顶点作对角线,有几条对角线,就至少要钉上几根木条.【答案】2【解析】此题暂无解析【答案】①②【解析】①只要证明△BAE≅△CAF即可判断;②根据等边三角形的性质以及三角形外角的性质即可判断;③根据相似三角形的判定方法即可判断;④求得点F到BC的距离即可判断.【答案】(4, −1)或(−1, 3)或(−1, −1)【解析】因为△ABD与△ABC有一条公共边AB,故本题应从点D在AB的上边、点D在AB的下边两种情况入手进行讨论,计算即可得出答案.三. 解答题【答案】180(2)五边形的内角和为(5−2)×180∘=540∘,由(1)可知,∠D+∠E=180∘,又∠B=120∘,∠A=12∠C.设∠A=x,则∠C=2x,∴∠A+∠B+∠C+∠D+∠E=540∘,即x+120∘+2x+180∘=540∘,解得x=80∘,∴∠A=80∘.2【解析】(1)根据平行线性质,两直线平行同旁内角互补即可得到180∘.先由AE//CD,根据平行线的性质得出∠E+∠D=180∘.再根据∠B=120∘,∠A=12∠C,设∠A=x∘,则∠C=2x∘.利用五边形的内角和为540∘列出方程x+120+2x+180=540,求解即可.根据五边形不具有稳定性,而三角形具有稳定性即可求解.【答案】解:(1)①如图,直线PC即为所求;②如图,直线PD即为所求;(2)解:∵AB⊥BF,CD⊥BF(已知),∴∠ABF=∠CDF=90∘(垂直的定义),∴AB//CD(同位角相等,两直线平行)∵∠1=∠2(已知),∴AB//EF(内错角相等,两直线平行),∴CD//EF(平行于同一条直线的两条直线互相平行),∴∠3=∠E(两直线平行,同位角相等)【解析】此题暂无解析【答案】解:(1)BD=CD.理由如下:依题意得AF // BC,∴∠AFE=∠DCE,∵E是AD的中点,∴AE=DE,在△AEF和△DEC中,{∠AFE=∠DCE,∠AEF=∠DEC,AE=DE,∴△AEF≅△DEC(AAS),∴AF=CD,∵AF=BD,∴BD=CD;(2)当△ABC满足AB=AC时,四边形AFBD是矩形.理由如下:∵AF // BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90∘,∴四边形AFBD是矩形.AB=AC,∠BAC=90∘【解析】(1)根据两直线平行,内错角相等求出∠AFE=∠DCE,然后利用“角角边”证明△AEF和△DEC全等,根据全等三角形对应边相等可得AF=CD,再利用等量代换即可得证;(2)先利用一组对边平行且相等的四边形是平行四边形证明四边形AFBD是平行四边形,再根据一个角是直角的平行四边形是矩形,可知∠ADB=90∘,由等腰三角形三线合一的性质可知必须是AB=AC.【答案】解:在河南岸AB的垂线BF上取两点C、E,使CE=BE,再定出BF的垂线CD,使A、E、D在同一条直线上,这时测得CD的长就是AB的长.如图所示:【解析】已知等边及垂直,在直角三角形中,可考虑AAS证明三角形全等,从而推出线段相等.。
人教版九年级中考数学 考点复习 全等三角形 专题练习
人教版九年级中考数学考点复习全等三角形专题练习一.选择题(本大题共10道小题)1. 已知图中的两个三角形全等,则∠1等于( )A.47°B.57°C.60°D.73°2. 如图,在△ABC和△DCB中,∠ACB=∠DBC,添加一个条件,不能证明△ABC和△DCB全等的是( )A.∠ABC=∠DCBB.AB=DCC.AC=DBD.∠A=∠D3. 如图,点B,F,C,E共线,∠B=∠E,BF=EC,添加一个条件,不能判断△ABC≌△DEF的是( )A.AB=DEB.∠A=∠DC.AC=DFD.AC∥FD4. 如图,等腰△ABC中,点D,E分别在腰AB,AC上,添加下列条件,不能判定△ABE≌△ACD的是( )A.AD=AEB.BE=CDC.∠ADC=∠AEBD.∠DCB=∠EBC5. 如图,△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F.若∠BCE=65°,则∠CAF的度数为( )A.30°B.25°C.35°D.65°6. 在正方形网格中,∠AOB的位置如图所示,则下列各点中到∠AOB两边距离相等的点是( )A.点QB.点NC.点RD.点M7. 工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在∠AOB的两边OA,OB上分别取OC=OD,移动角尺,使角尺两边相同的刻度分别与点C,D重合,这时过角尺顶点M的射线OM就是∠AOB的平分线.这里构造全等三角形的依据是( )A.SASB.ASAC.AASD.SSS8. 如图,在△AOB和△COD中,OA=OB,OC=OD,OA<OC,∠AOB=∠COD=36o.连接AC、BD交于点M,连接OM.下列结论:①∠AMB=36o;②AC=BD;③OM平分∠AOD;④MO平分∠AMD其中正确的结论个数有( )个.A.4B.3C.2D.19. 下面是黑板上出示的尺规作图题需要回答横线上符号代表的内容.如图,已知∠AOB,求作:∠DEF,使∠DEF=∠AOB.作法:(1)以△为圆心,任意长为半径画弧,分别交OA,OB于点P,Q;(2)作射线EG,并以点E为圆心,○长为半径画弧交EG于点D;(3)以点D为圆心,* 长为半径画弧交前弧于点F;(4)作⊕,则∠DEF即为所求作的角.A.△表示点EB.○表示PQC.*表示EDD.⊕表示射线EF10. 如图,在△ABC和△ADE中,∠CAB=∠DAE=36°,AB=AC,AD=AE.连结CD,连结BE并延长交AC,AD于点F,G.若BE恰好平分∠ABC,则下列结论错误的是( )A.∠ADC=∠AEBB.CD∥ABC.DE=GED.BF2=CF·AC二.填空题(本大题共6道小题)11. 如图,点B 、F 、C 、E 在一条直线上,已知FB=CE,AC ∥DF,请你添加一个适当的条件 使得△ABC ≌△DEF.12. 如图,四边形ABCD 中,∠BAC =∠DAC,请补充一个条件 ,使得△ABC ≌△ADC.13. 如图,AC =AD,∠1=∠2,要使△ABC ≌△AED,应添加的条件是 .(只需写出一个条件即可)14. 如图,AC=AD,∠1=∠2,要使ABC AED ≌△△,应添加的条件是______(只需写出一个条件即可)15. 如图,点P 为定角∠AOB 的平分线上的一个定点,点M,N 分别在射线OA,OB 上(都不与点O 重合),且∠MPN 与∠AOB 互补.若∠MPN 绕着点P 转动,那么以下四个结论:①P M =PN 恒成立;②MN 的长不变;③OM+ON 的值不变;④四边形PMON 的面积不变.其中正确的为_____.(填番号)16. 如图,在△ABC 中,AB =AC,点D 在BC 上(不与点B,C 重合).只需添加一个条件即可证明△ABD ≌△ACD,这个条件可以是 (写出一个即可).三.解答题(本大题共6道小题)17. 如图,点D在AB上,点E在AC上,AB=AC,∠B=∠C,求证:BD=CE.18. 如图,∠B=∠E,BF=EC,AC∥DF.求证:△ABC≌△DEF.19. 如图,△ACF≌△DBE,其中点A、B、C、D在同一条直线上.(1)若BE⊥AD,∠F=63°,求∠A的大小.(2)若AD=11cm,BC=5cm,求AB的长.20. 如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠B=65°.(1)求∠DCA的度数;(2)若∠A=20°,求∠DFA的度数.21. 在Rt△ABC中,∠ACB=90°,CB=CA=22,点D是射线AB上一点,连接CD,在CD右侧作∠DCE =90°,且CE=CD,连接AE,已知AE=1.(1)如图,当点D在线段AB上时,①求∠CAE的度数;②求CD的长;(2)当点D在线段AB的延长线上时,请直接写出∠CAE的度数和CD的长.22. 如图,D是△ABC的边AB上一点,CF∥AB,DF交AC于E点,DE=EF.(1)求证:△ADE≌△CFE;(2)若AB=5,CF=4,求BD的长.。
全等三角形的判定中考题
全等三角形的判定中考题一、已知两个三角形两边及夹角分别相等,根据哪种全等判定定理可以确定这两个三角形全等?A. SSS(三边相等)B. SAS(两边及夹角相等)C. ASA(两角及夹边相等)D. AAS(两角及非夹边相等)(答案:B)二、在△ABC与△DEF中,若∠A=∠D,∠C=∠F,且AC=DF,则依据哪个判定定理可证明两三角形全等?A. SSSB. SASC. ASAD. AAS(答案:C)三、若△PQR与△STU中,PQ=ST,QR=TU,且∠Q=∠T,但∠Q并非PQ与QR的夹角,则根据哪个判定不能直接证明两三角形全等?A. SSSB. SASC. ASAD. 以上均不可(答案:D)四、两个三角形中,如果两个角和一条边分别相等,且这条边是这两个角的夹边,应使用哪个全等判定定理?A. SSSB. SASC. ASAD. AAS(答案:C)五、在△ABC与△MNP中,若AB=MN,BC=NP,且∠B=∠N,但∠B不是AB和BC的夹角,则不能直接通过哪个判定证明两三角形全等?A. SSSB. SASC. AASD. 以上都不是直接证明的依据(答案:B)六、若两个三角形的两个角及非夹边分别相等,应依据哪个全等判定定理来确定它们全等?A. SSSB. SASC. ASAD. AAS(答案:D)七、在△XYZ与△LMN中,若XY=LM,YZ=MN,且∠YZX=∠LMN,但∠YZX并非XY与YZ的夹角,则不能直接应用哪个全等判定?A. SSSB. SAS(答案)C. 这种情况无法判定三角形全等D. AAS八、已知△ABC与△DEF中,∠A=∠D,∠B=∠E,若要证明两三角形全等,还需满足以下条件中的哪一个?A. AB=DEB. AC=EF(非夹角对应的边)C. BC=DF(夹角对应的边,即SAS情况)(答案)D. ∠C=∠F(已有两角相等,再加一角无法判定全等)。
中考数学复习《全等三角形》专题训练-附带参考答案
中考数学复习《全等三角形》专题训练-附带参考答案一、选择题1.下列选项中表示两个全等的图形的是()A.形状相同的两个图形B.周长相等的两个图形C.面积相等的两个图形D.能够完全重合的两个图形2.如图,点D、E分别在线段AB、AC上,BE、CD相交于点O,AE=AD,则不一定能使△ABE≌△ACD的条件是()A.AB=AC B.∠B=∠CC.∠AEB=∠ADC D.CD=BE3.如图是用直尺和圆规作已知角的平分线的示意图,则说明∠CAD=∠DAB的依据是()A.SAS B.ASA C.AAS D.SSS4.如图△ABC≌△DEC,点A和点D是对应顶点,点B和点E是对应顶点,过点A作AF⊥CD,垂足为点F,若∠BCE=65°,则∠CAF的度数为()A.25°B.30°C.35°D.65°5.如图EF=CF,BF=DF则下列结论不一定正确的是()A.△BEF≌△DCF B.△ABC≌△ADEC.DC=AC D.AB=AD6.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=3,则PQ的最小值为()A.2 B.3 C.4 D.57.如图,CD⊥AB,BE⊥AC,垂足分别为点D,点E,BE、CD相交于点O.∠1=∠2,则图中全等三角形共有()A.2对B.3对C.4对D.5对8.如图,AD 是△ABC中∠BAC的平分线,DE⊥AB于点E,△ABC的面积为12,DE =2,AB = 7,则 AC 的长是()A.3 B.4 C.5 D.6二、填空题9.如图,∠ACD=∠BCE,BC=EC,要使△ABC≌△DEC,则可以添加的一个条件是.10.如图所示,在△ABC中,∠C=90°,AB=8,AD是△ABC的一条角平分线.若CD=2,则△ABD的面积为.11.如图,在Rt△ABC中,∠BAC=90°,分别过点B,C作过点A的直线的垂线BD,若BD=4cm,CE=3cm则DE= cm.12.如图,把两根钢条AB,CD的中点连在一起做成卡钳,已知AC的长度是6cm,则工件内槽的宽BD是cm.13.如图,△ABC为等腰直角三角形AC=BC,若A(−3,0),C(0,2),则点B的坐标为.三、解答题14.如图所示,线段AC的垂直平分线交线段AB于点D,∠A=50°(1)求证:△ADE≌△CDE.(2)求∠BDC度数.15.如图,已知,EC=AC,∠BCE=∠DCA,∠A=∠E.(1)求证:BC=DC;(2)若∠A =25°,∠D =15°,求∠ACB 的度数.16.如图,AB =AC ,AD =AE ,∠BAC =∠DAE.(1)求证:△ABD ≌△ACE ;(2)若∠1=25°,∠2=30°,求∠3的度数.17.如图,在ABC 中90C ∠=︒,BD 是ABC ∠的平分线,DE AB ⊥于点E ,点F 在BC 上,连接DF ,且AD DF =. (1)求证:CF AE =;(2)若3AE =,BF=4,求AB 的长.18.如图,∠BAD =∠CAE =90°,AB =AD ,AE =AC ,AF ⊥CB ,垂足为F .(1)求证:△ABC ≌△ADE ;(2)求∠FAE 的度数;(3)求证:CD =2BF+DE .1.D2.D3.D4.A5.C6.B7.C8.C9.AC =DC (答案不唯一)10.811.712.613.(2,-1)14.(1)证明:∵DE 是线段AC 的垂直平分线 ∴DA=DC ,AE=CE在△ADE 与△CDE 中:DA=DCAE=CEDE=DE∴△ADE ≌△CDE (SSS );(2)解:∵△ADE ≌△CDE .∴∠DCA=∠A=50°∴∠BDC=∠DCA+∠A=100°15.(1)证明:∵∠BCE =∠DCA∴∠BCE +∠ACE =∠DCA +∠ECA即∠BCA =∠DCE .在△BCA 和△DCE 中{∠BCA =∠DCE AC =EC ∠A =∠E∴△BCA ≌△DCE (ASA )(2)解:∵△BCA ≌△DCE∴∠B =∠D =15°.∵∠A =25°∴∠ACB =180°−∠A −∠B =140°.16.(1)证明:∵∠BAC =∠DAE∴∠BAC ﹣∠DAC =∠DAE ﹣∠DAC∴∠1=∠EAC在△ABD 和△ACE 中{AB =AC ∠1=∠EAC AD =AE∴△ABD ≌△ACE (SAS )(2)解:∵△ABD ≌△ACE∴∠ABD =∠2=30°∵∠1=25°∴∠3=∠1+∠ABD =25°+30°=55°.17.(1)证明:(1)∵90C ∠=︒∴DC BC ⊥又∵BD 是ABC ∠的平分线DE AB ⊥∴DE DC = 90AED ∠=︒在Rt AED △和Rt FCD △中∵AD DFDE DC =⎧⎨=⎩∴()Rt Rt AED FCD HL ≌△△∴CF AE =.(2)解:由(1)可得3CF AE ==∴437BC BF CF =+=+=∵DE AB ⊥∴90DEB ∠=︒∴DEB C ∠=∠∵BD 是ABC ∠的平分线∴ABD CBD ∠=∠在BED 和BCD △中∵DEB C EBD CBD BD BD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()BED BCD AAS ≌△△ ∴7BE BC ==∴7310AB BE AE =+=+=∴AB 的长为10.18.(1)证明:∵90BAD CAE ∠=∠=︒∴90BAC CAD ∠+∠=︒ 90CAD DAE ∠+∠=︒ ∴BAC DAE ∠=∠在△BAC 和△DAE 中∵AB AD BAC DAE AC AE =⎧⎪∠=∠⎨⎪=⎩∴()BAC DAE SAS ≌△△;(2)解:∵90CAE ∠=︒,AC=AE∴45E ∠=︒由(1)知BAC DAE ≌△△∴45BCA E ∠=∠=︒∵AF BC ⊥∴90CFA ∠=︒∴45CAF ∠=︒∴4590135FAE FAC CAE ∠=∠+∠=︒+︒=︒;(3)证明:延长BF 到G ,使得FG FB = ∵AF BG ⊥∴90AFG AFB ∠=∠=︒在△AFB 和△AFG 中∴BF GF AFB AFG AF AF =⎧⎪∠=∠⎨⎪=⎩∴()AFB AFG SAS ≌△△∴AB AG = ABF G ∠=∠∵BAC DAE ≌△△∴AB AD = CBA EDA ∠=∠ CB=ED ∴AG AD = ABF CDA ∠=∠∴CGA CDA ∠=∠∵45GCA DCA ∠=∠=︒∴在△CGA 和△CDA 中GCA DCA CGA CDA AG AD ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()CGA CDA AAS ≌△△∴CG CD =∵22CG CB BF FG CB BF DE BF =++=+=+ ∴2CD BF DE =+.。
初中中考复习之三角形全等(精编含答案)
