恒成立与存在性问题的基本解题策略

合集下载

函数的恒成立、存在性问题的方法总结大全(干货)

函数的恒成立、存在性问题的方法总结大全(干货)

关于函数的恒成立、存在性(能成立)问题关于二次函数的恒成立、存在性(能成立)问题是常考考点,其基本原理如下:(1)已知二次函数2()(0)f x ax bx c a =++≠,则:0()00a f x >⎧>⇔⎨∆<⎩恒成立;0()00a f x <⎧<⇔⎨∆<⎩恒成立. (2)若表述为:“已知函数2()(0)f x ax bx c a =++≠”,并未限制为二次函数,则应有:00()000a a b f x c >==⎧⎧>⇔⎨⎨∆<>⎩⎩恒成立或;00()000a a b f x c <==⎧⎧<⇔⎨⎨∆<<⎩⎩恒成立或.注:在考试中容易犯错,要特别注意!!!恒成立问题与存在性(能成立)问题,在解决此类问题时,可转化为其等价形式予以解答,将此类问题的可能出现的17种情形归纳总结大全如下,并通过常考例题进行讲解:已知定义在[,]a b 上的函数()f x ,()g x .(1)[,]x a b ∀∈,都有()f x k >(k 是常数)成立等价于min [()]f x k >([,]x a b ∈). (2)[,]x a b ∀∈,都有()f x k <(k 是常数)成立等价于max [()]f x k <([,]x a b ∈). (3)[,]x a b ∀∈,都有()()f x g x >成立等价于min [()()]0f x g x ->([,]x a b ∈). (4)[,]x a b ∃∈,都有()()f x g x >成立等价于max [()()]0f x g x ->([,]x a b ∈). (5)1[,]x a b ∀∈,2[,]x a b ∀∈都有12()()f x g x >成立等价于min max [()][()]f x g x >. (6)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x >成立等价于min min [()][()]f x g x >. (7)1[,]x a b ∃∈,2[,]x a b ∀∈使得12()()f x g x >成立等价于max max [()][()]f x g x >. (8)1[,]x a b ∃∈,2[,]x a b ∃∈使得12()()f x g x >成立等价于max min [()][()]f x g x >.(9)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于min minmax max [()][()][()][()]g x f x g x f x ≤⎧⎨≥⎩.(10)1[,]x a b ∃∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于()f x 的值域与()g x 的值域交集不为∅.(11)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x k +≥(k 是常数)成立等价于min max [()][()]f x g x k +≥.(12)1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x g x k -≤(k 是常数)成立等价于max min [()][()]g x f x k-≤且.max min [()][()]f x g x k -≤. 特别地,1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x f x k -≤(k 是常数)成立等价于max min ()()f x f x k -≤.(13)1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x g x k -≥(k 是常数)成立等价于min max [()][()]g x f x k-≥或.min max [()][()]f x g x k -≥. 特别地,1[,]x a b ∀∈,2[,]x a b ∀∈都有12|()()|f x f x k -≥(k 是常数)成立等价于min max ()()f x f x k -≥.(14)1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x g x k -≤(k 是常数)成立等价于min max [()][()]g x f x k-≤且.min max [()][()]f x g x k -≤. 特别地,1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x f x k -≤(k 是常数)成立等价于min max ()()f x f x k -≤.(15)1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x g x k -≥(k 是常数)成立等价于max min [()][()]g x f x k-≥或.max min [()][()]f x g x k -≥. 特别地,1[,]x a b ∃∈,2[,]x a b ∃∈使得12|()()|f x f x k -≥(k 是常数)成立等价于max min ()()f x f x k -≥.(16)1[,]x a b ∀∈,2[,]x a b ∃∈使得12|()()|f x g x k -≤(k 是常数)成立等价于min min [()][()]g x f x k-≤且.max max [()][()]f x g x k -≤. (17)1[,]x a b ∀∈,2[,]x a b ∃∈使得12|()()|f x g x k -≥(k 是常数)成立等价于max max [()][()]g x f x k-≥或.min min [()][()]f x g x k -≥. 【评注】(9)1[,]x a b ∀∈,2[,]x a b ∃∈使得12()()f x g x =成立等价于min minmax max[()][()][()][()]g x f x g x f x ≤⎧⎨≥⎩.()y g x =所在区域能包含()y f x =所在区域时,满足条件.∀⊆∃.题目中有时会这样表述:对任意的1[,]x a b ∈,都有2[,]x a b ∈,使得12()()f x g x =成立,(9)的表达的意思完全相同.所以大家要深入理解定理中的“任意的”、“都有”的内涵:即当1[,]x a b ∈时,()f x 的值域不过是()g x 的子集.【例1】(1)(2010•山东•理14)若对任意0x >,231xa x x ++恒成立,则a 的取值范围是 . (2)现已知函数2()41f x x x =-+,且设12314n x x x x <<<⋯<,若有12231|()()||()()||()()|n n f x f x f x f x f x f x M --+-+⋯+-,则M 的最小值为( )A .3B .4C .5D .6(3)已知21()lg(31)()()2x f x x x g x m =++=-,,若对任意1[03]x ∈,,存在2[12]x ∈,,使12()()f x g x >,则实数m 的取值范围是 .(4)已知函数()f x x =,2()252()g x x mx m m R =-+-∈,对于任意的1[2,2]x ∈-,总存在2x R ∈,使得12()()f x g x =成立,则实数m 的取值范围是( ) A .1[,1]9B .(,1]-∞C .(,1][4,)-∞+∞D .(,1][3,)-∞+∞(5)已知函数2()1f x x x =-+,[1,2]x ∈,函数()1g x ax =-,[1,1]x ∈-,对于任意1[1,2]x ∈,总存在2[1,1]x ∈-,使得21()()g x f x =成立,则实数a 的取值范围是( ) A .(,4]-∞- B .[4,)+∞C .(,4][4,)-∞-+∞D .(,4)(4,)-∞-+∞(6)(2008•天津•文10)设1a >,若对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log 3a a x y +=,这时a 的取值集合为( ) A .{|12}a a <B .{|2}a aC .{|23}a aD .{2,3}(7)(2008•天津•理15)设1a >,若仅有一个常数c 使得对于任意的[,2]x a a ∈,都有2[,]y a a ∈满足方程log log a a x y c +=,这时a 的取值的集合为 .)0x >,12x∴(当且仅当112353=+15,故答案为:1[,)5+∞.2()x x =-的图象是开口向上,过的抛物线,由图象可知,函数在上单调递减,在上单调递增,12314n x x x x <<<⋯<,(1)2f ∴=-,(2)f =-对应的函数值(2()41f x x x =-+图象上的点的纵坐标)之差的绝对值,结合231)||()()||()()|n n f x f x f x f x -+-+⋯+-表示函数max M ,||(1)(2)f f -5M ,故上单调递增,)法一:()2(2f x x ==-+2,2]时,x 2()3f x ,(f x ∴12)(22)2x x +=--<+,令f 单调递增,当(1,2]x ∈-,也是最大值;又(2)f 22[52m m --∈--,对于任意的的值域的子集,22m ,1m 或4m ,故选:)因为2()f x x x =-0时,()g x 在[1-[1,1]B a a =---,由题意可得,1113-,解得4a ;0时,()g x 在[1-的值域为[1,1]a a ---, 1113-,解得4a -,4][4,)+∞.故选:C .)3xy =,得,在[,2a a 上单调递减,所以2a ,即2a 故选:B .)log log a x c +,log a xy c ∴=,cxy a ∴=c a1122a a -⇒223a c log c +⎧⎨⎩的取值的集合为{2}.故答案为:【评注】深入理解(6)题题干中的“任意的”、“都有”的内涵:即当[,2]x a a ∈时,()f x 的值域M 不过是2[,]a a 的子集.值得关注的是:“[,2]x a a ∈”是指每一个这样的x ,2[,]y a a ∈是指存在这样的y ,理解到由函数的定义域导出值域M 是2[,]a a 的子集,由此才有:222[,][,]2a a a a ⊆.(6)与(7)唯一的差别就是:(7)中要求时唯一的,如何转化“唯一”这个条件是本题的关键,与函数的单调性联系起来来进行解答,需要有较强的转化问题的能力. 【例2】已知函数2()[2sin()sin ]cos ,3f x x x x x x R π=++∈.(1)求函数()f x 的最小正周期; (2)若存在05[0,]12x π∈,使不等式0()f x m <成立,求m 的取值范围. ))x .存在【例3】已知实数0a >,且满足以下条件:①x R ∃∈,|sin |x a >有解;②3[,]44x ππ∀∈,2sin sin 10x a x +-; 求实数a 的取值范围.【解析】实数10得:1sin sin a x-2[,1]2t ∈时,2()2f t f =1sin sin ax -22a ;综上,a 的取值范围是2{1}a a <.【例4】(1)已知函数2()2f x k x k =+,[0,1]x ∈,函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.对任意1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x <成立.求k 的取值范围.(min min ()()g x f x <)(2)已知函数2()2f x k x k =+,[0,1]x ∈.函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.对任意1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x =成立,求k 的取值范围.(()f x 的值域是()g x 的值域的子集即可.) (3)已知函数2()2f x k x k =+,[0,1]x ∈.函数22()32(1)5g x x k k x =-+++,[1,0]x ∈-.存在1[0,1]x ∈,存在2[1,0]x ∈-,21()()g x f x =成立,求k 的取值范围.(()g x 的值域与()f x 的值域的交集非空.)5k ,解得5k ,则求5k .,当[0,1]x ∈时,函数单调递增,2[,2k k k +2)[5,2210]k k ∈++,[0,1],存在210]k +,即225222k k k k k ⎧⎨++⎩,解得5k ,则求5k . 时,函数单调递增,2,2]k k +,1)k x +++10]+,由对存,存在2x 1()f x =成2][5,2k +,即252k k +且22210k k k +,解得4114k-或1414k --.【例5】已知(2)23x f x x =-+. (1)求()f x 的解析式;(2)函数2(2)5()1x a x ag x x +-+-=-,若对任意1[24]x ∈,,总存在2[24]x ∈,,使12()()g x f x =成立,求a 取值范围.,即2()(log )2log f t t =-)(log 2log x x =-+【例6】(1)已知函数1()f x e =-,3(4)g x x x =-+-,若有()()f a g b =,则b 的取值范围为( )A .]2222[+-,B .)2222(+-,C .]31[,D .)31(,(2)已知函数()1x f x e =-,2()44g x x x =-+-.若有()()f a g b =,则b 的取值范围为( ) A.[2-+ B.(2-+ C .[1,3]D .(1,3))()f x e =【例7】(1)(2014•江苏•10)已知函数2()1f x x mx =+-,若对于任意[,1]x m m ∈+都有()0f x <,则实数m 的取值范围为 .(2)已知函数2()(f x x bx c b =++、)c R ∈且当1x时,()0f x ,当13x 时,()0f x 恒成立. (ⅰ)求b ,c 之间的关系式;(ⅱ)当3c 时,是否存在实数m 使得2()()g x f x m x =-在区间(0,)+∞上是单调函数?若存在,求出m 的取值范围;若不存在,请说明理由.(3)(2017•天津•理8)已知函数23,1()2,1x x x f x x x x ⎧-+⎪=⎨+>⎪⎩,设a R ∈,若关于x 的不等式()||2x f x a +在R 上恒成立,则a 的取值范围是( ) A .47[,2]16-B .4739[,]1616-C .[-D .39[]16- (4)已知定义域为R 的函数()f x 满足22(())()f f x x x f x x x -+=-+. (①)若(2)3f =,求(1)f ;又若(0)f a =,求()f a ;(①)设有且仅有一个实数0x ,使得00()f x x =,求函数()f x 的解析表达式.【解析】(1)二次函数2()1f x x mx =+-的图象开口向上,对于任意[,1]x m m ∈+,都有()0f x <成立,∴(1)0与(1)0f 同时成立,则必有m ,使满足题设的(g 22()()g x f x b m x c =+-+开口向上,且在0b .20b m ∴.3c ,1)4b ∴=-.这与上式矛盾,从而能满足题设的实数【评注】本题主要考查一元二次函数的图象与性质.一元二次函数的对称性、最值、单调性是每年高考必考内容,要引起重视.)法一:当1x 时,关于x 的不等式)||2x x a +在R 2332x a x x +-+,2133322x a x x +--+,由132y x =+-的对称轴为14处取得最大值-3的对称轴为334x =处取得最小值47391616a① 时,关于x 的不等式)||2x x a +在R 上恒成立,即为22)2x a x x++, 22)2x a x +,由3232()22322x x x x =-+-=-(当且仅当21)3x =>取得最大值212222x x x =(当且仅当21)x =>取得最小值2.则32a ①由①①可得,47216a . ()x 的图象和折线||2xa =+,1x 时,y =11145x解得4716a =-;1x >时,y 解得2a =.由图象平移可得,47216a .故选:法三:根据题意,作出的大致图象,如图所示.【例8】(2012•陕西•理21第2问•文21第3问)设函数2()f x x bx c =++,若对任意1x ,2[1,1]x ∈-,有12|()()|4f x f x -,求b 的取值范围.|4, 4M ,即min 4M . 2b <-时,min )|(1)f =-102b -<时,即2b 时,24M 恒成立,所以2b ;012b- 时,即20b 时,21)4M 恒成立,所以20b ;综上可得,22b -,即b 的取值范围是。

