变压器中性点接地与不接地系统

合集下载

中性点接地方式

中性点接地方式

1 中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。

该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。

这种大电流接地系统,不装设绝缘监察装置。

中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。

当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。

此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。

对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。

其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。

2 中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。

适用于农村10kV架空线路为主的辐射形或树状形的供电网络。

该接地方式在运行中,若发生单相接地故障,其流过故障点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。

中性点不接地系统发生单相接地故障时,其接地电流很小,若是瞬时故障,一般能自动熄弧,非故障相电压升高不大,不会破坏系统的对称性,故可带故障连续供电2h,从而获得排除故障时间,相对地提高了供电的可靠性。

中性点不接地方式因其中性点是绝缘的,电网对地电容中储存的能量没有释放通路。

在发生弧光接地时,电弧的反复熄灭与重燃,也是向电容反复充电过程。

由于对地电容中的能量不能释放,造成电压升高,从而产生弧光接地过电压或谐振过电压,其值可达很高的倍数,对设备绝缘造成威胁。

中性点直接接地和不直接接地系统中发生单相接地故障时各有什么特点

中性点直接接地和不直接接地系统中发生单相接地故障时各有什么特点

地 。直 接 接地 系统 供 电可 靠 性 相对
(贵 州 省 独 山 县 欧 阳 丹 )
遇 有 下 列 情 况 ,现 场 运 行 人 员 较 低 。 这 种 系 统 中 发 生 单 相 接 地 故 欧 阳 丹 同 志 :
必 须 请 示 值 班 调 度 员 并 得 到 许 可 后 t ̄ n,-J,出 现 了 除 中 性 点 外 的 另 一 个
电 力 系 统 中 性 点 运 行 方 式 主 要 有 几 种 ? 什 么 叫 大 电 流 、小 电 流 接
送 电 ? (辽 宁 省 铁 岭 市 肖 会 云 ) 分 两 类 ,即 直 接 接 地 和 不 直 接 接 地 系 统 ? 其 划 分 标 准 如 何 ?
肖 会 云 同 志 :
闸 ,没 有 查 出 明 显 故 障 点 时 ;
中 性 点 不 直 接 接 地 方 式 (包 括 中 性 速 切 除接 地相 甚 至 三 相 。 不直 接接
(2)环 网线 路 故 障 跳 闸 ;
地 系 统 供 电 可 靠 性 相 对 较 高 ,但 对 点 经 消 弧 线 圈 接 地 方 式 )。
(6)拉 合 励 磁 电 流 不 超 过 2 A的 机 等 ),引 发 系 统 事 故 ,威 胁 电 力 系
并 列 有 关 的 二 次 回 路 检 修 时 改 动 空 载 变 压 器 、电 抗 器 和 电 容 电 流 不 统 的 安 全 运 行 。
过 ,也 须 核 对 相 位 、相 序 。 若 相 位 或 超 过 5 A的 空 载 线 路 (但 20 kV及 以
接 地 故 障 时 ,接 地 短 路 电 流 很 大 ,这
E重蛋盈 墼堑
主●…持 :-晓。… 敏
N O NG C U N DIA N G O N G

110KV电网主变中性点接地方式分析

110KV电网主变中性点接地方式分析

110KV电网主变中性点接地方式分析摘要:电力系统中变压器中性点接地方式的选择是一个综合性的技术问题,本文概述了目前电网的几种接地方式,分析了多个变压器时主变110kV侧的中性点接地方式,提出了主变接地方式选择应注意的问题。

关键词:变压器;中性点;接地方式引言电力系统中变压器中性点接地方式的选择是一个综合性的技术问题,它与系统的供电可靠性、短路电流大小、过电压大小及绝缘配合、保护配置、系统稳定、通信干扰等关系密切。

变压器中性点接地方式的选择直接影响到电网的安全稳定运行。

在电网系统中,变压器中性点直接接地系统在发生接地故障时,尤其是单相接地故障时,接地相的故障电流较大,非故障相对地电压不升高,这种系统称为大电流接地系统。

在大电流接地系统中,零序电压和接地电流的分布及大小主要取决于系统中中性点直接接地变压器的分布。

在电网发生的故障中,接地故障占80%以上。

因此,合理的选择主变中性点接地方式,快速的切除故障,可以提高系统的供电可靠性。

1 中性点接地方式介绍1.1 中性点直接接地中性点直接接地,就是将中性点直接与大地连接。

当发生单相接地时,其单相接地电流非常大,甚至会超过三相短路,任何故障将会引起断路器跳闸。

我国的110kV及以上变电站变压器多采用中性点采用直接接地方式,对于直接接地系统,发生单相接地时,非故障相的工频电压升高低于1.4 倍相电压;断路器响应时间短,跳开故障线路及时,设备承受过电压的时间相对较短,可降低设备的绝缘水平,从而使降低电网的造价。

