电磁场与电磁波课后习题及答案第四章习题解答

合集下载

电磁场与电磁波(第4版)第4章部分习题参考解答

电磁场与电磁波(第4版)第4章部分习题参考解答
G G G G G G − j(k x + k y + k z ) 故 E (r ) = E0 e − jk ⋅r = E0 e x y z
GG G G G G − j(k x + k y + k z ) ∇ 2 E (r ) = E0∇ 2 e − jk ⋅r = E0∇ 2 e x y z
G ⎛ ∂2 ∂2 ∂ 2 ⎞ − j(k x + k y + k z ) = E0 ⎜ 2 + 2 + 2 ⎟ e x y z ⎝ ∂x ∂y ∂z ⎠ G − j(k x + k y + k z ) G G 2 = (− k x2 − k y − k z2 ) E0 e x y z = − k 2 E (r ) G G G G 代入方程 ∇ 2 E (r ) + ω 2 με E (r ) = 0 ,得 G G − k 2 E + ω 2 με E = 0
G G ω ∂2 ω G (3) ∇ 2 E = ey E0∇ 2 cos(ωt + z ) = ey E0 2 cos(ωt + z ) ∂z c c
ω G ω = −ey ( ) 2 E0 cos(ωt + z ) c c
G ∂2 E G ∂2 ω ω G = e E cos(ωt + z ) = −eyω 2 E0 cos(ωt + z ) y 0 2 2 ∂t ∂t c c G G 1 ∂2 E ω 1 ⎡ G ω ⎤ G ω 2 ∇ E − 2 2 = −ey ( ) 2 E0 cos(ωt + z ) − 2 ⎢ −e yω 2 E0 cos(ωt + z ) ⎥ = 0 c ∂t c c c ⎣ c ⎦

《电磁场与电磁波》(第四版)课后习题解答(全)

《电磁场与电磁波》(第四版)课后习题解答(全)

第一章习题解答【习题1.1解】222222222222222222222222222222222222cos cos cos cos cos cos 1xx x y z yx y z z x y z x y z x y z x y z x y z x y z x y z 矢径r 与轴正向的夹角为,则同理,矢径r 与y 轴正向的夹角为,则矢径r 与z 轴正向的夹角为,则可得从而得证a a b b g g a b g =++=++=++++=++++++++++==++ 【习题1.2解】924331329(243)54(9)(243)236335x y z x y z x y z x y z x y z x y z x y z x y z A B e e e e e e e e e A B e e e e e e e e e A B e e e e e e A B +=--+-+=-+=----+=---∙=--∙-+=+-=⨯()()-()(9)(243)19124331514x y z x y z x y z x y ze e e e e e e e e e e e =--⨯-+=---=--+【习题1.3解】已知,38,x y z x y z A e be ce B e e e =++=-++ (1)要使A B ⊥,则须散度 0A B =所以从 1380A B b c =-++=可得:381b c +=即只要满足3b+8c=1就可以使向量错误!未找到引用源。