中考复习之三角形全等一、选择题:1.图是一个风筝设计图,其主体部分(四边形ABCD ABCD)关于)关于BD 所在的直线对称,所在的直线对称,AC AC 与BD 相交于点O ,且AB≠AD,则下列判断不正确...的是【的是【 】】 A .△ABD≌△CBD .△ABD≌△CBD B B B.△ABC≌△ADC .△ABC≌△ADC .△ABC≌△ADC C C C.△AOB≌△COB .△AOB≌△COB .△AOB≌△COB D D D.△AOD≌△COD .△AOD≌△COD .△AOD≌△COD2.如图,已知AD 是△ABC 的边BC 上的高,下列能使△ABD≌△ACD 的条件是【的条件是【 】】A. AB=ACB. ∠BAC=90°C. BD=AC A. AB=AC B. ∠BAC=90° C. BD=ACD. ∠B=45°D. ∠B=45°D. ∠B=45°3.如图,已知点A 、D 、C 、F 在同一条直线上,在同一条直线上,AB=DE AB=DE AB=DE,,BC=EF BC=EF,要使△ABC≌△DEF,还需要添加一个条件,要使△ABC≌△DEF,还需要添加一个条件是【是【 】】 A A.∠BCA=∠F .∠BCA=∠F .∠BCA=∠F B B B.∠B=∠E .∠B=∠E .∠B=∠EC .BC∥EF .BC∥EFD .∠A=∠EDF .∠A=∠EDF4.如图,AB∥CD,如图,AB∥CD,E E ,F 分别为AC AC,,BD 的中点,若AB=5AB=5,,CD=3CD=3,则,则EF 的长是【的长是【 】】A .4B .3C .2D .15.已知一等腰三角形的腰长为5,底边长为4,底角为β.满足下列条件的三角形不一定与已知三角形全等的是【等的是【 】】 (A) (A)两条边长分别为两条边长分别为4,5,它们的夹角为β (B) (B)两个角是两个角是β,它们的夹边为4(C) (C)三条边长分别是三条边长分别是4,5,5 (D)5 (D)两条边长是两条边长是5,一个角是β6.如图,小强利用全等三角形的知识测量池塘两端M 、N 的距离,如果△PQO≌△NMO,则只需测出其长度的线段是【的线段是【 】】 A A..PO B .PQ C PQ C..MO D .MQ7.如图,在菱形ABCD 中,对角线AC AC,,BD 相交于点O ,且AC≠BD,则图中全等三角形有【AC≠BD,则图中全等三角形有【 】】A.4对B. 6对.C.8对D.10对二、填空题:1.在Rt△ABC 中,∠ACB=90°,中,∠ACB=90°,BC=2cm BC=2cm BC=2cm,CD⊥AB,在,CD⊥AB,在AC 上取一点E ,使EC=BC EC=BC,过点,过点E 作EF⊥AC 交CD 的延长线于点F ,若EF=5cm EF=5cm,则,则AE= cm AE= cm..2.如图所示,如图所示,AB=DB AB=DB AB=DB,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件,∠ABD=∠CBE,请你添加一个适当的条件 ,, 使使ΔABC≌ΔDBE DBE.. ( (只需添只需添加一个即可加一个即可) )3.如图所示,已知点A 、D 、B 、F 在一条直线上,在一条直线上,AC=EF AC=EF AC=EF,,AD=FB AD=FB,要使△ABC≌△FDE,还需添加一个条件,,要使△ABC≌△FDE,还需添加一个条件,这个条件可以是这个条件可以是 ..(只需填一个即可)(只需填一个即可)4.如图,点D ,E 分别在线段AB AB,,AC 上,上,BE BE BE,,CD 相交于点O ,AE=AD AE=AD,要使△ABE≌△ACD,需添加一个条,要使△ABE≌△ACD,需添加一个条件是件是 (只需一个即可,图中不能再添加其他点或线)(只需一个即可,图中不能再添加其他点或线).5.如图.点D 、E 在△ABC 的边BC 上,AB=AC AB=AC,,AD=AE AD=AE..请写出图中的全等三角形请写出图中的全等三角形 ( ( (写出一对即可写出一对即可写出一对即可)).6.如图,己知AC=BD AC=BD,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是,要使△ABC≌△DCB,则只需添加一个适当的条件是 ( ( (填一个即可填一个即可填一个即可) )三、解答题:1.已知:如图,AB AE =,1=2ÐÐ,=B E ÐÐ,求证:BC ED =2.如图,已知AB=DC AB=DC,,DB=AC(1)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.)求证:∠ABD=∠DCA,注:证明过程要求给出每一步结论成立的依据.(2)在()在(11)的证明过程中,需要作辅助线,它的意图是什么?)的证明过程中,需要作辅助线,它的意图是什么?3.如图,点D 在AB 上,点E 在AC 上,上,AB=AC AB=AC AB=AC,∠B=∠C.求证:,∠B=∠C.求证:,∠B=∠C.求证:BE=CD BE=CD BE=CD..4.如图,AB∥CD,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB AB,,AC 于E ,F 两点,再分别以E ,F为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,作射线AP AP,交,交CD 于点M 。
九年级数学中考专题复习全等三角形练习(有答案)
全等三角形一、单选题1.如图,若△OAD △△OBC ,且△O =65°,△C =20°,则△OAD = ( )A .65°B .75°C .85°D .95°2.在下列四组条件中,能判定△ABC△△A′B′C′的是( )A .AB=A′B′,BC=B′C′,△A=△A′B .△A=△A′,△C=△C′,AC=B′C′C .△A=△B′,△B=△C′,AB=B′C′D .AB=A′B′,BC=B′C′,△ABC 的周长等于△A′B′C′的周长3.到三角形三个顶点距离相等的点是( )A .三角形三条边的垂直平分线的交点B .三角形三条角平分线的交点C .三角形三条高的交点D .三角形三条边的中线的交点4.如图所示的是已知BOA ∠,求作B O A BOA '''∠=∠的作图痕迹,则下列说法正确的是( )A .因为边的长度对角的大小无影响,所以孤CD 的半径长度可以任意选取B .因为边的长度对角的大小无影响,所以弧CD ''的半径长度可以任意选取C .因为边的长度对角的大小无影响,所以弧E F ''的半径长度可以任意选取D .以上三种说法都正确5.如图,在方格纸中,以AB 为一边作△ABP ,使之与△ABC 全等,从P 1,P 2,P 3,P 4四个点中找出符合条件的点P ,则点P 有( )A .1个B .2个C .3个D .4个6.如图,在Rt ABC 中,90A ∠=,ABC ∠的平分线BD 交AC 于点D ,3AD =,10BC =,则BDC 的面积是( )A .10?B .15?C .20D .307.如图,已知AO=OB ,OC=OD ,AD 和BC 相交于点E ,则图中全等三角形有( )对.A.1对B.2对C.3对D.4对8.如图,某同学不小心把一块三角形的玻璃打碎成三片,现在他要到玻璃店去配一块完全一样形状的玻璃.那么最省事的办法是带()A.带△去B.带△去C.带△去D.带△△去9.如图,点A、D、C、E在同一条直线上,AB△EF,AB=EF,△B=△F,AE=12,AC=8,则CD的长为()A.5.5B.4C.4.5D.310.工人师傅常用角尺平分一个任意角做法如下:如图所示,在△AOB的两边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合,过角尺顶点C的射线OC即是△AOB的平分线画法中用到三角形全等的判定方法是()A.SSS B.SAS C.ASA D.HL11.如图:△ABC是等边三角形,AE=CD,AD,BE相交于点P,BQ△AD于Q,PQ=4,PE=1,则AD的长是()A.9B.8C.7D.612.如图,已知AB=AC,AF=AE,△EAF=△BAC,点C、D、E、F共线.则下列结论,其中正确的是()△△AFB△△AEC;△BF=CE;△△BFC=△EAF;△AB=BC.A.△△△B.△△△C.△△D.△△△△二、填空题13.如图,已知△1=△2,请你添加一个条件使△ABC△△BAD,你的添加条件是_______(填一个即可)。
2024年中考数学《全等三角形》专题练习附带答案
2024年中考数学《全等三角形》专题练习附带答案学校:___________班级:___________姓名:___________考号:___________知识重点1、全等三角形的概念:(1)能够完全重合的两个三角形叫做全等三角形。
(2)把两个全等的三角形重合到一起,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角。
2、全等三角形的性质:全等三角形的对应边相等;全等三角形的对应角相等。
3、三角形全等的判定:(1)边边边(SSS):三边分别相等的两个三角形全等。
(2)边角边(SAS):两边和它们的夹角分别相等的两个三角形全等。
(3)角边角(ASA):两角和它们的夹边分别相等的两个三角形全等。
(4)角角边(AAS):两角和其中一个角的对边分别相等的两个三角形全等。
(5)斜边、直角边(HL):斜边和一条直角边分别相等的两个直角三角形全等。
一、选择题1.下列各选项中的两个图形属于全等形的是()A.B.C.D.2.如图,△ABC≌△EDC,AC=3cm,DC=5cm,则BE=()A.1cm B.2cm C.3cm D.4cm3.如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40°B.30°C.35°D.25°4.小亮设计了如下测量一池塘两端AB的距离的方案:先取一个可直接到达点A,B的点O,连接AO,BO,延长AO至点P,延长BO至点Q,使得OP=AO,OQ=BO再测出PQ的长度,即可知道A,B之间的距离.他设计方案的理由是()A.SAS B.AAS C.ASA D.SSS5.如图,点F,E在AC上AD=CB,∠D=∠B添加一个条件,不一定能证明△ADE≌△CBF的是()A.AD∥BC B.DE∥FB C.DE=BF D.AE=CF6.如图所示∠E=∠D,CD⊥AC于点C,BE⊥AB于点B,AE交BC于点F,且BE=CD,则下列结论不一定正确的是()A.AB=AC B.BF=EF C.AE=AD D.∠BAE=∠CAD 7.如图,OD平分∠AOB,DE⊥AO于点E,DE=5 F是射线OB上的任意一点,则DF的长度不可能是()A.4 B.5 C.5.5 D.68.如图,AD是△BAC的平分线,DE⊥AB于点E,S△ABC=32,DE=4,AB=9,则AC的长是()A.5 B.6 C.7 D.8二、填空题9.如图,有两个长度相同的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯的水平长度DF 相等,那么判定△ABC与△DEF全等的依据是.10.若△ABC≌△DEF,A与D,B与E分别是对应顶点∠A=50°,∠B=60°则∠F=. 11.如图,△ABC的面积为25cm2,BP平分∠ABC,过点A作AP⊥BP于点P,则△PBC的面积为;12.如图,在△ABC中,CD是AB边上的高,BE平分∠ABC,交CD于点E,已知BC=8,DE=2则△BCE 的面积等于.13.如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,若BD=7cm,CE=5cm,则DE= cm.三、解答题14.如图,点B,C,E,F在同一直线上,AB=DF,AC=DE,BE=CF.求证:AB∥DF.15.如图,在Rt△ABC中∠B=90°,CD∥AB,DE⊥AC于点E,且CE=AB.求证:△CED≅△ABC.16.如图,在四边形ABCD中,∠B=∠C=90°,E是BC的中点,AE平分∠DAB.求证:CD+AB=AD.17.已知:如图,CD⊥AB于点D,BE⊥AC于点E,BE,CD交于点O,且AO平分∠BAC,求证:(1)OD=OE;(2)OB=OC.18.如图,在△ABC中AC>AB,射线AD平分∠BAC,交BC于点E,点F在边AB的延长线上AF=AC,连接EF.(1)求证:△AEC≌△AEF.(2)若∠AEB=50°,求∠BEF的度数.19.如图,在Rt△ABC中,∠BAC=90°,∠ABC=60°,AD,CE分别平分∠BAC,∠ACB.(1)求∠AOE得度数;(2)求证:AC=AE+CD.参考答案1.A2.B3.C4.A5.D6.B7.A8.C9.HL10.70°11.12.5cm212.813.1214.解:∵ BE=CF∴BE−CE=CF−CE∴BC=FE∵ AB=DF,AC=DE∴△ABC≌△DFE(SSS)∴∠B=∠F∴AB∥DF.15.证明:∵DE⊥AC,∠DEC=90°又∵∠B=90°∴∠DEC=∠B=90°∵CD∥AB,∴∠A=∠DCE在△CED和△ABC中{∠DCE=∠A CE=AB∠DEC=∠B∴△CED≅△ABC(ASA).16.证明:如图,过点E作EF⊥AD于F∵∠B=90°,AE平分∠DAB∴BE=EF在Rt△EFA和Rt△EBA中{EF=EBAE=AE∴Rt△EFA和≌Rt△EBA(HL).∴AF=AB∵E是BC的中点∴BE=CE=EF在Rt△EFD和Rt△ECD中{EF=ECDE=DE∴Rt△EFD和≌Rt△ECD(HL).∴DF=CD∴CD+AB=DF+AF=AD∴CD+AB=AD.17.(1)证明:∵AO平分∠BAC,CD⊥AB,BE⊥AC ∴OD=OE(2)证明:∵CD⊥AB,BE⊥AC∴∠BDO=∠CEO=90°在△BDO和△CEO中{∠BDO=∠CEO DO=CO∠BOD=∠COE∴△BDO≌△CEO(ASA)∴OB=OC18.(1)证明:射线AD平分∠BAC∴∠CAE=∠FAE 在△AEC和△AEF中{AC=AF∠CAE=∠FAE AE=AE∴△AEC≌△AEF(SAS);(2)解:∵△AEC≌△AEF(SAS)∴∠AEC=∠AEF∵∠AEB=50°∴∠AEC=180°−∠AEB=180°−50°=130°∴∠AEF=∠AEC=130°∴∠BEF=∠AEF−∠AEB=80°∴∠BEF为80°.19.18.(1)解:∵∠BAC=90°,∠ABC=60°∴∠ACB=30°∵AD平分∠BAC,CE平分∠BAC∴∠CAD=12∠BAC=45°,∠ACE=12∠ACB=15°∵∠AOE是△AOC的外角∴∠AOE=∠CAD+∠ACE=60°;(2)证明:在AC上截取CF=CD,连接OF∵CE平分∠ACB∴∠DCO=∠FCO在△DCO和△FCO中{CD=CF∠DCO=∠FCOOC=OC∴△DCO≌△FCO(SAS)∴∠COD=∠COF∵∠AOE=60°∴∠COD=∠COF=60°∴∠AOF=180°−∠AOE−∠COF==60°∴∠AOE=∠AOF∵AD平分∠BAC∴∠EAO=∠FAO在△EAO和△FAO中{∠EAO=∠FAO AO=AO∠AOE=∠AOF∴△EAO≌△FAO(ASA)∴AE=AF∵AC=AF+CF∴AC=AE+CD.。
全等三角形复习专题
全等三角形复习专题一、全等三角形基本概念与性质全等三角形是指能够完全重合的两个三角形,即形状相同和大小相等的三角形。
全等三角形的性质是全等三角形的边、角及其对应线段之间具有一些特殊的数量关系和位置关系。
如全等三角形的对应边相等,对应角相等,对应线段相等,以及全等三角形的中点连线等于其一边。
二、全等三角形的判定全等三角形的判定是全等三角形研究的核心内容,主要有以下五个判定方法:1、边角边定理(SAS):若两个三角形的两边及其夹角对应相等,则这两个三角形全等。
2、角边角定理(ASA):若两个三角形的两个角及其夹边对应相等,则这两个三角形全等。
3、边边边定理(SSS):若两个三角形的三边对应相等,则这两个三角形全等。
4、角角边定理(AAS):若两个三角形的两个角及其一边对应相等,则这两个三角形全等。
5、斜边直角边定理(HL):若两个直角三角形的斜边和一条直角边对应相等,则这两个直角三角形全等。
三、全等三角形的应用全等三角形在数学、几何、物理等领域中都有广泛的应用。
如证明线段相等、角相等、平行四边形、矩形、菱形、正方形等几何图形的性质和判定,以及解决一些实际问题等。
四、全等三角形的复习策略1、掌握全等三角形的基本概念和性质,理解判定方法的意义和适用范围。
2、熟练掌握全等三角形的判定方法,能够根据题目条件选择合适的判定方法解决问题。
3、熟悉全等三角形的应用,能够将全等三角形的知识应用到实际问题和数学问题中。
4、多做练习题,熟悉各种题型和解题方法,提高解题能力和思维水平。
5、注意对易错点和难点进行重点复习和强化训练,避免出现常见的错误和失误。
全等三角形动点专题在数学的世界里,全等三角形和动点问题是两个重要的概念。
全等三角形是指两个或两个以上的三角形,它们的边长和角度都相等,可以完全重合。
动点问题则涉及到在给定的图形或轨迹上移动的点,以及这些点的变化和规律。
将这两个概念结合起来,我们可以研究一类非常有趣的数学问题,即全等三角形动点专题。
最新九年级中考数学专题复习:全等三角形
在△EDM和△FDN中,源自∠EDM ∠FDNDM
DN
,
∠DME ∠DNF
∴△EDM≌△FDN(ASA),
∴DE=DF.
两边及其夹角对 三边对应相等的两
应相等的两个三 个三角形全等.
角形全等.
两角及其夹边对应 相等的两个三角形 全等.
两角及其中一个角 的对边对应相等的 两个三角形全等.
斜边和一条直角边对应相 等的两个直角三角形全等.
模型一、平移模型
知识点3:全等模型
模型展 示
模型特 沿同一直线(BC)平移可得两三角形重合(BE=CF)
证明:∵AD∥BC,∠A=90°,∠1=∠2, ∴∠A=∠B=90°,DE=CE. 在Rt△ADE和Rt△BEC中,
AD DE
BE EC
,
∴Rt△ADE≌Rt△BEC(HL);
模型四、一线三等角模型
知识点3:全等模型
一般通过一线三等角找等角或进行角度转换,证三角形全等时必须还有一组边相等这个条件. 常见基本图形如 下: 1.两个三角形在直线同侧,点P在线段AB上,已知:∠1=∠2=∠3,AP=BD.
模型应用
2. 如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折 叠,使点B落在点E处,AE交CD于点F,连接DE.若矩形ABCD的周 长为18,则△EFC的周长为___9_____.
模型三、一线三垂直模型
知识点3:全等模型
常用三个垂直作条件进行角度等量代换,即同(等)角的余角相等,相等的角就是 对应角,证三角形全等时必须还有一组边相等. 基本图形1 如图①,已知:AB⊥BC,DE⊥CE,AC⊥CD,AB=CE.
锐角一线三等角
钝角一线三等角
结论:△CAP≌△PBD.
《全等三角形》中考专练附答案
∴∠A=∠FCE, ∠ADE=∠F,
在△ADE和△FCE中 ,
∴△ADE≌△CFE〔AAS〕,
∴AD=CF=3,
∵AB=4,
∴DB=AB﹣AD=4﹣3=1.
应选:B.
【点评】此题考查了全等三角形的性质和判定,平行线的性质的应用,能判定△ADE≌△FCE是解此题的关键,解题时注意运用全等三角形的对应边相等,对应角相等.
【点评】此题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.逸夫中学2021-2021学年八〔下)数学校本作业 ---完全平方公式
在△ABE和△DBE中, ,
∴△ABE≌△DBE〔SAS〕;
〔2〕解:∵∠A=100°,∠C=50°,
∴∠ABC=30°,
∵BE平分∠ABC,
∴∠ABE=∠DBE= ∠ABC=15°,
在△ABE中,∠AEB=180°﹣∠A﹣∠ABE=180°﹣100°﹣15°=65°.
【点评】此题考查了全等三角形的判定与性质、角平分线的定义、三角形内角和定理;熟练掌握三角形内角和定理和角平分线定义,证明三角形全等是解题的关键.
3.〔2021•山东威海•3分〕如图,在四边形ABCD中,AB∥DC,过点C作CE⊥BC,交AD于点E,连接BE, ∠BEC=∠DEC,假设AB=6,那么CD=3.
【分析】延长BC、AD相交于点F,可证△EBC≌△EFC,可得BC=CF,那么CD为△ABF的中位线,故CD= 可求出.