恒成立与存在性问题方法总结

恒成立与存在性问题方法总结

三一文库()/总结〔恒成立与存在性问题方法总结〕高三数学复习中的恒成立与存在性问题,涉及一次函数、二次函数等函数的性质、图像,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养学生思维的灵活性、创造性等方面起到了积极的作用,因此也成为历年高考的一个热点,恒成立与存在性问题的处理途径有多种,下面是小编整理的恒成立与存在性问题方法总结,欢迎来参考!▲一、构建函数构建适当的函数,将恒成立问题转化为能利用函数的性质来解决的问题。

1、构建一次函数众所周知,一次函数的图像是一条直线,要使一次函数在某一区间内恒大于(或小于)零,只需一次函数在某区间内的两个端点处恒大于(或小于)零即可。

例1:若x∈(-2,2),不等式kx+3k+1>0恒成立,求实数k的取值范围。

第1页共5页解:构建函数f(x)= kx+3k+1,则原问题转化为f(x)在x∈(-2,2)内恒为正。

若k=0,则f(x)=1>0恒成立;若k≠0,则f(x)为一次函数,问题等价于f(-2)>0,f(2)>0,解之得k∈(- ,+∞)。

例2:对≤2的一切实数,求使不等式2x-1>(x -1)都成立的x的取值范围。

解:原问题等价于不等式:(x -1)-(2x-1)<0,设f()=(x -1)-(2x-1),则原问题转化为求一次函数f()或常数函数在[-2,2]内恒为负值时x的取值范围。

(1)当x -1=0时,x=±1。

当x=1时,f()<0恒成立;当x=-1时,f()<0不成立。

(2)当x -1≠0时,由一次函数的单调性知:f()<0等价于f(-2)<0,且f(2)<0,即<x<;综上,所求的x∈()。

2、构建二次函数二次函数的图像和性质是中学数学中的重点内容,利用二次函数的图像特征及相关性质来解决恒成立问题,使原本复杂的问题变得容易解决。

例3:若x≥0,lg(ax +2x+1)∈R恒成立,求实数a的取值范围。

高中数学x恒成立、存在性问题解决办法

高中数学x恒成立、存在性问题解决办法

恒成立、存在性问题解决办法总结1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若 ,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f m i n m i n ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f m a x m ax ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 题型一、简单型1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;(构造新函数) 2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;(转化)简解:(1)由12012232++<⇒>-+-x x x a x a ax x 成立,只需满足12)(23++=x x x x ϕ的最小值大于a 即可.对12)(23++=x xx x ϕ求导,0)12(12)(2224>+++='x x x x ϕ,故)(x ϕ在]2,1[∈x 是增函数,32)1()(min ==ϕϕx ,所以a 的取值范围是320<<a .2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的范围. 分析:思路、解决双参数问题一般是先解决一个参数,再处理另一个参数.以本题为例,实质还是通过函数求最值解决.方法1:化归最值,10)(10)(max ≤⇔≤x h x h ;方法2:变量分离,)(10x xab +-≤或x b x a )10(2-+-≤; 方法3:变更主元(新函数),0101)(≤-++⋅=b x a xa ϕ,]2,21[∈a简解:方法1:对b x xax h ++=)(求导,22))((1)(xa x a x x a x h +-=-=',(单调函数) 由此可知,)(x h 在]1,41[上的最大值为)41(h 与)1(h 中的较大者.⎪⎩⎪⎨⎧-≤-≤⇒⎪⎩⎪⎨⎧≤++≤++⇒⎪⎩⎪⎨⎧≤≤∴ab ab b a b a h h 944391011041410)1(10)41(,对于任意]2,21[∈a ,得b 的取值范围是47≤b . 3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫ ⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、更换主元法1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

恒成立问题及存在性问题的解题策略

恒成立问题及存在性问题的解题策略

x  ̄-
5 x4 -6 >0
将不 等式 恒成 立 问题 转 化 为 函数 求 最 值 问题 , 是

1 ( ) > 。 ,



3 3 z z +2 > o。 。

, 解得 解 得
解决 恒成 立 问题最 常用 的方 法. 一 般 的题 型 有 如 下 2 种: ① 不等式 - 厂 ( ) >A 在 区间 D 上 恒 成 立∞ 在 区间 D上 _ 厂 ( ) > A∞ 厂( z ) 的下 界 大 于 A;② 不 等 式
解 析 当z — o 时 , 厂 ( z ) 一 1 ≥ o 成 立, n E R . 当x E 恒成立问 题及存在性 Q
( 0 , +c x 3 ) 时, 厂 ( ) 一e z 一口 z ≥0成 立 , 即 E
+o o ) 时, 都有 / ’ ( z) ≥ 0成 立 , 求 实数 的取 值 范 围.
” 0 , 解得 z 一0或 一 或z : = . 对区间[ 一 一÷, , _ 去 I ] 分
2 种 情况讨 论 :
运 用这种 方 法解决 恒 成立 问题 的步骤 是 : 将参 数 与变量 分 离 , 化为 g ( ) ≥厂( z ) ( 或g ( ) ≤ 厂 ( ) ) 恒 成立 的形 式 ; 求. 厂 ( z ) 在 z∈D 上 的最 大 ( 或 最 小) 值; 解 不 等 式 g( ) ≥f ( z )( 或 g( ) ≤
z 一1 处取 得 最小值 g( 1 ) = = : e . 则 口 ≤e .
含 参 数 不等 式 的恒 成 立 问题 及 存 在 性 问 题 是 历
年 高考 的热点 , 特 别是 以导 数 为背 景 的题 型更 是 在 高

方法技巧专题16函数中恒成立与存在性问题

方法技巧专题16函数中恒成立与存在性问题

方法技巧专题16函数中恒成立与存在性问题在数学中,函数是一种描述两个集合之间的对应关系的工具。

函数中的公式通常包含变量,通过给定变量的值,可以计算出函数的值。

然而,在函数的研究和应用中,我们会遇到一些函数恒成立与存在性的问题。

首先,函数中的恒成立问题是指函数中一些等式对于所有变量的取值都成立。

这意味着,无论我们取函数中的任意变量值,方程都会成立。

如果我们证明了一些等式在整个定义域上都成立,那么我们就称它为函数中的恒成立等式。

例如,对于任意实数x,函数f(x)=x^2-x+6中的等式f(x)=f(2)始终成立。

我们可以验证当x取任意实数时,等式都成立。

这说明f(x)=f(2)是这个函数中的恒成立等式。

其次,函数中的存在性问题是指函数是否存在合适的定义域和值域。

函数的定义域是指所有可能的输入值,而值域是指函数输出的所有值。

在研究函数时,有时候我们需要确定一个函数是否存在,并找到合适的定义域和值域。

例如,考虑函数f(x)=1/x,在x=0时,函数的定义域不存在,因为0作为除数是不合法的。

然而,在其他任意实数x上,函数都有定义,并且值域是实数集合。

因此,函数f(x)=1/x在定义域上存在,并且值域为实数。

解决函数中恒成立与存在性问题的方法和技巧如下:1.使用代数方法:我们可以通过代数运算和等式推导来证明函数中的恒成立等式。

根据等式的性质和规律,我们可以对等式进行变形和化简,证明等式在所有变量取值下都成立。

2.使用图形方法:对于一些函数,我们可以通过绘制图形来分析函数的行为和性质。

通过观察函数的图形,我们可以判断函数是否存在,以及函数中是否存在一些等式。

3.使用定义和性质:函数的定义和性质是解决函数恒成立与存在性问题的重要依据。

我们可以运用函数的定义和性质,结合数学推理和逻辑推导,来证明函数中的恒成立等式和存在性问题。

4.使用反证法:当我们无法通过直接证明函数的恒成立等式或存在性问题时,可以尝试使用反证法。

专题一:恒成立与存在性问题(精简型)