和向量错误!未找到引用源。

垂直。

(2)要使A B ,则须旋度 0A B ⨯= 所以从1(83)(8)(3)0138xy zx y z e e e A B b c b c e c e b e ⨯==--+++=-可得 b=-3,c=-8 【习题1.4解】已知129x y z A e e e =++,x y B ae be =+,因为B A ⊥,所以应有0A B ∙= 即()()1291290xy z x y ee e ae be a b ++∙+=+= ⑴又因为 1B =; 所以221=; ⑵由⑴,⑵ 解得 34,55a b =±=【习题1.5解】由矢量积运算规则123233112()()()x y zx y z x x y y z ze e e A Ca a a a z a y e a x a z e a y a x e xyzB e B e B e B =?=-+-+-=++取一线元:x y z dl e dx e dy e dz =++则有xy z xyz e e e dlB B B dx dy dzB ?=则矢量线所满足的微分方程为 x y zd x d y d z B B B == 或写成233112()dx dy dzk a z a y a x a z a y a x==---=常数 求解上面三个微分方程:可以直接求解方程,也可以采用下列方法k xa a y a a z a d z a a x a a y a d y a a z a a x a d =-=-=-323132132231211)()()( (1)k x a y a z zdzz a x a y ydy y a z a x xdx =-=-=-)()()(211332 (2)由(1)(2)式可得)()(31211y a a x a a k x a d -=)()(21322z a a x a a k y a d -= (3))()(32313x a a y a a k z a d -= )(32xy a xz a k xdx -=)(13yz a xy a k ydy -= (4))(21xz a yz a k zdz -=对(3)(4)分别求和0)()()(321=++z a d y a d x a d 0)(321=++z a y a x a d0=++zdz ydy xdx 0)(222=++z y x d所以矢量线方程为1321k z a y a x a =++ 2222k z y x =++【习题1.6解】已知矢量场222()()(2)x y z A axz x e by xy e z z cxz xyz e =++++-+- 若 A 是一个无源场 ,则应有 div A =0即: div A =0y x zA A A A x y z∂∂∂∇⋅=++=∂∂∂ 因为 2x A axz x =+ 2y A by xy =+ 22z A z z cxz xyz =-+- 所以有div A =az+2x+b+2xy+1-2z+cx-2xy =x(2+c)+z(a-2)+b+1=0 得 a=2, b= -1, c= - 2 【习题1.7解】设矢径 r的方向与柱面垂直,并且矢径 r到柱面的距离相等(r =a ) 所以,2sssr ds rds a ds a ah πΦ===⎰⎰⎰=22a h π=【习题1.8解】已知23x y φ=,223y z A x yze xy e =+而 A A A A rot⨯∇+⨯∇=⨯∇=φφφφ)()(2222(6)3203xy zx y ze e e A xy x y e y e xyze x y z x yz xy ∂∂∂∇⨯==--+∂∂∂ 2223[(6)32]x y z A x y xy x y e y e xyze φ∴∇⨯=--+又y x z y x e x e xy ze y e x e 236+=∂∂+∂∂+∂∂=∇φφφφ 232233222630918603xy z x y z e e e A xyx x y e x y e x y ze x yz xy φ∇⨯==-+所以222()3[(6)32]x y z rot A A A x y xy x y e y e xyze φφφ=∇⨯+∇⨯=--+ +z y x e z y x e y x e y x 2332236189+-=]49)9[(3222z y x e xz e y e x x y x+--【习题1.9解】已知 222(2)(2)(22)x y zA y x z e x y z e x z y z e =++-+-+ 所以()()1144(22)0xyzyy x x z z x y z x yzx y z A A A A A A rot A A x y z y z z x x y A A A xz xz y y e e ee e e e e e ∂∂⎛⎫⎛⎫∂∂∂∂∂∂∂⎛⎫=∇⨯==-+-+- ⎪ ⎪ ⎪∂∂∂∂∂∂∂∂∂⎝⎭⎝⎭⎝⎭-++-+-=由于场A 的旋度处处等于0,所以矢量场A 为无旋场。

电磁场与电磁波课后习题与答案四章习题解答

电磁场与电磁波课后习题与答案四章习题解答
)
由此可设
(r,
)
Eor cos
Ar1cos
C
由条件①,

Eoa cos
A1a
1cos C
C
于是得到
A1
a2
Eo
故圆柱外的电位为
(r,
)(
2
r a r
1)E0cos
C
方向外加一均匀电场EoexEo,求空腔和空腔外的电位函数。
解 在电场Eo的作用下,介质产生极化,空腔表面形成极化电荷,空腔、外的电场E为外
解 由于在(0,d)处有一与z轴平行的线电荷ql,以x0为界将场空间分割为x0和x0两个区域,则这两个区域中的电位1(x,y)和2(x, y)都满足拉普拉斯方程。 而在x0的 分界面上,可利用 函数将线电荷qi表示成电荷面密度(y) qi(y y。)。
电位的边界条件为
J
L
J-
a

d
y
ox
题4.6图

解 由题意可知,圆柱面部的电位函数满足边界条件为 ①
(0,)为有限值;
U。
0
(b,)
U0
0
由条件①可知,
3 .2
圆柱面部的电位函数的通解为
代入条件②,有
由此得到
An
(b,
Bn
bn0
(b,
(r,
rn(Ansin n
1
Bncos n )
(r b)
bn(Ans inn Bncos n )
)sin n
)cos n
(、2q
1(x,y)-
2(x, y)组
n y
x)]si n()
b
b两个区域,
si nh[— (b