【解答】解:如图,延长BC、AD相交于点F,
全等三角形
1.〔2021·贵州安顺·3分〕如图,点B、F、C、E在一条直线上,AB∥ED,AC∥FD,那么添加以下一个条件后,仍无法判定△ABC≌△DEF的是〔 〕
专题 全等三角形的应用---动点运动问题(30题)(解析版)
八年级上册数学《第十二章 全等三角形》专题 全等三角形的应用---动点运动问题(30题)1.(2023春•虹口区校级期末)如图,AB =8,BC =10,CD 为射线,∠B =∠C ,点P 从点B 出发沿BC 向点C 运动,速度为1个单位/秒,点Q 从点C 出发沿射线CD 运动,速度为x 个单位/秒;若在某时刻,△ABP 能与△CPQ 全等,则x = .【分析】设点P 、Q 的速度为ts ,分两种情形构建方程即可解决问题.【解答】解:设点P 、Q 的速度为ts ,分两种情形讨论:①当AB =PC ,BP =CQ 时,△ABP ≌△PCQ ,即8=10﹣t ,解得:t =2,∴2x =2×1,∴x =1;②当BP =PC ,AB =CQ 时,△ABP ≌△QCP ,即t =12×10=5,∴5x =8,x =85,综上所述,x =1或85,故答案为:1或85.【点评】本题考查全等三角形的判定、路程、速度、时间之间的关系等知识,解题的关键是学会用分类讨论的思想思考问题,属于中考常考题型.2.(2022秋•攸县期末)如图,在四边形ABCD 中,∠DAB =∠ABC ,AB =5cm ,AD =BC =3cm ,点E 在线段AB上以1cm/s的速度由点A向点B运动,同时,点F在线段BC上由点B向点C运动.设运动时间为t(s),当△ADE与以B,E,F为顶点的三角形全等时,则点F的运动速度为 cm/s.【分析】设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,由于∠DAB=∠ABC,则当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt;当AD=BF,AE=BE 时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,然后分别解方程求出x即可.【解答】解:设点F的运动速度为xcm/s,则AE=tcm,BE=(5﹣t)cm,BF=xtcm,∵∠DAB=∠ABC,∴当AD=BE,AE=BF时,根据“SAS”判断△ADE≌△BEF,即5﹣t=3,t=xt,解得t=2,x=1;当AD=BF,AE=BE时,根据“SAS”判断△ADE≌△BFE,即xt=3,t=5﹣t,解得t=2.5,x=1.2,综上所述,点F的运动速度为1或1.2cm/s.故答案为:1或1.2.【点评】本题考查了全等三角形的判定:熟练掌握全等三角形的5种判定方法是解决问题的关键.选用哪一种方法,取决于题目中的已知条件.3.(2022春•普宁市期末)如图,∠A=∠B=90°,AB=60,E,F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,二者速度之比为3:7,运动到某时刻同时停止,在射线AC上取一点G,使△AEG与△BEF全等,则AG的长为 .【分析】设BE=3t,则BF=7t,使△AEG与△BEF全等,由∠A=∠B=90°可知,分两种情况:情况一:当BE=AG,BF=AE时,列方程解得t,可得AG;情况二:当BE=AE,BF=AG时,列方程解得t,可得AG.【解答】解:设BE=3t,则BF=7t,因为∠A=∠B=90°,使△AEG与△BEF全等,可分两种情况:情况一:当BE=AG,BF=AE时,∵BF=AE,AB=60,∴7t=60﹣3t,解得:t=6,∴AG=BE=3t=3×6=18;情况二:当BE=AE,BF=AG时,∵BE=AE,AB=60,∴3t=60﹣3t,解得:t=10,∴AG=BF=7t=7×10=70,综上所述,AG=18或AG=70.故答案为:18或70.【点评】本题主要考查了全等三角形的性质,利用分类讨论思想是解答此题的关键.4.如图,△ABC中,AB=AC=24cm,BC=16cm,AD=BD.如果点P在线段BC上以2cm/s的速度由B 点向C点运动,同时,点Q在线段CA上以vcm/s的速度由C点向A点运动,那么当△BPD与△CQP 全等时,v=( )A.3B.4C.2或4D.2或3【分析】表示出BD、BP、PC、CQ,再根据全等三角形对应边相等,分①BD、PC是对应边,②BD 与CQ是对应边两种情况讨论即可.【解答】解:∵AB=AC=20cm,BC=16cm,点D为AB的中点,∴BD=12×24=12cm,设点P、Q的运动时间为t,则BP=2t,PC=(16﹣2t)c①当BD=PC时,16﹣2t=12,解得:t=2,则BP=CQ=2t=4,故点Q的运动速度为:4÷2=2(厘米/秒);②当BP=PC时,∵BC=16cm,∴BP=PC=8cm,∴t=8÷2=4(秒),故点Q的运动速度为12÷4=3(厘米/秒);故选:D.【点评】本题考查了全等三角形的对应边相等的性质,等边对等角的性质,根据对应角分情况讨论是本题的难点.5.如图,已知长方形ABCD中,AD=8cm,AB=6cm,点E为AD的中点.若点P在线段AB上以2cm/s 的速度由点A向点B运动.同时,点Q在线段BC上由点C向点B运动,若△AEP与△BPQ全等,则点Q的运动速度是( )A.2或83B.6或83C.2或6D.1或23【分析】设Q运动的速度为xcm/s,则根据△AEP与△BQP得出AP=BP、AE=BQ或AP=BQ,AE=BP,从而可列出方程组,解出即可得出答案.【解答】解:∵长方形ABCD,∴∠A=∠B=90°,∵点E为AD的中点,AD=8cm,∴AE=4cm,设点Q的运动速度为xcm/s,①经过y秒后,△AEP≌△BQP,则AP=BP,AE=BQ,2y=6−2y4=8−xy,解得,x=83 y=32,即点Q的运动速度83cm/s时能使两三角形全等.②经过y秒后,△AEP≌△BPQ,则AP=BQ,AE=BP,2y=8−xy4=6−2y,解得:x=6 y=1,即点Q的运动速度6cm/s时能使两三角形全等.综上所述,点Q的运动速度83或6cm/s时能使两三角形全等.故选:B.【点评】本题考查全等三角形的判定及性质,涉及了动点的问题使本题的难度加大了,解答此类题目时,要注意将动点的运用时间t和速度的乘积当作线段的长度来看待,这样就能利用几何知识解答代数问题了.6.(2022秋•高邑县期中)如图,在Rt△ABC中,AC=6,BC=8,AB=10.点P从点A出发,以每秒2个单位长度的速度沿折线A﹣C﹣B向终点B运动,同时点Q从点B出发,以每秒3个单位长度的速度沿折线B﹣C﹣A向终点A运动,点P,Q都运动到各自的终点时停止.设运动时间为t(秒),直线l经过点C,且l∥AB,过点P,Q分别作直线l的垂线段,垂足为E,F.当△CPE与△CQF全等时,t的值不可能是( )A.2B.2.8C.3D.6【分析】分三种情况讨论得出关于t的方程,解方程求得t的值.【解答】解:当P在AC上,Q在BC上时,如图,过点P,Q,C分别作PE⊥直线l于点E,QF⊥直线l于点F,CD⊥AB于点D,∵∠ACB=90,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠EPC+∠PCE=90°,∠PEC=∠CFQ=90°,∴∠EPC=∠QCF,∵△PCE≌△CQF,∴PC=CQ,∴6﹣2t=8﹣3t,解得t=2;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,6﹣2t=3t﹣8,解得t=2.8;当P在BC上,Q在AC上时,即A、Q重合时,则CQ=AC=6,由题意得,2t﹣6=6,解得t=6.综上,当△CPE与△CQF全等时,t的值为2或2.8或6.∴t的值不可能是3.故选:C.【点评】本题考查了三角形全等的判定和性质、作图﹣基本作图、平行线之间的距离、勾股定理,根据题意得出关于t的方程是解题的关键.7.(2022秋•浠水县校级期中)如图,在△ABC中,AB=AC,∠BAC=90°,BC=6cm,直线CM⊥BC,动点D从点C开始沿射线CB方向以每秒2cm的速度运动,动点E也同时从点C开始在直线CM上以每秒1cm的速度运动,连接AD、AE,设运动时间为t秒.当△ABD≌△ACE时,t的值为( )A.2B.4C.6D.2或6【分析】当点E在射线CM上时,D在CB上,BD=CE,当点E在CM的反向延长线上时DB=CE,由全等三角形的性质求出其解即可.【解答】解:∵△ABD≌△ACE,∴AD=AE,AB=AC,BD=CE.如图,当点E在射线CM上时,D在CB上,BD=CE,∵CE=t,BD=6﹣2t,∴6﹣2t=t,∴t=2.如图,当点E在CM的反向延长线上时DB=CE,∵CE=t,BD=2t﹣6,∴t=2t﹣6,∴t=6.综上所述,当t=2或6时,△ABD≌△ACE,故选:D.【点评】本题考查了全等三角形的性质的运用,等腰三角形的性质的运用,三角形的面积公式的运用,解答时分类讨论是重点也是难点.8.(2023春•和平区校级期中)如图,已知Rt△ABC中,∠ACB=90°,满足AC=7,BC=12,点P从A 点出发沿A→C→B路径向终点B运动:点Q从B出发沿B→C→A路径向终点A运动;点P,Q的速度分别以每秒1个单位长度和每秒3个单位长度的速度同时开始运动,两个点都要到达相应的终点时才能停止运动,分别过P,Q作PE⊥l于E,QF⊥l于F.设运动时间为t秒,当以P,E,C为顶点的三角形与以Q,F,C为顶点的三角形全等时,t的值为 (不考虑两三角形重合的情况).【分析】三角形PEC和三角形QFC要全等,P的对应顶点是C,有两种情况:一种是点P在AC上,点P在BC上时;另一种是点Q到达终点,而P在BC上时,先把各线段的长度表示出来,再让对应边相等,即可构造方程解出t.【解答】解:①当点P在线段AC上,点P在线段BC上时;如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=7﹣t,BQ=3t,CQ=12﹣3t;∴7﹣t=12﹣3t,解得t=2.5.②当P在线段BC上,点Q到达终点时,如图:当△PCE≌CQF时,∠QCF=∠EPC,∴PC=CQ.由题意知:AP=t,PC=t﹣7,CQ=7,∴t﹣7=7,解得t=14.综上所述,t的值为2.5或14.【点评】本题考查全等三角形的性质,找到全等三角形的对应边是解题的关键.9.如图,在△ABC中,BC=8cm,AG∥BC,AG=8cm,点F从点B出发,沿线段BC以4cm/s的速度连续做往返运动,点E从点A出发沿线段AG以2cm/s的速度运动至点G,E、F两点同时出发,当点E到达点G时,E、F两点同时停止运动,EF与直线AC交于点D,设点E的运动时间为t(秒)(1)分别写出当0<t<2和2<t<4时段BF的长度(用含t的代数式表示)(2)当BF=AE时,求t的值;(3)当△ADE≌△CDF时,直接写出所有满足条件的t值.【分析】(1)根据点F从点B出发、点E从点A出发的速度、结合图形解答;(2)根据题意列出方程,解方程即可;(3)分点E从点A运动至点G、从点G返回两种情况,根据全等三角形的性质列式计算即可.【解答】解:(1)当0<t≤2时,BF=4t,当2<t≤4时,BF=16﹣4t;(2)由题意得,16﹣4t=2t,解得t=8 3;(3)当0<t≤2时,△ADE≌△CDF,则AE=CF,即8﹣4t=2t,解得t=4 3,当2<t≤4时,△ADE≌△CDF,则AE=CF,即4t﹣8=2t,解得t=4,则t=43或4时,△ADE≌△CDF.【点评】本题考查的是全等三角形的性质的应用,根据题意求出函数关系式、掌握全等三角形的对应边相等是解题的关键.10.在Rt△ABC中,∠C=90°,AC=10cm,BC=5cm,P,Q两点分别在AC上和过点A且垂直于AC的射线AM上运动,且PQ=AB,问P点运动到AC上什么位置时△ABC才能和△QPA全等.【分析】本题要分情况讨论:①Rt△APQ≌Rt△CBA,此时AP=BC=5cm,可据此求出P点的位置.②Rt△QAP≌Rt△BCA,此时AP=AC,P、C重合.【解答】解:根据三角形全等的判定方法HL可知:①当P运动到AP=BC时,∵∠C=∠QAP=90°,在Rt△ABC与Rt△QPA中,AP=BCPQ=AB∴Rt△ABC≌Rt△QPA(HL),即AP=BC=5cm;②当P运动到与C点重合时,AP=AC,在Rt△ABC与Rt△QPA中,AP=ACPQ=AB,∴Rt△QAP≌Rt△BCA(HL),即AP=AC=10cm,∴当点P与点C重合时,△ABC才能和△APQ全等.综上所述,当P运动到AP=BC、点P与点C重合时,△ABC才能和△APQ全等.【点评】本题考查三角形全等的判定方法和全等三角形的性质,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.由于本题没有说明全等三角形的对应边和对应角,因此要分类讨论,以免漏解.11.(2023春•吉安县期末)如图,△ABC中,D为AB的中点,AD=5厘米,∠B=∠C,BC=8厘米.(1)若点P在线段BC上以3厘米/秒的速度从点B向终点C运动,同时点Q在线段CA上从点C向终点A运动,若点Q的速度与点P的速度相等,经1秒钟后,请说明△BPD≌△CQP;(2)若点P以3厘米/秒的速度从点B向点C运动,同时点Q以5厘米/秒的速度从点C向点A运动,它们都依次沿△ABC三边运动,则经过多长时间,点Q第一次在△ABC的哪条边上追上点P?【分析】(1)根据等腰三角形的性质得到∠B=∠C,再加上BP=CQ=3,PC=BD=5,则可判断△BPD 与△CQP全等;(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解方程得到点P运动的路程为3×10=30,得到此时点P在BC边上,于是得到结果.【解答】解:(1)∵BP=3×1=3,CQ=3×1=3,∴BP=CQ,∵D为AB的中点,∴BD=AD=5,∵CP=BC﹣BP=5,∴BD=CP,在△BPD与△CQP中,BD=CP∠B=∠C,BP=CQ∴△BPD≌△CQP(SAS);(2)设经过x秒后,点Q第一次追上点P,由题意得5x﹣3x=2×10,解得:x=10,∴点P运动的路程为3×10=30,∵30=28+2,∴此时点P在BC边上,∴经过10秒,点Q第一次在BC边上追上点P.【点评】本题考查了全等三角形的判定和性质,找准对应边是解题的关键.12.如图,∠BAC=90°,AB=22,AC=28.点P从B点出发沿B→A→C路径向终点C运动;点Q从C 点出发沿C→A→B路径向终点B运动.点P和Q分别以每秒2和3个单位的速度同时开始运动,只要有一点到达相应的终点时两点同时停止运动;在运动过程中,分别过P和Q作PF⊥l于F,QG⊥l于G.问:点P运动多少秒时,△PFA与△QAG全等?【分析】分类讨论:当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,利用三角形全等得PA=AQ,即22﹣2t=28﹣3t;当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,由PA=AQ,即2t﹣22=3t﹣28;当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,然后分别解方程求出t,再根据题意确定t的值.【解答】解:设P、Q点运动的时间为t,(1)当点P在BA上,点Q在AC上,如图1,则PB=2t,CQ=3t,AP=22﹣2t,AQ=28﹣3t,∵△PFA与△QAG全等,∴PA=AQ,即22﹣2t=28﹣3t,解得t=6,即P运动6秒时,△PFA与△QAG全等;(2)当点P、Q都在AB上,即P点和Q点重合时,△PFA与△QAG全等,此时2t+3t﹣28=22,解得t=10,(3)当点P在AC上,点Q在AB上,如图2,则PA=2t﹣22,AQ=3t﹣28,∵△PFA与△QAG全等,∴PA=AQ,即2t﹣22=3t﹣28,解得t=6(舍去);当点Q停在点B处,点P在AC上,由PA=QA得2t﹣22=22,解得t=22,舍去.综上所述:当t等于6秒或10秒时,△PFA与△QAG全等.【点评】本题考查了全等三角形的判定:全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.对于动点问题常利用代数的方法解决.13.(2022秋•苍溪县期末)如图,AE与BD相交于点C,AC=EC,BC=DC,AB=8cm,点P从点出发,沿A→B→A方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以lcm/s的速度运动,P、Q两点同时出发,当点P到达点A时,P、Q两点同时停止运动,设点P的运动时间为t(s).(1)求证:AB∥DE.(2)写出线段AP的长(用含t的式子表示).(3)连接PQ,当线段PQ经过点C时,求t的值.【分析】(1)证明△ABC≌△EDC(SAS),可得∠A=∠E,然后根据内错角相等两直线平行即可得出结论;(2)分两种情况讨论:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,可得AP=8﹣(2t﹣8)=(16﹣2t)cm,进而可以解决问题;(3)先证△ACP≌△ECQ(ASA),得AP=EQ,再分两种情况列方程求解即可.【解答】(1)证明:在△ABC和△EDC中,AC=EC∠ACB=∠ECD,BC=DC∴△ABC≌△EDC(SAS),∴∠A=∠E,∴AB∥DE;(2)解:当0≤t≤4时,AP=2tcm,当4<t≤8时,BP=(2t﹣8)cm,∴AP=8﹣(2t﹣8)=(16﹣2t)cm,∴线段AP的长为2tcm或(16﹣2t)cm;(3)解:根据题意得DQ =tcm ,则EQ =(8﹣t )cm ,由(1)得:∠A =∠E ,ED =AB =8cm ,在△ACP 和△ECQ 中,∠A =∠E AC =EC ∠ACP =∠ECQ,∴△ACP ≌△ECQ (ASA ),∴AP =EQ ,当0≤t ≤4时,2t =8﹣t ,解得:t =83;当4<t ≤8时,16﹣2t =8﹣t ,解得:t =8;综上所述,当线段PQ 经过点C 时,t 的值为83或8.【点评】本题考查了全等三角形的判定与性质,列代数式,一元一次方程的应用,解决本题的关键是得到△ACP ≌△ECQ .14.如图,在等腰△ABC 中,AB =AC =6cm ,BC =10cm ,点P 从点B 出发,以2cm /s 的速度沿BC 向点C 运动,设点P 的运动时间为ts .(1)PC = cm .(用t 的代数式表示)(2)当点P 从点B 开始运动,同时,点Q 从点C 出发,以vcm /s 的速度沿CA 向点A 运动,是否存在这样v 的值,使得△ABP 与△PQC 全等?若存在,请求出v 的值;若不存在,请说明理由.【分析】(1)根据P 点的运动速度可得BP 的长,再利用BC ﹣BP 即可得到CP 的长;(2)此题主要分两种情况①当BP =CQ ,AB =PC 时,△ABP ≌△PCQ ;当BA =CQ ,PB =PC 时,△ABP ≌△QCP ,然后分别计算出t 的值,进而得到v 的值.【解答】解:(1)依题意,得PC=(10﹣2t)(cm).故答案为:10﹣2t;(2)①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=6cm,∴PC=6(cm),∴BP=10﹣6=4(cm),2t=4,解得:t=2,CQ=BP=4(cm),v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=12BC=5(cm),2t=5,解得:t=2.5,CQ=BP=6(cm),v×2.5=6,解得:v=2.4.综上所述:当v=2.4或2时△ABP与△PQC全等.【点评】此题主要考查了全等三角形的判定,关键是掌握全等三角形全等的条件,找准对应边.15.如图,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,点D为AB的中点.(1)如果点P在线段BC上以1cm/s的速度由点B向C运动,同时,点Q在线段CA上由点C向A运动,①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CQP是否全等?请说明理由;②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?(2)若点Q以(1)②中的运动速度从点C出发,点P以1cm/s的运动速度从B同时出发,都逆时针沿△ABC三边运动,则经过 秒后,点P与点Q第一次在△ABC上相遇.(在横线上直接写出答案,不必书写解题过程)【分析】(1)①根据时间和速度分别求得两个三角形中BP、CQ和BD、PC边的长,根据SAS判定两个三角形全等.②根据全等三角形应满足的条件探求边之间的关系,再根据路程=速度×时间公式,先求得点P运动的时间,再求得点Q的运动速度;(2)根据题意结合图形分析发现:由于点Q的速度快,且在点P的前边,所以要想第一次相遇,则应该比点P多走等腰三角形的两个边长.【解答】解:(1)①△BPD≌△CQP,理由如下:∵t=1秒,∴BP=CQ=1×1=1cm,∵AB=6cm,点D为AB的中点,∴BD=3cm.又∵PC=BC﹣BP,BC=4cm,∴PC=4﹣1=3cm,∴PC=BD.又∵AB=AC,∴∠B=∠C,∴△BPD≌△CQP;②假设△BPD≌△CQP,∵v P≠v Q,∴BP≠CQ,又∵△BPD≌△CQP,∠B=∠C,则BP=CP=2,BD=CQ=3,∴点P,点Q运动的时间t=BP1=2秒,∴v Q=CQt=32=1.5cm/s;(2)设经过x秒后点P与点Q第一次相遇,由题意,得 1.5x=x+2×6,解得x=24,∴点P共运动了24s×1cm/s=24cm.∵24×1.5=36,∴点P、点Q在AC边上相遇,∴经过24秒点P与点Q第一次在边AC上相遇.【点评】此题主要是运用了路程=速度×时间的公式.熟练运用全等三角形的判定和性质,能够分析出追及相遇的问题中的路程关系.16.(2022秋•聊城月考)如图,已知四边形ABCD中,AB=10厘米,BC=8厘米,CD=12厘米,∠B=∠C,点E为AB的中点.如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CD上由C点向D点运动.(1)若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPE与△CQP是否全等?请说明理由.(2)当点Q的运动速度为多少时,能够使△BPE与△CQP全等.