专题一:恒成立与存在性问题(精简型)

专题一:恒成立与存在性(精简型)一、 恒成立之常用模型及方法一:分离参数法-----在指定的区间下对不等式作等价变形,将参数“a ”与变量“x ”左右分离开------模型------αα>⇔∈>min )()(x f I x x f 恒成立对一切αα>⇔∈<max )()(x f I x x f 恒成立对一切。

口诀:大就大其最大,小就小其最小,即最终转换求函数最值例1已知322)(2+-=ax x x f ,若(],2,1∈x ()0f <x 恒成立,求a 的取值范围.例2 已知0l <-ax nx ,在定义上恒成立,求a 的取值范围.二、恒成立之常用模型及方法二:(构造)函数利用函数图象(性质)分析法------此法关键在函数的构造上,常见于两种----一分为二或和而为一,另一点充分利用函数的图象来分析,即体现数形结合思想 例3 已知a ax x x f -++=3)(2,若0)(],2,2[≤-∈x f x 恒成立,求a 的取值范围.例4若不等式2log 0m x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则实数m 的取值范围三、存在性之常用模型及方法:常见方法两种,一直接法同上恒成立,二间接法,先求其否定(恒成立),再求其否定补集即可例5已知322)(2+-=ax x x f ,若存在(],2,1∈x 使得()0f <x 成立,求a 的取值范围.四、其它常用模型及方法:1.设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥2.设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤3.设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥4.设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤5.若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;6.若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;7.设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()12=f x g x ,则()f x 在[]b a x ,1∈上的值域M 是()x g 在[]d c x ,2∈上的值域N 的子集。

