恒成立问题与存在性问题(最新精华)

合集下载

(完整版)恒成立存在性问题

(完整版)恒成立存在性问题

专题 恒成立存在性问题知识点梳理1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈Bx f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;9、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;题型一、常见方法1、已知函数12)(2+-=ax x x f ,xax g =)(,其中0>a ,0≠x . 1)对任意]2,1[∈x ,都有)()(x g x f >恒成立,求实数a 的取值范围;2)对任意]4,2[],2,1[21∈∈x x ,都有)()(21x g x f >恒成立,求实数a 的取值范围;2、设函数b x x a x h ++=)(,对任意]2,21[∈a ,都有10)(≤x h 在]1,41[∈x 恒成立,求实数b 的取值范围.3、已知两函数2)(x x f =,m x g x-⎪⎭⎫ ⎝⎛=21)(,对任意[]2,01∈x ,存在[]2,12∈x ,使得()21)(x g x f ≥,则实数m 的取值范围为题型二、主参换位法(已知某个参数的范围,整理成关于这个参数的函数)1、对于满足2p ≤的所有实数p,求使不等式212x px p x ++>+恒成立的x 的取值范围。

高一函数恒成立与存在性问题

高一函数恒成立与存在性问题

高一函数恒成立与存在性问题本文主要介绍了数学中恒成立与存在性问题的基础知识和解决方法。

其中恒成立问题包括六种情况,分别是当a大于所有f(x)时,a也大于f(x)的最大值;当a小于所有f(x)时,a也小于f(x)的最小值;当g(x)大于f(x)时,g(x)-f(x)大于0;当g(x)小于f(x)时,g(x)-f(x)小于0;当f(x1)大于g(x2)时,f(x1)也大于g(x2)的最大值;当f(x1)小于g(x2)时,f(x1)也小于g(x2)的最小值。

存在性问题同样包括六种情况,与恒成立问题类似。

此外,还介绍了恒成立与存在性混合不等式问题和恒成立与存在性混合等式问题,以及解决这些问题的方法。

对于恒成立问题,可以采用反证法或数学归纳法;对于存在性问题,可以采用构造法或反证法。

在解决问题时,需要注意精确表述和符号运用。

例四:1) 当$x\in(1,2)$时,不等式$(x-1)^2<\log_a{x}$恒成立,求实数$a$的取值范围。

改写后:对于$x\in(1,2)$,使得$(x-1)^2<\log_a{x}$恒成立,求实数$a$的取值范围。

2) 当$x\in(0,\infty)$时,不等式$4x<\log_a{x}$恒成立,求实数$a$的取值范围。

改写后:对于$x\in(0,\infty)$,使得$4x<\log_a{x}$恒成立,求实数$a$的取值范围。

3) 已知$f(x)=m(x-2m)(x+m+3)$,$g(x)=2x-2$。

若对于所有$x\in\mathbb{R}$,都有$f(x)g(x)$,则$m$的取值范围是什么?改写后:已知$f(x)=m(x-2m)(x+m+3)$,$g(x)=2x-2$。

若对于所有$x\in\mathbb{R}$,都有$f(x)g(x)$,求$m$的取值范围。

题:1.当$x\in(-\infty,-1]$时,不等式$(m^2-m)4x-2x<0$恒成立,求实数$m$的取值范围。

(完整word版)恒成立与存在性问题的解题策略

(完整word版)恒成立与存在性问题的解题策略

“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a ,b]上的值域为A ,g (x)在区间[c,d ]上的值域为B ,则A B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有:在给定区间上某关系恒成立;某函数的定义域为全体实数R;某不等式的解为一切实数;某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

