专题一:恒成立与存在性问题(精简型)

合集下载

(完整版)恒成立存在性问题

(完整版)恒成立存在性问题

专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

恒成立问题与存在性问题(最新精华)

恒成立问题与存在性问题(最新精华)

恒成立问题与存在性问题思路一:(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,则不等式a x f >)(在区间D 上恒成立a x f >⇔min )(;不等式a x f ≥)(在区间D 上恒成立a x f ≥⇔min )(;不等式a x f <)(在区间D 上恒成立a x f <⇔max )(;不等式a x f ≤)(在区间D 上恒成立a x f ≤⇔max )(;(2)若函数在D 区间上不存在最小值min )(x f 和最大值max )(x f ,且值域为),(n m 则 不等式a x f >)(或))((a x f ≥在区间D 上恒成立a m ≥⇔;不等式a x f <)(或a x f ≤)(在区间D 上恒成立a n ≤⇔。

例题1:已知函数.ln )(x x x f =(1)求函数.ln )(x x x f =的最小值;(2)若对所有的1≥x 都有1)(-≥ax x f ,求实数a 的取值范围。

答案:(1)11min )()(---==e e f x f ;(2)]1,(-∞变式:设函数)1ln(2)1()(2x x x f +-+=(1)求函数)(x f 的单调区间;(2)若当]1,1[1--∈-e e x 时,不等式m x f <)(恒成立,求实数m 的取值范围;(3)若关于x 的方程a x x x f ++=2)(在区间]2,0[上恰有两个相异实根,求实数a 的取值范围。

答案:(1)递增区间是),0(+∞;递减区间是)0,1(-(2)22->e m(3))3ln 23,2ln 22(--思路二(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,即],[)(n m x f ∈则不等式有解的问题有下列结论:不等式a x f >)(在区间D 上有解max )(x f a <⇔;不等式a x f ≥)(在区间D 上有解max )(x f a ≤⇔;不等式a x f <)(在区间D 上有解min )(x f a >⇔;不等式a x f ≤)(在区间D 上有解min )(x f a ≥⇔。

专题恒成立存在性问题

专题恒成立存在性问题

1专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立(有解问题) 3函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥ 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤ 5、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥ 6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤ 7、设函数()x f 、()x g ,任意 []b a x ,1∈,任意[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f min max ≤练习题1、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为2、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

3、当()1,2x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .4、若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是________5、设函数⎥⎦⎤⎢⎣⎡∈≤⎥⎦⎤⎢⎣⎡∈++=1,4110)(,2,21,)(x x h a b x x a x h 在都有对任意上恒成立,求实数b 的取值范围。

恒成立、存在性问题

恒成立、存在性问题

9.(备选)设函数 f (x) a(log 2 x)2 b log4 x2 1( a,b 为常数), 当 x 0 时, F(x) f (x) ,且 F (x) 为 R 上奇函数. (1)若 f 1 0 且 f (x) 的最小值为 0 ,求 F (x) 的表达式;
2
专题——恒成立、存在性问题
恒成立问题的基本方法
(1)符号语言:对于任意 x D ,(D 为闭区间) f (x) a 恒成立 f(x)min>a;
(2)图象语言:函数 f (x) 的图像在 y a 的图象的上方
f (x) 图象的最低点在 y a 的图象的上方 f(x)min>a; (3)日常用语:每一个值都大于 a f(x)min>a.
(2)在(1)的条件下, g(x) f (x) k 1 在2,4上是单调 log 2 x
函数,求 k 的取值范围.
课后作业
1 .完成讲义剩余题目 2. 错题整理
对任意的 x1, x2 0,1都有 f (x1) x2 24 m x 1, g x mx ,
若对于任一实数 x , f (x) 与 g(x) 的值至少有一个为正数, 则实数 m 的取值范围是
6. f (x) 4x2 2( p 2)x 2 p2 p 1,若在1,1 内至少存在 一个实数 c,使 f (c) 0 则实数 p 范围是
存在性问题的基本方法
(1)符号语言:存在 x D ,(D 为闭区间)使得 f (x) a 不等式 f(x)>a,x∈D,有解 不等式 f(x)>a,x∈D,解集非空 f(x)max>a;
(2)图象语言:
函数 f (x) 的图象上有点在直线 y a 的上方
f (x) 图象上最高点在直线 y a 的上方 f(x)max>a; (3)日常用语:有 f(x)值比 a 大 f(x)max>a.