恒成立与存在性问题的解题策略

恒成立与存在性问题的解题策略

“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设fx 在区间a,b 上的值域为A,gx 在区间c,d 上的值域为B,则AB. 9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方; 恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论函数在给定区间上某结论成立问题,其表现形式通常有:在给定区间上某关系恒成立;某函数的定义域为全体实数R;某不等式的解为一切实数;某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用;因此也成为历年高考的一个热点;恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象; 二、恒成立问题解决的基本策略大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题;等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的; 一两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在如何在区间D 上求函数fx 的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数fx 的最值;这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累; 二、赋值型——利用特殊值求解等式恒成立问题等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.如果函数y=fx=sin2x+acos2x 的图象关于直线x=8π-对称,那么a= .C .2D . -2.略解:取x=0及x=4π-,则f0=f 4π-,即a=-1,故选B. 此法体现了数学中从一般到特殊的转化思想.例备用.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4= x+14+b 1x+13+ b 2x+12+b 3x+1+b 4 定义映射f :a 1,a 2,a 3,a 4→b 1+b 2+b 3+b 4,则f :4,3,2,1 →略解:取x=0,则 a 4=1+b 1+b 2+b 3+b 4,又 a 4=1,所以b 1+b 2+b 3+b 4 =0 ,故选D 三分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷 给定一次函数y=fx=ax+ba≠0,若y=fx 在m,n 内恒有fx>0,则根据函数的图象直线可得上述结论等价于0)(0)(>>n f m f 同理,若在m,n 内恒有fx<0,则有 0)(0)(<<n f mf恒成立的x 的x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在-2,2内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为x-1a+x 2-2x+1>0在|a|≤2时恒成立,设fa= x-1a+x 2-2x+1,则fa 在-2,2上恒大于0,故有:⎩⎨⎧>>-0)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3. 即x∈-∞,-1∪3,+∞此类题本质上是利用了一次函数在区间m,n 上的图象是一线段,故只需保证该线段两端点均在x 轴上方或下方即可. 2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用;1若二次函数y=ax 2+bx+ca≠0大于0恒成立,则有00<∆>且a2若是二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根的分布知识求解;类型1:设)0()(2≠++=a c bx ax x f 在R 上恒成立,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;2R x x f ∈<在0)(上恒成立00<∆<⇔且a ;类型2:设)0()(2≠++=a c bx ax x f 在区间],[βα上恒成立(1)当0>a时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(2)当0<a时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或 类型3:设)0()(2≠++=a c bx ax x f 在区间 -∞ , 上恒成立; fx>0a>0且<0或-b/2a>且f>0 fx<0a<0且<0或-b/2a>且f<0类型4:设)0()(2≠++=a c bx ax x f 在区间 ,+∞上恒成立; fx>0a>0,<0或-b/2a<且f>0 fx<0a<0,<0或-b/2a<且f<0例3. 若函数12)1()1()(22++-+-=a x a x a x f 的定义域为R,求实数 a 的取值范围.分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,并且注意对二次项系数的讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立, 所以,①当,1,01,01{,0122=≠+=-=-a a a a 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a ②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a 有,91,09101{22≤<⇒≤+->a a a a 综上所述,fx 的定义域为R 时,]9,1[∈a 例4.已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 的取值范围. 图所分析:()y f x =的函数图像都在X 轴及其上方,如右示:略解:()22434120a a a a ∆=--=+-≤62a ∴-≤≤ 范变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值围.解析一. 零点分布策略 本题可以考虑fx 的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即Δ≤0或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--≤->∆0)2(0)2(220f f a或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥-≥->∆0)2(0)2(22f f a ,即a 的取值范围为-7,2.解法二分析:运用二次函数极值点的分布分类讨论要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 的最小值0)(≥a g 即可.略解:分类讨论22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上的最小值为()g a .⑴当22a-<-,即4a >时,()(2)730g a f a =-=-≥ 73a ∴≤ 又4a >a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3024a a g a f a ==--+≥ 62a ∴-≤≤ 又44a -≤≤ 42a ∴-≤≤⑶当22a->,即4a <-时,()(2)70g a f a ==+≥ 7a ∴≥- 又4a <-74a ∴-≤<-综上所述,72a -≤≤.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 的取值范围.解法一:分析:题目中要证明2)(≥x f 在[]2,2-上恒成立,若把2移到等号的左边,则把原题转化成左边二次函数在区间[]2,2-时恒大于等于0的问题.例2 已知a ax x x f -++=3)(2,若0)(],2,2[≥-∈x f x 恒成立,求a 的取值范围. 略解:2()320f x x ax a =++--≥,即2()10f x x ax a =++-≥在[]2,2-上成立. ⑴()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,2225-≤≤-a .解法二:运用二次函数极值点的分布⑴当22a-<-,即4a >时,()(2)732g a f a =-=-≥ ()54,3a ∴≤∉+∞ a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3224a a g a f a ==--+≥,⑶当22a ->,即4a <-时,()(2)72g a f a ==+≥, 综上所述2225-≤≤-a .此题属于含参数二次函数,求最值时,对于轴变区间定的情形,对轴与区间的位置进行分类讨论;还有与其相反的,轴动区间定,方法一样.对于二次函数在R 上恒成立问题往往采用判别式法如例4、例5,而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题 3、变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解;运用不等式的相关知识不难推出如下结论:若对于x 取值范围内的任何一个数都有fx>ga 恒成立,则ga<fx min ;若对于x 取值范围内的任何一个数,都有fx<ga 恒成立,则ga>fx max .其中fx max 和fx min 分别为fx 的最大值和最小值例5.已知三个不等式①0342<+-x x ,②0862<+-x x ,③0922<+-m x x .要使同时满足①②的所有x 的值满足③,求m 的取值范围.略解:由①②得2<x<3,要使同时满足①②的所有x 的值满足③, 即不等式0922<+-m x x 在)3,2(∈x 上恒成立, 即)3,2(922∈+-<x x x m 在上恒成立,又,上大于在9)3,2(922∈+-x x x 所以 9≤m例 6. 函数)(x f 是奇函数,且在]1,1[-上单调递增,又1)1(-=-f ,若12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立,求t 的取值范围 .解:据奇函数关于原点对称,,1)1(=f 又1)1()(]1,1[)(max ==-f x f x f 上单调递增在12)(2+-≤at t x f 对所有的]1,1[-∈a 都成立.因此,只需122+-at t 大于或等于上在]1,1[)(-x f 的最大值1,都成立对所有又]1,1[-∈a ,即关于a 的一次函数在-1,1上大于或等于0恒成立, 即:),2[}0{]2,(+∞--∞∈ t利用变量分离解决恒成立问题,主要是要把它转化为函数的最值问题 补例. 已知()||,=-+∈R f x x x a b x .若0b <,且对任何[]0,1x ∈不等式()0f x <恒成立,求实数a 的取值范围.解:当0x =时,a 取任意实数,不等式()0f x <恒成立, 故只需考虑(]0,1x ∈,此时原不等式变为||bx a x--< 即b b x a x x x +<<-故(]max min ()(),0,1b bx a x x x x+<<-∈又函数()b g x x x =+在(]0,1上单调递增,所以max ()(1)1bx g b x +==+;对于函数(](),0,1bh x x x x=-∈①当1b <-时,在(]0,1上()h x 单调递减,min ()(1)1bx h b x-==-,又11b b ->+,所以,此时a 的取值范围是(1,1)b b +-.②当10b -≤<,在(]0,1上,()b h x x x=-≥当x b =-时,min ()2bx b x-=-,此时要使a 存在,必须有1210b bb ⎧+<-⎪⎨-≤<⎪⎩ 即1223b -≤<-,此时a 的取值范围是(1,2)b b +-综上,当1b <-时,a 的取值范围是(1,1)b b +-;当1223b -≤<-时,a 的取值范围是(1,2)b b +-;当2230b -≤<时,a 的取值范围是∅.4、根据函数的奇偶性、周期性等性质若函数fx 是奇偶函数,则对一切定义域中的x ,f-x=-fx f-x=fx 恒成立;若函数y=fx 的周期为T,则对一切定义域中的x,fx=fx+T 恒成立; 5、直接根据图象判断若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果;尤其对于选择题、填空题这种方法更显方便、快捷;例7. a a x x x 恒成立,求实数,不等式对任意实数>--+21的取值范围. 分析:设y=|x+1|-|x-2|,恒成立,不等式对任意实数a x x x >--+21即转化为求函数y=|x+1|-|x-2|的最小值,画出此函数的图象即可求得a 的取值范围.解:令⎪⎩⎪⎨⎧≥<<---≤-=--+=2321121321x x x x x x y在直角坐标系中画出图象如图所示,由图象可看出,要使a x x x >--+21,不等式对任意实数恒成立,只需3-<a .故实数.3),的取值范围是(-∞-a 注:本题中若将a a x x x 恒成立,求实数,不等式对任意实数>--+21改为 ①a a x x x 恒成立,求实数,不等式对任意实数<--+21,同样由图象可得a>3; ②a a x x x 恒成立,求实数,不等式对任意实数>-++21,构造函数,画出图象,得a<3.利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围.例8. 设常数a∈R,函数fx=3|x|+|2x-a|,gx=2-x.若函数y=fx 与y=gx 的图像有公共点,则a 的取值范围为 ;解:1a<=0x<=a/2<=0时,fx=-3x+-2x+a=-5x+aa/2<=x<=0时,fx=-3x+2x-a=-x-ax>=0时,fx=3x+2x-a=5x-a,最小值为-a<=2则与gx 有交点,即:-2<=a<=0;2a>0x<=0时,fx=-3x+-2x+a=-5x+a0<=x<=a/2时,fx=3x+-2x+a=x+ax>=a/2时,fx=3x+2x-a=5x-a 最小值a<=2时与gx 有交点,即:0<a<=2综上所述,-2<=a<=2时fx=3|x|+|2x-a|与gx=2-x 有交点;三、在恒成立问题中,主要是求参数的取值范围问题,是一种热点题型,介绍一些基本的解题策略,在学习中学会把问题分类、归类,熟练基本方法;一换元引参,显露问题实质 1、对于所有实数x,不等式恒成立,求a 的取值范围;解:因为的值随着参数a 的变化而变化,若设, 则上述问题实质是“当t 为何值时,不等式恒成立”;这是我们较为熟悉的二次函数问题,它等价于 求解关于t 的不等式组:; 解得,即有,易得;2、设点Px,y 是圆4)1(22=-+y x 上任意一点,若不等式x+y+c ≥0恒成立,求实数c 的取值范围;二分离参数,化归为求值域问题 3、若对于任意角总有成立,求m 的范围;解:此式是可分离变量型,由原不等式得,又,则原不等式等价变形为恒成立; 根据边界原理知,必须小于2cos cos )(2+=θθθf 的最小值,这样问题化归为怎样求的最小值;因为2cos cos )(2+=θθθf即时,有最小值为0,故;三变更主元,简化解题过程 4、若对于,方程都有实根,求实根的范围;解:此题一般思路是先求出方程含参数m 的根,再由m 的范围来确定根x 的范围,但这样会遇到很多麻烦,若以m 为主元,则,由原方程知,得又,即解之得或;5、当1≤a 时,若不等式039)6(2>-+-+a x a x 恒成立,求x 的取值范围; 四图象解题,形象直观6、设]40(,∈x ,若不等式ax x x >-)4(恒成立,求a 的取值范围;解:若设)4(1x x y -=,则为上半圆;设,为过原点,a为斜率的直线;在同一坐标系内作出函数图象依题意,半圆恒在直线上方时,只有时成立,即a的取值范围为;7、当x∈1,2时,不等式x-12<logax恒成立,求a的取值范围;解:设y1=x-12,y2=logax,则y1的图象为右图所示的抛物线要使对一切x∈ 1,2,y1<y2恒成立,显然a>1,并且必须也只需当x=2时y2的函数值大于等于y1的函数值;故loga2>1, ∴ 1<a<2.8、已知关于x的方程lgx2+4x-lg2x-6a-4=0有唯一解,求实数a的取值范围;分析:方程可转化成lgx2+4x=lg2x-6a-4,从而得x2+4x=2x-6a-4>0,注意到若将等号两边看成是二次函数y= x2+4x及一次函数y=2x-6a-4,则只需考虑这两个函数的图象在x轴上方恒有唯一交点即可;解:令y1=x2+4x=x+22-4,y2=2x-6a-4,y1的图象为一个定抛物线 y2的图象是k=2,而截距不定的直线,要使y1和y2在x轴上方有唯一交点,则直线必须位于l1和l2之间;包括l1但不包括l2当直线为l1时,直线过点-4,0,此时纵截距为-8-6a-4=0,a=2-;当直线为l2时,直线过点0,0,纵截距为-6a-4=0,a=32-∴a的范围为)32,2[--五合理联想,运用平几性质9、不论k为何实数,直线与曲线恒有交点,求a的范围;分析:因为题设中有两个参数,用解析几何中有交点的理论将二方程联立,用判别式来解题是比较困难的;若考虑到直线过定点A0,1,而曲线为圆,圆心Ca,0,要使直线恒与圆有交点,那么定点A0,1必在圆上或圆内;解:,Ca,0,当时,联想到直线与圆的位置关系,则有点A0,1必在圆上或圆内,即点A0,1到圆心距离不大于半径,则有,得;六分类讨论,避免重复遗漏10、当时,不等式恒成立,求x 的范围;解:使用的条件,必须将m 分离出来,此时应对进行讨论;①当时,要使不等式恒成立,只要, 解得;②当时,要使不等式恒成立,只要,解得;③当时,要使恒成立,只有; 综上①②③得;解法2:可设,用一次函数知识来解较为简单;我们可以用改变主元的办法,将m 视为主变元,即将元不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x ,所以x 的范围是)231,271(++-∈x ;此类题本质上是利用了一次函数在区间m,n 上的图象是一线段,故只需保证该线段两端点均在x 轴上方或下方即可.11、当31<<x 时,不等式0622>+-ax x 恒成立,求实数a 的取值范围; 解:xx a 32+<当31<<x 时,623232=≥+x x ,当x x 32=,即6=x 时等号成立;故实数a 的取值范围:6<a 七构造函数,体现函数思想12、1990年全国高考题设,其中a 为实数,n 为任意给定的自然数,且,如果当时有意义,求a 的取值范围; 解:本题即为对于,有恒成立;这里有三种元素交织在一起,结构复杂,难以下手,若考虑到求a 的范围,可先将a 分离出来,得,对于恒成立;构造函数,则问题转化为求函数在上的值域;由于函数在上是单调增函数,则在上为单调增函数;于是有的最大值为:,从而可得;八利用集合与集合间的关系在给出的不等式中,若能解出已知取值范围的变量,就可利用集合与集合之间的包含关系来求解,即:[]()(),,m n f a g a ⊂⎡⎤⎣⎦,则()f a m ≤且()g a n ≥,不等式的解即为实数a 的取值范围;例13、当1,33x ⎛⎫∈ ⎪⎝⎭时,log 1a x <恒成立,求实数a 的取值范围;解:1log 1a x -<<(1) 当1a >时,1x a a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭ 3113a a ≥⎧⎪∴⎨≤⎪⎩ 3a ∴≥(2) 当01a <<时,1a x a <<,则问题转化为11,3,3a a ⎛⎫⎛⎫⊆ ⎪ ⎪⎝⎭⎝⎭1313a a⎧≤⎪⎪∴⎨⎪≥⎪⎩103a ∴<≤综上所得:103a <≤或3a ≥ 四、其它类型恒成立问题能成立问题有时是以不等式有解的形式出现的;1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;分析:思路、对在不同区间内的两个函数)(x f 和)(x g 分别求最值,即只需满足)()(max min x g x f >即可.简解:令na=g max x=a/2;令ma=f min x,fx=x-a 2+1-a 2,故1对称轴x=a<1,即或0<a<1时,ma= f min x=f1=2-2a,由ma>na 解得a<4/5,注意到a 的范围从而得a 的范围:0<a<4/5;2对称轴x=a>2时,ma= f min x=f2=5-4a,由ma>na 解得a<10/9,注意到a 的范围从而得a 无解:;3对称轴x=a∈1,2时,ma= fminx=fa=2-2a,由ma>na 解得4171+->a 或4171--<a ,注意到a 的范围从而得a 的范围21≤<a :;; 综合123知实数a 的取值范围是:0,4/5∪1,2 2、已知两函数2)(x x f =,m x g x-⎪⎭⎫⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为解析:对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥等价于m x g x-⎪⎭⎫⎝⎛=21)(在[]2,1上的最小值m -41不大于2)(x x f =在[]2,0上的最小值0,既041≤-m ,∴41≥m题型二、主参换位法已知某个参数的范围,整理成关于这个参数的函数题型三、分离参数法欲求某个参数的范围,就把这个参数分离出来 题型四、数形结合恒成立问题与二次函数联系零点、根的分布法 五、不等式能成立问题有解、存在性的处理方法若在区间D 上存在实数x 使不等式()f x A >成立,则等价于在区间D 上()max f x A >; 若在区间D 上存在实数x 使不等式()f x B <成立,则等价于在区间D 上的()min f x B <.1、存在实数x ,使得不等式2313x x a a ++-≤-有解,则实数a 的取值范围为______; 解:设()31f x x x =++-,由()23f x a a ≤-有解,()2min3a a f x ⇒-≥, 又()()31314x x x x ++-≥+--=,∴234a a -≥,解得41a a ≥≤-或;1、求使关于p 的不等式x p px x 212+<++在p ∈-2,2有解的x 的取值范围;解:即关于p 的不等式012)1(2<+-+-x x p x 有解,设()()2121f p x p x x =-+-+,则()f p 在-2,2上的最小值小于0;1当x>1时,fp 关于p 单调增加,故f min p=f-2=x 2-4x+3<0,解得1<x<3;2 当x<1时,fp 关于p 单调减少,故f min p=f2=x 2-1<0,解得-1<x<1; 3当x=1时,fp=0,故f min p=fp<0不成立;综合123知实数x 的取值范围是:-1,1∪1,3例、设命题P:x1,x2是方程x 2-ax-2=0的二个根,不等式|m 2-5m-3|≥|x 1-x 2|对任意实数a∈-1,1恒成立;命题Q :不等式|x-2m|-|x|>1m>0有解;若命题P 和命题Q 都是真命题,求m的值范围;解:1由P 真得:8||221+=-a x x ,注意到a 在区间-1,1, 3||max 21=-x x ,由于|m 2-5m-3|≥|x 1-x 2|对任意实数a∈-1,1恒成立,故有3|||35|max 212=-≥--x x m m解得: m≤-1或m≥6或0≤m≤51由Q 真,不等式|x-2m|-|x|>1m>0有解,得|x-2m|-|x|max =2m>1,解得:m>1/2 由于12都是相公命题,故m 的值范围:1/2<m≤5或m≥6.举例1已知不等式0224>+⋅-x x a 对于+∞-∈,1[x 恒成立,求实数a 的取值范围. 2若不等式0224>+⋅-x x a 对于]3,(-∞∈a 恒成立,求实数x 的取值范围. 分析:1由0224>+⋅-x x a 得:xx a 222+<对于+∞-∈,1[x 恒成立,因212≥x,所以22222≥+xx ,当22=x时等号成立.所以有22<a . 2注意到0224>+⋅-x x a 对于]3,(-∞∈a 恒成立是关于a 的一次不等式.不妨设)24(2)(++⋅-=x x a a f ,则)(a f 在]3,(-∞∈a 上单调递减,则问题等价于0)3(>f ,所以2202234>⇒>+⋅-x x x 或12<x ,则x 取值范围为),1()0,(+∞-∞ .小结:恒成立与有解的区别:恒成立和有解是有明显区别的,以下充要条件应细心思考,甄别差异,恰当使用,等价转化,切不可混为一体;①不等式()f x M <对x I ∈时恒成立max ()f x M•⇔<,x I ∈;即()f x 的上界小于或等于M ; ②不等式()f x M <对x I ∈时有解min ()f x M•⇔<,x I ∈; 或()f x 的下界小于或等于M ; ③不等式()f x M >对x I ∈时恒成立min ()f x M•⇔>,x I ∈;即()f x 的下界大于或等于M ; ④不等式()f x M >对x I ∈时有解max ()f x M ⇔>,x I ∈.; 或()f x 的上界大于或等于M ;高中数学难点强化班第四讲140709课后练习答案:一.填空选择题每小题6分,共60分1、对任意的实数x ,若不等式a x x >--+21恒成立,那么实数a 的取值范围 ;答案:|x+1|-|x-2| -|x+1-x-2|=-3,故实数a 的取值范围:a<-3 2、不等式2sin 4sin 10x x a -+-<有解,则a 的取值范围是解:原不等式有解()()22sin 4sin 1sin 231sin 1a x x x x ⇒>-+=---≤≤有解,而()2minsin 232x ⎡⎤--=-⎣⎦,所以2a >-;3.若对任意x R ∈,不等式||x ax ≥恒成立,则实数a 的取值范围是 A 1a <- B ||1a ≤ C ||1a < D 1a ≥ 解析:对∀x R ∈,不等式||x ax ≥恒成立 则由一次函数性质及图像知11a -≤≤,即||1a ≤;答案:选B4.当(1,2)x ∈时,不等式240x mx ++<恒成立,则m 的取值范围是 .解析: 当(1,2)x ∈时,由240x mx ++<得24x m x +<-.令244()x f x x x x+==+,则易知()f x 在(1,2)上是减函数,所以[1,2]x ∈时()(1)5maxf x f ==,则2min 4()5x x+->-∴5m ≤-.5.已知不等式223(1)1ax x a x x a -++>--+对任意(0)a ∈+∞,都成立,那么实数x 的取值范围为 .分析:已知参数a 的范围,要求自变量x 的范围,转换主参元x 和a 的位置,构造以a 为自变量x 作为参数的一次函数()g a ,转换成∀(0)a ∈+∞,,()0g a >恒成立再求解;解析:由题设知“223(1)1ax x a x x a -++>--+对∀(0)a ∈+∞,都成立,即22(2)20a x x x +-->对∀(0)a ∈+∞,都成立;设22()(2)2g a x a x x =+--a R ∈,则()g a 是一个以a 为自变量的一次函数;220x +>恒成立,则对∀x R ∈,()g a 为R 上的单调递增函数; 所以对∀(0)a ∈+∞,,()0g a >恒成立的充分必要条件是(0)0g ≥,220x x --≥,∴20x -≤≤,于是x 的取值范围是{|20}x x -≤≤;6.已知函数()()()22241,f x mx m x g x mx =--+=,若对于任一实数x ,()f x 与()g x 的值至少有一个为正数,则实数m 的取值范围是 A .0,2 B .0,8 C .2,8 D .-∞,0分析:()f x 与()g x 的函数类型,直接受参数m 的影响,所以首先要对参 数进行分类讨论,解析:当0m =时,()810f x x =-+>在1(,)8-∞上恒成立在R 上恒成立,显然不满足题意;如图1当0m <时,()g x 在R 上递减且()0g x mx =>只在(,0)-∞而()f x 是一个开口向下且恒过定点0,1的二次函数,当0m >时,()g x 在R 上递增且()0g x mx =>在(0,)+∞而()f x 是一个开口向上且恒过定点0,1的二次函数,数x ,()f x 与()g x 的值至少有一个为正数则只需()0f x >在(-∞恒成立;如图3则有24024(4)80m m m m -⎧<⎪⎨⎪∆=--<⎩或402m m -≥解得48m <<或04m <≤, 综上可得08m <≤即(0,8)m ∈; 故选B;7、已知两函数()2728f x x x c =--,gx=6x 2-24x+21;1对任意[]3,3x ∈-,都有()()f x g x ≤成立,那么实数c 的取值范围 c ≥0 ; 2存在[]3,3x ∈-,使()()f x g x ≤成立,那么实数c 的取值范围 c ≥-25 ; 3对任意[]12,3,3x x ∈-,都有()()12f xg x ≤,那么实数c 的取值范围 c ≥150 ; 4存在[]12,3,3x x ∈-,都有()()12f xg x ≤,那么实数c 的取值范围 c ≥-175 ;解析:1设()()()322312h x g x f x x x x c =-=--+,问题转化为[]3,3x ∈-时,()0h x ≥恒成立,故()min 0h x ≥;令()()()266126120h x x x x x '=--=+-=,得1x =-或2;由导数知识,可知()h x 在[]3,1--单调递增,在[]1,2-单调递减,在[]2,3单调递增,且()345h c -=-,()()17h x h c =-=+极大值,()()220h x h c ==-极小值,()39h c =-,∴()()min 345h x h c =-=-,由450c -≥,得45c ≥;2据题意:存在[]3,3x ∈-,使()()f x g x ≤成立,即为:()()()0h x g x f x =-≥在[]3,3x ∈-有解,故()max 0h x ≥,由1知()max 70h x c =+≥,于是得7c ≥-;3它与1问虽然都是不等式恒成立问题,但却有很大的区别,对任意[]12,3,3x x ∈-,都有()()12f xg x ≤成立,不等式的左右两端函数的自变量不同,1x ,2x 的取值在[]3,3-上具有任意性,∴要使不等式恒成立的充要条件是:max min ()(),[3,3]f x g x ••x •≤∈-;∵()()[]27228,3,3f x x c x =---∈-∴ ()()max3147f x f c =-=-,∵()26840g x x x '=+-=()()23102x x +-,∴()0g x '=在区间[]3,3-上只有一个解2x =; ∴()()min248g x g ==-,∴14748c -≤-,即195c ≥.4存在[]12,3,3x x ∈-,都有()()12f xg x ≤,等价于()()min 1max 2f x g x ≤,由3得()()min 1228f x f c ==--,()()max 23102g x g =-=,28102130c c --≤⇒≥-点评:本题的三个小题,表面形式非常相似,究其本质却大相径庭,应认真审题,深入思考,多加训练,准确使用其成立的充要条件; 二.简答题每题10分8、10分若不等式2(1)(1)3(1)0m x m x m +--+-<对任意实数x 恒成立,求实数m 取值范围 解:)10,2[9、①对一切实数x,不等式32x x a --+>恒成立,求实数a 的范围; ②若不等式32x x a --+>有解,求实数a 的范围; ③若方程32x x a --+=有解,求实数a 的范围; 解:①5-<a ②5<a ③]5,5[-∈a10.已知函数()()2lg x ax a x f --=Ⅰ若()x f 的定义域Φ≠A ,试求a 的取值范围.Ⅱ 若()x f 在()3,2∈x 上有意义, 试求a 的取值范围. Ⅲ若()0>x f 的解集为()3,2,,试求a 的值.解答:这三问中,第Ⅰ问是能成立问题,第Ⅱ问是恒成立问题,第Ⅲ问是恰成立问题.Ⅰ ()x f 的定义域非空,相当于存在实数x ,使02>--x ax a 成立,即()2x ax a x --=ϕ的最大值大于0成立,(),0444422max >+=---=a a a a x ϕ 解得 4-<a 或0>a .Ⅱ()x f 在区间()3,2上有意义,等价于()2x ax a x --=ϕ0>在()3,2恒成立,即()x ϕ的最小值大于0.解不等式组 ()⎪⎩⎪⎨⎧≥≤-,03,252ϕa 或()⎪⎩⎪⎨⎧≥>-,02,252ϕa ⎩⎨⎧≥---≥,093,5a a a 或⎩⎨⎧≥---<042,5a a a 解得 .29-≤aⅢ()0>x f 的解集为()3,2,等价于不等式12>--x ax a 的解集为()3,2;于是有012<-++a ax x ,这等价于方程012=-++a ax x 的两个根为2和3, 于是可解得5-=a .。