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题, 。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

电磁场与电磁波第四章习题及参考答案

电磁场与电磁波第四章习题及参考答案

第四章 习题4-1、 电量为nC 500的点电荷,在磁场)(ˆ2.1T zB =中运动,经过点)5,4,3(速度为 s m y x/ˆ2000ˆ500+ 。

求电荷在该点所受的磁场力。

解:根据洛仑兹力公式B v q F⨯=N x y z y x 4491012ˆ103ˆ2.1ˆ)ˆ2000ˆ500(10500---⨯+⨯-=⨯+⨯⨯= N y x4103)ˆˆ4(-⨯-= 4-2、真空中边长为a 的正方形导线回路,电流为I ,求回路中心的磁场。

解:设垂直于纸面向下的方向为z 方向。

长为a 的线电流I 在平分线上距离为a/2的点上的磁感应强度为aIzB πμ2ˆ01= 因而,边长为a 的正方形导线回路在中心点上的磁感应强度为aIz B B πμ24ˆ401==题4-2图 题4-3图4-3、真空中边长为a 的正三角形导线回路,电流为I ,求回路中心的磁场.解:设垂直于纸面向下的方向为z 方向。

由例4-1知,长为a 的线电流I 在平分线上距离为b 的点上的磁感应强度为2201)2(ˆa b a bIz B +=πμ所以220)2(3ˆa b a bIz B +=πμ ,其中)6(2πtg a b =4-4、真空中导线绕成的回路形状如图所示,电流为I 。

求半圆中心处的磁场。

(c)题4-4 图解:设垂直于纸面向内的方向为z 方向。

由例4-2知,半径为a 的半圆中心处的磁场为aIz B 4ˆ01μ= (1)因为在载流长直导线的延长线上磁场为零,因此aIz B 4ˆ0μ= (2)由例4-1知,本题半无限长的载流长直导线在距离为a 处的磁场为aIz B πμ4ˆ02= 因此本题磁场为半圆环的磁场与两半无限长的直导线的磁场之和)2(4ˆ0+-=ππμaIz B (3)本题磁场为电流方向相反的两不同半径的半圆环的磁场之和,即)11(4ˆ0ba I zB -=μ 4-5、 在真空中将一个半径为a 的导线圆环沿直径对折,使这两半圆成一直角。

电磁场与电磁波课后习题及答案四章习题解答

电磁场与电磁波课后习题及答案四章习题解答

如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为,求槽内的电位函数。

解根据题意,电位满足的边界条件为①②③根据条件①和②,电位的通解应取为题图由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布两平行无限大导体平面,距离为,其间有一极薄的导体片由到。

上板和薄片保持电位,下板保持零电位,求板间电位的解。

设在薄片平面上,从到,电位线性变化,。

题图解应用叠加原理,设板间的电位为其中,为不存在薄片的平行无限大导体平面间(电压为)的电位,即;是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①②③根据条件①和②,可设的通解为由条件③有两边同乘以,并从0到对积分,得到故得到求在上题的解中,除开一项外,其他所有项对电场总储能的贡献。

并按定出边缘电容。

解在导体板()上,相应于的电荷面密度则导体板上(沿方向单位长)相应的总电荷相应的电场储能为其边缘电容为如题图所示的导体槽,底面保持电位,其余两面电位为零,求槽内的电位的解。

解根据题意,电位满足的边界条件为①题图②③根据条件①和②,电位的通解应取为由条件③,有两边同乘以,并从0到对积分,得到故得到槽内的电位分布为一长、宽、高分别为、、的长方体表面保持零电位,体积内填充密度为的电荷。