但中性点直接接地系统的缺点是发生单相接地短路时,短路电流大,要迅速切除故障部分,使供电可靠性降低。

1.2 中性点不接地中性点不接地系统,又称小电流系统。

该方式不需附加设备,投资较省,适用于农村10kV 架空线路长的供电网络。

它的另一个优点是发生单相短路时,单相接地电流很小,对邻近通信线路、信号系统的干扰小,一般此时保护只动作于信号而不动作于跳闸,供电线路可以继续运行,但电网长期一相接地运行,其非故障相电压升高,绝缘点被击穿,而引起两相接地短路,最终将严重损毁电气设备。

380V接地与不接地电网的技术分析

380V接地与不接地电网的技术分析

380V接地与不接地电网的技术分析交流三相制输配电系统的中性点接地方式有两种:一是将变压器或发电机的中性点直接或经过小电阻与接地装置相连,这种接地制式的系统,当发生单相接地短路时,接地电流很大,又称为大电流接地制式;二是将变压器或发电机的中性点不与接地装置相连或通过保护、测量、信号仪表、消弧线圈以及具有大电阻等接地设备与接地装置相连,这种接地制式的系统,当发生单相接地短路时,接地电流很小,又称为小电流接地制式。

小电流接地方式的优点在于当发生单相接地故障时,由于接地电流很小,故障大多数能自动消除,少数不能自动消除的也不会引起开关掉闸,电网也允许带接地故障运行约2h。

在这段时间内,可争取消除故障或做好停电准备工作,而有准备的停电,对生产造成的损失比突然停电要小得多。

因此,小电流接地方式的第一次故障时的故障电流很小,运行可靠性高,特别适用于要求连续工作的电气设备,例如化工生产。

同时,它对邻近的通信线路等干扰影响也小。

小电流接地方式的缺点是内、外过电压值均较高,要求电气设备具有较高的绝缘。

另外,如果在消除第一次故障前又发生第二次故障,例如不同相的双重短路,故障点遭受线电压短路,故障电流很大,非常危险,因此需具有指示接地点的信号装置。

1 380V低压电网中性点接地方式对于380V低压电网而言,由于低压设备的绝缘裕度大,不同的中性点接地方式都能使用同样的电气设备,所以中心点的接地方式并不影响绝缘投资。

而动力网络采用小电流接地方式后,可明显提高运行可靠性。

它不仅可以避免单相接地时造成开关掉闸和电动机突然停电,而且对于采取熔断器保护的电动机,可以防止因单相短路熔断一相而引起的电动机两相运行(低压电动机由于两相运行导致损坏的要占70%左右)。

但是鉴于以下两个主要原因,过去很少采用小电流接地方式:一是为了能与照明混合供电;二是没有经济适用的能正确指示接地回路的信号装置。

1.1 动力与照明混合供电动力与照明采用混合供电的方式,纯粹是从经济的观点出发的,在技术上并无任何可取之处。

电力系统中性点运行方式

电力系统中性点运行方式

电力系统中性点运行方式电力系统中性点的运行方式正确与否,对电力系统的安全运行有很大的意义。

它关系到绝缘水平、通信干扰、继电保护及自动装置的正确动作等方面。

下面从电力系统运行的角度说明中性点的运行方式及所对应的电压等级。

一、电力系统中性点的运行方式发电机和变压器星形连接的结点称之为电力系统的中性点。

中性点的运行方式对电力系统的运行十分重要,是涉及到电力系统许多方面的综合性问题。

我国电力系统中性点运行方式有3种,直接接地(有效接地),不接地(中性点绝缘)和从属于不接地方式的经消弧线圈接地(非有效接地)。

二、中性点不接地系统对 中性点不接地系统,当一相发生故障接地时,不能构成短路回路,系统中点没有短路电流,系统仍可继续运行。

正常情况下三相对称,线间和相对地组成的等值电容 相等,中性点为地电位。

如果中性点与地向连,连线中没有电流,A相、B相、C相对地都是相电压,各相对地电容电流超前各相电压90°,通常树值不大。

若发生C相接地,C相自然成为地电位,C相与地之间形成的回路中的电压方程为U’c= Uc+Uo=0此时中性点对地电压Uo= -Uc其他两相对地电压Ua ,Ub为U’a= Ua+Uo= Ua-Uc=1.732 Uc∠-150°U’b= Ub+Uo= Ua-Uc=1.732 Uc∠150可以看出,当C相发生接地时,中性点对地电压升高为相电压,而非故障相对地电压升高为线电压;但三相线电压不变。

因此,只要各相对地绝缘能承受线电压,发生 单相接地时对三相用电设备的运行没有影响。

这是中性点不接地系统的一大优点。

按规程规定,在此情况下电网仍可运行2h。

但此时应发出单相接地的预告信号, 告之值班员并采取相应的措施。

在正常运行条件下,三相对地电容对称,三相电容电流之和为零。

发生单相接地的情况下,如C相接地,流过接地点的接地电流应为A、B两相对地电容电流之和,即Id= -(Ica+Icb)= -(jωCUa+jωCUb )Id=j3ωCUc可见Id在相位上超前向量Uc90°,为容性电流,是正常时一相电容电流的3倍。