求解有关恒成立、存在性问题的四种策略

求解有关恒成立、存在性问题的四种策略

求解有关恒成立、存在性问题的四种策略对于有关恒成立、存在性问题,一直是高考命题的热点,往往以全称命题或特称命题的形式出现,同时结合函数的单调性、极值、最值等知识进行考查,在高考中多以压轴题或压轴题中的压轴问的形式出现。

如何突破这一难关呢?关键是细心审题及恰当地转化。

现就如何求解恒成立、存在性问题中的参数问题加以分析。

方法1:分离参数法例1.设函数f(x)=lnx-ax,g(x)=ex-ax,其中a为实数。

若f(x)在(1,+∞)上是单调减函数,且g(x)在(1,+∞)上有最小值,求a的取值范围。

解:因为f`(x)= -a,g`(x)=ex-a,由题意得f`(x)≤0对x∈(1,+∞)恒成立,即a≥ 对x∈(1,+∞)恒成立,所以a≥1。

因为g`(x)=ex-a在x∈(1,+∞)上是单调增函数,所以g`(x)>g`(1)=e-a。

又g(x)在(1,+∞)上有最小值,则必有e-ae。

综上,可知a的取值范围是(e,+∞)。

点评:求解问题的切入点不同,求解的难度就有差异。

在恒成立问题中有时需要取交集,有时需要取并集,本题解法需要取交集。

一般而言:在同一问题中,若是对自变量作分类讨论,其结果要取交集;若是对参数作分类讨论,其结果要取并集。

方法2:构造函数法例2.已知函数f(x)= ,若|f(x)|≥ax,则a的取值范围是()。

FrkBAnw9mjyEglQgHNxJcw==A.(-∞,0]B.(-∞,1]C.[-2,1]D.[-2,0]解:当x≤0时,|f(x)|≥axx2-(2+a)x≥0,对x≤0恒成立。