【分析】(1)经过1秒后,可得BP=CQ=3厘米,则PC=8﹣3=5厘米,可证明△BPE≌△CQP;(2)由△BPE与△CQP全等可知有△BEP≌△CQP或△BEP≌△CPQ,全等可得BP=CP或BP=CQ,或可求得BP的长,可求得P点运动的时间,由CQ=BE或CQ=BP可求得Q点运动的路程,可求得其速度.【解答】解:(1)△BPE与△CQP全等,理由如下:当运动1秒后,则BP=CQ=3厘米,∴PC=BC﹣BP=8﹣3=5厘米,∵E为AB中点,且AB=10厘米∴BE=5厘米,∴BE=PC,在△BPE和△CQP中BE=PC∠B=∠CBP=CQ∴△BPE≌△CQP(SAS);(2)∵△BPE与△CQP全等,∴△BEP≌△CQP或△BEP≌△CPQ,当△BEP≌△CQP时,则BP=CP,CQ=BE=5厘米,设P点运动的时间为t秒,则3t=8﹣3t,解得t=4 3,∴Q点的运动的速度=5÷43=154(厘米/秒),当△BEP≌△CPQ时,由(1)可知t=1(秒),∴BP=CQ=3厘米,∴Q点的运动的速度=3÷1=3(厘米/秒),即当Q点每秒运动154厘米或3厘米时△BEP≌△CQP.【点评】本题主要考查全等三角形的判定和性质,掌握全等三角形的判定是解题的关键,即SSS、SAS、ASA、AAS和HL17.如图,在Rt△ABC中,∠C=90°,AC=8,BC=6,P,Q是边AC,BC上的两个动点,PD⊥AB于点D,QE⊥AB于点E,设点P,Q运动的时间是t秒(t>0).(1)若点P,Q分别从A,B两点同时出发,沿AC,BC向点C匀速运动,运动速度都为每秒1个单位,其中一点到达终点C后,另一点也随之停止运动,在运动过程中△APD和△QBE是否保持全等?判断并说明理由;(2)若点P从点C出发沿CA以每秒3个单位的速度向点A匀速运动,到达点A后立刻以原来的速度沿AC返回到点C停止运动;点Q仍从点B出发沿BC以每秒1个单位的速度向点C匀速运动,到达点C后停止运动,当t为何值时,△APD和△QBE全等?【分析】(1)根据∠C=90°,PD⊥AB,QE⊥AB,于是得到∠A+∠APD=∠A+∠B=90°,证得∠APD =∠B,∠ADP=∠QEB=90°,即可得到结论;(2)分两种情况:①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,求得t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,求得t=4.【解答】解:(1)△ADP≌△QBE,理由:∵∠C=90°,PD⊥AB,QE⊥AB,∴∠A+∠APD=∠A+∠B=90°,∴∠APD=∠B,∠ADP=∠QEB=90°,∵AP=BQ=t,在△ADP与△QBE中,∠APD=∠B∠ADP=∠QEB AP=BQ,∴△ADP≌△QBE;(2)①0≤t<83时,点P从C到A运动,则AP=AC=CP=8﹣3t,BQ=t,当△ADP≌△QBE时,则AP=BQ,即8﹣3t=t,解得:t=2,②t≥83时,点P从A到C运动,则AP=3t﹣8,BQ=t,当△ADP≌△QBE时,则AP=BQ,即3t﹣8=t,解得:t=4,综上所述:当t=2s或4s时,△ADP≌△QBE.【点评】本题考查了全等三角形的判定,解方程,垂直的定义,熟练掌握全等三角形的判定定理是解题的关键.18.如图,在长方形ABCD中,AD=6cm,AB=4cm,点E为AD的中点.若点P在线段AB上以1cm/s的速度由点A向点B运动,同时,点Q在线段BC上由点B向点C运动.(注:长方形中,∠A=∠B=∠C=∠D=90°,AB=CD,AD=BC)(1)若点Q的运动速度与点P的运动速度相等:①经过1秒后,△AEP与△BPQ是否全等,请说明理由,并判断此时线段PE和线段PQ的位置关系;②设运动时间为t秒时,△PEQ的面积为Scm2,请用t的代数式表示S.(2)若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为 cm/s时,能够使△AEP与△BPQ全等.【分析】(1)①当t=1时,AP=BQ,∠A=∠B,AE=PB,从而可证明△EAP≌Rt△PBQ;②当t≤4时,AP=BQ=t,S=S梯形AEQB﹣S AEP﹣S PBQ;当4<t≤6时,点P与点B重合,S=2t;(2)如图3所示:因为△AEP≌△BQP,所以AP=PB=2,AE=BQ=3,从而可求得t=2,点Q运动的速度为=3÷2=1.5cm/秒.【解答】解:(1)①当t=1时,AP=1,BQ=1,∴AP=BQ.∵E是AD的中点,∴AE=12AD=3.∵PB=AB=AP=4﹣1=3,∴AE=PB.在Rt△EAP和Rt△PBQ中,AE=PB ∠A=∠B AP=BQ,∴Rt△EAP≌Rt△PBQ.∴∠APE=∠BQP,∵∠BQP+∠BPQ=90°,∴∠APE+∠BPQ=90°,∴∠EPQ=90°,∴PE⊥PQ;②如图1所示连接QE.图1Ⅰ、当t≤4时,AP=BQ=t,S梯形AEQB =12(AE+BQ)•AB=12×4×(3+t)=2t+6.S△AEP =12AE•PA=12×3t=32t,S△PBQ=12PB•BQ=12×(4﹣t)t=2t−12t2.∴S=2t+6−32t﹣(2t−12t2).整理得:S=12t2−32t+6,如图2所示:Ⅱ、当4<t≤6时,点P与点B重合,S=12QB•AB=12×4×t=2t.∴S与t的函数关系式为S=2−32t+6(0<t≤4)<t≤6);(2)如图3所示:∵△AEP≌△BQP,PA≠BQ,∴AP=PB=2,AE=BQ=3.∴t=AP=12AB=12×4=2.∴点Q运动的速度为=3÷2=1.5cm/秒时,△AEP≌△BQP.故答案为:1.5.【点评】此题是四边形综合题,主要考查的是全等三角形的性质和判定、相似三角形的性质和判定、矩形的性质、函数的解析式、一元一次方程的综合应用,根据题意画出符合题意的图形是解题的关键.19.(2023春•碑林区校级期末)如图,△ABC的两条高AD与BE交于点O,AD=BD,AC=6.(1)求BO的长;(2)F是射线BC上一点,且CF=AO,动点P从点O出发,沿线段OB以每秒1个单位长度的速度向终点B运动,同时动点Q从点A出发,沿射线AC以每秒4个单位长度的速度运动,当点P到达点B时,P,Q两点同时停止运动,设运动时间为t秒,当△AOP与△FCQ全等时,求t的值.【分析】(1)由AAS证明Rt△BDO≌Rt△ADC,根据对应边相等求得BO的长;(2)分情况讨论点F分别在BC延长线上或在BC之间时△AOP≌△FCQ,根据对应边相等求得t值.【解答】解:(1)∵∠BOD=∠AOE,∠CAD+∠ACD=∠CAD+∠AOE=90°,∴∠ACD=∠AOE,∴∠BOD=∠ACD.又∵∠BDO=∠ADC=90,AD=BD,∴Rt△BDO≌Rt△ADC(AAS),∴BO=AC=6.(2)①当点F在BC延长线上时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=6﹣4t,∴t=6﹣4t,解得t=1.2.②当点F在BC之间时:设t时刻,P、Q分别运动到如图位置,△AOP≌△FCQ.∵CF=AO,∠AOP=∠EOD=180°﹣∠DCE=∠FCQ,∴当△AOP≌△FCQ时,OP=CQ.∵OP=t,CQ=4t﹣6,∴t=4t﹣6,解得t=2.综上,t=1.2或2.【点评】本题考查全等三角形的判定.这部分内容是初中几何中非常重要的内容,一定要深刻理解,做到活学活用.20.如图1,长方形ABCD中,AB=CD=7cm,AD=BC=5cm,∠A=∠B=∠C=∠D=90°,点E在线段AB上以1cm/s的速度由点A向点B运动,与此同时点F在线段BC上由点B向点C运动,设运动的时间均为ts.(1)若点F的运动速度与点E的运动速度相等,当t=2时:①判断△BEF与△ADE是否全等?并说明理由;②求∠EDF的度数.(2)如图2,将图1中的“长方形ABCD”改为“梯形ABCD”,且∠A=∠B=70°,AB=7cm,AD=BC=5cm,其他条件不变.设点F的运动速度为xcm/s.是否存在x的值,使得△BEF与△ADE全等?若存在,直接写出相应的x及t的值;若不存在,请说明理由.【分析】(1)①根据SAS证明:△BEF≌△ADE;②由①:△BEF≌△ADE得DE=EF,∠BEF=∠ADE,证明△DEF是等腰直角三角形可得结论;(2)分两种情况:①如图2,当△DAE≌△EBF时,②如图3,当△ADE≌△BFE时,分别根据AD=BE,AE=BF,列方程组可得结论.【解答】解:(1)①△BEF≌△ADE,理由如:当t=2时,AE=BF=2,∴BE=AB﹣AD=7﹣2=5,∵AD=5,∴BE=AD,∵∠A=∠B=90°,∴△BEF≌△ADE;②由①得DE=EF,∠BEF=∠ADE,∵∠A=90°,∴∠ADE+∠AED=90°,∴∠BEF+∠AED=90°,∴∠DEF=180°﹣(∠BEF+∠AED)=90°,∵DE=EF∴∠EDF=∠EFD,∵∠EDF+∠EFD=90°,∴∠EDF=45°;(说明:用其他方法的,请参照此评分标准给分)(2)存在,①如图2,当△DAE≌△EBF时,∴AD=BE,AE=BF,则5=7−t t=xt∴x=1,t=2;②如图3,当△ADE≌△BFE时,AE=BE,AD=BF,则t=7−t 5=xt,∴x=107,t=72.(说明:每正确写出一对x、t的值,给1分.)【点评】本题考查四边形综合题、矩形的判定和性质、等腰直角三角形的判定、三角形全等的性质和判定及动点运动等知识,解题的关键是学会用分类讨论的思想思考问题,学会用方程的思想思考问题,属于中考压轴题.21.在Rt△ABC中,∠C=90°,AC=8cm,BC=6cm,点D在AC上,且AD=6cm,过点A作射线AE⊥AC(AE与BC在AC同侧),若动点P从点A出发,沿射线AE匀速运动,运动速度为1cm/s,设点P运动时间为t秒.连接PD、BD.(1)如图①,当PD⊥BD时,求证:△PDA≌△DBC;(2)如图②,当PD⊥AB于点F时,求此时t的值.【分析】(1)由PD⊥BD、∠C=90°可推出∠PDA=∠CBD,即可根据ASA判定△PDA≌△DBC;(2)由PD⊥AB,AE⊥AC可推出∠APF=∠CAB,即可根据AAS判定△APD≌△CAB,再由全等三角形的性质即可得解.【解答】(1)证明:如图①,∵PD⊥BD,∴∠PDB=90°,∴∠BDC+∠PDA=90°,又∵∠C=90°,∴∠BDC+∠CBD=90°,∴∠PDA=∠CBD,又∵AE⊥AC,∴∠PAD=90°,∴∠PAD=∠C=90°,又∵BC=6cm,AD=6cm,∴AD=BC,在△PAD和△DCB中,∠PAD=∠CAD=CB,∠PDA=∠CBD∴△PDA≌△DBC(ASA);(2)解:如图②,∵PD⊥AB,∴∠AFD=∠AFP=90°,∴∠PAF+∠APF=90°,又∵AE⊥AC,∴∠PAF+∠CAB=90°,∴∠APF=∠CAB,在△APD和△CAB中,∠APD=∠CAB∠PAD=∠C,AD=CB∴△APD≌△CAB(AAS),∴AP=AC,∵AC=8cm,∴AP=8cm,∴t=8.【点评】此题考查了全等三角形的判定与性质,根据ASA判定△PDA≌△DBC、根据AAS判定△APD≌△CAB是解题的关键.22.在平面直角坐标系中,点A(0,6),B(8,0),AB=10,如图作∠DBO=∠ABO,∠CAy=∠BAO,BD交y轴于点E,直线DO交AC于点C.(1)①求证:△ACO≌△EDO;②求出线段AC、BD的位置关系和数量关系;(2)动点P从A出发,沿A﹣O﹣B路线运动,速度为1,到B点处停止运动;动点Q从B出发,沿B﹣O﹣A运动,速度为2,到A点处停止运动.二者同时开始运动,都要到达相应的终点才能停止.在某时刻,作PG⊥CD于点G,QF⊥CD于点F.问两动点运动多长时间时△OPG与△OQF全等?【分析】(1)①根据全等三角形的判定定理ASA证得结论;②利用①中全等三角形的性质得到:AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时(ii)当点P、Q都在y轴上时,(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,当点Q提前停止时,列方程即可得到结论.【解答】解:(1)①如图,∵∠DBO=∠ABO,OB⊥AE,∴∠BAO=∠BEO,∴AB=BE,∴AO=OE,∵∠CAy=∠BAO,∴∠CAy=∠BEO,∴∠DEO=∠CAO在△ACO与△EDO中,∠CAO=∠DEO OA=OE∠AOC=∠DOE,∴△ACO≌△EDO(ASA);②由①知,△ACO≌△EDO,∴∠C=∠D,AC=DE,∴AC∥BD,AC=BD﹣10;(2)设运动的时间为t秒,(i)当点P、Q分别在y轴、x轴上时PO=QO得:6﹣t=8﹣2t,解得t=2(秒),(ii)当点P、Q都在y轴上时PO=QO得:6﹣t=2t﹣8,解得t=143(秒),(iii)当点P在x轴上,Q在y轴时若二者都没有提前停止,则PO=QO得:t﹣6=2t﹣8,解得t=2(秒)不合题意;当点Q提前停止时,有t﹣6=6,解得t=12(秒),综上所述:当两动点运动时间为2、143、12秒时,△OPE与△OQF全等【点评】本题考查了全等三角形的判定,坐标与图形的性质,正确的理解题意是解题的关键.23.(2023春•渭滨区期末)如图①,在Rt△ABC中,∠C=90°,BC=9cm,AC=12cm,AB=15cm,现有一动点P,从点A出发,沿着三角形的边AC→CB→BA运动,回到点A停止,速度为3cm/s,设运动时间为ts.(1)如图(1),当t= 时,△APC的面积等于△ABC面积的一半;(2)如图(2),在△DEF中,∠E=90°,DE=4cm,DF=5cm,∠D=∠A.在△ABC的边上,若另外有一个动点Q,与点P同时从点A出发,沿着边AB→BC→CA运动,回到点A停止.在两点运动过程中的某一时刻,恰好△APQ≌△DEF,求点Q的运动速度.【分析】(1)分两种情况进行解答,①当点P在BC上时,②当点P在BA上时,分别画出图形,利用三角形的面积之间的关系,求出点P移动的距离,从而求出时间即可;(2)由△APQ≌△DEF,可得对应顶点为A与D,P与E,Q与F;于是分两种情况进行解答,①当点P 在AC上,AP=4,AQ=5,②当点P在AB上,AP=4,AQ=5,分别求出P移动的距离和时间,进而求出Q的移动速度.【解答】解:(1)①当点P在BC上时,如图①﹣1,若△APC的面积等于△ABC面积的一半;则CP=12BC=92cm,此时,点P移动的距离为AC+CP=12+92=332,移动的时间为:332÷3=112秒,②当点P在BA上时,如图①﹣2若△APC的面积等于△ABC面积的一半;则PD=12AB,即点P为BA中点,此时,点P移动的距离为AC+CB+BP=12+9+152=572cm,移动的时间为:572÷3=192秒,故答案为:112或192;(2)△APQ≌△DEF,即,对应顶点为A与D,P与E,Q与F;①当点P在AC上,如图②﹣1所示:此时,AP=4,AQ=5,∴点Q移动的速度为5÷(4÷3)=154cm/s,②当点P在AB上,如图②﹣2所示:此时,AP=4,AQ=5,即,点P移动的距离为9+12+15﹣4=32cm,点Q移动的距离为9+12+15﹣5=31cm,∴点Q移动的速度为31÷(32÷3)=9332cm/s,综上所述,两点运动过程中的某一时刻,恰好△APQ≌△DEF,点Q的运动速度为154cm/s或9332cm/s.。
中考数学专题复习全等三角形
∴△ADE≌△ADC。DE=CD,∠AED=∠C
∵AB=AC+CD,∴DE=CD=AB-AC=AB-AE=BE
∠B=∠EDB
∠C=∠B+∠EDB=2∠B
12证明:
∵BE‖CF
∴∠E=∠CFM,∠EBM=∠FCM
∵BE=CF
∴△BEM≌△CFM
∴BM=CM
∴AM是△ABC的中线。
9作AG∥BD交DE延长线于G
AGE全等BDE
AG=BD=5
AGF∽CDF
AF=AG=5
所以DC=CF=2
10证明:
做BE的延长线,与AP相交于F点,
∵PA//BC
∴∠PAB+∠CBA=180°,
又∵,AE,BE均为∠PAB和∠CBA的角平分线
∴∠EAB+∠EBA=90°∴∠AEB=90°,EAB为直角三角形
13证明:因为AB=AC,
所以∠EBC=∠DCB
因为BD⊥AC,CE⊥AB
所以∠BEC=∠CDB
BC=CB (公共边)
则有三角形EBC全等于三角形DCB
所以BE=CD
14
11.证明:∵∠ACB=90°,
∴∠ACD+∠BCE=90°,
而AD⊥MN于D,BE⊥MN于E,
∴∠ADC=∠CEB=90°,∠BCE+∠CBE=90°,
∵CF⊥AD
∴∠ACF+∠DCF=90°
∵∠ACF+∠CAF=90°
∴∠CAF=∠DCF
∵AC=CB∠ACG=∠B
∴△ACG≌△CBE
∴CG=BE
∵∠DCG=∠B CD=BD
∴△CDG≌△BDE
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)
2023年中考数学----全等三角形的判定与性质知识回顾与专项练习题(含答案解析)知识回顾1.三角形的三边关系:三角形的任意两边之和大于第三边,任意两边之差小于第三边。
三角形的三边一旦确定,这三角形就固定了,这是三角形具有稳定性。
2.三角形的内角和定理:三角形的三个内角之和等于180°。
3.三角形的外角定理:三角形的一个外角等于它不相邻的两个内角之和。
大于它不相邻的任意一个内角。
4.全等三角形的性质:若两个三角形全等,则他们的对应边相等;对应角相等;对应边上的中线相等,高线相等,角平分线也相等;且这两个三角形的周长和面积均相等。
5.全等三角形的判定:①边边边(SSS):三条边分别对应性相等的两个三角形全等。
②边角边(SAS):两边及其这两边的夹角对应相等的两个三角形全等。
③角边角(ASA):两角及其这两角的夹边对应相等的两个三角形全等。
④角角边(AAS):两角及其其中一角的对边对应相等的两个三角形全等。
⑤直角三角形判定(HL):直角三角形中斜边与其中任意一直角边分别对应相等的两个直角三角形全等。
全等三角形的判定是结合全等三角形的性质证明线段和角相等的重要工具.在判定三角形全等时,关键是选择恰当的判定条件。
在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当辅助线构造三角形。
专项练习题(含答案解析)1.已知:如图,∠1=∠2,∠3=∠4.求证:AB=AD.【分析】根据邻补角的定义得出∠ACB=∠ACD,利用ASA证明△ACB≌△ACD,根据全等三角形的性质即可得解.【解答】证明:∵∠3=∠4,∴∠ACB=∠ACD,在△ACB和△ACD中,,∴△ACB≌△ACD(ASA),∴AB=AD.2.如图,△ABC是等腰三角形,点D,E分别在腰AC,AB上,且BE=CD,连接BD,CE.求证:BD=CE.【分析】根据等腰三角形的性质得出∠EBC=∠DCB,进而利用SAS证明△EBC与△DCB全等,再利用全等三角形的性质解答即可.【解答】证明:∵△ABC∴∠EBC=∠DCB,在△EBC与△DCB中,,∴△EBC≌△DCB(SAS),∴BD=CE.3.如图1是小军制作的燕子风筝,燕子风筝的骨架图如图2所示,AB=AE,AC=AD,∠BAD=∠EAC,∠C=50°,求∠D的大小.【分析】由∠BAD=∠EAC可得∠BAC=∠EAD,根据SAS可证△BAC≌△EAD,再根据全等三角形的性质即可求解.【解答】解:∵∠BAD=∠EAC,∴∠BAD+∠CAD=∠EAC+∠CAD,即∠BAC=∠EAD,在△BAC与△EAD中,,∴△BAC≌△EAD(SAS),∴∠D=∠C=50°.4.如图,AC平分∠BAD,CB⊥AB,CD⊥AD,垂足分别为B,D.(1)求证:△ABC≌△ADC;(2)若AB=4,CD=3,求四边形的面积.【分析】(1)由AC平分∠BAD,得∠BAC=∠DAC,根据CB⊥AB,CD⊥AD,得∠B=90°=∠D,用AAS 可得△ABC≌△ADC;(2)由(1)△ABC≌△ADC,得BC=CD=3,S△ABC=S△ADC,求出S△ABC=AB•BC=6,即可得四边形ABCD的面积是12.【解答】(1)证明:∵AC平分∠BAD,∴∠BAC=∠DAC,∵CB⊥AB,CD⊥AD,∴∠B=90°=∠D,在△ABC和△ADC中,,∴△ABC≌△ADC(AAS);(2)解:由(1)知:△ABC≌△ADC,∴BC=CD=3,S△ABC=S△ADC,∴S△ABC=AB•BC=×4×3=6,∴S△ADC=6,∴S四边形ABCD=S△ABC+S△ADC=12,答:四边形ABCD的面积是12.5.如图,在△ABC中,点D在边BC上,CD=AB,DE∥AB,∠DCE=∠A.求证:DE=BC.【分析】利用平行线的性质得∠EDC=∠B,再利用ASA证明△CDE≌△ABC,可得结论.【解答】证明:∵DE∥AB,∴∠EDC=∠B,在△CDE和△ABC中,,∴△CDE≌△ABC(ASA),∴DE=BC.6.如图,在等边三角形ABC中,点M为AB边上任意一点,延长BC至点N,使CN=AM,连接MN交AC于点P,MH⊥AC于点H.(1)求证:MP=NP;(2)若AB=a,求线段PH的长(结果用含a的代数式表示).【分析】(1)过点M作MQ∥BC,交AC于点Q,根据等边三角形的性质以及平行线的性质可得∠AMQ=∠AQM=∠A=60°,可得△AMQ是等边三角形,易证△QMP≌△CNP(AAS),即可得证;(2)根据等边三角形的性质可知AH=HQ,根据全等三角形的性质可知QP=PC,即可表示出HP的长.【解答】(1)证明:过点M作MQ∥BC,交AC于点Q,如图所示:在等边△ABC中,∠A=∠B=∠ACB=60°,∵MQ∥BC,∴∠AMQ=∠B=60°,∠AQM=∠ACB=60°,∠QMP=∠N,∴△AMQ是等边三角形,∴AM=QM,∵AM=CN,∴QM=CN,在△QMP和△CNP中,,∴△QMP≌△CNP(AAS),∴MP=NP;(2)解:∵△AMQ是等边三角形,且MH⊥AC,∴AH=HQ,∵△QMP≌△CNP,∴QP=CP,∴PH=HQ+QP=AC,∵AB=a,AB=AC,∴PH=a.7.如图,点A,D,C,F在同一条直线上,AB=DE,BC=EF.有下列三个条件:①AC=DF,②∠ABC =∠DEF,③∠ACB=∠DFE.(1)请在上述三个条件中选取一个条件,使得△ABC≌△DEF.你选取的条件为(填写序号)(只需选一个条件,多选不得分),你判定△ABC≌△DEF的依据是(填“SSS”或“SAS”或“ASA”或“AAS”);(2)利用(1)的结论△ABC≌△DEF.求证:AB∥DE.【分析】(1)根据SSS ABC≌△DEF,即可解决问题;(2)根据全等三角形的性质可得∠A=∠EDF,再根据平行线的判定即可解决问题.【解答】(1)解:在△ABC和△DEF中,,∴△ABC≌△DEF(SSS),∴在上述三个条件中选取一个条件,使得△ABC≌△DEF,选取的条件为①,判定△ABC≌△DEF的依据是SSS.故答案为:①,SSS;(答案不唯一).