恒成立及存在性问题的解题策略

恒成立及存在性问题的解题策略

“恒成立问题〞与“存在性问题〞的根本解题策略一、“恒成立问题〞与“存在性问题〞的根本类型恒成立、能成立、恰成立问题的根本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:假设A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,假设,D x ∈B x f ≤)(在D 上恰成立,那么等价于)(x f 在D 上的最大值B x f =)(max . 4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,那么()()x g x f min min ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,那么()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,那么()()x g x f min max ≥7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,那么()()x g x f max min ≤8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,那么A ⊂B. 9、假设不等式()()f x g x >在区间D 上恒成立,那么等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、假设不等式()()f x g x <在区间D 上恒成立,那么等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的根本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;❍某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考察学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

恒成立与存在性问题的解题策略

恒成立与存在性问题的解题策略

“恒成立问题”与“存在性问题”的基本解题策略一、“恒成立问题”与“存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、恒成立问题的转化:()a f x >恒成立⇒()max a f x >;()()min a f x a f x ≤⇒≤恒成立2、能成立问题的转化:()a f x >能成立⇒()min a f x >;()()max a f x a f x ≤⇒≤能成立3、恰成立问题的转化:()a f x >在M 上恰成立⇔()a f x >的解集为M ()()R a f x M a f x C M ⎧>⎪⇔⎨≤⎪⎩在上恒成立在上恒成立另一转化方法:若A x f D x ≥∈)(,在D 上恰成立,等价于)(x f 在D 上的最小值A x f =)(min ,若,D x ∈B x f ≤)(在D 上恰成立,则等价于)(x f 在D 上的最大值B x f =)(max .4、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f mi n mi n ≥5、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f max max ≤6、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≥,则()()x g x f m i n m a x≥ 7、设函数()x f 、()x g ,存在[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f ≤,则()()x g x f m a x m i n≤ 8、设函数()x f 、()x g ,对任意的[]b a x ,1∈,存在[]d c x ,2∈,使得()()21x g x f =,设f(x)在区间[a,b]上的值域为A ,g(x)在区间[c,d]上的值域为B,则A ⊂B.9、若不等式()()f x g x >在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象上方;10、若不等式()()f x g x <在区间D 上恒成立,则等价于在区间D 上函数()y f x =和图象在函数()y g x =图象下方;恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有: 在给定区间上某关系恒成立; 某函数的定义域为全体实数R;●某不等式的解为一切实数;❍某表达式的值恒大于a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

恒成立与存在性问题的解题策略

恒成立与存在性问题的解题策略

恒成立问题”与 存在性问题”的基本解题策略一、 恒成立问题”与 存在性问题”的基本类型 恒成立、能成立、恰成立问题的基本类型1、 恒成立问题的转化: a f x 恒成立=a . f x 咧;a _ f x 恒成立=a _ f x min2、 能成立问题的转化: a . f x 能成立=a . f x min ; a 辽f x 能成立=a 辽f x max3、 恰成立问题的转化:a f x 在 M 上恰成立二 a ■ f x 的解集为l a f x 在M 上恒成立Mu一、a (x 在C R M 上恒成立另一转化方法:若 X • D, f (x) _ A 在D 上恰成立,等价于f (x)在D 上的最小值f min (x)二A , 若X ,D,f(x)乞B 在D 上恰成立,则等价于 f (x)在D 上的最大值f max (X )二B .4、设函数f x 、g x ,对任意的X"-a , b 1,存在X 2 • C , d 丨,使得f x i _ g X 2,则f min X -g m in X5、设函数f x 、g x ,对任意的X 1 a,bi , 存在X 2 E fc, d 】,使得代人)兰g(x 2 ),则g X ,存在 x< a , b 1,存在 X 2 • C, d 1,使得 f X 1 - g X 2 ,则 f m ax X —g m i n xg x ,存在x< a , b 1,存在X 2 • C , d 1,使得f 治 -g X 2 ,则f m i n X —g m a x X&设函数f x 、g x ,对任意的x 1 存在X 2乏C , d 】,使得f(x 1 )= gg ),设f(x)在区间[a,b ]上的值域为A ,g(x)在区间[c,d ]上的值域为B,则A=B. 9、若不等式f xx 在区间D 上恒成立,则等价于在区间 D 上函数y = f x 和图象在函数y 二g x 图象上方;10、若不等式f x : g x 在区间D 上恒成立,则等价于在区间 D 上函数y = f x 和图象在函数y 二g x 图象下方; 恒成立问题的基本类型在数学问题研究中经常碰到在给定条件下某些结论 恒成立的命题.函数在给定区间上某结论成立问题,其表现形式通常有:在给定区间上某关系恒成立;某函数的定义域为全体实数 R;某不等式的解为一切实数;某表达式的值恒大于 a 等等…恒成立问题,涉及到一次函数、二次函数的性质、图象,渗透着换元、化归、数形结合、函m axX- g m ax X6、设函数f x 、7、设函数f X 、数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