记g(x)=x2-(2+a)x=(x- )2- 。

当当≥0即a≥-2时,g(x)的最小值为0,满足题意。

当x>0时,|f(x)|≥axln(1+x)-ax≥0a≤ ,对x>0恒成立。

令θ(x)= ,则θ`(x)= 。

设t=x+1,则t>1。

记L(t)= -lnt,则L`(t)= 故L(t)故当x∈(0,+∞)时,θ(x)恒大于0,所以a≤0。

高考数学恒成立问题和存在性问题的类型及方法处理

高考数学恒成立问题和存在性问题的类型及方法处理

高考数学恒成立问题和存在性问题的类型及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点 问题。

这类问题在各类考试以及高考中都屡见不鲜。

感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。

在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。

一、函数法1. 构造一次函数利用一次函数的图象或单调性来解决对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立例1 若不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的范 围。

解析:将不等式化为:0)12()1(2<---x x m ,构造一次型函数:)12()1()(2---=x m x m g原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。

由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g解得231271+<<+-x ,所以x 的范围是)231,271(++-∈x 。

小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。

练习:(1)若不等式01<-ax 对[]2,1∈x 恒成立,求实数a 的取值范围。

(2)对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值范围。

(答案:或)2. 构造二次函数利用二次函数的图像与性质及二次方程根的分布来解决。

解决高中数学函数的存在性与恒成立问题的几种方法(建议收藏)

解决高中数学函数的存在性与恒成立问题的几种方法(建议收藏)

解决⾼中数学函数的存在性与恒成⽴问题的⼏种⽅法(建议收藏)函数内容作为⾼中数学知识体系的核⼼也是历年⾼考的⼀个热点.在新课标下的⾼考越来越注重对学⽣的综合素质的考察恒成⽴问题便是⼀个考察学⽣综合素质的很好途径它主要涉及到⼀次函数、⼆次函数、三⾓函数、指数函数和对数函数等常见函数的图象和性质渗透着换元、化归、数形结合、函数与⽅程等思想⽅法在培养思维的灵活性、创造性等⽅⾯起到了积极的作⽤.近⼏年的数学⾼考和各地的模考联考中频频出现存在性与恒成⽴问题其形式逐渐多样化但它们⼤都与函数、导数知识密不可分.解决⾼中数学函数的存在性与恒成⽴问题常⽤以下⼏种⽅法:①函数性质法;②分离参数法;③主参换位法;④数形结合法等.⼀、函数性质法即构造函数⼀种最重要的思想⽅法就是构造适当的函数即构造函数在解决函数存在性与恒成⽴问题时在解决函数存在性与恒成⽴问题时⼀种最重要的思想⽅法就是构造适当的函数需要同时注意在⼀个含多个变量的数学问题中需要法然后利⽤相关函数的图象和性质解决问题然后利⽤相关函数的图象和性质解决问题同时注意在⼀个含多个变量的数学问题中⼀般来说已知存在已知存在使问题更加⾯⽬更加清晰明了⼀般来说确定合适的变量和参数从⽽揭⽰函数关系从⽽揭⽰函数关系使问题更加⾯⽬更加清晰明了确定合适的变量和参数此法关键在函数的构造上常见于两种⽽待求范围的量视为参数.此法关键在函数的构造上常见于两种----⼀分为范围的量视为变量⽽待求范围的量视为参数范围的量视为变量即体现数形结合思想另⼀点充分利⽤函数的图象来分析即体现数形结合思想⼆或和⽽为⼀另⼀点充分利⽤函数的图象来分析⼆或和⽽为⼀⼆、分离参数法主参换位法三、三、主参换位法当分离参数会遇到讨论的⿇烦或者即使能容易分离出参数某些函数存在性与恒成⽴问题中当分离参数会遇到讨论的⿇烦或者即使能容易分离出参数某些函数存在性与恒成⽴问题中可考虑变换思维⾓度.即把主元与参数换个位置再结合其即把主元与参数换个位置再结合其但函数的最值却难以求出时可考虑变换思维⾓度与变量与变量但函数的最值却难以求出时易把它看成关此类问题的难点常常因为学⽣的思维定势易把它看成关它知识往往会取得出奇制胜的效果往往会取得出奇制胜的效果.此类问题的难点常常因为学⽣的思维定势它知识从⽽因计算繁琐出错或者中途夭折;若转换⼀下思路把待求的把待求的x为参的不等式讨论从⽽因计算繁琐出错或者中途夭折;若转换⼀下思路于X的不等式讨论构造新的关于参数的函数再来求解参数再来求解参数x应满⾜的条件这样问题就轻⽽易举的数以m为变量为变量构造新的关于参数的函数得到解决了.数形结合法四、数形结合法四、往往可通过图象、图形的位置关系建如果题中所涉及的函数对应的图象、图形较易画出时往往可通过图象、图形的位置关系建如果题中所涉及的函数对应的图象、图形较易画出时利选择适当的两个函数利解决此类问题经常要结合函数的图象选择适当的两个函数⽴不等式从⽽求得参数范围. 解决此类问题经常要结合函数的图象⽤函数图像的上、下位置关系来确定参数的范围.利⽤数形结合解决不等式问题关键是构造准确做出函数的图象函数函数准确做出函数的图象由于试题只能通过图⽚形式呈现,需要下载电⼦版本请按留⾔或私信。

高一数学复习考点知识与题型讲解14---恒成立和存在性问题

高一数学复习考点知识与题型讲解14---恒成立和存在性问题

高一数学复习考点知识与题型讲解第14讲恒成立和存在性问题1 恒成立和存在性问题单变量的恒成立问题①恒成立,则;②恒成立,则;③恒成立,则;④恒成立,则;单变量的存在性问题①,使得成立,则;②,使得成立,则;③,使得恒成立,则;④,使得恒成立,则;双变量的恒成立与存在性问题①,使得恒成立,则;②,使得恒成立,则;③恒成立,则;④,使得恒成立,则;相等问题①,使得,则两个函数的值域的交集不为空集;②,使得,则的值域的值域2 解题方法恒成立和存在性问题最终可转化为最值问题,具体的方法有◆直接最值法◆分类参数法◆变换主元法◆数形结合法【题型一】恒成立和存在性问题的解题方法1 直接构造函数最值法【典题1】设函数的最大值是,若对于任意的,恒成立,则的取值范围是.【解析】当时,;当时,,则,即.由题意知<在上恒成立,即<在上恒成立,(把不等式中移到右边,使得右边为,从而构造函数求最值)令,则问题等价于在上恒成立,在上,-,即.【点拨】①直接构造函数最值法:遇到类似不等式恒成立问题,可把不等式变形为,从而构造函数求其最值解决恒成立问题;②在求函数的最值时,一定要优先考虑函数的定义域;③题目中在上是取不到最大值,,而要使得恒成立,可等于,即,而不是.2 分离参数法【典题1】已知函数关于点对称,若对任意的,恒成立,则实数k的取值范围为.【解析】由为奇函数,可得其图象关于对称,可得的图象关于对称,函数关于点-对称,可得,对任意的恒成立,-恒成立,【思考:此时若利用最值法,求函数-的最小值,第一函数较复杂,第二函数含参要分离讨论,路漫漫其修远兮,务必另辟蹊径】即在恒成立,所以3,(使得不等式一边是参数,另一边不含关于的式子,达到分离参数的目的)令,由,可得,设,当时,取得最大值,则的取值范围是,【点拨】①分离参数法:遇到类似或等不等式恒成立问题,可把不等式化简为或的形式,达到分离参数的目的,再求解的最值处理恒成立问题;②恒成立问题最终转化为最值问题,而分离参数法,最好之处就是转化后的函数不含参,避免了麻烦的分离讨论.【典题2】已知,其中为常数(1)当时,求的值;(2)当时,关于的不等式恒成立,试求的取值范围;【解析】(1) ⇒ -⇒ - ⇒ ⇒;(2)⇒⇒,令,,设,则在上为增函数⇒ 时,有最小值为2,.【点拨】在整个解题的过程中不断的利用等价转化,把问题慢慢变得更简单些.3 变换主元法【典题1】对任意,不等式恒成立,求的取值范围.思考痕迹见到本题中“恒成立”潜意识中认为是变量,是参数,这样会构造函数,而已知条件是,觉得怪怪的做不下去;此时若把看成变量,看成参数呢?【解析】因为不等式恒成立不等式恒成立...①,令若要使得①成立,只需要解得或故的取值范围或【点拨】变换主元法,就是要分辨好谁做函数的自变量,谁做参数,方法是以已知范围的字母为自变量.4 数形结合法【典题1】已知当时,有恒成立,求的取值范围.思考痕迹本题若用直接最值法,去求函数的最大值,就算用高二学到的导数求解也是难度很大的事情;用分离参数法呢?试试也觉得一个硬骨头.看看简单些的想法吧!【解析】不等式恒成立等价于恒成立...①,令,若①成立,则当时,的图像恒在图像的下方,则需要或(不要漏了,因为,不一定是指数函数)又,解得或即实数的取值范围为【点拨】①数形结合法:恒成立⇒在上,函数的图像在函数图像的下方.② 遇到不等式恒成立,可以把不等式化为用数形结合法,而函数与最好是熟悉的函数类型,比如本题中构造出,两个常见的基本初级函数.【题型二】恒成立与存在性问题混合题型【典题1】已知函数.(1)若对任意,任意都有成立,求实数的取值范围.(2)若对任意,总存在使得成立,求实数m的取值范围.【解析】(1)由题设函数,.对任意,任意都有成立,知:,在上递增,又在上递减,有,的范围为(2)由题设函数,.对任意,总存在,使得成立,知,有,即,的范围为.【点拨】对于双变量的恒成立--存在性问题,比如第二问中怎么确定,即到底是函数最大值还是最小值呢?具体如下思考如下,先把看成定值,那,都有,当然是要;再把看成定值,那,都有,当然是;故问题转化为.其他形式的双变量成立问题同理,要理解切记不要死背..【典题2】设,,若对于任意,总存在,使得成立,则的取值范围是.【解析】,当时,,当时,,由,即,,,故,又因为,且.由递增,可得-,对于任意,总存在,使得成立,可得, 可得, . 巩固练习1(★★) 已知 对一切 上恒成立,则实数 的取值范围是. 【答案】【解析】可化为,令 = - ,由 -∞, ,得 [,+∞), 则 - - ,- - 在 , ∞ 上递减,当 时- - 取得最大值为,所以.故答案为:, ∞ .2(★★)若不等式 对满足 的所有 都成立,求 的取值范围. 【答案】【解析】令x m x m f 21)1()(2-+-=;不等式()2211x m x ->-对满足2m ≤的所有m 都成立⇔对任意22≤≤-m ,021)1(2<-+-x m x 恒成立⇔⎩⎨⎧<-->-+⇔⎩⎨⎧<<-012203220)2(0)2(22x x x x f f ,解得。