高三数学专题——恒成立与存在性问题

高三数学专题——恒成立与存在性问题

高三复习专题——恒成立与存在性问题知识点总结:(1)恒成立问题1. ∀x∈D,均有f(x)>A恒成立,则f(x)min>A;2. ∀x∈D,均有f(x)﹤A恒成立,则f(x)ma x<A.3. ∀x∈D,均有f(x) >g(x)恒成立,则F(x)=f(x)- g(x) >0,∴F(x)min >04. ∀x∈D,均有f(x)﹤g(x)恒成立,则F(x)=f(x)- g(x) ﹤0,∴F(x) ma x﹤05. ∀x1∈D, ∀x2∈E,均有f(x1) >g(x2)恒成立,则f(x)min> g(x)ma x6. ∀x1∈D, ∀x2∈E,均有f(x1) <g(x2)恒成立,则f(x) ma x < g(x) min(2)存在性问题1. ∃x0∈D,使得f(x0)>A成立,则f(x) ma x >A;2. ∃x0∈D,使得f(x0)﹤A成立,则f(x) min <A3. ∃x0∈D,使得f(x0) >g(x0)成立,设F(x)=f(x)- g(x),∴F(x) ma x >04. ∃x0∈D,使得f(x0) <g(x0)成立,设F(x)=f(x)- g(x),∴F(x) min <05. ∃x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x) ma x > g(x) min6. ∃x1∈D, ∃x2∈E,均使得f(x1) <g(x2)成立,则f(x) min < g(x) ma x(3)相等问题1. ∀x1∈D, ∃x2∈E,使得f(x1)=g(x2)成立,则{ f(x)}{g(x)}(4)恒成立与存在性的综合性问题1. ∀x1∈D, ∃x2∈E, 使得f(x1) >g(x2)成立,则f(x)m in>g(x)m in2. ∀x1∈D, ∃x2∈E, 使得f(x1) <g(x2)成立,则f(x)max <g(x)max(5)恰成立问题1. 若不等式f(x)>A在区间D上恰成立,则等价于不等式f(x)>A的解集为D;2.若不等式f(x)<B在区间D上恰成立,则等价于不等式f(x)<B的解集为D.► 探究点一 ∀x ∈D ,f (x )>g (x )的研究例1、已知函数12)(2+-=ax x x f ,xa x g =)(,其中0>a ,0≠x . 对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;【思路分析】等价转化为函数0)()(>-x g x f 恒成立,通过分离变量,创设新函数求最值解决.简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x x x x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .► 探究点二 ∃x ∈D ,f (x )>g (x )的研究对于∃x ∈D ,f (x )>g (x )的研究,先设h (x )=f (x )-g (x ),再等价为∃x ∈D ,h (x )max >0,其中若g (x )=c ,则等价为∃x ∈D ,f (x )max >c .例 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.【解答】 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14,曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8,所以曲线y =f (x )在点(2,f (x ))处的切线方程为8x -y -2=0.(2)解法一:f ′(x )=3x 2-2ax =3x ⎝⎛⎭⎫x -23a (1≤x ≤2), 当23a ≤1,即a ≤32时,f ′(x )≥0,f (x )在[1,2]上为增函数,故f (x )m in =f (1)=11-a ,所以11-a <0,a >11,这与a ≤32矛盾.当1<23a <2,即32<a <3时,当1≤x <23a ,f ′(x )<0;当23a <x ≤2,f ′(x )>0,所以x =23a 时,f (x )取最小值,因此有f ⎝⎛⎭⎫23a <0,即827a 3-49a 3+10=-427a 3+10<0,解得a >3352,这与32<a <3矛盾; 当23a ≥2,即a ≥3时,f ′(x )≤0,f (x )在[1,2]上为减函数,所以f (x )m in =f (2)=18-4a ,所以18-4a <0,解得a >92,这符合a ≥3.综上所述,a 的取值范围为a >92.解法二:由已知得:a >x 3+10x 2=x +10x 2,设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x 3,∵1≤x ≤2,∴g ′(x )<0,所以g (x )在[1,2]上是减函数.g (x )m in =g (2),所以a >92.【点评】 解法一在处理时,需要用分类讨论的方法,讨论的关键是极值点与区间[1,2]的关系;解法二是用的参数分离,由于ax 2>x 3+10中x 2∈[1,4],所以可以进行参数分离,而无需要分类讨论.► 探究点三 ∀x 1∈D ,∀x 2∈D ,f (x 1)>g (x 2)的研究例、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.