恒成立与存在性问题

恒成立与存在性问题
实数a的范围.
2.设函数 f(x)=x2-1,对任意 x∈[32,+∞),f(mx )-4m2f(x)≤f(x -1)+4f(m)恒成立,求实数 m 的取值范围
[解析] ∵f(x)=x2-1,x∈[32,+∞), f(mx )-4m2f(x)≤f(x-1)+4f(m)对 x∈[32,+∞)恒成立. 即(mx )2-1-4m2(x2-1)≤(x-1)2-1+4(m2-1)恒成立. 即(m12-4m2-1)x2+2x+3≤0 恒成立.即m12-4m2-1≤-2xx2-3恒成立. g(x)=-2xx2-3=-x32-x2=-3(x12+32x)=-3(1x+31)2+31. ∵x≥32,∴0<1x≤32,∴当1x=23时,g(x)min=-38. ∴m12-4m2-1≤-83.整理得 12m4-5m2-3≥0,(3m2+1)(4m2-3)≥0. ∵3m2+1>0,∴4m2-3≥0.即:m≥ 23或 m≤- 23.
2x 1
步转化为(ln 2xx11)max (3m成a 立4 . m2 )min
(2)①F(x)=ln(x+2)- 2x
x 1
定义域为:
(-2,-1)∪(-1,+∞).
F′(x)=
x
1
2
2(x 1) 2x (x 1)2
x
1
2
(x
2 1)2
=(x 1)2 2(x 2)
(x 2)(x 1)2
(x
x2 3 2)(x 1)2
,
令F′(x)>0,得单调增区间为 (2,和 3) ( 3,) 令F′(x)<0,得单调减区间为 ( 和3,1) (1, 3)
②不等式f(x+1)≤f(2x+1)-m2+3am+4化为:

恒成立、存在问题

恒成立、存在问题

恒成立和存在性问题一、恒成立问题例1 已知函数f(x)=x|x-a|+2x.(1)若函数f(x)在R上是增函数,求实数a的取值范围;(2)求所有的实数a,使得对任意x∈[1,2]时,函数f(x)的图象恒在函数g(x)=2x+1图象的下方.f(x)=x3-6ax2+9a2x(a∈R),当a>0时,若对∀x∈[0,3]有f(x)≤4恒成立,求实数a的取值范围.例2已知函数f(x)=ax3+bx2-3x(a,b∈R),在点(1,f(1))处的切线方程为y+2=0.(1)求函数f(x)的解析式;(2)若对于区间[-2,2]上任意两个自变量的值x1,x2,都有|f(x1)-f(x2)|≤c,求实数c的最小值.例3 已知函数f (x )=x -1-a ln x (a ∈R). (1)求证:f (x )≥0恒成立的充要条件是a =1; (2)若a <0,且对任意x 1,x 2∈(0,1],都有|f (x 1)-f (x 2)|≤4⎪⎪⎪⎪⎪⎪1x 1-1x 2,求实数a 的取值范围.已知函数f (x )=lg x ,求证:∀x 1,x 2∈(0,+∞),f (x 1)+f (x 2)2≤f ⎝ ⎛⎭⎪⎪⎫x 1+x 22.g (x )=1sin θ·x+ln x 在[1,+∞)上为增函数,且θ∈(0,π),则θ的值为________.二、存在性问题例1 已知函数f (x )=x 3-ax 2+10.(1)当a =1时,求曲线y =f (x )在点(2,f (2))处的切线方程;(2)在区间[1,2]内至少存在一个实数x ,使得f (x )<0成立,求实数a 的取值范围.f (x )=x (x -a )2,g (x )=-x 2+(a -1)x +a (其中a为常数).(1)如果函数y =f (x )和y =g (x )有相同的极值点,求a 的值;(2)设a >0,问是否存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得f (x 0)>g (x 0),若存在,请求出实数a 的取值范围;若不存在,请说明理由.例3 已知函数f (x )=2|x -m |和函数g (x )=x |x -m |+2m -8. (1)若方程f (x )=2|m |在[-4,+∞)上恒有惟一解,求实数m 的取值范围;(2)若对任意x 1∈(-∞,4],均存在x 2∈[4,+∞), 使得f (x 1)>g (x 2)成立,求实数m 的取值范围.(教材选修2-1 P20复习题5改编)例 命题“∃x ∈(0,+∞),x 2-ax +1≤0”为真命题,则a 的取值范围为________.f (x )=mx 33+x 2-x ,m ∈R ,函数f (x )在(2,+∞)上存在单调递增区间,求m 的取值范围.参考答案 例1【解答】 (1)f (x )=x |x -a |+2x =⎩⎨⎧x 2+(2-a )x ,x ≥a ,-x 2+(2+a )x ,x <a .由f (x )在R 上是增函数,则⎩⎪⎨⎪⎧a ≥-2-a 2,a ≤2+a 2,即-2≤a ≤2,故a 的取值范围为-2≤a ≤2.(2)由题意得对任意的实数x ∈[1,2],f (x )<g (x )恒成立,即x |x -a |<1在[1,2]恒成立,也即x -1x <a <x +1x 在[1,2]恒成立,故当x ∈[1,2]时,只要x -1x 的最大值小于a 且x +1x 的最小值大于a 即可,而当x ∈[1,2]时,⎝ ⎛⎭⎪⎪⎫x -1x ′=1+1x 2>0,从而x -1x 为增函数,由此得⎝ ⎛⎭⎪⎪⎫x -1x max =32; 当x ∈[1,2]时,⎝ ⎛⎭⎪⎪⎫x +1x ′=1-1x 2>0,从而x +1x 为增函数,由此得⎝⎛⎭⎪⎪⎫x +1x min =2, 所以32<a <2.变1【解答】 f ′(x )=3x 2-12ax +9a 2=3(x -a )(x -3a ),故f (x )在(0,a )上单调递增,在(a,3a )上单调递减,在(3a ,+∞)上单调递增.(1)当a ≥3时,函数f (x )在[0,3]上递增, 所以函数f (x )在[0,3]上的最大值是f (3),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (3)≤4,a ≥3,解得a ∈∅.(2)当1≤a <3时,有a <3≤3a ,此时函数f (x )在[0,a ]上递增,在[a,3]上递减,所以函数f (x )在[0,3]上的最大值是f (a ),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (a )≤4,1≤a <3,解得a =1.(3)当a <1时,有3>3a ,此时函数f (x )在[a,3a ]上递减,在[3a,3]上递增,所以函数f (x )在[0,3]上的最大值是f (a )或者是f (3).