恒成立与存在性问题的转化策略

恒成立与存在性问题的转化策略

恒成立与存在性问题的转化策略一、单函数单变量问题:1.对∀D x ∈,a>)(x f 恒成立⇔函数)(x f y =的图像总在直线a y =的下方⇔a>)(x f max,D x ∈;对∀D x ∈,a<)(x f 恒成立⇔函数)(x f y =的图像总在直线a y =的上方⇔a<)(x f min,D x ∈; 2.∃D x ∈,a>)(x f 能成立⇔函数)(x f y =的图像有点在直线a y =的下方⇔a>)(x f min,D x ∈; 对∃D x ∈,a<)(x f 能成立⇔函数)(x f y =的图像有点在直线a y =的上方⇔a<)(x f max,D x ∈;3.恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .二、双函数单变量问题:4.对∀D x ∈,不等式)(x f >)(g x 恒成立⇔在区间D 上,函数)(x f y =的图像总在函数)(g x y =的图像的上方⇔[)(x f -)(g x ]min ,D x ∈; 对∀D x ∈,不等式)(x f <)(g x 恒成立⇔在区间D 上,函数)(x f y =的图像总在函数)(g x y =的图像的下方⇔[)(x f -)(g x ]max ,D x ∈; 三、双函数双变量问题:设函数()x f 、()x g ,5.对∀[]b a x ,1∈,∀[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f m ax min ≥;6.对∀[]b a x ,1∈,∃[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥;7.对∀[]b a x ,1∈,∃[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤;8.存在[]b a x ,1∈,∃[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥;9.存在[]b a x ,1∈,∃[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤;10.对∀[]b a x ,1∈,总∃[]d c x ,2∈,使得()()21x g x f =⇔{)(x f ∣[]b a x ,∈}⊆{)(g x ∣[]d ,c ∈x }。

不等式恒成立、存在性问题的解题方法

不等式恒成立、存在性问题的解题方法

不等式恒成立、存在性问题的解题方法一、常见不等式恒成立问题解法1、用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。

解析:我们可以用变换主元的方法,将m 看作主变元,即将原不等式化为:0)12()1(2<---x x m ,;令)12()1()(2---=x x m m f ,则22≤≤-m 时,0)(<m f 恒成立,所以只需⎩⎨⎧<<-0)2(0)2(f f 即⎪⎩⎪⎨⎧<---<----0)12()1(20)12()1(222x x x x 所以x 的范围是)231,271(++-∈x 。

2、利用一元二次函数判别式对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有:(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。

解析:要想应用上面的结论,就得保证是二次的,才有判别式,但二次项系数含有参数m ,所以要讨论m-1是否是0。

(1)当m-1=0时,元不等式化为2>0恒成立,满足题意;(2)01≠-m 时,只需⎩⎨⎧<---=∆>-0)1(8)1(012m m m ,所以,)9,1[∈m 。

3、分离变量法若所给的不等式能通过恒等变换使参数与主元分别位于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围。

这种方法本质也还是求最值,但它思路更清晰,操作性更强。

恒成立和存在性问题的解题策略

恒成立和存在性问题的解题策略

“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f mi n mi n ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f m i n m a x≥ 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f m a x m i n≤ 8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A ⊂B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;❍某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

导数背景下的恒成立与存在性问题

导数背景下的恒成立与存在性问题

导数背景下的恒成立与存在性问题“恒成立”问题与“存在性”问题是高中数学中的常见问题,它不仅考查了函数、不等式等传统知识和方法,而且导数的加入更是极大的丰富了该类问题的表现形式,充分体现了能力立意的原则,越来越受到命题者的青睐,成为高中数学的一个热点问题。

本文仅从以下九方面总结一下有关这类问题的不同的表现形式及解决方法,希望能对大家高考复习起到一定的帮助作用。

一、 若对∀x I ∈,)(x f a >恒成立,则只需max )(x f a >即可;若对∀x I ∈,)(x f a <恒成立,则只需min )(x f a <即可;例1. 已知函数)30(ln )(≤<+=x x a x x f ,若以其图象上任意一点),(00y x P 为切点的切线的斜率21≤k 恒成立,求实数a 的取值范围.二、 若I ∈∃x ,满足不等式)(x f a >,则只需min )(x f a >即可; 若I ∈∃x ,满足不等式)(x f a <,则只需max )(x f a >即可;例2:已知函数ax ax x f 2)(2+=,x e x g =)(,若在),0(+∞上至少存在一个实数0x ,使得)()(00x g x f >成立,求实数a 的取值范围.三、若对I ∈∀21,x x ,使得不等式a x f x f <-)()(21(a 为常数)恒成立,则只需a x f x f <-min max )()(即可例3:已知函数)1()1(21ln )(2e a x a x x a x f ≤<+-+=.证明:对于(]a x x ,1,21∈∀,恒有1)()(21<-x f x f 成立.四、若I x x ∈∃21,,满足方程)()(21x g x f =,则只需两函数值域交集不空即可.例4:已知函数⎪⎪⎩⎪⎪⎨⎧⎥⎦⎤ ⎝⎛∈+⎥⎦⎤⎢⎣⎡∈+-=)1,21(12)21,0(6131)(3x x x x x x f ,函数)0(226sin )(>+-=a a x a x g π,若[]1,0,21∈∃x x ,使得)()(21x g x f =成立,试求实数a 的取值范围.五、若对∀1x 1I ∈总∃2x 2I ∈使得)()(21x g x f =成立,则只需)(x f 值域⊆)(x g 值域即可例5:已知函数)1(23)(,274)(232≥--=--=a a x a x x g xx x f 对∀1x []1,0∈总∃2x []1,0∈使得)()(21x g x f =成立,试求实数a 的取值范围.六、若对∀1x 1I ∈,2x 2I ∈使得不等式)()(21x g x f <恒成立,则只需min max )()(x g x f <即可 例6:已知两个函数x x x x g c x x x f 4042)(,287)(232-+=--=,若对∀1x []3,3-∈,2x []3,3-∈,都有不等式)()(21x g x f ≤恒成立,求实数c 的取值范围.七、若对∃1x 1I ∈,2x 2I ∈满足不等式)()(21x g x f <,则只需max min )()(x g x f <即可 例7:已知两个函数12)(,93)(223++=+--=x x x g c x x x x f ,若对∃1x []6,2-∈,2x []6,2-∈,使得不等式)()(21x g x f <成立,求实数c 的取值范围.八、若对∀1x 1I ∈,总∃2x 2I ∈,使得)()(21x g x f >成立,则只需min min )()(x g x f >即可 例8:已知两个函数k e e e e x g x xx x f x x x x ++++=++=--22)(,ln 28)(,若对∀1x []4,1∈,总∃2x R ∈,使得)()(21x g x f >成立,求实数k 的取值范围.九、若对∀1x 1I ∈,总∃2x 2I ∈,使得)()(21x g x f <成立,则只需max max )()(x g x f <即可 例9:已知两个函数b x x x g R x xx x x f ++-=∈--+-=2)(),(14341ln )(2,若对∀1x )2,0(∈,总∃2x []2,1∈,使得)()(21x g x f <成立,求实数b 的取值范围.答案:1.⎪⎭⎫⎢⎣⎡+∞,21 2. ),212(2+∞-e 3. 3.略4. ⎥⎦⎤⎢⎣⎡34,21 5. ⎥⎦⎤⎢⎣⎡23,1 6. [)+∞,195 7.)76,(-∞ 8.)2ln 22,(+-∞ 9. ),25(+∞-。

解“恒成立问题”的基本策略

解“恒成立问题”的基本策略

“恒成立问题”解决的基本策略一、恒成立问题的基本种类在数学问题研究中经常遇到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式平常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一的确数;❍某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,浸透着换元、化归、数形结合、函数与方程等思想方法,有利于观察学生的综合解题能力,在培养思想的灵便性、创立性等方面起到了积极的作用。

因此也成为历年高考的一个热点。

恒成立问题在解题过程中大体可分为以下几各种类:①一次函数型;②二次函数型;③变量分别型;④依照函数的奇偶性、周期性等性质;⑤直接依照函数的图象。

二、恒成立问题解决的基本策略 (一)两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在思路2、min )]([)(x f m D x x f m≤⇔∈≤上恒成立在怎样在区间D 上求函数f(x)的最大值也许最小值问题,我们可以经过习题的实质,采用合理有效的方法进行求解,平常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f (x )的最值。

这类问题在数学的学习涉及的知识比较广泛,在办理上也有好多特别性,也是近来几年来高考中频频出现的试题种类,希望同学们在平常学习中注意积累。

(二)、赋值型——利用特别值求解等式中的恒成立问题,经常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.由等式x 4+a 1x 3+a 2x 2+a 3x+a 4= (x+1)4+b 1(x+1)3+ b 2(x+1)2+b 3(x+1)+b 4 定义照射f :(a 1,a 2,a 3,a 4)→b 1+b 2+b 3+b 4,则f :(4,3,2,1) → ( )A.10B.7C.-1D.0略解:取x=0,则 a 4=1+b 1+b 2+b 3+b 4,又 a 4=1,因此b 1+b 2+b 3+b 4 =0 ,应选D例2.若是函数y=f(x)=sin2x+acos2x 的图象关于直线x=8π-对称,那么a=( ). A .1 B .-1 C .2 D . -2.略解:取x=0及x=4π-,则f(0)=f(4π-),即a=-1,应选B. 此法表现了数学中从一般到特其他转变思想.(三)分清基本种类,运用相关基本知识,掌握基本的解题策略 1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则依照函数的图象(直线)可得上述结论等价于0)(0)(>>n f m f 同理,若在[m,n]内恒有f(x)<0, 则有)(0)(<<n f m f例2.关于满足|a|≤2的所有实数a,求使不等式x 2+ax+1>2a+x 恒成立的x 的取值范围.解析:在不等式中出现了两个字母:x 及a,重点在于该把哪个字母看作是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转变为在[-2,2]内关于a 的一次函数大于0恒成立的问题.解:原不等式转变为(x-1)a+x 2-2x+1>0在|a|≤2时恒成立,设f(a)= (x-1)a+x 2-2x+1,则f(a)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3. 即x ∈(-∞,-1)∪(3,+∞)此类题实质上是利用了一次函数在区间[m,n]上的图象是一线段,故只要保证该线段两端点均在x 轴上方(或下方)即可.2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些详尽的方法,在今后的解题中自觉运用。