低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注安工程师考点)

低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注安工程师考点)

低压配电系统有三种接地形式(IT、TT、TN)系统的区别详解(注册安全工程师考点)根据现行的国家相关标准,低压配电系统有三种接地形式,即IT系统、TT系统、TN系统。

(1)第一个字母表示电源端与地的关系T-电源变压器中性点直接接地。

I-电源变压器中性点不接地,或通过高阻抗接地。

(2)第二个字母表示电气装置的外露可导电部分与地的关系T-电气装置的外露可导电部分直接接地,此接地点在电气上独立于电源端的接地点。

N-电气装置的外露可导电部分与电源端接地点有直接电气连接。

分别对IT系统、TT系统、TN系统进行全面剖析。

一、IT系统IT系统就是电源中性点不接地,用电设备外露可导电部分直接接地的系统。

IT系统可以有中性线,但IEC强烈建议不设置中性线。

因为如果设置中性线,在IT系统中N线任何一点发生接地故障,该系统将不再是IT系统。

IT系统接线图如图1所示。

图1 IT系统接线图IT系统特点IT系统发生第一次接地故障时,接地故障电流仅为非故障相对地的电容电流,其值很小,外露导电部分对地电压不超过50V,不需要立即切断故障回路,保证供电的连续性;-发生接地故障时,对地电压升高1.73倍;-220V 负载需配降压变压器,或由系统外电源专供;-安装绝缘监察器。

使用场所:供电连续性要求较高,如应急电源、医院手术室等。

IT 方式供电系统在供电距离不是很长时,供电的可靠性高、安全性好。

一般用于不允许停电的场所,或者是要求严格地连续供电的地方,例如电力炼钢、大医院的手术室、地下矿井等处。

地下矿井内供电条件比较差,电缆易受潮。

运用IT 方式供电系统,即使电源中性点不接地,一旦设备漏电,单相对地漏电流仍小,不会破坏电源电压的平衡,所以比电源中性点接地的系统还安全。

但是,如果用在供电距离很长时,供电线路对大地的分布电容就不能忽视了。

在负载发生短路故障或漏电使设备外壳带电时,漏电电流经大地形成架路,保护设备不一定动作,这是危险的。

只有在供电距离不太长时才比较安全。

电力系统中性点的运行方式

电力系统中性点的运行方式
图 中性点经消弧线圈接地的电力系统 (a)电路图;(b)向量图
消弧线圈的结构与型号
消弧线圈装有铁芯,可调、电阻小、电抗很大, 外形跟小容量变压器相似,装在发电机或变压器 的中性点与大地之间。为调节线圈匝数,通常有 5~9个分接头可选用,用来改变补偿程度,国产 型号为XDJL。其中X—消弧线圈;D—单相; J—油浸式;L—铝线。
一般认为:中性点直接接地系统对通信干扰影响 最大;中性点经消弧线圈接地系统对通信的干扰最 小。
5.系统稳定性
在大接地电流系统中发生单相接地时,由 于接地电流很大,电压的剧烈下降、线路 的突然切除可能导致系统稳定的破坏。如 果采用小接地电流系统,则流过接地点的 电流很小,不存在引起失步的可能。因此, 从系统稳定的角度看,中性点直接接地系 统是不利的。
4.对通信的干扰 单相接地产生干扰对通信的影响是不可忽视的,
在某种情况下,它甚至还是选择中性点接地方式的 决定因素。
单相接地产生干扰的途径有两种,一种是静电感 应,另一种是电磁感应。
在小接地电流系统中,起主要作用的是静电感应, 可以用较简单的方法加以限制。在大接地电流系统 接地故障时,大的接地电流对临近的通信线路干扰 大,感应电压可能危及工作人员安全或引起信号装 置误动作,因此,电力线和通信线间必须保持一定 的距离。
P313 Jd1F5052
电力系统中性点的运行方式不同,其技 术特性和工作条件也不同,还与故障分析、 继电保护配置、绝缘配合等均密切相关。 采用哪一种中性点运行方式,直接影响到 电网的绝缘水平、系统供电的可靠性和连 续性、电网的造价以及对通信线路的干扰 程度。
一、 中性点不接地系统
正常运行情况:
2.过电压与绝缘水平
对于电力系统的绝缘水平,大接地电流系 统按相电压考虑,小接地电流系统则需按线 电压考虑。大接地电流系统比小接地电流系 统绝缘水平大约可降低20%左右,在选用避 雷器时,前者用80%避雷器,后者用100%避 雷器。