思路分析:解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xa b +-≤或x b x a )10(2-+-≤; 方法3:变更主元,0101)(≤-++⋅=b x a x a ϕ,]2,21[∈a 简解:方法1:对b x x a b x x g x h ++=++=)()(求导,22))((1)(xa x a x x ax h +-=-=', 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者. ⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴a b a b b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b .► 探究点四 ∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)>g (x 2)的研究,第一步先转化为∃x 2∈D ,f (x 1)m in >g (x 2),再将该问题按照探究点一转化为f (x 1)m in >g (x 2)m in .例、已知函数f (x )=2|x -m |和函数g (x )=x |x -m |+2m -8.(1)若方程f (x )=2|m |在[-4,+∞)上恒有惟一解,求实数m 的取值范围;(2)若对任意x 1∈(-∞,4],均存在x 2∈[4,+∞),使得f (x 1)>g (x 2)成立,求实数m 的取值范围.【解答】 (1)由f (x )=2|m |在x ∈[-4,+∞)上恒有惟一解,得|x -m |=|m |在x ∈[-4,+∞)上恒有惟一解.当x -m =m 时,得x =2m ,则2m =0或2m <-4,即m <-2或m =0.综上,m 的取值范围是m <-2或m =0.(2)f (x )=⎩⎪⎨⎪⎧ 2x -m x ≥m ,2m -x x <m ,原命题等价为f (x 1)m in >g (x 2)m in .①当4≤m ≤8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在[4,m ]上单调递减,[m ,+∞)上单调递增,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6.所以4<m <5或6<m ≤8.②当m >8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在⎣⎡⎦⎤4,m 2单调递增,⎣⎡⎦⎤m 2,m 上单调递减,[m ,+∞)上单调递增,g (4)=6m -24>g (m )=2m -8,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6.所以m >8.③0<m <4时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增,故f (x )≥f (m )=(x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即72<m <4.④m ≤0时,f (x )在(-∞,m ]上单调递减,[m ,4]上单调递增,故f (x )≥f (m )=(x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即m >72(舍去).综上,m 的取值范围是⎝⎛⎭⎫72,5∪(6,+∞). 【点评】 因为对于∀x ∈D ,f (x )>c ,可以转化为f (x )m in >c ;∃x ∈D ,c >g (x ),可以转化为c >g (x )m in ,所以本问题类型可以分两步处理,转化为f (x )m in >g (x )m in .► 探究点五 ∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究对于∀x 1∈D ,∃x 2∈D ,f (x 1)=g (x 2)的研究,若函数f (x )的值域为C 1,函数g (x )的值域为C 2,则该问题等价为C 1⊆C 2.例、设函数f (x )=-13x 3-13x 2+53x -4.(1)求f (x )的单调区间;(2)设a ≥1,函数g (x )=x 3-3a 2x -2a .若对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立,求a 的取值范围.【解答】 (1)f ′(x )=-x 2-23x +53,令f ′(x )>0,即x 2+23x -53<0,解得-53<x <1,∴f (x )的单调增区间为⎝⎛⎭⎫-53,1;单调减区间为⎝⎛⎭⎫-∞,-53和(1,+∞). (2)由(1)可知:当x ∈[0,1]时,f (x )单调递增,∴当x ∈[0,1]时,f (x )∈[f (0),f (1)],即f (x )∈[-4,-3].又g ′(x )=3x 2-3a 2,且a ≥1,∴当x ∈[0,1]时,g ′(x )≤0,g (x )单调递减,∴当x ∈[0,1]时,g (x )∈[g (1),g (0)],即g (x )∈[-3a 2-2a +1,-2a ],又对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立⇔[-4,-3]⊆[-3a 2-2a +1,-2a ],即⎩⎪⎨⎪⎧-3a 2-2a +1≤-4,-3≤-2a , 解得1≤a ≤32.恒成立与存在有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体。