恒成立与存在性问题的解题策略之欧阳引擎创编

恒成立与存在性问题的解题策略之欧阳引擎创编

“恒成立问题”与“存在性问题”的基本解题战略欧阳引擎(2021.01.01)一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立 另一转化办法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最年夜值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表示形式通常有:在给定区间上某关系恒成立;某函数的界说域为全体实数R;某不等式的解为一切实数;某表达式的值恒年夜于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想办法,有利于考查学生的综合解题能力,在培养思维的灵活性、创作创造性等方面起到了积极的作用。

恒成立与存在性问题的解题策略之欧阳理创编

恒成立与存在性问题的解题策略之欧阳理创编

“恒成立问题”与“存在性问题”的基本解题战略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立 另一转化办法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最年夜值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表示形式通常有:在给定区间上某关系恒成立;某函数的界说域为全体实数R;某不等式的解为一切实数;某表达式的值恒年夜于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想办法,有利于考查学生的综合解题能力,在培养思维的灵活性、创作创造性等方面起到了积极的作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A ⊂B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;❍某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

因此也成为历年高考的一个热点。

恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型;②二次函数型;③变量分离型;④根据函数的奇偶性、周期性等性质;⑤直接根据函数的图象。

二、恒成立问题解决的基本策略大家知道,恒成立问题分等式中的恒成立问题和不等式中的恒成立问题。

等式中的恒成立问题,特别是多项式恒成立问题,常简化为对应次数的系数相等从而建立一个方程组来解决问题的。

(一)两个基本思想解决“恒成立问题”思路1、max )]([)(x f m D x x f m ≥⇔∈≥上恒成立在 思路2、min )]([)(x f m D x x f m ≤⇔∈≤上恒成立在如何在区间D 上求函数f(x)的最大值或者最小值问题,我们可以通过习题的实际,采取合理有效的方法进行求解,通常可以考虑利用函数的单调性、函数的图像、二次函数的配方法、三角函数的有界性、均值定理、函数求导等等方法求函数f (x )的最值。

这类问题在数学的学习涉及的知识比较广泛,在处理上也有许多特殊性,也是近年来高考中频频出现的试题类型,希望同学们在日常学习中注意积累。

(二)、赋值型——利用特殊值求解等式恒成立问题等式中的恒成立问题,常常用赋值法求解,特别是对解决填空题、选择题能很快求得.例1.如果函数y=f(x)=sin2x+acos2x 的图象关于直线x=8π- 对称,那么a=( ). A .1 B .-1 C .2 D . -2. 略解:取x=0及x=4π-,则f(0)=f(4π-),即a=-1,故选B. 此法体现了数学中从一般到特殊的转化思想.例(备用).由等式x 4+a 1x 3+a 2x 2+a 3x+a 4= (x+1)4+b 1(x+1)3+ b 2(x+1)2+b 3(x+1)+b 4 定义映射f :(a 1,a 2,a 3,a 4)→b 1+b 2+b 3+b 4,则f :(4,3,2,1) → ( )A.10B.7C.-1D.0略解:取x=0,则 a 4=1+b 1+b 2+b 3+b 4,又 a 4=1,所以b 1+b 2+b 3+b 4 =0 ,故选D(三)分清基本类型,运用相关基本知识,把握基本的解题策略 1、一次函数型:若原题可化为一次函数型,则由数形结合思想利用一次函数知识求解,十分简捷给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于)(0)(>>n f m f 同理,若在[m,n]内恒有f(x)<0, 则有)(0)(<<nf m f例2.对于满足|a|≤2的所有实数a,求使不等式x 2+ax+1>2a+x 恒成立的x 的取值范围.分析:在不等式中出现了两个字母:x 及a,关键在于该把哪个字母看成是一个变量,另一个作为常数.显然可将a 视作自变量,则上述问题即可转化为在[-2,2]内关于a 的一次函数大于0恒成立的问题.解:原不等式转化为(x-1)a+x 2-2x+1>0在|a|≤2时恒成立,设f(a)= (x-1)a+x 2-2x+1,则f(a)在[-2,2]上恒大于0,故有:⎩⎨⎧>>-0)2(0)2(f f 即⎪⎩⎪⎨⎧>->+-0103422x x x 解得:⎩⎨⎧-<><>1113x x x x 或或 ∴x<-1或x>3. 即x ∈(-∞,-1)∪(3,+∞)此类题本质上是利用了一次函数在区间[m,n]上的图象是一线段,故只需保证该线段两端点均在x 轴上方(或下方)即可.2、二次函数型涉及到二次函数的问题是复习的重点,同学们要加强学习、归纳、总结,提炼出一些具体的方法,在今后的解题中自觉运用。

(1)若二次函数y=ax 2+bx+c(a≠0)大于0恒成立,则有00<∆>且a(2)若是二次函数在指定区间上的恒成立问题,可以利用韦达定理以及根的分布知识求解。

类型1:设)0()(2≠++=a c bx ax x f 在R 上恒成立,(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a 。

类型2:设)0()(2≠++=a c bx ax x f 在区间],[βα上恒成立(1)当0>a时,],[0)(βα∈>x x f 在上恒成立⎪⎩⎪⎨⎧>>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或, ],[0)(βα∈<x x f 在上恒成立⎩⎨⎧<<⇔0)(0)(βαf f(2)当0<a时,],[0)(βα∈>x x f 在上恒成立⎩⎨⎧>>⇔0)(0)(βαf f],[0)(βα∈<x x f 在上恒成立⎪⎩⎪⎨⎧<>-⎪⎩⎪⎨⎧<∆≤-≤⎪⎩⎪⎨⎧><-⇔0)(2020)(2βββαααf a ba b f a b 或或 类型3:设)0()(2≠++=a c bx ax x f 在区间 (-∞ , α]上恒成立。

f(x)>0⇔a>0且∆<0或-b/2a>α且f(α)>0 f(x)<0⇔a<0且∆<0或-b/2a>α且f(α)<0类型4:设)0()(2≠++=a c bx ax x f 在区间 [α,+∞)上恒成立。

f(x)>0⇔a>0,∆<0或-b/2a<α且f(α)>0 f(x)<0⇔a<0,∆<0或-b/2a<α且f(α)<0 例3. 若函数12)1()1()(22++-+-=a x a x a x f 的定义域为R ,求实数 a 的取值范围. 分析:该题就转化为被开方数012)1()1(22≥++-+-a x a x a 在R 上恒成立问题,并且注意对二次项系数的讨论.解:依题意,当时,R x ∈012)1()1(22≥++-+-a x a x a 恒成立, 所以,①当,1,01,01{,0122=≠+=-=-a a a a 时,即当此时.1,0112)1()1(22=∴≥=++-+-a a x a x a ②当时,时,即当012)1(4)1(,01{012222≤+---=∆>-≠-a a a a a 有,91,09101{22≤<⇒≤+->a a a a综上所述,f(x)的定义域为R 时,]9,1[∈a例4.已知函数2()3f x x ax a =++-,在R 上()0f x ≥恒成立,求a 的取值范围. 分析:()y f x =的函数图像都在X 轴及其上方,如右图所示: 略解:()22434120a a a a ∆=--=+-≤62a ∴-≤≤ 变式1:若[]2,2x ∈-时,()0f x ≥恒成立,求a 的取值范围.解析一. (零点分布策略) 本题可以考虑f (x )的零点分布情况进行分类讨论,分无零点、零点在区间的左侧、零点在区间的右侧三种情况,即Δ≤0或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥--≤->∆0)2(0)2(220f f a 或⎪⎪⎪⎩⎪⎪⎪⎨⎧≥≥-≥->∆0)2(0)2(220f f a ,即a 的取值范围为[-7,2].解法二分析:(运用二次函数极值点的分布分类讨论)要使[]2,2x ∈-时,()0f x ≥恒成立,只需)(x f 的最小值0)(≥a g 即可.略解:(分类讨论)22()324a a f x x a ⎛⎫=+--+ ⎪⎝⎭,令()f x 在[]2,2-上的最小值为()g a .⑴当22a -<-,即4a >时,()(2)730g a f a =-=-≥ 73a ∴≤ 又4a > a ∴不存在.⑵当222a-≤-≤,即44a -≤≤时,2()()3024a a g a f a ==--+≥ 62a ∴-≤≤ 又44a -≤≤42a ∴-≤≤⑶当22a->,即4a <-时,()(2)70g a f a ==+≥ 7a ∴≥- 又4a <- 74a ∴-≤<- 综上所述,72a -≤≤.变式2:若[]2,2x ∈-时,()2f x ≥恒成立,求a 的取值范围.解法一:分析:题目中要证明2)(≥x f 在[]2,2-上恒成立,若把2移到等号的左边,则把原题转化成左边二次函数在区间[]2,2-时恒大于等于0的问题.例2 已知a ax x x f -++=3)(2,若0)(],2,2[≥-∈x f x 恒成立,求a 的取值范围.略解:2()320f x x ax a =++--≥,即2()10f x x ax a =++-≥在[]2,2-上成立.⑴()2410a a ∆=--≤22a ∴--≤≤-+⑵24(1)0(2)0(2)02222a a f f a a ⎧∆=-->⎪≥⎪⎪⎨-≥⎪⎪-≥-≤-⎪⎩或2225--≤≤-∴a 综上所述,2225-≤≤-a .解法二:(运用二次函数极值点的分布)⑴当22a -<-,即4a >时,()(2)732g a f a =-=-≥ ()54,3a ∴≤∉+∞ a ∴不存在. ⑵当222a-≤-≤,即44a -≤≤时,2()()3224a a g a f a ==--+≥, 222222-≤≤-a -2224-≤≤-∴a⑶当22a->,即4a <-时,()(2)72g a f a ==+≥, 5a ∴≥- 54a ∴-≤<-综上所述2225-≤≤-a .此题属于含参数二次函数,求最值时,对于轴变区间定的情形,对轴与区间的位置进行分类讨论;还有与其相反的,轴动区间定,方法一样.对于二次函数在R 上恒成立问题往往采用判别式法(如例4、例5),而对于二次函数在某一区间上恒成立问题往往转化为求函数在此区间上的最值问题3、变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。

相关文档
最新文档