由f (a )-f (3)=(a -3)2(4a -3),① 0<a ≤34时,f (a )≤f (3),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (3)≤4,0<a ≤34,解得a ∈⎣⎢⎢⎡⎦⎥⎥⎤1-239,34. ②34<a <1时,f (a )>f (3),若对∀x ∈[0,3]有f (x )≤4恒成立,需要有⎩⎪⎨⎪⎧f (a )≤4,34<a <1,解得a ∈⎝ ⎛⎭⎪⎪⎫34,1.综上所述,a ∈⎣⎢⎢⎡⎦⎥⎥⎤1-239,1.例2【解答】 (1)∵f ′(x )=3ax 2+2bx -3,根据题意,得⎩⎨⎧ f (1)=-2,f ′(1)=0,即⎩⎨⎧ a +b -3=-2,3a +2b -3=0,解得⎩⎨⎧a =1,b =0,∴f (x )=x 3-3x .(2)令f ′(x )=3x 2-3=0,即3x 2-3=0,解得x =±1,(-2,-1) (-1,1) (1,2) + - + ∵f (-1)=max min 2. 则对于区间[-2,2]上任意两个自变量的值x 1,x 2,都有|f (x 1)-f (x 2)|≤f (x )max -f (x )min =4,所以c ≥4,即c 的最小值为4.变题【解答】 (1)①充分性:当a =1时,f (x )=x -1-ln x ,f ′(x )=1-1x =x -1x ,所以当x >1时,f ′(x )>0,所以函数f (x )在(1,+∞)上是增函数,当0<x <1时,f ′(x )<0,所以函数f (x )在(0,1)上是减函数,所以f (x )≥f (1)=0.②必要性.f ′(x )=1-a x =x -ax ,其中x >0.(i)当a ≤0时,f ′(x )>0恒成立,所以函数f (x )在(0,+∞)上是增函数. 而f (1)=0,所以当x ∈(0,1)时,f (x )<0,与f (x )≥0恒成立相矛盾. 所以a ≤0不满足题意. (ii)当a >0时,因为当x >a 时,f ′(x )>0,所以函数f (x )在(a ,+∞)上是增函数; 当0<x <a 时,f ′(x )<0,所以函数f (x )在(0,a )上是减函数. 所以f (x )≥f (a )=a -1-a ln a .因为f (1)=0,所以当a ≠1时,f (a )<f (1)=0,此时与f (x )≥0恒成立相矛盾. 所以a =1,综上所述,f (x )≥0恒成立的充要条件是a =1.(2)由(1)可知,当a <0时,函数f (x )在(0,1]上是增函数,又函数y =1x 在(0,1]上是减函数,不妨设0<x 1≤x 2≤1,则|f (x 1)-f (x 2)|=f (x 2)-f (x 1),⎪⎪⎪⎪⎪⎪⎪⎪1x 1-1x 2=1x 1-1x 2, 所以|f (x 1)-f (x 2)|≤4⎪⎪⎪⎪⎪⎪⎪⎪1x 1-1x 2等价于f (x 2)-f (x 1)≤4x 1-4x 2,即f (x 2)+4x 2≤f (x 1)+4x 1. 设h (x )=f (x )+4x =x -1-a ln x +4x .则|f (x 1)-f (x 2)|≤4⎪⎪⎪⎪⎪⎪⎪⎪1x 1-1x 2等价于函数h (x )在区间(0,1]上是减函数. 因为h ′(x )=1-a x -4x 2=x 2-ax -4x 2,所以所证命题等价于证x 2-ax -4≤0在x ∈(0,1]时恒成立,即a ≥x -4x 在x ∈(0,1]上恒成立,即a 不小于y =x -4x 在区间(0,1]内的最大值.而函数y =x -4x 在区间(0,1]上是增函数,所以y =x -4x 的最大值为-3, 所以a ≥-3.又a <0,所以a ∈[-3,0).θ=π2 【解析】 由题意,g ′(x )=-1sin θ·x 2+1x≥0在[1,+∞)上恒成立,即sin θ·x -1sin θ·x 2≥0在[1,+∞)上恒成立.∵θ∈(0,π),∴sin θ>0.故sin θ·x -1≥0在[1,+∞)上恒成立,只需sin θ·1-1≥0,即sin θ≥1,只有sin θ=1.结合θ∈(0,π),得θ=π2.存在问题【解答】 (1)当a =1时,f ′(x )=3x 2-2x ,f (2)=14, 曲线y =f (x )在点(2,f (2))处的切线斜率k =f ′(2)=8, 所以曲线y =f (x )在点(2,f (x ))处的切线方程为 8x -y -2=0.(2)解法一:f ′(x )=3x 2-2ax =3x ⎝⎛⎭⎪⎪⎫x -23a (1≤x ≤2), 当23a ≤1,即a ≤32时,f ′(x )≥0,f (x )在[1,2]上为增函数, 故f (x )min =f (1)=11-a ,所以11-a <0,a >11,这与a ≤32矛盾.当1<23a <2,即32<a <3时,当1≤x <23a ,f ′(x )<0;当23a <x ≤2,f ′(x )>0,所以x =23a 时,f (x )取最小值,因此有f ⎝ ⎛⎭⎪⎪⎫23a <0,即827a 3-49a 3+10=-427a 3+10<0,解得a >3352,这与32<a <3矛盾;当23a ≥2,即a ≥3时,f ′(x )≤0,f (x )在[1,2]上为减函数,所以f (x )min =f (2)=18-4a ,所以18-4a <0,解得a >92,这符合a ≥3.