关于高考数学中的恒成立问题与存在性问题

关于高考数学中的恒成立问题与存在性问题

“恒成立问题”的解法常用方法:①函数性质法; ②主参换位法; ③分离参数法;④数形结合法。

、函数性质法 1. 一次函数型:给定一次函数f(x) ax b(a 0),若y f (x)在[m,n ]内恒有f (x) 0 ,则根据函数的图象(直线)可得上述结论等价于 ;(;))【同理,若在[m,n ]内恒有f(x) 0,A则有f(m)阴7例1.对满足 * m 略解:不等式即为 2x (x 1)p x 2 x 的取值范围。

2的所有实数 P ,求使不 (x 1)p x 2 2x 10,设 f (p) 1,则f(p)在[2,2]上恒大 于0,故有: f( 2) f(2) 0, 即 x 2 x 4x 3 0 1 或 x 3. 2.二次函数: ①.若二次函数 f(x) 2 ax bx c(a 0) 0 (或0 )在 R 上恒成立,则有 a 0 (或 a 0); 0 0②.若二次函数 f(x)ax 2 bx c(a 0) 0 (或 0 )在指定区间上恒成立,可以利用韦达定 理以及根的分布等知识求解。

例2.已知函数f x 2mx 2 24 m x 1, g x mx ,若对于任一实数 x , f (x)与g(x)的值至少有一个为正数,则实数 m 的取值范围是 A . (0 , 2) B• (0 , 8) C (2 , 8) D •(—汽 0)选Bo例3.设f (x) 2x 2ax 2,当x [ 1,)时, 都有 f (x) a 恒成立,a 的取值范围。

解:设F(x)f (x) a 2ax 2 a , (1)当 4(a 1)(a2) 0时,即2 a1时,对一切x [ 1, ),F(x) 0恒成立;(2)当4(a 1)(a 2) 0时,由图可得以下充要条件:f( 1) 0 即 a 3 03.其它函数:容易分离出参数与变量,但函数的最值却难以求出时,可考虑把主元与参数换个位置,再 结合其它知识,往往会取得出奇制胜的效果。

高考数学核心考点之恒成立与存在性问题精编经典(实用)解析版

高考数学核心考点之恒成立与存在性问题精编经典(实用)解析版

若 | f (x) | ax 1恒成立,只需 y ax 1 始终在 y | f (x) | 的下方,
即直线夹在与 y | x2 4x | (x 0) 相切的直线,和 y 1之间,
所以转化为求切线斜率, y | x2 4x | (x 0) x2 4x(x 0) ,
y y
x2 ax
4 1
x
联立,得
x2
(4
a)
x
1
0
①,
令 Δ 0 ,即 (4 a)2 4 0 ,解得 a 6 或 a 2 , 将 a 6 代入①,得 x 1成立; 将 a 2 代入①,得 x 1,不满足,所以舍去,
4
方法三:“端点值代入型 ”恒成立问题
例 1【2006 全国 2 卷 20】设函数 f ( x) ( x 1) ln( x 1) .若对所有 x 0 ,都有 f ( x) ax 成立,求 a
的取值范围.
例 2【2007 全国 1 卷 20】设函数 f ( x) ex ex .若对所有的 x 0 ,都有成立 f ( x) ax ,求 a 的取
x0
x0
x
x0
1
a 2
综上,a (,2].
5

3【2008
全国
2

22(2)】设函数
f
(x)
2
sin x cos
x
.
(1) 求 f ( x) 的单调区间;
(2) 若对所有的 x 0 ,都有 f ( x) ax 成立,求 a 的取值范围.
例 4 【2014 全国 2 卷 21】已知函数 f ( x) ex ex 2x .设 g( x) f (2x) 4bf ( x) ,当 x 0 时, g( x) 0 ,求 bmax .