浅析铁矿井下供配电变压器中性点不接地与保护接地

浅析铁矿井下供配电变压器中性点不接地与保护接地
A B C
图1中性点接地情况下单相触电示意图 如上图1所示.当有人员发生一项触
电时,事故电流经过人体和变压器的工作 接地构成回路。其大小为:IR=U/Rr+Ro式 中的U为220V相电压;Rr为人体电阻; R。为工作接地电阻。这样一来,工作接地 电阻R。通常在4欧姆以下。比人体电阻 Rr要小得多,可以忽略不计。而人体的电 阻如果按1000欧姆考虑的话。则通过人体 的电流就为IR=220/1000=0.22安=220毫 安。已知20—25毫安以上的工频电流对人 体就有危险了。而100毫安的电流就足以 使人致命。这里的220毫安的电流给人带 来的危险就更可想而知了。所以。在变压 器的中性点直接接地的系统中,发生人身 一相对地触电是极度危险的,并且中性点 直接接地方式不适用于对连续供电要求较 高的场合。
1.2非直接接地 中性点非直接接地是指电力系统中性 点不接地或经消弧线圈、电压互感器、高 电阻与接地装置相连接。中性点不接地可 以减小人身触电时流经人体的电流,降低 设备外壳对地电压。单相接地故障电流也 很小,且接地时三相线电压大小不变,故 障一般不需要停电。发生单相接地时,一 般允许2h时间内可继续用电。发生接地故 障时接地相对地电压下降。而非故障的另 外两相对地电压升高.最高可达1.73倍。 为此要求用电设备的绝缘水平应按照线电 压考虑。从而提高了设备造价。 二、井下电力负荷分类与接地方式 2.1井下电力负荷 矿井一级负荷有主要通风机、井下主 排水设备、向下开采的采区排水设备、升 降人员的立井提升机。一级负荷如果供电 突然中断,可造成人员伤亡或使重要设备 损坏并在短时间内难以修复。给矿井造成
关键词:井下供配电;变压器;中性点不接地;保护接地
近年来,随着露天铁矿资源的大量开 采.露天矿藏已经越来越少,很多铁矿逐渐 转入地下开采,新建的地下矿也逐渐增多。 井下供配电是地下开采的必备条件.根据 《金属非金属矿山安全规程》(GBl6423— 2006)中规定:井下电气设备不应接零。 井下应采用矿用变压器.若用普通变压器。 其中性点不应直接接地,变压器二次侧的 中性点不应引出载流中性线(N线)。下面。 对其中的原因进行分析。

低压配电系统三种形式

低压配电系统三种形式

低压配电系统三种形式根据现行的国家标准《低压配电设计规范》(GB50054)的定义,将低压配电系统分为三种,即TN、TT、IT三种形式。

其中,第一个大写字母T表示电源变压器中性点直接接地;I则表示电源变压器中性点不接地(或通过高阻抗接地)。

第二个大写字母T表示电气设备的外壳直接接地,但和电网的接地系统没有联系;N表示电气设备的外壳与系统的接地中性线相连。

TN系统:电源变压器中性点接地,设备外露部分与中性线相连。

TT系统:电源变压器中性点接地,电气设备外壳采用保护接地。

IT系统:电源变压器中性点不接地(或通过高阻抗接地),而电气设备外壳电气设备外壳采用保护接地。

1、TN系统电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S系统、TN—C—S系统。

下面分别进行介绍。

1.1、TN—C系统其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。

(1)它是利用中性点接地系统的中性线(零线)作为故障电流的回流导线,当电气设备相线碰壳,故障电流经零线回到中点,由于短路电流大,因此可采用过电流保护器切断电源。

TN—C系统一般采用零序电流保护;(2)TN—C系统适用于三相负荷基本平衡场合,如果三相负荷不平衡,则PEN线中有不平衡电流,再加一些负荷设备引起的谐波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取得稳定的基准电位;(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。