综上所述,a 的取值范围为a >92.解法二:由已知得:a >x 3+10x 2=x +10x2,设g (x )=x +10x 2(1≤x ≤2),g ′(x )=1-20x3,∵1≤x ≤2,∴g ′(x )<0,所以g (x )在[1,2]上是减函数.g (x )min =g (2),所以a >92.【解答】 (1)f (x )=x (x -a )2=x 3-2ax 2+a 2x , 则f ′(x )=3x 2-4ax +a 2=(3x -a )(x -a ),令f ′(x )=0,得x =a 或a3,而g (x )在x =a -12处有极大值.∴a -12=a ⇒a =-1,或a -12=a 3⇒a =3.综上,a =3或a =-1.(2)假设存在,即存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得 f (x 0)-g (x 0)=x 0(x 0-a )2-[-x 20+(a -1)x 0+a ]=x 0(x 0-a )2+(x 0-a )(x 0+1)=(x 0-a )[x 20+(1-a )x 0+1]>0,当x 0∈⎝ ⎛⎭⎪⎫-1,a 3时,又a >0,故x 0-a <0, 则存在x 0∈⎝ ⎛⎭⎪⎫-1,a 3,使得x 20+(1-a )x 0+1<0. ①当a -12>a 3,即a >3时,由⎝ ⎛⎭⎪⎫a 32+(1-a )⎝ ⎛⎭⎪⎫a 3+1<0得a >3或a <-32,∴a >3;②当-1≤a -12≤a 3,即0<a ≤3时,4-(a -1)24<0得a <-1或a >3,∴a 无解.综上,a >3.【解答】 (1)f ′(x )=-x 2-23x +53,令f ′(x )>0,即x 2+23x -53<0,解得-53<x <1,∴f (x )的单调增区间为⎝ ⎛⎭⎪⎫-53,1;单调减区间为⎝ ⎛⎭⎪⎫-∞,-53和(1,+∞).(2)由(1)可知:当x ∈[0,1]时,f (x )单调递增,∴当x ∈[0,1]时,f (x )∈[f (0),f (1)],即f (x )∈[-4,-3].又g ′(x )=3x 2-3a 2,且a ≥1,∴当x ∈[0,1]时,g ′(x )≤0,g (x )单调递减,∴当x ∈[0,1]时,g (x )∈[g (1),g (0)],即g (x )∈[-3a 2-2a +1,-2a ],又对于任意x 1∈[0,1],总存在x 0∈[0,1],使得f (x 1)=g (x 0)成立⇔[-4,-3]⊆[-3a 2-2a +1,-2a ],即⎩⎪⎨⎪⎧-3a 2-2a +1≤-4,-3≤-2a ,解得1≤a ≤32.【解答】 (1)由f (x )=2|m |在x ∈[-4,+∞)上恒有惟一解, 得|x -m |=|m |在x ∈[-4,+∞)上恒有惟一解. 当x -m =m 时,得x =2m ,则2m =0或2m <-4, 即m <-2或m =0.综上,m 的取值范围是m <-2或m =0.(2)f (x )=⎩⎨⎧2x -m (x ≥m ),2m -x (x <m ),原命题等价为f (x 1)min >g (x 2)min .①当4≤m ≤8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在[4,m ]上单调递减,[m ,+∞)上单调递增,故g (x )≥g (m )=2m -8,所以2m -4>2m -8,解得4<m <5或m >6.所以4<m <5或6<m ≤8.②当m >8时,f (x )在(-∞,4]上单调递减,故f (x )≥f (4)=2m -4,g (x )在⎣⎢⎢⎡⎦⎥⎥⎤4,m 2单调递增,⎣⎢⎢⎡⎦⎥⎥⎤m 2,m 上单调递减,[m ,+∞)上单调递增,g (4)=6m -24>g (m )=2m -8,故g (x )≥g (m )=2m -8,所以2m -4>2m -8, 解得4<m <5或m >6.所以m >8.③0<m <4时,f (x )在(-∞,m ]上单调递减,[m,4]上单调递增, 故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即72<m <4.④m ≤0时,f (x )在(-∞,m ]上单调递减,[m,4]上单调递增, 故f (x )≥f (m )=1.g (x )在[4,+∞)上单调递增,故g (x )≥g (4)=8-2m ,所以8-2m <1,即m >72(舍去).综上,m 的取值范围是⎝⎛⎭⎪⎪⎫72,5∪(6,+∞).【答案】 a ≥2【解析】 原命题等价为∃x ∈(0,+∞),x 2+1x ≤a ,令f (x )=x 2+1x =x +1x ≥2,所以a ≥2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