高三数学专题——恒成立与存在性问题

高三数学专题——恒成立与存在性问题

高三数学专题——恒成立与存在性问题高三复专题——恒成立与存在性问题知识点总结:1.___成立问题:1) 若对于D中的任意x,都有f(x)>A,则f(x)的最小值>A;2) 若对于D中的任意x,都有f(x)<A,则f(x)的最大值<A;3) 若对于D中的任意x,都有f(x)>g(x),则F(x)=f(x)-g(x)>0,因此F(x)的最小值>0;4) 若对于D中的任意x,都有f(x)<g(x),则F(x)=f(x)-g(x)<0,因此F(x)的最大值<0;5) 若对于D中的任意x1和E中的任意x2,都有f(x1)>g(x2),则f(x)的最小值>g(x)的最大值;6) 若对于D中的任意x1和E中的任意x2,都有f(x1)<g(x2),则f(x)的最大值<g(x)的最小值。

2.存在性问题:1) 若存在D中的x,使得f(x)>A,则f(x)的最大值>A;2) 若存在D中的x,使得f(x)<A,则f(x)的最小值<A;3) 若存在D中的x,使得f(x)>g(x),则F(x)=f(x)-g(x),因此F(x)的最大值>0;4) 若存在D中的x,使得f(x)<g(x),则F(x)=f(x)-g(x),因此F(x)的最小值<0;5) 若存在D中的x1和E中的x2,使得f(x1)>g(x2),则f(x)的最大值>g(x)的最小值;6) 若存在D中的x1和E中的x2,使得f(x1)<g(x2),则f(x)的最小值<g(x)的最大值。

3.相等问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)=g(x2),则{f(x)}={g(x)};4.___成立与存在性的综合性问题:1) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)>g(x2),则f(x)的最小值>g(x)的最小值;2) 若对于D中的任意x1,存在E中的某个x2,使得f(x1)<g(x2),则f(x)的最大值<g(x)的最大值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题一:恒成立与存在性(精简型)
一、 恒成立之常用模型及方法一:分离参数法-----在指定的区间下对不等式作等价变形,将参数“a ”与变量“x ”左右分离开------
模型------
αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。

口诀:大就大其最大,小就小其最小,即最终转换求函数最值
例1已知322)(2
+-=ax x x f ,若(],2,1∈x ()0f <x 恒成立,求a 的取值范围.
例2 已知0l <-ax nx ,在定义上恒成立,求a 的取值范围.
二、恒成立之常用模型及方法二:(构造)函数利用函数图象(性质)分析法------此法关键在函数的构造上,常见于两种----一分为二
或和而为一,另一点充分利用函数的图象来分析,即体现数形结合思想 例3 已知a ax x x f -++=3)(2,若0)(],2,2[≤-∈x f x 恒成立,求a 的取值范围.
例4若不等式2
log 0m x x -<在10,2⎛⎫ ⎪⎝⎭
内恒成立,则实数m 的取值范围
三、存在性之常用模型及方法:常见方法两种,一直接法同上恒成立,二
间接法,先求其否定(恒成立),再求其否定补集即可
例5已知322)(2
+-=ax x x f ,若存在(],2,1∈x 使得()0f <x 成立,求a 的取值范围.
四、其它常用模型及方法:
1.设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则
()()x g x f min min ≥
2.设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则
()()x g x f max max ≤
3.设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥
4.设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤
5.若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;
6.若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;
7.设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()12=f x g x ,则
()f x 在[]b a x ,1∈上的值域M 是()x g 在[]d c x ,2∈上的值域N 的子集。

即:M ⊆N 。

8.设函数()x f ,对任意的[]b a x ,∈,使得
m x f <)(恒成立,则
.
9.设函数()x f ,对任意的[]b a x ,∈,使得m x f x f ≤-)()(21恒成立,则 .
五、巩固训练
1.设函数R a ax x a x x f ∈+++-=其中86)1(32)(2
3