(2)证明:∵△ABC≌△DEF.∴∠A=∠EDF,∴AB∥DE.8.在△ABC中,∠ACB=90°,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF.若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2.若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【分析】(1)证明△BCD≌△FCE(SAS),由全等三角形的性质得出∠DBC=∠EFC,证出BD∥EF,则可得出结论;(2)由题意画出图形,延长BC到F,使CF=BC,连接AF,EF,由(1)可知BD∥EF,BD=EF,证出∠AEF=90°,得出∠DHE=90°,由直角三角形的性质可得出结论.【解答】(1)证明:在△BCD和△FCE中,,∴△BCD≌△FCE(SAS),∴∠DBC=∠EFC,∴BD∥EF,∵AF⊥EF,∴BD⊥AF;(2)解:由题意补全图形如下:CD=CH.证明:延长BC到F,使CF=BC,连接AF,EF,∵AC⊥BF,BC=CF,∴AB=AF,由(1)可知BD∥EF,BD=EF,∵AB2=AE2+BD2,∴AF2=AE2+EF2,∴∠AEF=90°,∴AE⊥EF,∴BD⊥AE,∴∠DHE=90°,又∵CD=CE,∴CH=CD=CE.9.如图,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=90°,且点D在线段BC上,连CE.(1)求证:△ABD≌△ACE;(2)若∠EAC=60°,求∠CED的度数.【分析】(1)可利用SAS证明结论;(2)由全等三角形的性质可得∠ACE=∠ABD,利用等腰直角三角形的性质可求得∠ACE=∠ABD=∠AED =45°,再根据三角形的内角和定理可求解∠AEC的度数,进而可求可求解【解答】(1)证明:∵∠BAC=∠DAE=90°,∴∠BAC﹣∠CAD=∠DAE﹣∠CAD,即∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵△ABD≌△ACE,∴∠ACE=∠ABD,∵△ABC和△ADE都是等腰直角三角形,∴∠ACE=∠ABD=∠AED=45°,∵∠EAC=60°,∴∠AEC=180°﹣∠ACE﹣∠EAC=180°﹣45°﹣60°=75°,∴∠CED=∠AEC﹣∠AED=75°﹣45°=30°.10.如图,在△ABC中(AB<BC),过点C作CD∥AB,在CD上截取CD=CB,CB上截取CE=AB,连接DE、DB.(1)求证:△ABC≌△ECD;(2)若∠A=90°,AB=3,BD=2,求△BCD的面积.【分析】(1)由CD∥AB得∠ABC=∠ECD,而CD=CB,CE=AB,即可根据全等三角形的判定定理“SAS”证明△ABC≌△ECD;(2))由∠A=90°,根据全等三角形的对应角相等证明∠BED=∠CED=∠A=90°,设BE=x,由BD2﹣BE2=CD2﹣EC2=DE2,列方程(2)2﹣x2=(3+x)2﹣32,解方程求得符合题意的x的值为2,则BC =5,再根据勾股定理求出DE的长,即可求出△BCD的面积.【解答】(1)证明:∵CD∥AB,CD=CB,CE=AB,∴∠ABC=∠ECD,在△ABC和△ECD中,,∴△ABC≌△ECD(SAS).(2)解:∵∠A=90°,∴∠CED=∠A=90°,∴∠BED=180°﹣∠CED=90°,设BE=x,∵EC=AB=3,BD=2,∴CD=BC=3+x,∵BD2﹣BE2=CD2﹣EC2=DE2,∴(2)2﹣x2=(3+x)2﹣32,整理得x2+3x﹣10=0,解得x1=2,x2=﹣5(不符合题意,舍去),∴BE=2,BC=3+2=5,∴DE===4,∴S△BCD=BC•DE=×5×4=10,∴△BCD的面积为10.11.如图,在Rt△ABC中,∠BAC=90°,AB=AC=1,D是BC边上的一点,以AD为直角边作等腰Rt △ADE,其中∠DAE=90°,连接CE.(1)求证:△ABD≌△ACE;(2)若∠BAD=22.5°时,求BD的长.【分析】(1)由“SAS”可证△ACE;(2)由等腰三角形三角形的性质可得BC的长,由角度关系可求∠ADC=67.5°=∠CAD,可得AC=CD =1,即可求解.【解答】(1)证明:∵∠BAC=90°=∠DAE,∴∠BAD=∠CAE,在△ABD和△ACE中,,∴△ABD≌△ACE(SAS);(2)解:∵∠BAC=90°,AB=AC=1,∴BC=,∠B=∠ACB=45°,∵∠BAD=22.5°,∴∠ADC=67.5°=∠CAD,∴AC=CD=1,∴BD=﹣1.12.如图,已知矩形ABCD中,AB=8,BC=x(0<x<8),将△ACB沿AC对折到△ACE的位置,AE和CD交于点F.(1)求证:△CEF≌△ADF;(2)求tan∠DAF的值(用含x的式子表示).【分析】(1)根据矩形的性质得到∠B=∠D=90°,BC=AD,根据折叠的性质得到BC=CE,∠E=∠B =90°,等量代换得到∠E=∠D=90°,AD=CE,根据AAS证明三角形全等即可;(2)设DF=a,则CF=8﹣a,根据矩形的性质和折叠的性质证明AF=CF=8﹣a,在Rt△ADF中,根据勾股定理表示出DF的长,根据正切的定义即可得出答案.【解答】(1)证明:∵四边形ABCD是矩形,∴∠B=∠D=90°,BC=AD,根据折叠的性质得:BC=CE,∠E=∠B=90°,∴∠E=∠D=90°,AD=CE,在△CEF与△ADF中,,∴△CEF≌△ADF(AAS);(2)解:设DF=a,则CF=8﹣a,∵四边形ABCD是矩形,∴AB∥CD,AD=BC=x,∴∠DCA=∠BAC,根据折叠的性质得:∠EAC=∠BAC,∴∠DCA=∠EAC,∴AF=CF=8﹣a,在Rt△ADF中,∵AD2+DF2=AF2,∴x2+a2=(8﹣a)2,∴a=,∴tan∠DAF==.13.如图,△ABC和△DEF,点E,F在直线BC上,AB=DF,∠A=∠D,∠B=∠F.如图①,易证:BC+BE =BF.请解答下列问题:(1)如图②,如图③,请猜想BC,BE,BF之间的数量关系,并直接写出猜想结论;(2)请选择(1)中任意一种结论进行证明;(3)若AB=6,CE=2,∠F=60°,S△ABC=123,则BC=,BF=.【分析】(1)根据图形分别得出答案;(2)利用AAS证明△ABC≌△DFE,得BC=EF,再根据图形可得结论;(3)首先利用含30°角的直角三角形的性质求出BH和AH的长,从而得出BC,再对点E的位置进行分类即可.【解答】解:(1)图②:BC+BE=BF,图③:BE﹣BC=BF;(2)图②:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BC+CE,∴BC+BE=EF+BC+CE=BF;图③:∵AB=DF,∠A=∠D,∠B=∠F,∴△ABC≌△DFE(ASA),∴BC=EF,∵BE=BF+EF,∴BE﹣BC=BF+EF﹣BC=BF+BC﹣BC=BF;(3)当点E在BC上时,如图,作AH⊥BC于H,∵∠B=∠F=60°,∴∠BAH=30°,∴BH=3,∴AH=3,∵S△ABC=12,∴=12,∴BC=8,∵CE=2,∴BF=BE+EF=8﹣2+8=14;同理,当点E在BC延长线上时,如图②,BF=BC+BE=8+10=18,故答案为:8,14或18.14.△ABC和△ADE都是等边三角形.(1)将△ADE绕点A旋转到图①的位置时,连接BD,CE并延长相交于点P(点P与点A重合),有P A+PB =PC(或P A+PC=PB)成立(不需证明);(2)将△ADE绕点A旋转到图②的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?并加以证明;(3)将△ADE绕点A旋转到图③的位置时,连接BD,CE相交于点P,连接P A,猜想线段P A、PB、PC 之间有怎样的数量关系?直接写出结论,不需要证明.【分析】(2)证明△ABD≌△ACE(SAS)和△BAF≌△CAP(SAS),得AF=AP,∠BAF=∠CAP,再证明△AFP是等边三角形,最后由线段的和可得结论;(3)如图③,在PC上截取CM=PB,连接AM,同理可得结论.【解答】解:(2)PB=P A+PC,理由如下:如图②,在BP上截取BF=PC,连接AF,∵△ABC、△ADE都是等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∴∠BAC+∠CAD=∠CAD+∠DAE,即∠DAB=∠EAC,∴△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,BF=CP,∴△BAF≌△CAP(SAS),∴AF=AP,∠BAF=∠CAP,∴∠BAC=∠P AF=60°,∴△AFP是等边三角形,∴PF=P A,∴PB=BF+PF=PC+P A;(3)PC=P A+PB,理由如下:如图③,在PC上截取CM=PB,连接AM,同理得:△ABD≌△ACE(SAS),∴∠ABD=∠ACE,∵AB=AC,PB=CM,∴△AMC≌△APB(SAS),∴AM=AP,∠BAP=∠CAM,∴∠BAC=∠P AM=60°,∴△AMP是等边三角形,∴PM=P A,∴PC=PM+CM=P A+PB.15.【情境再现】甲、乙两个含45°角的直角三角尺如图①放置,甲的直角顶点放在乙斜边上的高的垂足O处.将甲绕点O 顺时针旋转一个锐角到图②位置.按图②作出示意图,并连接AG,BH,如图③所示,AB交HO于E,AC 交OG于F,通过证明△OBE≌△OAF,可得OE=OF.请你证明:AG=BH.【迁移应用】延长GA分别交HO,HB所在直线于点P,D,如图④,猜想并证明DG与BH的位置关系.【拓展延伸】小亮将图②中的甲、乙换成含30°角的直角三角尺如图⑤,按图⑤作出示意图,并连接HB,AG,如图⑥所示,其他条件不变,请你猜想并证明AG与BH的数量关系.【分析】【情境再现】由△OBE≌△OAF,得BE=AF,OE=OF,∠BEO=∠AFO,可证明△BHE≌△AGF (SAS),得BH=AG;【迁移应用】由△BHE≌△AGF,得∠BHE=∠AGF,可得∠AGF+∠GPO=90°,从而∠BHE+∠HPD=90°,∠HDP=90°,故DG⊥BH;【拓展延伸】设AB交OH于T,OG交AC于K,根据△ABC,△HOG是含30°角的直角三角形,AO⊥BC,可得OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,即得△BOT∽△AOK,有===,∠BTO=∠AKO,又OH=GO,可得==,故△BTH∽△AKG,即得==,BH=AG.【解答】【情境再现】证明:由阅读材料知△OBE≌△OAF,∴BE=AF,OE=OF,∠BEO=∠AFO,∴∠BEH=∠AFG,∵OH=OG,∴OH﹣OE=OG﹣OF,即EH=GF,在△BHE和△AGF中,,∴△BHE≌△AGF(SAS),∴BH=AG;【迁移应用】解:猜想:DG⊥BH;证明如下:由【情境再现】知:△BHE≌△AGF,∴∠BHE=∠AGF,∵∠HOG=90°,∴∠AGF+∠GPO=90°,∴∠BHE+∠GPO=90°,∵∠GPO=∠HPD,∴∠BHE+∠HPD=90°,∴∠HDP=90°,∴DG⊥BH;【拓展延伸】解:猜想:BH=AG,证明如下:设AB交OH于T,OG交AC于K,如图:由已知得:△ABC,△HOG是含30°角的直角三角形,AO⊥BC,∴∠AOB=90°,∴OB=AO,∠OBA=∠OAC=30°,∠BOT=90°﹣∠AOT=∠AOK,∴△BOT∽△AOK,∴===,∠BTO=∠AKO,∴OT=OK,BT=AK,∠BTH=∠AKG,∵OH=GO,∴HT=OH﹣OT=GO﹣OK=(GO﹣OK)=KG,∴==,∴△BTH∽△AKG,∴==,∴BH=AG19。
中考数学专题练习:全等三角形(含答案)
中考数学专题练习:全等三角形(含答案)1.(·成都)如图,已知∠ABC=∠DCB,添加以下条件,不能判定△ABC≌△DCB的是( )A.∠A=∠D B.∠ACB=∠DBCC.AC=DB D.AB=DC2.(·黔南州)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC 全等的是( )A.甲和乙B.乙和丙C.甲和丙D.只有丙3.(·南京)如图,AB⊥CD,且AB=CD,E、F是AD上两点,CE⊥AD,BF⊥AD.若CE=a,BF=b,EF =c,则AD的长为( )A.a+c B.b+c C.a-b+c D.a+b-c4.(·原创) 如图,△AOB≌△ADC,点B和点C是对应顶点,∠O=∠D=90°,当BC∥OA时,下列结论正确的是( )A.∠OAD=2∠ABOB.∠OAD=∠ABOC.∠OAD+2∠ABO=180°D.∠OAD+∠ABO=90°5.(·临沂)如图,∠ACB=90°,AC=BC,AD⊥CE,BE⊥CE,垂足分别是点D,E.AD=3,BE=1,则DE的长是( )A.32B.2 C.2 2 D.106.(·济宁)在△ABC中,点E、F分别是边AB、AC的中点,点D在BC边上,连接DE、DF、EF,请你添加一个条件____________________________,使△BED与△FED全等.7.(·原创)如图,已知△ABC≌△ADE,若AB=6,C为AD的中点,则AC的长为______.8.(·包河区二模)如图,在Rt△ABC中,∠BAC=90°,AB=AC,分别过点B,C作过点A的直线的垂线BD,CE,垂足分别为D,E,若BD=3,CE=2,则DE=______.9.(·宜宾)如图,已知∠1=∠2,∠B=∠D,求证:CB=CD.10.(·菏泽)如图,AB∥CD,AB=CD,CE=BF.请写出DF与AE的数量关系,并证明你的结论.11.(·泰州)如图,∠A=∠D=90°,AC=DB,AC、DB相交于点O.求证:OB=OC.12.(·陕西)如图,AB∥CD,E、F分别为AB、CD上的点,且EC∥BF,连接AD,分别与EC、BF相交于点G、H,若AB=CD,求证:AG=DH.13.(·镇江)如图,△ABC中,AB=AC,点E,F在边BC上,BE=CF,点D在AF的延长线上,AD=AC.(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC=________°.14.(·温州) 如图,在四边形 ABCD 中,E 是 AB 的中点,AD∥EC,∠AED=∠B.(1)求证:△AED≌△EBC;(2)当 AB=6 时,求 CD 的长.15.(·恩施)如图,点 B,F,C,E在一条直线上,FB=CE,AB∥ED,AC∥FD,AD交 BE于点O.求证:AD与BE互相平分.16.(·广东)如图,矩形ABCD中,AB>AD,把矩形沿对角线AC所在直线折叠,使点B落在点E 处,AE交CD于点F,连接DE.(1)求证:△ADE≌△CED;(2)求证:△DEF是等腰三角形.1.(·阜阳模拟)如图,过等边△ABC的边AB上一点P,作PE⊥AC于点E,Q为BC延长线上的一点,当PA=CQ时,连接PQ交AC于点D,下列结论中不一定正确的是( )A.PD=DQB.DE=12 ACC.AE=12CQD.PQ⊥AB2.(·原创)如图是两个全等三角形,图中的字母表示三角形的边长,则∠1的度数是( )A.76° B.62°C.42° D.76°、62°或42°都可以3.(·原创)如图,在△ABC中,AB=AC,BD=CE,BE=CF,若∠A=50°,则∠DEF的度数是( )A.75° B.70° C.65° D.60°4.(·德阳)如图,点E、F分别是矩形ABCD的边AD、AB上一点,若AE=DC=2ED,且EF⊥EC.(1)求证:点F为AB的中点;(2)延长EF与CB的延长线相交于点H,连接AH,已知ED=2,求AH的值.5.(·合肥45中一模) 如图1,已知正方形ABCD,E是线段BC上一点,N是线段BC延长线上一点,以AE为边在直线BC的上方作正方形AEFG.(1)连接GD,求证:DG=BE;(2)连接FC,求∠FCN的度数;(3)如图2,将图1中正方形ABCD改为矩形ABCD,AB=m,BC=n(m、n为常数),E是线段BC上一动点(不含端点B、C),以AE为边在直线BC的上方作矩形AEFG,使顶点G恰好落在射线CD上.判断当点E由点B向点C运动时,∠FCN的大小是否总保持不变?若∠FCN的大小不变,请用含m、n的代数式表示tan∠FCN的值,若∠FCN的大小发生改变,请画图说明.参考答案【基础训练】1.C 2.B 3.D 4.A 5.B 6.BD =EF(答案不唯一) 7.3 8.5 9.证明:∵∠1=∠2,∴180°-∠1=180°-∠2,即∠ACB=∠ACD.在△CDA 和△CBA 中,⎩⎨⎧∠B=∠D,∠ACB=∠ACD,AC =AC ,∴△CDA≌△CBA(AAS).∴CB=CD.10.解:DF =AE.证明:∵AB∥CD ,∴∠C=∠B. ∵CE=BF,∴CE-EF =BF -FE,∴CF=BE. 又∵CD=AB,∴△DCF≌△ABE(SAS), ∴DF=AE.11.证明:方法一:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴∠OBC=∠OCB ,∴BO=CO.方法二:∵∠A=∠D=90°,AC =DB,BC =CB, ∴Rt△ABC≌Rt△DCB(HL), ∴AB=DC,又∵∠AOB=∠DOC , ∴△ABO≌△DCO(AAS ),∴BO =CO. 12.证明:∵AB∥CD ,∴∠A=∠D.又∵CE∥BF ,∴∠AHB=∠DGC.在△ABH 和△DCG 中,⎩⎨⎧∠A=∠D∠AHB=∠DGC AB =CD,∴△ABH≌△DCG(AAS), ∴AH=DG.又∵AH=AG +GH,DG =DH +GH,∴AG=DH. 13.(1)证明:∵AB=AC,∴∠B=∠ACF.在△ABE 和△ACF 中,⎩⎨⎧AB =AC ,∠B=∠ACF,BE =CF ,∴△ABE≌△ACF(SAS). (2)解:75.14.(1)证明:由AD∥EC 可知∠A =∠CEB, 又因为E 是 AB 的中点,所以AE =EB, 且∠AED=∠B ,所以△AED≌△EBC(ASA). (2)解:由(1)△AED≌△EBC 可知AD =EC, 又因为AD∥EC ,所以四边形AECD 为平行四边形, 又因为AB =6,则CD =AE =3. 15.证明:如解图,连接 BD ,AE . ∵AB∥ED ,∴∠ABC=∠DEF. ∵AC∥FD ,∴∠ACB=∠DFE. ∵ FB=CE, ∴BC=EF. 在△ACB 和 △DFE 中,⎩⎨⎧∠ABC=∠DEF,BC =EF ,∠ACB=∠DFE.∴△ACB ≌ △DFE(ASA). ∴ AB=DE.∵AB∥ED ,∴四边形ABDE 是平行四边形.∴AD 与BE 互相平分.16.证明:(1)∵四边形ABCD 是矩形, ∴AD=BC, AB =DC.∵△AEC 是由△ABC 折叠而成的, ∴AD=BC =EC,AB =DC = AE.在△ADE 和△CED 中,⎩⎨⎧AD =CEDE =ED AE =CD,∴△ADE≌△CED(SSS);(2)由(1)△ADE≌△CED 可得∠AED=∠CDE , ∴FD=EF,∴△DEF 是等腰三角形. 【拔高训练】 1.D 2.B 3.C 4.(1)证明:∵EF⊥EC ,∴∠CEF=90°, ∴∠AEF+∠DEC=90°, ∵四边形ABCD 是矩形,∴∠AEF+∠AFE=90°, ∠DEC+∠DCE=90°, ∴∠AEF=∠DCE ,∠AFE=∠DEC , ∵AE=DC,∴△AEF≌△DCE(AAS), ∴DE=AF,∵AE=DC =AB =2DE,∴AB=2AF, ∴F 为AB 的中点.(2)解:由(1)知AF =FB,且AE∥BH , ∴∠FBH=∠FAE=90°, ∠AEF=∠FHB , ∴△AEF≌△BHF(AAS),∴AE=HB, ∵DE=2, 且AE =2DE, ∴AE=4,∴HB=AB =AE =4,∴AH 2=AB 2+BH 2=16+16=32,∴AH=4 2.5.(1)证明:∵四边形ABCD 和四边形AEFG 是正方形,∴AB=AD,AE=AG,∠BAD=∠EAG=90°,∴∠BAE+∠EAD=∠DAG+∠EAD,∴∠BAE=∠DAG,∴△BAE≌△DAG(SAS).∴DG=BE;(2)解:如解图1,过点F作FH⊥BN于点H.∵∠AEF=∠ABE=90°,∴∠BAE+∠AEB=90°,∠FEH+∠AEB=90°, ∴∠FEH=∠BAE,又∵AE=EF,∠EHF=∠EBA=90°,∴△EFH≌△AEB(AA S),∴FH=BE,EH=AB=BC,∴CH=BE=FH,∴∠FCN=∠CFH=12(180°-∠FHC).∵∠FHC=90°, ∴∠FCN=45°.(3)解:当点E由点B向点C运动时,∠FCN的大小总保持不变,理由如下:如解图2,过点F 作FH⊥BN于点H,由已知可得∠EAG=∠BAD=∠AEF=90°, 结合(1)(2)得∠FEH=∠BAE=∠DAG,又∵G在射线CD上,∠GDA=∠EHF=∠EBA=90°,∴△EFH≌△AGD(AAS),△EFH∽△AEB,∴EH=AD=BC=n, ∴CH=BE,∴EHAB=FHBE=FHCH;在Rt△FCH中,tan∠FCN=FHCH=EHAB=nm.∴当点E由点B向点C运动时,∠FCN的大小总保持不变,且tan∠FCN=n m .。
微专题 全等三角形的六种基本模型-2024年中考数学复习
21
全等三角形的六种基本模型
模型应用
8.如图17, △ 是边长为1的等边三角形, = ,
∠ = 120∘ ,点 , 分别在 , 上,且
∠ = 60∘ .求 △ 的周长.
提示:如图16,延长 至点 ,使 = ,连接 .
图6
= ,
在 △ 和 △ 中, ቐ∠ = ∠, ∴ △≌△ SAS .
= ,
∠ = ∠ = 50∘ .
7
全等三角形的六种基本模型
模型三 旋转型
模型剖析
如图7,将三角形绕着公共顶
点旋转一定角度后,两个三角形能
够完全重合,这两个三角形称为旋
图3
在 △ 和△ 中, ∵ ∠ = ∠ , ∠ = ∠ , = ,
∴ △ ≌ △ AAS .
∴ = .
4
全等三角形的六种基本模型
模型二 对称型
模型剖析
如图4、图5,将所给图形沿某一条直线折叠后,直线两旁的部分能
够完全重合,这两个三角形称为对称型全等三角形,其中重合的顶点就
= , ∴ △ ≌ △ SAS . ∴ = ,
图17
图16
22
全等三角形的六种基本模型
∠ = ∠. ∵ ∠ = 120∘ , ∠ = 60∘ , ∴ ∠ +
∠ = 60∘ . ∴ ∠ + ∠ = 60∘ . ∴ ∠ = ∠ =
∴ ∠ = ∠ + ∠ = 110∘ .
∴ ∠ = ∠ .
= ,
图9
在 △ 和 △ 中, ቐ∠ = ∠ , ∴ △ ≌ △ .
= ,
∴ = .