由上可知,TN-C系统存在以下缺陷:(1)、当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。

当三相负载严重不平衡时,触及零线可能导致触电事故。

(2)、通过漏电保护开关的零线,只能作为工作零线,不能作为电气设备的保护零线,这是由于漏电开关的工作原理所决定的。

变压器各种接地系统的区分于了解

变压器各种接地系统的区分于了解

1、TN系统
电力系统的电源变压器的中性点接地,根据电气设备外露导电部分与系统连接的不同方式又可分三类:即TN—C系统、TN—S
系统、TN—C—S系统。下面分别进行介绍。
1.1、TN—C系统
其特点是:电源变压器中性点接地,保护零线(PE)与工作零线(N)共用。
(4)重复接地装置的连接线,严禁与通过漏电开关的工作零线相连接。
TN-S供电系统,将工作零线与保护零线完全分开,从而克服了TN-C供电系统的缺陷,所以现在施工现场已经不再使用TN-C系统。
1.2、 TN—S系统
整个系统的中性线(N)与保护线(PE)是分开的。
(1)当电气设备相线碰壳,直接短路,可采用过电流保护器切断电源;
了保障施工用电安全的作用,但TN—S系统必须注意几个问题:
(1)保护零线绝对不允许断开。否则在接零设备发
生带电部分碰壳或是漏电时,就构不成单相回路,电源就不会自动切断,就会产生
两个后果:一是使接零设备失去安全保护;二是使后面的其他完好的接零设备外壳带电,引起大范围的电气设备外壳带电,造成可怕
波电流也会注入PEN,从而中性线N带电,且极有可能高于50V,它不但使设备机壳带电,对人身造成不安全,而且还无法取
得稳定的基准电位;
(3)TN—C系统应将PEN线重复接地,其作用是当接零的设备发生相与外壳接触时,可以有效地降低零线对地电压。
由上可知,TN-C系统存在以下缺陷:
(1)当三相负载不平衡时,在零线上出现不平衡电流,零线对地呈现电压。当三相负载严重不平衡时,触及零线可能导致触电事故。
(1)当电气设备发生单相碰壳,同TN—S系统;
(2)当N线断开,故障同TN—S系统;

变压器中性点接地系统的优缺点

变压器中性点接地系统的优缺点

变压器中性点接地系统的优缺点1.缩小了系统的故障电压:中性点接地系统可以降低对地故障时的电压水平,从而减小对设备和人员的损害,提高电气安全性。

2.降低了短路电流:中性点接地系统通过接入合适的中性点接地电阻或感应电抗器,可以限制短路电流的大小,提高系统稳定性。

3.提高了系统可靠性:中性点接地系统可以有效地将故障电流从系统中断开,减少故障引起的整个系统停电。

4.减小了电容电流:中性点接地系统可以将系统的电容电流与地结合,减少电容干扰和浪费。

5.降低了隔离性要求:中性点接地系统因为减小了故障电压水平,所以对设备的绝缘和隔离性要求相对较低。

然而,变压器中性点接地系统也存在一些缺点:1.系统故障点较多:中性点接地系统存在多个接地点,因此容易引发接地故障,并且需要较为复杂的保护装置来检测和隔离这些故障。

2.增加了对保护装置的要求:中性点接地系统需要配备更复杂的保护装置,以便及时检测和隔离故障,并确保系统的安全运行。

3.对人员的电击风险:中性点接地系统中,因为接地点多,导致地电流分布不均,可能存在电击风险,需要加强人员对电压和接地的安全培训。

4.增加了系统的谐波问题:中性点接地系统会引入一定的谐波电流,导致系统中谐波电压的增加,可能会影响到其他设备的正常运行。

5.造成电力浪费:中性点接地系统中,因为将电容电流与地结合,可能会导致一部分无功功率在中性点和地之间流失,造成电力浪费。

综上所述,变压器中性点接地系统的优点包括缩小故障电压、降低短路电流、提高系统可靠性、减小电容电流和降低隔离性要求;而缺点主要体现在系统故障点多、要求更复杂的保护装置、增加对人员的电击风险、谐波问题和电力浪费等方面。

在设计和选择中,需要综合考虑系统的安全性、可靠性和经济性。

变压器中心点接地优缺点

变压器中心点接地优缺点

变压器中性点接地与不接地系统1.1 变压器中性点接地系统的优缺点:(1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。

(2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等;1.2 变压器中性点不接地系统的优、缺点:(1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。

(2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。

2 各种电压等级供电线路的接地方式(1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。

(2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc 大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。

在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。

(3)1kv以下的供电系统(380/220伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。

3 电气设备的保护接地3.1 保护接地将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。

变压器中性点接地与不接地的区别

变压器中性点接地与不接地的区别

顾名思义:中性,不高也不低,为零。

中性点不接地的供电系统,是为了提高供电可靠性,若速断跳闸了可靠性就保证不了。

中性点不接地,发生单相对地短路时,大地的电位与接地的相线相同,并且与中性点不能形成回路。

在三相三线制电路中,接地改接零,所有接零保护的电器外壳与地之间将变成相电压,使电路不能正常工作,而且所有碰上外壳的人都会触电。

一变压器中性点接地与不接地的优缺点比较
1.1 变压器中性点接地系统的优缺点:
(1)优点:对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is ,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可靠性。

(2)缺点:对电源中性点接地系统,由于单相短路电流Is 很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等;
1.2 变压器中性点不接地系统的优、缺点:
(1)优点:对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可靠性。