恒成立问题与存在性问题
思路一:
(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,则
不等式a x f >)(在区间D 上恒成立a x f >⇔min )(;
不等式a x f ≥)(在区间D 上恒成立a x f ≥⇔min )(;
不等式a x f <)(在区间D 上恒成立a x f <⇔max )(;
不等式a x f ≤)(在区间D 上恒成立a x f ≤⇔max )(;
(2)若函数在D 区间上不存在最小值min )(x f 和最大值max )(x f ,且值域为),(n m 则 不等式a x f >)(或))((a x f ≥在区间D 上恒成立a m ≥⇔;
不等式a x f <)(或a x f ≤)(在区间D 上恒成立a n ≤⇔。

例题1:
已知函数.ln )(x x x f =
(1)求函数.ln )(x x x f =的最小值;
(2)若对所有的1≥x 都有1)(-≥ax x f ,求实数a 的取值范围。

答案:(1)11min )()(---==e e f x f ;(2)]1,(-∞
变式:设函数)1ln(2)1()(2x x x f +-+=
(1)求函数)(x f 的单调区间;
(2)若当]1,1[1--∈-e e x 时,不等式m x f <)(恒成立,求实数m 的取值范围;
(3)若关于x 的方程a x x x f ++=2)(在区间]2,0[上恰有两个相异实根,求实数a 的取
值范围。

答案:(1)递增区间是),0(+∞;递减区间是)0,1(-
(2)22
->e m
(3))3ln 23,2ln 22(--
思路二
(1)若函数)(x f 在D 区间上存在最小值min )(x f 和最大值max )(x f ,即],[)(n m x f ∈则不等式有解的问题有下列结论:
不等式a x f >)(在区间D 上有解max )(x f a <⇔;
不等式a x f ≥)(在区间D 上有解max )(x f a ≤⇔;
不等式a x f <)(在区间D 上有解min )(x f a >⇔;
不等式a x f ≤)(在区间D 上有解min )(x f a ≥⇔。

(2)若函数)(x f 在D 区间上不存在最小值min )(x f 和最大值max )(x f ,即),()(n m x f ∈则不等式有解的问题有下列结论:
不等式a x f >)(或))((a x f ≥在区间D 有解n a <⇔;
不等式a x f <)(或a x f ≤)(在区间D 上有解m a >⇔。