11
全等三角形的六种基本模型
中考数学专题《全等三角形》
专题01 全等三角形一、单选题1.(2021·全国)在ABC V 中,B C ∠=∠,与ABC V 全等的三角形有一个角是100︒,那么在ABC V 中与这100︒角对应相等的角是( )A .A ∠B .BÐC .C ∠D .B Ð或C ∠2.(2021·山西襄汾县·七年级期末)如图,Rt △ABC 沿直角边BC 所在直线向右平移到Rt △DEF ,则下列结论中,错误的是( )A .BE EC =B .BC EF =C .AC DF =D .ABC DEF △≌△3.(2021·山西七年级期末)下列说法:①两个形状相同的图形称为全等图形;②边、角分别对应相等的两个多边形全等;③全等图形的形状、大小都相同;④面积相等的两个三角形全等.其中正确的是()A .①②③B .①②④C .①③D .②③4.(2021·哈尔滨市第四十七中学)如图,ABD BAC ∆∆≌,若AD BC =,则BAD ∠的对应角( )A .ADB ∠B .BCD ∠C .ABC ∠D .CDA ∠5.(2021·全国八年级课时练习)如图,,40,30ABD CDB ABD CBD ∠=︒∠=︒V V ≌,则C ∠等于( )A .20︒B .100︒C .110︒D .115︒6.(2021·重庆巴南区·)已知△ABC 的三边的长分别为3,5,7,△DEF 的三边的长分别为3,7,2x ﹣1,若这两个三角形全等,则x 的值是( )A .3B .5C .﹣3D .﹣57.(2021·大连市第三十四中学八年级月考)如图,ABC A B C '''≅V V ,其中36A ∠=︒,24C '∠=︒,则B ∠=( )A .150︒B .120︒C .90︒D .60︒8.(2021·全国七年级课时练习)如图,在ABC V 中,D ,E 分别是边AC ,BC 上的点,若ADB EDB EDC V V V ≌≌,则C ∠的度数为( )A .15︒B .20︒C .25︒D .30°9.(2021·甘肃榆中县·七年级期末)如图,90A B ∠=∠=︒,6AB =,E 、F 分别为线段AB 和射线BD 上的一点,若点E 从点B 出发向点A 运动,同时点F 从点B 出发向点D 运动,二者速度之比为1:2,运动到某时刻同时停止,在射线AC 上取一点G ,使AEG △与BEF V 全等,则AG 的长为( )A .2B .3C .2或3D .2或610.(2021·全国)如图,锐角△ABC 中,D 、E 分别是AB 、AC 边上的点,△ADC ≌△ADC ′,△AEB ≌△AEB ′,且C ′D //EB ′//BC ,BE 、CD 交于点F ,若∠BAC =α,∠BFC =β,则( )A .2α+β=180°B .2β﹣α=180°C .α+β=150°D .β﹣α=60°11.(2021·全国八年级课时练习)如图,AOB ADC △≌△,点B 和点C 是对应顶点,90O D ∠=∠=︒,记,,OAD ABO ABC ACB αβ∠=∠=∠=∠,当//BC OA 时,α与β之间的数量关系为( )A .αβ=B .2αβ=C .90αβ+=︒D .2180αβ+=︒12.(2021·河南川汇区·八年级期末)如图,点D ,E ,F 分别在ABC V 的边AB ,BC ,CA 上(不与顶点重合),设BAC α∠=,FED θ∠=.若BED CFE ≌△△,则α,θ满足的关系是( )A .90αθ+=︒B .2180αθ+=︒C .90αθ-=︒D .2180αθ+=︒第II 卷(非选择题)请点击修改第II 卷的文字说明二、填空题13.(2021·吉林铁西区·八年级期中)如图所示,ABC ECD ≌△△,48A ∠=︒,62D ∠=︒,则图中B Ð的度数是______度.14.(2021·全国八年级课时练习)如图,ABE ACD △≌△,且D ∠与E ∠是对应角,顶点C 与顶点B 对应,若10cm BE =,则CD =__________.15.(2021·全国)如图,长方形ABCD 沿AM 折叠,使D 点落在BC 上的N 点处,AD =7cm ,DM =5cm ,∠DAM =39°,则△ANM ≌△ADM ,AN =_____cm ,NM =_____cm ,∠NAB =_______.17.(2021·浙江东阳市·七年级期末)如图,把一张长方形纸板裁去两个边长为3cm的小正方形和两个全等的小长方形,再把剩余部分(阴影部分)四周折起,恰好做成一个有底有盖的长方体纸盒,纸盒底面长方形的长为3k cm,宽为2k cm,则(1)裁去的每个小长方形面积为___cm2;(用k的代数式表示)(2)若长方体纸盒的表面积是底面积的正整数倍,则正整数k的值为___.18.(2021·山东莱州市·七年级期末)三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数等于_______.19.(2021·辽宁本溪市·七年级期末)如图,∠A=∠B=90°,AB=80,点E和点F分别为线段AB和射线BD上的一点,若点E从点B出发向点A运动,同时点F从点B出发向点D运动,点E和点F运动速度之比为2:3,运动到某时刻点E和点F同时停止运动,在射线AC 上取一点G,使△AEG与△BEF全等,则AG的长为________.20.(2021·全国)如图,在△ABC中,AB=AC=24厘米,∠B=∠C,BC=16厘米,点D为AB的中点,点P 在线段BC 上以4厘米/秒的速度由B 点向C 点运动,同时,点Q 在线段CA 上由C 点向A 点运动.当点Q 的运动速度为________厘米/秒时,能够在某一时刻使△BPD 与△CQP 全等.三、解答题21.(2021·全国八年级课时练习)已知:如图,,8cm,5cm ABC DEF BC EC ==V V ≌,求线段CF 的长.22.(2020·铜陵市第二中学八年级月考)如图,ABF V ≌CDE △,已知30B ∠=︒,25DCF ∠=︒,求EFC ∠的度数.23.(2021·河南邓州市·七年级期末)我们已经认识了图形的轴对称、平移和旋转,这是图形的三种基本变换,图形经过这样的变换,虽然位置发生了改变,但图形的形状与大小都不发生变化,反映了图形之间的全等关系.这种运用动态变换研究图形之间的关系的方法,是一种重要而且有效的方法.同学们学完了这些知识后,王老师在黑板上给大家出示了这样的一道题目:(1)如图,△ACB 和△DCE 均为等边三角形,点A 、D 、E 在同一直线上,连接BE .试说明AD =BE ;聪明的小亮很快就找到了解决该问题的方法:请你帮小亮把说理过程补充完整.解:∵△ACB 和△DCE 均为等边三角形,∴CA =CB ,CD =CE ,∠ACB =∠DCE =60°,(等边三角形的性质)∴∠ACD = (等式的性质)∴△ACD 绕点C 按逆时针方向旋转 度,能够与 重合∴△ACD ≌ (旋转变换的性质)∴AD =BE ( );(2)当同学们把这道题领会感悟后,王老师又在上题基础上追加了一问:试求∠AEB 的度数.聪明的同学们你会解决吗?请写出你的求解过程.(此题不用写推理依据即可). 24.(2021·全国八年级课时练习)如图,,ABF CDE B ∠V V ≌和D ∠是对应角,AF 和CE 是对应边.(1)写出ABF V 和CDE △的其他对应角和对应边;(2)若30,40B DCF ∠=︒∠=︒,求EFC ∠的度数;(3)若10,2BD EF ==,求BF 的长.25.(2021·河南伊川县·七年级期末)如图,点A、B、C、D在同一直线上,△ACE≌△DBF,AD =8,BC=2.(1)求AC的长;(2)求证:CE∥BF,AE∥DF.⊥于点B,26.(2021·辽宁铁西区·)如图,点B,C,E,F在同一直线上,AB BCCE=.BC=,3DEF ABCV V≌,且6(1)求CF的长;(2)判断DE与EF的位置关系,并说明理由.27.(2021·浙江浙江省·八年级期末)如图,已知正方形ABCD 边长为4cm ,动点M 从点C 出发,沿着射线CD 的方向运动,动点P 从点B 出发,沿着射线BC 的方向运动,连结,BM DP ,(1)若动点M 和P 都以每秒2cm 的速度运动,问t 为何值时DPC △和BCM V 全等?(2)若动点P 的速度是每秒3cm ,动点M 的速度是每秒1.5cm 问t 为何值时DPC △和BCM V 全等?28.(2020·浙江浙江省·)在56⨯的方格纸中,每格的边长为1,请按下列要求画图.(1)在图1中画一个格点ADE V ,使ADE V 与ABC V 全等,且所画格点三角形的顶点均不与点B ,C 重合.(2)在图2中画一个面积为7的格点四边形ABCD ,且BAD ∠为锐角.29.(2021·云南盘龙区·七年级期末)如图,在平面直角坐标系中,O 为坐标原点,ABC V 的边BC 在x 轴上,A 、C 两点的坐标分别为()0,A m ,(),0C n ,()5,0B -,且()231230m n -+-=点P 从B 出发,以每秒1个单位的速度沿射线BO 匀速运动,设点P 运动时间为t .(1)点A 的坐标为 ;点C 的坐标为 ;(2)连接PA ,当POA V 的面积等于ABC V 的面积的一半时,求t 的值;(3)当P 在线段BO 上运动时,在y 轴上是否存在点Q ,使POQ △与AOC △全等?若存在,请直接写出Q 点坐标;若不存在,请说明理由.30.(2021·江苏姑苏区·苏州草桥中学七年级期末)如图,将一副三角板按如图所示的方式放置,其中ABC V 中,90ACB ∠=︒,45BAC ∠=︒,ADE V 中,90ADE ∠=︒,30DAE ∠=︒,AB AD =,点C 在线段AE 上.射线AB '从AB 出发,绕点A 以5︒/秒的速度顺时针旋转;同时,射线DA '从DA 出发,绕点D 顺时针旋转.设射线AB '运动的时间为t 秒(09t <≤),AB '与BC 交于点M ,DA '与AB '交于点N .(1)若射线DA '旋转的速度为5︒/秒,则AND ∠=________︒;(2)设射线DA '旋转的速度为x ︒/秒,当射线AB '与DA '旋转到某处时,ABM V 与AND △全等,求相应的t 、x 的值.。
中考压轴全等三角形问题综合(解析版)
中考压轴:全等三角形问题综合(解析版)一、单选题1.如图,在四边形ABCD中,AD//BC,D90,AD8,BC6,分别以点A,C1为圆心,大于AC长为半径作弧,两弧交于点E,作射线BE交AD于点F,交AC于点O.若2点O是AC的中点,则CD的长为()A.4 2 B.6 C.210 D.8【标准答案】A【思路点拨】连接FC,根据基本作图,可得OE垂直平分AC,由垂直平分线的性质得出AF=FC.再根据ASA证明△FOA≌△BOC,那么AF=BC=3,等量代换得到FC=AF=3,利用线段的和差关系求出FD=AD-AF=1.然后在直角△FDC中利用勾股定理求出CD的长.【详解详析】解:如图,连接FC,∵点O是AC的中点,由作法可知,OE垂直平分AC,∴AF=FC.∵AD∥BC,∴∠FAO=∠BCO.在△FOA与△BOC中,FAO=BCOO A=OC ,AOF=COB∴△FOA≌△BOC(ASA),∴AF=BC=6,∴FC=AF=6,FD=AD-AF=8-6=2.在△FDC中,∵∠D=90°,∴CD2+DF2=FC2,∴CD2+22=62,∴CD=42.故选:A.【名师指导】本题考查了作图-基本作图,勾股定理,线段垂直平分线的判定与性质,全等三角形的判定与性质,难度适中.求出CF与DF是解题的关键.2.如图,如图正方形ABCD内一点E,满足△CDE为正三角形,直线AE交BC于F点,过E点的直线GH AF,交AB于点G,交CD于点H.以下结论:①AFC105;AE EH 2②GH2EF;③2CE EF EH;④,其中正确的有()3A.①②③B.①③④C.①④D.①②③④【标准答案】A【思路点拨】根据等边三角形的性质求出CDE,然后求出ADE30,再根据等腰三角形的性质求出DAE75,然后求出BAF15,根据三角形的一个外角等于与它不相邻的两个内角的和求出AFC105,判断出①正确,过点H作HK AB,可得HK=AD,根据等角的余角相等求出ÐBAF=ÐKHG,再利用“角角边”证明ABF和DHKG,然后根据全等三角形对应边相等可得AF=GH,再根据等边三角形的性质,点E是AF的中点,从而得到GH2EF,判断出②正确;再求出ÐCEF=ÐCEH=45°,过点F作FM CE于M,过点H作HN^CE于N,解直角三角形分别用MF、CN表示出CE,可以得到MF=CN,再表示出CE,即可判AE定③正确;设MF=CN=x,表示出EF、EH,然后求出的值,判断出④错误.EH【详解详析】解:CDE为正三角形,CDE60,\ÐADE=90°-60°=30°,Q AD=DE=CD,1\ÐDAE=ÐDEA=(180°-30°)=75°,2\ÐBAF=90°-75°=15°,\ÐAFC=90°+15°=105°,故①正确;过点H作HK AB,则HK=AD,Q GH^AF,\ÐBAF+ÐAGE=90°,又QÐAGE+ÐKHG=90°,\ÐBAF=ÐKHG,在ABF和DHKG中,ìïÐBAF=ÐKHGïïïíÐB=ÐHKG=90°,ïïïHK=ABïî\DABF@DHKG(AAS),\AF=GH,CDE为正三角形,点E在CD的垂直平分线上,根据平行线分线段成比例定理,点E是AF的中点,AF2EF,\GH=2EF,故②正确;Q GH^AF,ÐDEA=75°,\ÐDEH=90°-75°=15°,\ÐCEH=60°-15°=45°,\ÐCEF=90°-45°=45°,过点F作FM CE于M,过点H作HN^CE于N,则MF=EM,NH=EN,CDE是等边三角形,DCE60,\ÐECF=90°-60°=30°,\CM=3MF,NH=3CN,\CE=3MF+MF=3CN+CN,\MF=CN,2 2\CE=EF+EH,2 2,故③正确;2CE EF EHAE EFEH2MF3CN×3===,故④错误.EH 2 3综上所述,正确的结论是①②③.故选:A.【名师指导】本题考查了四边形综合题型,主要利用了正方形的性质,等边三角形的性质,全等三角形的判断与性质,解直角三角形,等腰直角三角形的判定与性质,作辅助线构造出全等三角形与等腰直角三角形是解题的关键.3.(2021·广东福田·一模)如图,在矩形ABCD中,AD2AB,BAD的平分线交BC于点E.DH AE于点H,连接BH并延长交CD于点F,连接DE交BF于点O,下列结论:①AD AE;②AED CED;③OE OD;④BH HF;⑤BC CF2HE,其中正确=的有()A.2个B.3个C.4个D.5个【标准答案】D【思路点拨】(1)由角的平分线的性质和平行线的性质可证AB BE,再结合勾股定理加以判断;(2)在(1)的基础上,结合等腰三角形的性质,通过计算加以判断;(3)可通过在△DOH和△EOH 中计算有关角度加以判断;(4)通过证明△BEH 与HDF能否全等加以判断;(5)在上述判断的基础上,结合线段的和或差加以判断.【详解详析】解:(1)∵AE 平分BAD,1∴BAE DAE BAD45. 2∵AD//BC,∴DAE AEB45.∴AEB BAE45.∴AE 2AB.AB BE.∵AD 2AB,∴AD AE.故①正确;(2)∵AD=AE,∠EAD=45°,1∴ADE AED 1804567.5. 2∴CED 1804567.567.5.∴AED CED.故②正确;BAEDAE(3)在△ABE 和AHD中,ABE AHD,AE ADAAS∴△ABE≌△AHD.∴BE DH.∴AB BE AH HD.∵AB AH,1∵AHB1804567.5,OHE AHB(对顶角相2等),∴∠OHE67.5∠AED.∴OE OH.∵DHO9067.522.5,ODH67.54522.5,∴DHO ODH.∴OH OD.∴OE OD OH.故③正确;(4)∵∠EBH9067.522.5,∴∠EBH∠OHD.EBH OHD22.5在△BEH和HDF中,BE DH ,AEB HDF45∴△BEH≌△HDF ASA.∴BH HF,HE DF.故④正确;(5)∵HE AE AH BC CD,BC CF BC CD∴DFBC CDHEBC CDHE HE HE2HE.故⑤正确.故选:D.【名师指导】本题考查了全等三角形的判定与性质、等腰三角形的判定与性质、勾股定理等知识点.对第一个结论的判断很重要,它是判断后续结论的基础;同时,紧紧围绕“由未知看需知,最后靠拢已知”的分析思路,寻找到解决问题的方法,应成为一种必备的能力.4.如图,在正方形ABCD中,点E是边BC的中点,连接AE、DE,分别交BD、AC于点P、Q,过点P作PF AE交CB的延长线于F,下列结论正确的有:()10①AP FP;②AE AO;③若四边形OPEQ的面积为4,则该正方形ABCD的面积为236;④CE EF EQDE.A.4个B.3个C.2个D.1个【标准答案】B【思路点拨】连接OE、AF,①利用四点共圆证明∠AFP=∠ABP=45°即可;②设BE=EC=a,求出AE,OA即可解决问题;③利用相似三角形的性质计算求得正方形ABCD的面积为48;④利用相似三角形的性质证明即可.【详解详析】解:如图,连接OE、AF∵四边形ABCD是正方形,∴AC BD,OA=OC=OB=OD,∴BOC=90,∵PF AE,∴APF=ABF=90,∴A,P,B,F四点共圆,∴AFP=ABP=45,∴PAF=PFA=45,∴PA=PF,故①正确,设BE=EC=a,则由勾股定理可得:AE5a,OA OC OB OD2a,AE AO 5a 2a 10 2 102∴ ,即 AEAO ,故②正确, 根据对称性可知, OPE ≌OQE ,1 ∴ SOEQS2,四边形OPEQ2 ∵OB OD ,BEEC ,∴CD2OE ,OE / /CD ,∴ OEQ ∽CDQEQ OE 12, DQ 2EQ∴DQ CD ∴ S ODQ 2SOEQ4,S CDQ4SOEQ8 ,∴ S CDO 12, ∴ S 正方形ABCD 4S CDO48,故③错误,∵EPF =DCE 90,PEFDEC ,∴EPF ∽ECD , EF PE ∴ , ED EC∵ EQPE ,∴CE • EF =EQ • DE ,故④正确, 故选 B 【名师指导】本题考查正方形的性质,全等三角形的判定和性质,相似三角形的判定和性质,四点共圆的 性质等知识,解题的关键是熟练掌握相关基本性质,并灵活运用所学知识解决问题. 5.如图,正方形 ABCD 的边长为 2 ,点 E 从点 A 出发沿着线段 AD 向点 D 运动(不与点 A , D 重合),同时点 F 从点 D 出发沿着线段 DC 向点C 运动(不与点 D ,C 重合),点 E 与点 F 的 运动速度相同. BE 与 AF 相交于点G , H 为 BF 中点、则有下列结论:①BGF 是定值;② FB 平分AFC ;5 ③当 E 运动到 AD 中点时,GH ; 212④当 AG BG 6 时,四边形GEDF 的面积是 其中正确的是( A .①②④ )B .①②③ D .②③④C .①③④ 【标准答案】C 【思路点拨】根据题意很容易证得△BAE ≌△ADF ,即可得到AF=BE ,利用正方形内角为90°,得出AF ⊥BE , 即可判断①;②假设 BF 平分∠AFC ,则角平分线的性质得到 BG=BC ,则 BG=AB ,又由 ∠BGA =90°,得到 AB >BG ,由此即可判断②;③先利用勾股定理求出 BF 的长,然后根据 直角三角形斜边的中线等于斜边的一半即可求解;④根据△BAE ≌△ADF ,即可得到 S 四边形2S VABG ,然后根据 时,得到AG GBAG22 AG GB GB 6,再2 AGGB 6GEDF1 2 1 AG GB . 2由 AG2BG 2 AB24 即可得到2AG GB 2 ,则 S VABG 【详解详析】证明:∵E 在 AD 边上(不与 A ,D 重合),点 F 在 DC 边上(不与 D ,C 重合), 又∵点 E ,F 分别同时从 A ,D 出发以相同的速度运动, ∴AE=DF ,∵四边形 ABCD 是正方形, ∴ AB DA ,BAE D 90o 在△BAE 和△ADF 中,AE DFBAE ADF 90 , AB DA∴△BAE ≌△ADF(SAS),∴∠1=∠2, ∵23 90 ∴13 90∴BGF 90,即AGB 90 ,o即∠BGF 是定值,故①正确;假设 BF 平分∠AFC , ∵四边形 ABCD 是正方形, ∴BC ⊥FC ,BC=AB ∵BG ⊥AF , ∴BG=BC , ∴BG=AB , 又∵∠BGA =90°, ∴AB >BG , ∴假设不成立, ∴②不正确;③当 E 运动到 AD 中点时,则 F 运动到 CD 中点, 1∴CFCD 1,2∴ 2 2 , BF BC CF5∵∠BGF =90°,H 为 BF 的中点1 5∴GHBF ,故③正确; 2 2④∵△BAE ≌△ADF , ∴ S △BAE =S △ADF ∴S SABG,GEDF 四边形 2∴当 AG GB 6 时,AG GB AG22 AGGB GB6,2 ∵ AG 2 BG 2 AB 24 , 2AG GB2 ,11 ∵ S VABG AGGB ,221∴S = 故④正确; GEDF 四边形 2 故选 C . 【名师指导】考查正方形的性质,全等三角形的判定与性质,勾股定理等,角平分线的性质,直角三角形斜边上的中线,掌握全等三角形的判定定理是解题的关键.6.如图,在正方形ABCD中,对角线AC,BD相交于点O,点E在DC边上,且CE=2DE,连接AE交BD于点G,过点D作DF⊥AE,连接OF并延长,交DC于点P,过点O作OQ⊥OP分别交AE、AD于点N、H,交BA的延长线于点Q,现给出下列结论:①∠AFO5=45°;②OG=DG;③DP2=NH•OH;④sin∠AQO=;其中正确的结论有()5A.