(2)缺点:对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。

中性点不接地系统原理

中性点不接地系统原理

中性点不接地系统原理
中性点不接地系统是一种用于保证电力系统可靠运行和人身安全的重要装置。

其原理是采用三绕组变压器,其中一个绕组不与地相连,即中性点不接地。

这样做的目的是为了防止系统出现单相接地故障时形成电流回路,从而降低故障对电网的影响。

中性点不接地系统的工作原理可以概括为以下几个关键步骤:
1. 建立系统的星形连接:将三个绕组分别与三相电源相连,形成系统的星形连接。

2. 中性点不接地处理:其中一个绕组的中性点不与地相连,而是通过中性点不接地开关与地电位隔离。

3. 故障侦测:当系统出现单相接地故障时,故障相的电压会增加,而不接地绕组的中性点电压保持为零。

通过电压差异的侦测,可以及时发现故障的存在。

4. 自动断开故障相:当检测到系统出现故障时,不接地中性点系统会自动切断故障相的电源,以阻断故障电流的流动,保护电力设备不受损坏。

中性点不接地系统的设计和运行需要考虑多种因素,如系统的容量、故障侦测精度、自动断开故障相的速度等。

全面的系统保护策略和设备的协同工作可以有效提高电力系统的可靠性和安全性。

变压器接地是怎么接的原理

变压器接地是怎么接的原理

变压器接地是怎么接的原理变压器的接地是为了保证人身安全和设备的正常运行。

1. 变压器接地的原理变压器接地的主要原理是为了防止漏电和电气设备的故障,保护人们的安全。

当变压器的金属外壳和中性线与地接触时,如果有电流泄漏,接地线会迅速导流,使电流通过接地,从而有效地防止触电事故发生,保护人身安全。

2. 变压器接地的方式变压器接地的方式一般有两种:接入中性点接地和不接入中性点接地。

- 接入中性点接地:当变压器的中性点接入地时,形成“星形接法”。

这种接法使得变压器的绕组电压与地之间有一个较高的绝缘阻抗,可以减小漏电流的流过,并能够使电流快速导入地,确保人身安全。

- 不接入中性点接地:当变压器的中性点不接入地时,形成“三角形接法”。

这种接法适用于电力传输和配电系统中,可以减少零序电流的流动,提高系统的可靠性。

3. 变压器接地的步骤变压器接地需要按照以下步骤进行:- 第一步是准备工作,包括检查变压器的工作状态和绝缘情况,确保安全可靠;- 第二步是选择接地方式,根据具体情况选择接入中性点接地或不接入中性点接地;- 第三步是连接接地线,将接地线连接到变压器的金属外壳和中性点上;- 第四步是进行接地测试,使用专用的测试仪器对接地系统进行测试,确保接地电阻符合要求;- 第五步是进行接地标识,将接地线与变压器的接地点做好标识,以便维护和检修时的识别。

4. 变压器接地的意义变压器接地的意义主要包括以下几个方面:- 保护人身安全:当变压器发生漏电时,接地能够迅速导流,避免触电事故发生,保护人的生命安全;- 保护设备:接地能够防止电器设备因漏电而受损,延长设备的使用寿命;- 提高系统可靠性:接地能够减小系统中的故障电流,提高系统的可靠性和稳定性;- 降低电磁辐射:接地能够降低电磁辐射的强度,减少对周围环境和人的影响。

总之,变压器接地是为了保护人们的生命安全和电气设备的正常运行而设计的。

通过选择适当的接地方式,并且按照正确的步骤进行接地,可以有效地预防漏电和故障,确保人身安全和系统的可靠性。

变压器中性点接地方式优缺点的分析

变压器中性点接地方式优缺点的分析

接地变压器的作用我国电力系统中,的6kV、10kV、35kV电网中一般都采用中性点不接地的运行方式.电网中主变压器配电电压侧一般为三角形接法,没有可供接地电阻的中性点。

当中性点不接地系统发生单相接地故障时,线电压三角形仍然保持对称,对用户继续工作影响不大,并且电容电流比较小(小于10A)时,一些瞬时性接地故障能够自行消失,这对提高供电可靠性,减少停电事故是非常有效的。

但是随着电力事业日益的壮大和发展,这中简单的方式已不在满足现在的需求,现在城市电网中电缆电路的增多,电容电流越来越大(超过10A),此时接地电弧不能可靠熄灭,就会产生以下后果;1),单相接地电弧发生间歇性的熄灭与重燃,会产生弧光接地过电压,其幅值可达4U(U为正常相电压峰值)或者更高,持续时间长,会对电气设备的绝缘造成极大的危害,在绝缘薄弱处形成击穿;造成重大损失。

2),由于持续电弧造成空气的离解,破坏了周围空气的绝缘,容易发生相间短路;3),产生铁磁谐振过电压,容易烧坏电压互感器并引起避雷器的损坏甚至可能使避雷器爆炸;这些后果将严重威胁电网设备的绝缘,危及电网的安全运行.为了防止上述事故的发生,为系统提供足够的零序电流和零序电压,使接地保护可靠动作,需人为建立一个中性点,以便在中性点接入接地电阻。

为了解决这样的办法。

接地变压器(简称接地变)就在这样的情况下产生了。

接地变就是人为制造了一个中性点接地电阻,它的接地电阻一般很小(一般要求小于5欧)。

另外接地变有电磁特性,对正序、负序电流呈高阻抗,绕组中只流过很小的励磁电流.由于每个铁心柱上两段绕组绕向相反,同心柱上两绕组流过相等的零序电流呈现低阻抗,零序电流在绕组上的压降很小。