例题2: 已知函数x a x g x a x x f 1)(,ln )(+-
=-= (1)若1=a 求函数)(x f 的极值;
(2)设函数)()()(x g x f x h -=,求函数)(x h 的单调区间;
(3)若在],1[e 上存在一点0x ,使得)()(00x g x f <成立,求实数a 的取
值范围。

答案:(1)1)1()(==f x f 极小值
(2)1-≤a 时,)(x f 在),0(+∞上单调递增;1->a 时,
递增区间是),1(+∞+a ,递减区间是)1,0(+a 。

(3)简答:],1[,0)]()([0min 00e x x g x f ∈<-
2')1)](1([)(x
x a x x h ++-= 分类3讨论,结果是),1
1()2,(2+∞-+--∞e e
变式:设函数x
b x a x x f +
-=ln )(在1=x 处取得极值。

(1)求a 与b 满足的关系式; (2)若1>a 求函数)(x f 的单调区间;
(3)若3>a ,函数3)(22+=x a x g ,若存在]2,2
1
[,21∈m m ,使得9)()(21<-m g m f 成立,求a 的取值范围。

答案:(1)1=+b a ;
(2)2')
1)](1([)(x x a x x f ---=
①21<<a 时,函数的递增区间是),1(),1,0(+∞-a ,递减区间是)1,1(-a 。

②2=a 时,函数递增区间是),0(+∞,没有递减区间。

③2>a 时,函数的递增区间是),1(),1,0(+∞-a ,递减区间是)1,1(-a 。

(3)3>a 时,02)1()(max <-==a f x f ;034)21()(2
min >+==a
g x g
存在 9)()()()(1221<-=-m f m g m g m f 成立,只需9)1()21
(<-f g
又3>a ,所以43<<a 。

思路三
若对任意],[1b a x ∈,总存在],[2n m x ∈使,min 2min 121)()()()(x g x f x g x f ≥⇔≥; 若对任意],[1b a x ∈,总存在],[2n m x ∈使,max 2max 121)()()()(x g x f x g x f ≤⇔≤; 若对任意],[1b a x ∈,],[2n m x ∈使,max 2min 121)()()()(x g x f x g x f ≥⇔≥; 若对任意],[1b a x ∈,],[2n m x ∈使,min 2max 121)()()()(x g x f x g x f ≤⇔≤ 例题3:
已知函数11ln )(--+-=x a
ax x x f
(1)当21
≤a 时,讨论函数)(x f 的单调性;
(2)设,42)(2+-=bx x x g 当41
=a 时,若对任意的),2,0(1∈x 存在]2,1[2∈x ,使
)()(21x g x f ≥求实数b 的取值范围。

答案:(1)① 当0≤a 时,函数)(x f 的在)1,0(上单调递减;在),1(+∞上单调递增; ② 当210<<a 时,函数)(x f 的在),1()1,0(+∞-a a ,上单调递减;在)1,1(a a -上单调递增;
③ 当21
=a 时,函数)(x f 的在),0(+∞上单调递减;
(2)依题意,min 2min 1)()(x g x f ≥⇒b 的取值范围是),817
[+∞
变式:
已知函数x x a ax x f ln 2)12(21
)(2++-=)(R a ∈
(1)求函数)(x f 的单调区间;
(2)设x x x g 2)(2-=,若对任意的]2,0(1∈x 均存在]2,0(2∈x 使得)
()(21x g x f ≤ 求a 的取值范围。

答案:
(1)x x ax x f )
2)(1()('--=
分类讨论
①0=a ②21
=a ③21
>a ④21
0<<a ⑤0<a 五种情况
结论:略
(2)依题意]2,0()()(max max ∈<x x g x f ,,0)(max =x g 故0)(max <x f 由(1)知21
≤a 时,
)(x f 在]2,0(上递增,2ln 102ln 222)2()(max +->⇒<+--==a a f x f 当21>a 时,)(x f 在]2,0(上的最大值是02ln 221
2)1(<---=a a f 成立;
综上a 的取值范围),2ln 1(+∞+-。

相关文档
最新文档