①②③B.②③④C.①②④D.①②③④【标准答案】D【思路点拨】①由“ASA”可证△ANO≌△DFO,可得ON=OF,由等腰三角形的性质可求∠AFO=45°;②由“AAS”可证△OKG≌△DFG,可得GO=DG;AH HN③通过证明△AHN∽△OHA,可得,进而可得结论DP2=NH•OH;HO AHOG AG 5④由外角的性质可求∠NAO=∠AQO,由勾股定理可求AG,即可求sin∠AQO==.5 【详解详析】∵四边形ABCD是正方形,∴AO=DO=CO=BO,AC⊥BD,∵∠AOD=∠NOF=90°,∴∠AON=∠DOF,∵∠OAD+∠ADO=90°=∠OAF+∠DAF+∠ADO,∵DF⊥AE,∴∠DAF+∠ADF=90°=∠DAF+∠ADO+∠ODF,∴∠OAF=∠ODF,∴△ANO≌△DFO(ASA),∴ON=OF,∴∠AFO=45°,故①正确;如图,过点O作OK⊥AE于K,∵CE=2DE,∴AD=3DE,DE DF 1 ∵tan∠DAE=∴AF=3DF,,AD AF 3∵△ANO≌△DFO,∴AN=DF,∴NF=2DF,∵ON=OF,∠NOF=90°,1∴OK=KN=KF=FN,2∴DF=OK,又∵∠OGK=∠DGF,∠OKG=∠DFG=90°,∴△OKG≌△DFG(AAS),∴GO=DG,故②正确;∵∠DAO=∠ODC=45°,OA=OD,∠AOH=∠DOP,∴△AOH≌△DOP(ASA),∴AH=DP,∵∠ANH=∠FNO=45°=∠HAO,∠AHN=∠AHO,∴△AHN∽△OHA,AH HN∴,HO AH∴AH2=HO•HN,∴DP2=NH•OH,故③正确;∵∠NAO+∠AON=∠ANQ=45°,∠AQO+∠AON=∠BAO=45°,∴∠NAO=∠AQO,∵OG=GD,∴AO=2OG,∴AG= 2 2 =5OG,AO OGOG 5∴sin∠NAO=sin∠AQO=,故④正确,AG 5故选:D.【名师指导】本题考查了正方形的性质,全等三角形的判定和性质,锐角三角函数,等腰三角形的性质,相似三角形的判定和性质,灵活运用这些性质是解题关键.7.如图,AB=4,射线BM和AB互相垂直,点D是AB上的一个动点,点E在射线BM 上,2BE=DB,作EF⊥DE并截取EF=DE,连接AF并延长交射线BM于点C.设BE =x,BC=y,则y关于x的函数解析式是()12x 2x 3x 8xA.y=﹣B.y=﹣C.y=﹣D.y=﹣x 4 x 1 x 1 x 4【标准答案】A【思路点拨】作点F作FG⊥BC于G,依据已知条件求得△DBE≌△EGF,得出FG=BE=x,EG=DB =2x,然后证得△FGC∽△ABC,再根据相似三角形的性质即可求解.【详解详析】作点F作FG⊥BC于G,∵∠DEB+∠FEG=90°,∠DEB+∠BDE=90°;∴∠BDE=∠FEG,在△DBE与△EGF中,BFGEBDE FEG,DE EF∴△DBE≌△EGF(AAS),∴EG=DB,FG=BE=x,∴EG =DB =2BE =2x , ∴GC =y ﹣3x , ∵FG ⊥BC ,AB ⊥BC , ∴FG ∥AB , ∴△FGC ∽△ABC , ∴CG :BC =FG :AB ,x y 3x 即 = ,. 4 y 12x ∴y =﹣x 4故选 A . 【名师指导】本题考查了三角形全等的判定和性质及相似三角形的判定与性质,正确作出辅助线是解决问 题的关键.8.如图,△ACD 和△AEB 都是等腰直角三角形,CAD EAB 90 .四边形 ABCD 是平行四边形,下列结论中错误的有()①ACE 以点 A 为旋转中心,逆时针方向旋转90后与△ADB 重合, ②ACE 以点 A 为旋转中心,顺时针方向旋转 270后与△DAC 重合,③沿 AB 所在直线折叠后,ACE 与ADE 重合, ④沿 AD 所在直线折叠后,△ADB 与ADE 重合,⑤ACE 的面积等于△ABE 的面积.A .1 个B .2 个C .3 个D .4 个【标准答案】B 【思路点拨】由△ACD 和△AEB 都是等腰直角三角形,∠CAD =∠EAB =90°,易证得△ACE ≌△ADB , 即可得①正确;又由四边形 ABCD 是平行四边形,易证得△EAC ≌△EAD ,即可得 △ACE ≌△ADB ≌△ADE ,即可判定③④正确;由平行四边形的中心对称性,可得②错误,1 1 1 1 1又由S△ACE=S△ADB=AD×BH=AD•AC=AC2,S△ABE=AE•AB=AB2,AB>AC,即22 2 2 2可判定②错误.继而求得答案.【详解详析】解:①∵△ACD和△AEB都是等腰直角三角形,∠CAD=∠EAB=90°,∴AE=AB,AC=AD,∠EAC=∠BAD,在△ACE和△ADB中,AE AB∵EACBAD,AC AD∴△ACE≌△ADB(SAS),∴△ACE以点A为旋转中心,逆时针方向旋转90°(旋转角为∠EAB=90°)后与△ADB重合;故①正确;②∵平行四边形是中心对称图形,∴要想使△ACB和△DAC重合,△ACB应该以对角线的交点为旋转中心,顺时针旋转180°,即可与△DAC重合,故②错误;③∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BAC=∠ACD=45°,∴∠EAC=∠BAC+∠CAD=135°,∴∠EAD=360°﹣∠EAC﹣∠CAD=135°,∴∠EAC=∠EAD,在△EAC和△EAD中,AE AB∵EACEAD,AC AD∴△EAC≌△EAD(SAS),∴沿AE所在直线折叠后,△ACE与△ADE重合;故③正确;④∵由①③,可得△ADB≌△ADE,∴沿AD所在直线折叠后,△ADB与△ADE重合,故④正确;⑤过B作BH⊥AD,交DA的延长线于H,∵四边形ABCD是平行四边形,∴BH=AC,∵△ACE≌△ADB,1 1 1∵S△ACE=S△ADB=AD×BH=AD•AC=AC2,2 2 21 1∴S△ABE=AE•AB=AB2,AB>AC,2 2∴S△ABE>S△ACE;故⑤错误.故选:B.【名师指导】本题考查了等腰直角三角形的性质、全等三角形的判定与性质、平行四边形的性质、折叠的性质以及旋转的性质.注意数形结合思想的应用,证得△ACE≌△ADB≌△ADE是解此题的关键.9.如图,在平行四边形ABCD中,AD=2,AB=6,∠B是锐角,AE⊥BC于点E,F是AB的中点,连接DF,EF.若∠EFD=90°,则线段AE的长为()A.2 B.1 C. 3 D. 5【标准答案】D【思路点拨】延长EF交DA的延长线于Q,连接DE,设BE x,首先证明DQ DE x2,利用勾股定理构建方程即可求解.【详解详析】解:如图,延长EF交DA的延长线于Q,连接DE,设BE x,四边形 ABCD 是平行四边形,DQ / /BC ,Q BEF ,AFEB,AFQBFE ,QFA ≌EFB(AAS) , AQBEx,QF EF , EFD 90, DF QE ,DQ DEx 2 ,AEBC, BC / / AD ,AE AD,AEB EAD 90,AE 2 DE 2 AD 2 AB 2 BE 2 , (x 2) 24 6x ,2 解得: x 1, x 3(舍去)1 2 BE1,AE AB 2 BE 2 615故选:D . , 【名师指导】本题考查了平行四边形的性质、线段的垂直平分线的性质、勾股定理、全等三角形的判定与 性质,解题的关键是:掌握相关知识点,添加辅助线、构造全等三角形来解决问题. 10.如图,在△ABC 和△ADE 中,∠BAC=∠DAE =90°,AB=AC ,AD=AE ,点 C ,D ,E 在同一条直线上,连接 B ,D 和 B ,E .下列四个结论:①BD=CE , ②BD ⊥CE ,③∠ACE+∠DBC=30°,2 AB 2 .2 2AD④BE其中,正确的个数是()A.1 B.2 C.3 D.4【标准答案】B【思路点拨】①由AB=AC,AD=AE,利用等式的性质得到夹角相等,利用SAS得出三角形ABD与三角形ACE全等,由全等三角形的对应边相等得到BD=CE;②由三角形ABD与三角形ACE全等,得到一对角相等,再利用等腰直角三角形的性质及等量代换得到BD垂直于CE;③由等腰直角三角形的性质得到∠ABD+∠DBC=45°,等量代换得到∠ACE+∠DBC=45°;④由BD垂直于CE,在直角三角形BDE中,利用勾股定理列出关系式,等量代换即可作出判断.【详解详析】解:如图,①∵∠BAC=∠DAE=90°,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,∵在△BAD和△CAE中,AB=ACBAD=CAEA D=AE∴△BAD≌△CAE(SAS),∴BD=CE,故①正确;②∵△BAD≌△CAE,∴∠ABD=∠ACE,∵∠ABD+∠DBC=45°,∴∠ACE+∠DBC=45°,∴∠DBC+∠DCB=∠DBC+∠ACE+∠ACB=45°+45°=90°,∴∠BDC=90°,∴BD⊥CE,故②正确;③∵△ABC为等腰直角三角形,∴∠ABC=∠ACB=45°,∴∠ABD+∠DBC=45°,∵∠ABD=∠ACE∴∠ACE+∠DBC=45°,故③错误;④∵BD⊥CE,∴在Rt△BDE中,利用勾股定理得BE2=BD2+DE2,∵△ADE为等腰直角三角形,∴AE=AD,∴DE2=2AD2,∴BE 2=BD2+DE2=BD2+2AD2,在Rt△BDC中,BD BC,而BC2=2AB2,∴BD2<2AB2,2 AB2∴BE 2 2AD故④错误,综上,正确的个数为2个.故选:B.【名师指导】此题考查了全等三角形的判定与性质,勾股定理,以及等腰直角三角形的性质,熟练掌握全等三角形的判定与性质是解本题的关键.二、填空题111.如图,在平面直角坐标系中,点Q是一次函数y x4的图象上一动点,将Q绕点2C2,0顺时针旋转90到点P,连接PO,则PO PC的最小值_________.【标准答案】213.【思路点拨】1取D(2,-2),连接CD、DQ,作C′点与点C关于直线y x4对称,连接QC′,则由题2意可得△OCP≌△DCQ,CP=CQ=C′Q,所以当且仅当C′、Q、D共线时PO+PC=DQ+CQ=DQ+C′Q=DC′为最小.【详解详析】解:如图,取D(2,-2),则CD⊥x轴,即CD⊥OC且CD=OC=2,连结DQ,依题CQ顺时针旋转90得到CP,∴∠QCP=90°且CQ=CP,OC DC 2在△OCP 和△DCQ 中, OCP 90 DCP DCQCP CQ∴△OCP ≌△DCQ(SAS),∴OP=DQ ,1 作 C ′点与点 C 关于直线 y x 4对称,则有 CQ=C ′Q , 2∴CP=CQ=C′Q , 故 PO+PC=DQ+CQ=DQ+C ′Q ≥DC ′,当且仅当 C ′、Q 、D 共线时取等,由题意可以得到 A 、B 坐标分别为(0,4)、(8,0)设 C ′坐标为(x ,y ),则由 AC ′=AC ,BC ′=BC 可得: 2 y 4 20 2 x 2 x 8 y 2 36 22 24 解之可得 C ′为(2,0)( 与 C 同,舍去)或( , ), 5 52 2 22 24 2 ∴DC ′=2 5 5 2 2 12 34 2325 = = 2 13 5 5 5 ∴ PO PC 的最小值为 2 13 .故答案为 2 13 .【名师指导】本题考查一次函数的综合应用,方程组思想,一元二次方程的解法,构造全等三角形与轴对 称把 PO+PC 转化成 DQ+C ′Q 是解题关键.12.如图,平行四边形OABC 的顶点 A 在 x 轴的正半轴上,点 D(3, 2) 在对角线OB 上,反比k 15 例函数 y (k 0,x 0) 的图像经过 C 、D 两点,已知平行四边形OABC 的面积是 ,则点 B x 2的坐标为___.9【标准答案】2,3【思路点拨】过点B作BE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,过点C作CG⊥x轴,垂足15为G,则BE∥DF∥CG,根据平行四边形的性质,证明△COG≌△BAE,S△OAB= ,根据427反比例函数的性质,证明S△OCG=S△BAE=S△DOF=3,确定S△OEB= ,证明△ODF∽△OBE,根4据相似三角形面积之比等于相似比的平方计算即可.【详解详析】过点B作BE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,过点C作CG⊥x轴,垂足为G,则BE∥DF∥CG,∵四边形OABC是平行四边形,∴OC=AB,BC∥OA,∴CG=BE,∴△COG≌△BAE,∴S△OCG=S△BAE15∵平行四边形OABC的面积是,215∴S△OAB=,4k∵点D(3,2)在对角线OB上,反比例函数y(k0,x0)的图像经过C、D两点,x∴S△OCG=S△BAE=S△DOF=3,DF=2,OF=3,27∴S△OEB=,4∵BE∥DF,∴△ODF∽△OBE,DF BE 2742∴=3,32 2 3∴ , BE 即 BE=3,OF OE 2 3∴ ∴ , , 3 2 3OE 9 即 OE= , 29 ∴点 B 的坐标为( ,3). 29 故答案为:( ,3). 2【名师指导】本题考查了反比例函数的性质,平行四边形的性质,三角形相似的判定与性质,坐标与线段 的关系,三角形的全等,灵活构造辅助线,活用性质,证明三角形的相似是解题的关键.13.如图,在 Rt △ABC 中,∠BAC =90°,分别以 A ,B 为旋转中心,把边 AC ,BA 逆时针 旋转 60°,得到线段 AE ,BD ,连 接 BE ,CD 相交于点 P ,已 知 AB=3,AC=2 3 ,∠APB =120°, 则 PA+PB+PC 的大小为________.【标准答案】 39【思路点拨】连接 AD=CE ,利用旋转的性质得到△ABD 和△ACE 是等边三角形,可推出∠DAC=∠EAB , 利用 SAS 证明△ADC ≌△ABE ,利用全等三角形的性质可证得∠AEB=∠ACD ,可得到 ∠APF =60°,在 PE 上截取 PF=PA ,可推出△APF 是等边三角形,利用等边三角形的性质可 得到∠PAF =60°;再证明∠EAF=∠PAC ,可推出△AFE ≌△APC ,由此可证得 AP+BP+CP=BE ; 过点 E 作 EG ⊥BA ,交 BA 的延长线于点 G ,利用勾股定理求出 GE ,AG 的长,从而可求出 BG 的长,然后利用勾股定理求出 BE 的长,进而即可求解.【详解详析】连接 AD ,CE ,∵分别以A,B为旋转中心,把边AC,BA逆时针旋转60°,得到线段AE,BD,∴AB=BD,AE=AC,∠ABD=∠EAC=60°,∴△ABD和△ACE是等边三角形,∴∠DAC=∠EAB=90°+60°=150°,在△ADC和△ABE中AB BD∵DACEAB,AE AC∴△ADC≌△ABE(SAS)∴∠AEB=∠ACD,∵∠APB=120°,∴∠APF=60°,在PE上截取PF=PA,∴△APF是等边三角形,∴∠PAF=60°,∴∠EAF+∠BAP=150°-60°=90°,∠PAC+∠BAP=∠BAC=90°,∴∠EAF=∠PAC,∵AE=AC,∠AEB=∠ACD,∴△AFE≌△APC,∴PC=FE∴AP+BP+CP=PF+BP+FE=BE过点E作EG⊥BA,交BA的延长线于点G,∵∠GAE=180°-150°=30°,∵AE=AC=23,2 2∴GE=3,AG2333,∴BG=AB+AG=3+3=6,2∴BE 6 2 339,∴AP+BP+CP= 39 .故答案为: 39 .【名师指导】本题主要考查等边三角形的判定与性质,勾股定理,旋转的性质,三角形全等的判定和性质, 添加辅助线,构造全等三角形和等边三角形是解题的关键.14.黄金分割是指把一条线段分割为两部分,使较短线段与较长线段的比等于较长线段与 5 1 原线段的比,其比值等于 .如图,在正方形 ABCD 中,点 G 为边 BC 延长线上一动 2点,连接 AG 交对角线 BD 于点 H ,△ADH 的面积记为 S ,四边形 DHCG 的面积记为 S .如 1 2S 1 S 2果点 C 是线段 BG 的黄金分割点,则 的值为___. 3- 5 7 3 5 【标准答案】 【思路点拨】或 . 22 由 AD ∥BC ,得△DHG 的面积=△AHB 的面积,再由△AHB ≌△CHB (SAS ),得出 S = 2S 1 S 2 AD GB△GBH 的面积,然后证△ADH ∽△GBH ,得 =( ) 2 ,分两种情况:①点 C 是线段 BG 5 1 的黄金分割点,BC >CG ,则 BC = 3 5 BG ;②点 C 是线段 BG 的黄金分割点,BC <CG , 2则 BC = BG ;分别求解即可. 2【详解详析】解:∵四边形 ABCD 是正方形,∴AB =CB ,AD ∥BC ,∠ABH =∠CBH =45°,∴△ABD 的面积=△AGD 的面积,又∵BH =BH ,∴△AHB ≌△CHB (SAS ),∴△AHB 的面积=△DHG 的面积,∴S =△GBH 的面积,2 ∵AD ∥BC ,∴△ADH ∽△GBH ,S1 S2AD GB∴=()2,分两种情况:①点C是线段BG的黄金分割点,BC>CG,5 1则AD=BC=BG,2S1 ADGB 5 1 3-5∴=()2=()2=;S2 2 2②点C是线段BG的黄金分割点,BC<CG,3- 5则AD=BC=BG,2S1 ADGB 3- 5 73 5∴=()2=()2=;S2 2 2综上所述,如果点C是线段BG的黄金分割点,S1 3- 5 73 5则的值为或;S2 2 23- 5 73 5故答案为:或.2 2【名师指导】本题考查了黄金分割的定义、正方形的性质、相似三角形的判定与性质以及三角形面积等知识;熟练掌握黄金分割的定义和相似三角形的判定与性质是解题的关键.15.如图,在Rt ABC中,ABC90,AB5,BC8,点P是射线BC上一动点,连接AP,将ABP沿AP折叠,当点B的对应点B落在线段BC的垂直平分线上时,BP的长等于__________.5【标准答案】或10.2【思路点拨】①如图1,当点P在线段BC上时,②如图2,当点P在BC的延长线上时,过A,C分别作AD∥BC,CD∥AB两线交于D,得到四边形ABCD是矩形,求得AD=BC=8,过B′作B′F⊥BC于F,反向延长FB′交AD于E,根据勾股定理即可得到结论.【详解详析】解:①如图 1,当点 P 在线段 BC 上时,过 A ,C 分别作 AD ∥BC ,CD ∥AB 两线交于 D , 则四边形 ABCD 是矩形,∴AD=BC=8, 过 B′作 B′F ⊥BC 于 F ,反向延长 FB′交 AD 于 E , 则 AD ⊥EF ,∵点 B'落在线段 BC 的垂直平分线上,1∴AE=BF= BC=4,2 ∵将△ABP 沿 AP 折叠得到△AB′P ,∴AB′=AB=5,PB=PB′,∴EB′=3, ∴B′F=2,∴PF=4-PB ,∵ PB '2PF 2 B ' F 2 , ∴ BP 2 (4 BP) 2 2 , 2 5 解得: BP . 2②如图 2,当点 P 在 BC 的延长线上时, 过 A ,C 分别作 AD ∥BC ,CD ∥AB 两线交于 D , 则四边形 ABCD 是矩形,∴AD=BC=8, 过 B′作 B′F ⊥BC 于 F ,反向延长 FB′交 AD 于 E , 则 AD ⊥EF ,∵点 B'落在线段 BC 的垂直平分线上,1 ∴AE=BF= BC=4,2 ∵将△ABP 沿 AP 折叠得到△AB′P ,∴AB′=AB=5,PB=PB′,∴EB′=3, ∴B′F=8,∴PF=PB-4,∵ PB '2PF 2 B ' F 2 , ∴ BP (BP 4) 2 2 8 2 .解得:BP=10;5 综上所述,BP 的长等于 或 10, 25故答案为:或10.2【名师指导】本题考查了翻折变换(折叠问题),矩形的性质、勾股定理,线段的垂直平分线的性质,作出恰当的辅助线是解题的关键.16.如图,在边长为4的正方形ABCD中,点E、F分别是BC、CD的中点,DE、AF交8于点G,AF的中点为H,连接BG、DH.给出下列结论:①AF DE;②DG;③HD//BG;5④ABG DHF.其中正确的结论有________.(请填上所有正确结论的序号)【标准答案】①④【思路点拨】证明△ADF≌△DCE,再利用全等三角形的性质结合余角的性质得到∠DGF=90°,可判断①,再利用三角形等积法AD×DF÷AF可算出DG,可判断②;再证明∠HDF=∠HFD=∠BAG,求出AG,DH,HF,可判定ABG DHF,可判断④;通过AB≠AG,得到∠ABG和∠AGB 不相等,则∠AGB≠∠DHF,可判断③.【详解详析】解:∵四边形ABCD为正方形,∴∠ADC=∠BCD=90°,AD=CD,∵E和F分别为BC和CD中点,∴DF=EC=2,∴△ADF≌△DCE(SAS),∴∠AFD=∠DEC,∠FAD=∠EDC,∵∠EDC+∠DEC=90°,∴∠EDC+∠AFD=90°,∴∠DGF=90°,即DE⊥AF,故①正确;1∵AD=4,DF=CD=2,2∴AF= 2 2 ,422 54 5∴DG=AD×DF÷AF=,故②错误;5∵H为AF中点,1∴HD=HF=AF=5,2∴∠HDF=∠HFD,∵AB∥DC,∴∠HDF=∠HFD=∠BAG,8 5∵AG= 2 2 ,AB=4,AD DG5AB AB45AG∴,DH HF 5 DF∴ABG DHF,故④正确;∴∠ABG=∠DHF,而AB≠AG,则∠ABG和∠AGB不相等,故∠AGB≠∠DHF,故HD与BG不平行,故③错误;故答案为:①④.