也既当系统发生接地故障时,在绕组中将流过正序、负序和零序电流。

该绕组对正序和负序电流呈现高阻抗,而对零序电流来说,由于在同一相的两绕组反极性串联,其感应电动势大小相等,方向相反,正好相互抵消,因此呈低阻抗。

接地变的工作状态,由于很多接地变只提供中性点接地小电阻,而不需带负载。

110kV电力系统中变压器中性点接地方式分析

110kV电力系统中变压器中性点接地方式分析

110kV电力系统中变压器中性点接地方式分析摘要:在我国,110 kV和电压等级更高的电网普遍采用中性点有效接地方式,当单相接地故障事故发生时,继电保护迅速跳闸解除故障。

介绍了110 kV变压器中性点接地方式及其保护配置,并结合实例分析了保护配置的必要性。

关键词:变压器中性点;避雷器;零序保护;单相接地电流中图分类号:TM862 文献标识码:A DOI:10.15913/ki.kjycx.2015.05.145随着我国经济的不断增长,电力系统的建设越来越快,在110 kV和更高电压等级的电网系统中,变压器是生产电力的主要设备,具有中性点的绝缘水平比三相端部出线电压等级低的特点。

但在一些变压器中性点接地的电力系统中,接地短路故障时有发生,严重影响了变压器的中性点绝缘。

因此,如何对大型变压器实施中性点保护已成为人们需要解决的问题。

1 变压器中性点接地方式1.1 变压器中性点接地系统的优缺点对于电源中性点接地系统,如果发生某单相接地,另两相电压不变,这样会使整个系统的绝缘水平降低,此外,单相接地还会产生较大的短路电流,使保护装置迅速准确动作,从而提高保护的可靠性;电源中性点接地系统的缺点是单相短路电流很大,且还能造成系统不稳定和干扰通讯线路等,因此,要选择容量较大的开关和电气设备等。

1.2 变压器中性点不接地系统的优缺点对于变压器中性点不接地系统,由于限制了单相接地电流,所以,通讯的干扰较小,提高了供电的可靠性;变压器中性点不接地系统的缺点是,当一相接地时,另两相对地电压升高1倍,易使绝缘薄弱地方击穿,进而造成两相接地短路。

1.3 我国110 kV变压器中性点接地的方式为了限制单相接地短路电流,满足防止通讯干扰和继电保护的整定配置等要求,我国110 kV系统普遍采用1台变压器中性点直接接地,其余变压器的中性点以不接地的运行方式,即整体采用部分变压器中性点接地方式。

2 变压器中性点过电压及其保护2.1 变压器中性点过电压2.1.1 工频过电压在操作系统或发生接地故障时,频率等于工频或接近工频的高于系统最高工作电压的过电压。

中性点接地与不接地

中性点接地与不接地

我国电力系统中性点接地方式主要有两种,即:1、中性点直接接地方式(包括中性点经小电阻接地方式)。

2、中性点不直接接地方式(包括中性点经消弧线圈接地方式)。

中性点直接接地系统(包括中性点经小电阻接地系统),发生单相接地故障时,接地短路电流很大,这种系统称为大接地电流系统。

中性点不直接接地系统(包括中性点经消弧线圈接地系统),发生单相接地故障时,由于不直接构成短路回路,接地故障电流往往比负荷电流小得多,故称其为小接地电流系统。

在我国划分标准为fO∕Xl≤4~5的系统属于大接地电流系统,XO/X1 >4-5的系统属于小接地电流系统注:X0为系统零序电抗,Xl为系统正序电抗。

中性点直接接地中性点直接接地方式,即是将中性点直接接入大地。

该系统运行中若发生一相接地时,就形成单相短路,其接地电流很大,使断路器跳闸切除故障。

这种大电流接地系统,不装设绝缘监察装置。

中性点直接接地系统产生的内过电压最低,而过电压是电网绝缘配合的基础,电网选用的绝缘水平高低,反映的是风险率不同,绝缘配合归根到底是个经济问题。

中性点直接接地系统产生的接地电流大,故对通讯系统的干扰影响也大。

当电力线路与通讯线路平行走向时,由于耦合产生感应电压,对通讯造成干扰。

中性点直接接地系统在运行中若发生单相接地故障时,其接地点还会产生较大的跨步电压与接触电压。

此时,若工作人员误登杆或误碰带电导体,容易发生触电伤害事故。

对此只有加强安全教育和正确配置继电保护及严格的安全措施,事故也是可以避免的。

其办法是:①尽量使电杆接地电阻降至最小;②对电杆的拉线或附装在电杆上的接地引下线的裸露部分加护套;③倒闸操作人员应严格执行电业安全工作规程。

2中性点不接地中性点不接地方式,即是中性点对地绝缘,结构简单,运行方便,不需任何附加设备,投资省。

适用于农村IOkv架空线路为主的辐射形或树状形的供电网络。

该接地方式在运行中,若发生单相接地故障,其流过故隙点电流仅为电网对地的电容电流,其值很小称为小电流接地系统,需装设绝缘监察装置,以便及时发现单相接地故障,迅速处理,以免故障发展为两相短路,而造成停电事故。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