的取值范围
求上为增函数在若的值求常数处得极值在若a x f a x x f ,)0,()()2(.
,3)()1(-∞=
2.已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2
+4x ,其中k 为实数。

(1)对任意x ∈[-3,3],都有f (x)≤g(x)成立,求k 的取值范围; (2)存在x ∈[-3,3],使f (x)≤g(x)成立,求k 的取值范围;
(3)对任意x 1、x 2∈[-3,3],都有f (x 1)≤g(x 2),求k 的取值范围。

(4)存在[]12,3,3x x ∈-,都有()()12f x g x ≤,求实数c 的取值范围;
3.已知函数3
2
()1f x x ax x =+++,a ∈R .(Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函
数()f x 在区间2
133⎛⎫-- ⎪⎝⎭

内是减函数,求a 的取值范围. 4.已知
是(﹣∞,+∞)上的减函数,那么a 的取值范
围是
5. 已知函数f(x)=⎩⎨⎧(3-a)x-3 x ≤7a
x-6 x>7, 数列{a n }满足a n =f(n)(n ∈N *
),且数列{a n }是递增数列,
则实数a 的取值范围是
6.函数F (x )=log2(a x
x ++12
3)在定义域上F (x)≥4恒成立,求a 的取值范围
7. 设函数x x a x f 4)(2+-+-=,a ax x g +=)(,若恒有)()(x g x f ≤成立,试求实数a 的取值范围. 8.若不等式1
42x
x a +--≥0在[1,2]上恒成立,则a 的取值范围为 .
9.若对于任意1a ≤,不等式2
(4)420x a x a +-+->恒成立,求实数x 的取值范围
10.f (x )=log a (x 3-ax )(a >0,a ≠1)在区间⎝
⎛⎭
⎪⎫-1
2
,0上单调递增,则a 的取值范围是
11.已知函数f x a x x ()l n ()=+-2
21(a 为实数) (I )若f x ()在x =-1
处有极值,求a 的值; (II )若f x ()在]23[--,上是增函数,求a 的取值范围。

12.设函数2
()ln f x x x ax =++. (Ⅰ)若1
2
x =
时,()f x 取得极值,求a 的值; (Ⅱ)若()f x 在其定义域内为增函数,求a 的取值范围; 13.设函数2()(1)2ln(1)f x x x =+-+.
(Ⅰ)求f (x )的单调区间;
(Ⅱ)若当1[1,1]x e e
∈--时,不等式f (x )<m 恒成立,求实数m 的取值范围;
14.设函数432
()2()f x x ax x b x R =+++∈,其中,a b R ∈.
(Ⅲ)若对于任意的[]22a ∈-,,不等式()1f x ≤在[]11-,上恒成立,求b 的取值范围例 15.不等式)4(x x ax -≤
在]3,0[∈x 内恒成立,求实数a 的取值范围。

16.已知两函数2
)(x x f =,m x g x
-⎪⎭
⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得
()21)(x g x f ≥,则实数m 的取值范围为
17.设函数b x x a x h ++=
)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,4
1
[∈x 恒成立,求实数b 的取值范围.
18.已知()2ln b f x ax x x
=-+在1x =与1
2x =处都取得极值. 函数2()=2+g x x mx m -,
若对任意的11[,2]2x ∈,总存在21
[,2]2
x ∈,使得、122()()ln g x f x x ≥-,求实数m 的取
值范围。

19. 已知函数x ax x f ln 1)(--=()a ∈R .
(1)讨论函数)(x f 在定义域内的极值点的个数;(2)若函数)(x f 在1=x 处取得极值,
对x ∀∈
),0(+∞,2)(-≥bx x f 恒成立,求实数b 的取值范围;
20.已知函数()()3
2
2
,.f x x ax bx a
a b R =+++∈(Ⅰ)若函数()f x 在1x =处有极值为
10。

求b 的值;(Ⅱ)若对于任意的[)4,a ∈-+∞,()f x 在[]0,2x ∈上单调递增,求b 的最小值。

相关文档
最新文档