【名师指导】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,三角形的高,直角三角形斜边中线定理,知识点较多,有一定难度,解题时注意利用线段关系计算相应线段的长.17.如图,把矩形ABCD沿EF对折,使B与D重合,折痕EF交BD于G,连AG,若7tan AGE,BF8,P为DG上一个动点,则PF PC的最小值为________ 3【标准答案】10【思路点拨】先根据折叠的性质、三角形全等的判定定理与性质可得EF BD,BG DG,DE BF,EG FG,从而可得点E与点F关于BD对称,再根据两点之间线段最短得出PF PC的最小值为CE的长,过点A作AH BD于点H,根据平行线的性质、正切三角函数可得GH AH 7tan GAH,从而设GH7a,AH3a,再根据平行线分线段成比例定理分别3可求出AE的长,然后利用正切三角函数值可求出AB的长,从而可得CD的长,由此即可得出答案.【详解详析】如图,连接PE、CE,过点A作AH BD于点H由折叠的性质可知,BG DG,BGE DGE90四边形ABCD是矩形AD BC,AB CD,AD//BC,BAD ADC90EDG FBGEDGFBG在△DEG和BFG中,DG BGDGE BGFDEGBFG(ASA)DE BF8,EGFG点E与点F关于BD对称,即BD垂直平分EFPE PFPF PC PEPC由两点之间线段最短可知,当C,P,E三点共线时,PE PC取得最小值,最小值为CEAH BD,即AHG90AH//EGGAH AGE7tan AGE3GH AH 7在Rt AHG中,tan GAH3设 AH 3a(a 0) ,则GH7aAG AH BGDG2 GH4a2点 G 是矩形 ABCD 对角线的交点BG DG AG 4a , DHDG HG (47)aAH//EGDG DE4a 8 ,即HG AE7a AE 解得 AE2 7AD DE AE 82 7tan ADH AH 3a 3在 RtADH 中,DH (4 7)a 4 7AB AB AD 8 2 7在 Rt △ABD 中, tanADBAB 382 7 4 7解得 AB6CDAB6在 Rt △CDE 中, 2 2 22 CE DECD8 610则 PF PC 的最小值为 10故答案为:10.【名师指导】本题是一道较难的综合题,考查了矩形的性质、正切三角函数、平行线分线段成比例定理、 折叠的性质等知识点,利用折叠的性质、两点之间线段最短得出 PF PC 取得最小值时,点P 的位置是解题关键.18.如图,正方形 ABCD 的边长为 1,点 E ,F 分别为 BC ,CD 边的中点,连接 AE ,BF 1交于点 P ,连接 PD ,则下述结论:①AE ⊥BF ;②tan ∠DAP = ;③DA =DP ;④FD =FP 2 中,一定成立的有_____.【标准答案】①③【思路点拨】连接AF,根据正方形的性质和已知条件证明Rt ABE Rt BCF,进而可以判断①;结合①证明A、P、F、D四点共圆,根据圆周角定理可以判断③,根据锐角三角函数可以判断②,根据DA DP,只有当DA AP时,FD FP,进而可以判断④.【详解详析】解:连接AF,E,F分别是正方形ABCD边BC,CD的中点,ADCF BE,2,DF在ABE和BCF中,AB BCABE C,BE CFRt ABE Rt BCF(SAS),BAE CBF,又BAE BEA90,CBF BEA90,BPE APF90,AE BF,故①正确;APF90,ADF APF180,A、P、F、D四点共圆,AFD DPA,DAF DPF,DAB APF90,BAEDAF,DAP DPA ,DA DP,故③正确;DAP DPA AFD,ADtan DAP tan AFD2,故②错误;DFDA DP,只有当DA AP时,FD FP,故④不一定正确.故①③.故答案为:①③.【名师指导】本题考查了正方形的性质,全等三角形的判定与性质,解直角三角形,圆周角定理,解决本题的关键是综合运用以上知识.19.如图,在四边形ABCD中,B C45,P是BC上一点,PA PD,APD90,AB CD______.BC2【标准答案】2【思路点拨】通过等腰直角三角形构建一线三等角模型求解即可.【详解详析】解:如图所示,分别过A、D作AE BC于E,DF BC于F∴AEP DFP90∴APE PAE 90,DPF PDF 90∵APD 90∴∠APE ∠DPF90∴APE DPF ,PAEDPF在△AEP与△DFP中APEDPFPA PDPAE DPF∴△AEP △DPFASA∴AE PF,PE DFC 45,FDC C45,DF FC PE,在Rt△ABE 中,B45∴ 2 2AB BE AE 2BE2AE同理可得:CD 2CF 2DFAB CD 2BE 2CF 2BECF2BECF 2∴BC BE PE PFCF22故答案为:.2【名师指导】本题考察特殊的直角三角形,灵活运用一线三等角模型及特殊直角三角形三边关系是解题的关键.20.如图,点P在以MN为直径的半圆上运动,(点P与M,N不重合)PQ MN,NE平分MNP,交PM于点E,交PQ于点F.PF PE___________________.(1)PQ PMMQ(2)若PN 2 PM MN,则___________________.NQ5 1【标准答案】12【思路点拨】(1)过E作GE MN于G,可得NGE90,根据圆周角的性质可得MPN90,又NE平分MNP,根据角平分线的性质可得PE GE;由PNE MNE,PNE PEN90,MNE QFN90,且QFN PFE,根据“等角的余角相等”可得PEN PFE,再根据等腰三角形的性质“等角对等边”可得PE PF,即有GE PF;由PQ MN,GE MN,EM GE可得GE//PQ,从而可得在PMQ中有,将EM PM PE、PE GE、GE PFPM PQPM PF PF PF PE代入可得,,既而可求得的值.PM PQ PQ PM【详解详析】(1)如图所示,过E作GE MN于G,则NGE90,∵MN为半圆的直径,∴MPN90,又∵NE平分MNP,NGE90,∴PE GE.∵NE平分MNP,∴PNE MNE,∵EPN FQN90,∴PNE PEN90,MNE QFN90,又QFN PFE,∴PNE PEN90,MNE PFE90,又∵PNE MNE,∴PEN PFE,∴PE PF,又∵PE GE,∴GE PF.∵PQ MN,GE MN,∴GE//PQ,EMGE ∴在 PMQ中, , PMPQ又∵ EMPMPE ,PM PE GE∴, PM PQPM PE GE PM PF PF∴将GEPF , PEPF ,代入PF PEPM PF PF ∴得, , PM PQ PM PQ1, PQ PM PM PMPF PE即1.PQ PM(2)∵PNQ MNP , NQPNPM ,∴NPQ ∽NMP ,PNQN ∴ , MNPN∴ PN ∵ PN2QN MN ,PM MN ,2∴ PM QN ,MQ MQ∴, NQ PMMQ PM ∵cosM, PMMNMQ PM ∴ ∴ , NQ MN MQ NQ NQMQ NQMQNQ 2 MQNQ∴ NQ2MQ 2MQ NQ ,即1 , 2MQ NQ设 x ,则 x 5 12 x 10,5 1 解得: x,或 x 0(舍去), 22MQ 5 1∴, NQ故答案为:【名师指导】25 1. 2本题综合考查了圆周角的性质、角平分线的性质、等腰三角形的性质、平行线分线段成比例的性质等知识.(1)中解题的关键是利用角平分线的性质和等腰三角形的性质求得GE PF,EM GEPE PF,再通过平行线分线段成比例的性质得到,进行等量代换和化简后即可PM PQ得解.三、解答题21.如图,在ABC中,AC BC12,ACB120,点D是AB边上一点,连接CD,以CD 为边作等边△CDE.(1)如图1,若CDB45,求等边△CDE的边长;(2)如图2,点D在AB边上移动过程中,连接BE,取BE的中点F,连接CF,DF,过点D作DG AC于点G.①求证:CF^DF.②如图3,将CFD沿CF翻折得CFD,连接BD,求出BD的最小值.【标准答案】(1)62;(2)①见详解;②BD的最小值为6【思路点拨】(1)过点C作CH⊥AB于点H,由等腰三角形的性质和直角三角形的性质可得∠A=∠B=30°,AH=BH=63,CH=6,由∠CDB=45°,可得CD=2CH,进而即可求解;(2)①延长BC到N,使CN=BC,由“SAS”可证△CEN≌△CDA,可得EN=AD,∠N=∠A1=30°,由三角形中位线定理可得CF∥EN,CF=EN,可得∠BCF=∠N=30°,可证DG=CF,2DG∥CF,即可证四边形CFDG是矩形,可得结论;②由“SAS”可证△EFD≌∠BFD',可得BD'=DE=CD,则当CD取最小值时,BD有最小值,即可求解.【详解详析】解:(1)如图1,过点C作CH⊥AB于点H,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中考数学试题专题汇编:全等三角形一、选择题1. (2011安徽芜湖,6,4分)如图,已知ABC △中,45ABC ∠=, F 是高AD 和BE 的交点,4CD =,则线段DF 的长度为( ). A .22B . 4C .32D .42【答案】B2. (2011山东威海,6,3分)在△ABC 中,AB >AC ,点D 、E 分别是边AB 、AC 的中点,点F 在BC 边上,连接DE ,DF ,EF .则添加下列哪一个条件后,仍无法判定△BFD 与△EDF 全等( ). A . EF ∥A BB .BF =CFC .∠A =∠DFED .∠B =∠DFE【答案】C3. (2011浙江衢州,1,3分)如图,OP 平分,MON PA ON ∠⊥于点A ,点Q 是射线OM 上的一个动点,若2PA =,则PQ 的最小值为( )A.1B.2C.3D. 4【答案】B*1. (2011江西,16,3分)如图所示,两块完全相同的含30°角的直角三角形叠放在一起,且∠DAB=30°。
有以下四个结论:①AF ⊥BC ;②△ADG ≌△ACF ; ③O 为BC 的中点; ④AG :DE =3:4,其中正确结论的序号是 .(第6题) AONM QP**2. (2011广东湛江19,4分)如图,点,,,B C F E 在同一直线上, 12∠=∠,BC FE =,1∠ (填“是”或“不是”) 2∠的对顶角,要使ABC DEF ∆≅∆,还需添加一个条件,这个条件可以是 (只需写出一个).【答案】AC DF =三、解答题*2. (2011山东菏泽,15(2),6分)已知:如图,∠ABC =∠DCB ,BD 、C A 分别是∠ABC 、∠DCB 的平分线.求证:AB =DC证明:在△ABC 与△DCB 中(A B C D CB AC BD B C B C B C ∠=∠⎧⎪∠=∠⎨⎪=⎩已知)(公共边)(∵AC 平分∠BCD ,BD 平分∠ABC )∴△ABC ≌△DCB∴AB =DC3. (2011浙江省,19,8分)如图,点D ,E 分别在AC ,AB 上. (1) 已知,BD =CE ,CD=BE ,求证:AB=AC ; (2) 分别将“BD=CE ”记为①,“CD=BE ” 记为②,“AB=AC ”记为③.添加条件①、③,以②为结论构成命题1,添加条件②、③以①为结论构成命题2.命题1是命题2的 命题,命题2是 命题.(选择“真”或“假”填入空格).【答案】(1) 连结BC ,∵ BD=CE ,CD=BE ,BC=CB . ∴ △DBC ≌△ECB (SSS ) ∴ ∠DBC =∠ECB ∴ AB=AC(2) 逆, 假;6. (2011江苏连云港,20,6分)两块完全相同的三角形纸板ABC 和DEF ,按如图所示的方式叠放,阴影部分为重叠部分,点O 为边AC 和DF 的交点.不重叠的两部分△AOF 与△DOC 是否全等?为什么?【答案】解:全等 .理由如下:∵两三角形纸板完全相同,∴BC =BF ,AB =BD ,∠A =∠D ,∴AB -BF =BD -BC ,即AF =DC .在△AOF 和△DOC 中,∵AF =DC ,∠A =∠D ,∠AOF =∠DOC ,∴△AOF ≌△DOC (AAS ). 10.(2011四川内江,18,9分)如图,在Rt △ABC 中,∠BAC=90°,AC=2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板如图放置,使三角板斜边的两个端点分别与A 、D 重合,连结BE 、EC .试猜想线段BE 和EC 的数量及位置关系,并证明你的猜想.【答案】BE=EC ,BE ⊥EC∵AC=2AB ,点D 是AC 的中点 ∴AB=AD=CD∵∠EAD=∠EDA=45° ∴∠EAB=∠EDC=135° ∵EA=ED∴△EAB ≌△EDC∴∠AEB=∠DEC ,EB=ECABCDE∴∠BEC=∠AED=90°∴BE=EC ,BE ⊥EC**13. 在△ABC 中,∠ACB =90o,AC =BC,直线MN 经过点C,且AD ⊥MN 于D,BE ⊥MN于E.⑴当直线MN 绕点C 旋转到图⑴的位置时,求证: DE =AD +BE ⑵当直线MN 绕点C 旋转到图⑵的位置时,求证: DE =AD -BE;⑶当直线MN 绕点C 旋转到图⑶的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.*2.(2010四川 巴中)如图2 所示,AB = AC ,要说明△ADC ≌△AEB ,需添加的条件不能..是()A .∠B =∠CB. AD = AEC .∠ADC =∠AEB D. DC = BE 【答案】D *5.(2010贵州铜仁)如图,△ABC ≌△DEF ,BE=4,AE=1,则DE 的长是( )A .5B .4C .3D .2【答案】A*1.(2010 天津)如图,已知AC FE =,BC DE =,点A 、D 、B 、F 在一ABCED 图2条直线上,要使△ABC ≌△FDE ,还需添加一个..条件, 这个条件可以是 .【答案】C E ∠=∠(答案不惟一,也可以是AB FD =或AD FB =)***2.(2010江苏南通)(本小题满分8分)如图,已知:点B 、F 、C 、E 在一条直线上,FB =CE ,AC =DF .能否由上面的已知条件证明AB ∥ED ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件.......,添加到已知条件中,使AB ∥ED 成立,并给出证明. 供选择的三个条件(请从其中选择一个): ①AB =ED ; ②BC =EF ; ③∠ACB =∠DFE .【答案】解:由上面两条件不能证明AB//ED .有两种添加方法. 第一种:FB =CE ,AC =DF 添加 ①AB =ED证明:因为FB =CE ,所以BC =EF ,又AC =EF ,AB =ED ,所以ABC ≅DEF 所以∠ABC =∠DEF 所以AB//ED第二种:FB =CE ,AC =DF 添加 ③∠ACB =∠DFE证明:因为FB =CE ,所以BC =EF ,又∠ACB =∠DFE AC =EF ,所以ABC ≅DEF 所以∠ABC =∠DEF 所以AB//ED*6.(2010福建宁德)如图,已知AD 是△ABC 的角平分线,在不添加任何辅助线的前提下,AB DEFC(第25题)第(13)题ACD BEF要使△AE D ≌△AFD ,需添加一个条件是:_______________,并给予证明.【答案】解法一:添加条件:AE =AF ,证明:在△AED 与△AFD 中,∵AE =AF ,∠EAD =∠FAD ,AD =AD , ∴△AED ≌△AFD (SAS ). 解法二:添加条件:∠EDA =∠FDA ,证明:在△AED 与△AFD 中,∵∠EAD =∠FAD ,AD =AD ,∠EDA =∠FDA∴△AED ≌△AFD (ASA ).****12.(2010四川 泸州)如图4,已知AC ∥DF ,且BE =CF .(1)请你只添加一个..条件,使△ABC ≌△DEF ,你添加的条件是 ; (2)添加条件后,证明△ABC ≌△DEF.【答案】(1)添加的条件是AC =DF (或AB ∥DE 、∠B =∠DEF 、∠A =∠D )(有一个即可)(2)证明:∵AC ∥DF ,∴∠ACB =∠F ,∵BE=CF ,∴BC =EF ,在△ABC 和△DEF 中,ACB F AC DF BC EF ===⎧⎪⎨⎪⎩∠∠ ,∴△ABC ≌△DEF. *13.(2010 甘肃)(8分)如图,BAC ABD ∠=∠.(1)要使OC OD =,可以添加的条件为: 或 ;(写出2个符合题意的条件即可)(2)请选择(1)中你所添加的一个条件,证明OC OD =.B DC AEFDOCBA【答案】解:(1)答案不唯一. 如C D ∠=∠,或ABC BAD ∠=∠,或OAD OBC ∠=∠,或AC BD =. ……4分说明:2空全填对者,给4分;只填1空且对者,给2分. (2)答案不唯一. 如选AC BD =证明OC=OD.证明: ∵ BAC ABD ∠=∠,∴ OA=OB. ……………………6分 又 AC BD =,∴ AC-OA=BD-OB ,或AO+OC=BO+OD.∴ OC OD =. ……………………8分18.(2010广西南宁)如图10,已知ADE Rt ABC Rt ∆≅∆,︒=∠=∠90ADE ABC ,BC 与DE 相交于点F ,连接EB CD ,.(1)图中还有几对全等三角形,请你一一列举;(2)求证:EF CF =.【答案】(1)ABE ADC ∆≅∆,EBF CDF ∆≅∆ 2分 (2)证法一:连接CE 3分∵ADE Rt ABC Rt ∆≅∆∴AE AC = 4分 ∴AEC ACE ∠=∠ 5分 又∵ADE Rt ABC Rt ∆≅∆∴AED ACB ∠=∠ 6分 ∴AED AEC ACB ACE ∠-∠=∠-∠即DEC BCE ∠=∠ 7分DO CBA∴EF CF = 8分 证法二:∵ADE Rt ABC Rt ∆≅∆∴EAD CAB AB AD AE AC ∠=∠==,,, ∴DAB EAD DAB CAB ∠-∠=∠-∠即EAB CAD ∠=∠ 3分 ∴)(SAS AEB ACD ∆≅∆ 4分∴ABE ADC EB CD ∠=∠=, 5分 又∵ABC ADE ∠=∠∴EBF CDF ∠=∠ 6分 又∵BFE DFC ∠=∠∴)(AAD EBF CDF ∠≅∠ 7分 ∴EF CF = 8分 证法三:连接AF 3分∵ADE Rt ABC Rt ∆≅∆∴︒=∠=∠==90,,ADE ABC DE BC AD AB 又∵AF AF =∴)(HL ADF Rt ABF Rt ∆≅∆ 5分 ∴DF BF = 6分 又∵DE BC =∴DF DE BF BC -=- 7分即EF CF = 8分22.(2010湖南娄底)如图10,在四边形ABCD 中,AD ∥BC ,E 为CD 的中点,连结AE 、BE ,BE ⊥AE ,延长AE 交BC 的延长线于点F .求证:(1)FC =AD ; (2)AB =BC +AD【答案】解:(1)因为E 是CD 的中点,所以DE=CE.因为AB//CD ,所以∠ADE=∠FCE ,∠DAE=∠CFE.所以△ADE ≌△FCE.所以FC=AD.(2)因为△ADE ≌△FCE ,所以AE=FE.又因为BE ⊥AE ,所以BE 是线段AF 的垂直平分线,所以AB=FB.因为FB=BC+FC=BC+AD.所以AB==BC+AD.5、(2009年衡阳市)如图2所示,A 、B 、C 分别表示三个村庄,AB=1000米,BC=600米,AC=800米,在社会主义新农村建设中,为了丰富群众生活,拟建一个 文化活动中心,要求这三个村庄到活动中心的距离相等,则活动中心P 的位置应在( ) A .AB 中点 B .BC 中点 C .AC 中点 D .∠C 的平分线与AB 的交点 9、(2009年湖北十堰市)下列命题中,错误的是( ).A .三角形两边之和大于第三边B .三角形的外角和等于360°C .三角形的一条中线能将三角形面积分成相等的两部分D .等边三角形既是轴对称图形,又是中心对称图形*12、(2009年广西钦州)如图,在等腰梯形ABCD 中,AB =DC ,AC 、BD 交于点O ,则图中全等三角形共有( ) A .2对 B .3对C .4对D .5对【形AB C D O18、(2009河池)如图,在Rt △ABC 中,90∠=A ,AB =AC =86,点E 为AC 的中点,点F 在底边BC 上,且⊥FE BE ,则△CEF 的面积是( )A . 16B . 18C . 66D . 76*25、 (2009陕西省太原市)如果三角形的两边分别为3和5,那么连接这个三角形三边中点,所得的三角形的周长可能是( )A CB 图2 CBFAEA .4B .4.5C .5D .5.5*28、(2009年牡丹江市)尺规作图作AOB ∠的平分线方法如下:以O 为圆心,任意长为半径画弧交OA 、OB 于C 、D ,再分别以点C 、D 为圆心,以大于12CD 长为半径画弧,两弧交于点P ,作射线OP ,由作法得OCP ODP △≌△的根据是( ) A .SAS B .ASA C .AAS D .SSS*30、(2009年齐齐哈尔市)如图,为估计池塘岸边A B 、的距离,小方在池塘的一侧选取一点O ,测得15OA =米,OB =10米,A B 、间的距离不可能是( ) A .20米 B .15米 C .10米 D .5米31、(2009年台湾)图(三)、图(四)、图(五)分别表示甲、乙、丙三人由A 地到B 地的路线图。