变压器中性点接地与不接地系统
1.1变压器中性点接地系统的优缺点:
(1)优点:
对电源中性点接地系统,若发生某单相接地,另两相电压不升高,这样可使整个系统绝缘水平降低;另外,单相接地会产生较大的短路电流Is,从而使保护装置(继电器、熔断器等)迅速准确地动作,提高了保护的可*性。

(2)缺点:
对电源中性点接地系统,由于单相短路电流Is很大,开关及电气设备等要选择较大容量,并且还能造成系统不稳定和干扰通讯线路等;
1.2变压器中性点不接地系统的优、缺点:
(1)优点:
对变压器中性点不接地系统,由于限制了单相接地电流,对通讯的干扰较小;另外单相接地可以运行一段时间,提高了供电的可*性。

(2)缺点:
对变压器中性点不接地系统,当一相接地时,另两相对地电压升高倍,易使绝缘薄弱地方击穿,从而造成两相接地短路。

2各种电压等级供电线路的接地方式
(1)在110kv及以上的高压或超高压系统中,一般采用中性点接地系统,其目的是为了降低电气设备绝缘水平,免除由于单相接地后继续运行而形成的不对称性。

(2)工厂供电系统采用电压在1kv~35kv,一般为中性点不接地系统,因工厂供电距离短,对地电容小(Xc大),单相接地电流小,这样可以运行一段时间,提高了系统的稳定性和供电可*性,对通讯干扰小等优点。

在煤矿井下,我国、西德等国禁止中性点接地,其主要目的是为安全,减小了单相接地电流,但即使小的单相接地电流,煤矿井下也不允许存在,因此在煤矿井下,安装有检漏继电器,就是当电网对地绝缘阻抗降低到危险值或人触及一相导体或电网一相接地时,能很快地切断电源,防止触电、漏电事故,提前切断故障设备。

(3)1kv以下的供电系统(伏),除某些特殊情况下(井下、游泳池),绝大部分是中性点接地系统,主要是为了防止绝缘损坏而遭受触电的危险。

3电气设备的保护接地
3.1保护接地
将电气设备的金属外壳通过接地线与接地体相接,其原理是分流原理(如图1)。

由于人体电阻Rr远大于接地电阻Rd,所以Ir《Id。

保护接地,适应于变压器中性点不接地的供电系统中。

但在干燥场所,交流电压50V及以下,或直流电压110V及以下的电气设备,金属外壳可不接地;在干燥且有木质、沥青等不良导电地面的场所,交流额定电压380V及以下,或直流额定电压440V及以下的电气设备金属外壳,除另有规定外(在爆炸危险场所仍应接地),可不接地。

电气设备在高处时,不应采取保护接地措施,否则会把大地电位引向高处,反而增加触电危险。

3.2保护接地时应注意问题
由同一变压器(中性点不接地)供电系统中各电气设备不应分别接地,而应形成一个保护接地系统。

这样做不仅降低了接地电阻,而且也防止了不同电气设备的不同相,同时碰壳(接地)所带来的危险。

形成保护接地系统后,这时两相短路电流主要通过接地网流通,因而提高了两相短路电流的数值,保证过流保护装置可*动作。

4电气设备保护接零
4.1保护接零
由于低电压网(380V/220V)中性点不接地只有个别场合,如矿井、游泳池等,而一般低压电网都采用了中性点接地的三相四线制供电系统。

在这种电网中工作的设备,其金属外壳要与零线紧密相接,即保护接零,如图2所示。

保护接零的目的,也是为了保证安全,当设备发生一相碰壳时,则造成单相短路,使保护装置迅速动作,切断故障设备。

按中性线与保护线的组合情况,保护接零分以下三种情况:
(1)整个系统中性线N与保护线PE是合一的,如图2,通常适用于三相负荷比较平衡且单相负荷容量较小的场所。

(2)整个系统中性线N与保护线PE是分开的,如图3。

即将设备外壳接在保护线PE上,在正常情况下保护线上没有电流流过,所以设备外壳不带电。

(3)系统中的一部分采用中性线与保护线合一的,局部采用专设的保护线。

4.2保护接零应注意问题:
(1)由同一台发电机或同一台变压器供电的线路,不允许有的设备保护接地,有的设备保护接零。

(2)沿零线上把一点或多点再行接地,即重复接地。

以确保护接地装置的可*。

但重复接地只能起到平衡电位的作用,因此,中性线尽量避免断裂,对中性线要求精心施工,注意维护。

5结束语
电源中性点的接地方式及用电设备保护接地、保护接零的归类分析,对不同电压等级的电力网怎样合理供电及电气设备的安全使用有现实意义。

本文转自:
赛尔社区. http:。

相关文档
最新文档