求体积内的电位。

解在体积内,电位满足泊松方程(1)长方体表面上,电位满足边界条件。

由此设电位的通解为代入泊松方程(1),可得由此可得或(2)由式(2),可得故如题图所示的一对无限大接地平行导体板,板间有一与轴平行的线电荷,其位置为。

求板间的电位函数。

解由于在处有一与轴平行的线电荷,以为界将场空间分割为和两个区域,则这两个区域中的电位和都满足拉普拉斯方程。

而在的分界面上,可利用函数将线电荷表示成电荷面密度。

电位的边界条件为题图①②③由条件①和②,可设电位函数的通解为由条件③,有(1)(2)由式(1),可得(3)将式(2)两边同乘以,并从到对积分,有(4)由式(3)和(4)解得故如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷。

工程电磁场与电磁波 丁君版 答案第四章习题答案

工程电磁场与电磁波 丁君版 答案第四章习题答案

工程电磁场与电磁波丁君版答案第四章习题答案第四章习题4-1解:选柱坐标系,在所求无源区内电位函数满足:02=?φφ只和r 相关0=???φ0=??z φ方程化为 0)(1=????rr r r φ21ln C r C +=φ为常数21,C C 由 006.0==φ时r 501.0-==φ时r得 88.27588.9721=-=C C88.275ln 88.97+-=r φr a rE ?188.97=-?=φ4—2:解:图一依据边界条件:?????====021R R R R U φφ0可得:???????--=-=00UR R R B U R R R R A 1211221 ∴()120212021R R U R R R R U R R ---=φ(2) ()R R a RR R U R R a R E ?1?212021?-=??-=-?=φφ (1) 如图一,依据题意可知:电位函数φ满足拉普拉斯方程。

接受球坐标系:2=?φ0=??θφ0=???φR 相关只于φ,方程化为: 0)(122=????R R R R φφ积分得:B RA +?=1φ(3) ()R R R aR R R U R E D ?12102001-?===εε内表 S S d D s Sρ=??内表S S D s ρ=内表∴)(12102R R R U R D s -==ερ内表4—3:解:选择直角坐标如图,由恒定电场的泊松方程可得:xy设两板间距离为d,代入边界条件?????====000U dz z φφ???????+=+==?ερερ22002021d d U d d U C C ∴)2()2(2002ερερφερερφd d U z E zdd U z +-=-?=++-=4—4:解:选择柱坐标系,依据恒定电磁场的拉普拉斯方程,(1) 02=?m φ,m φ只在?方向上有变化,所以:B A r m m+==???φ?φ:,01222积分得由 0=?时:0,0==B m 得φ∴?φA m = l m m a dld Hφφ-=-?=l d H d m?-=φ??-=?-=ππφ2020I l d H d m0,0,2=??=??-=?xy φφερφ方程可化为:,22ερφ-=??z2122:C z C z ++-=ερφ积分得B A I m m+=-==?φφπ?代入,2π2?=-A I π2I A -= ?πφ2Im -= (2) ??π?φφφa rI a d d r a dl d H m l m m21==-=-?=可见,利用拉普拉斯方程与安培环路定理求出来的结果一样。

电磁场与电磁波(第四版)课后答案__谢处方

电磁场与电磁波(第四版)课后答案__谢处方

电磁场 与电磁波(第四版) 课后答案第一章 习 题 解答1.1 给定三个矢量A 、B 和C 如下: 23x y z =+-A e e e4y z =-+B e e 52x z =-C e e求:(1)A a ;(2)-A B ;(3)A B ;(4)AB θ;(5)A 在B 上的 分量;(6)⨯A C ;(7)()⨯A B C 和()⨯A B C ;(8)()⨯⨯A B C 和()⨯⨯A B C 。

解 (1)23A x y z +-===+-e e e A a e e e A (2)-=A B (23)(4)x y z y z +---+=e e e ee 64x y z +-=e e e (3)=A B (23)x y z +-e e e (4)y z -+=e e -11 (4)由c o sAB θ=11238=A B A B ,得1c o s AB θ-=(135.5= (5)A 在B 上的分 量 B A =A c o s AB θ==A B B (6)⨯=A C 123502xyz-=-e e e 41310x y z ---e e e (7)由于⨯=B C 041502xyz-=-e e e 8520x y z ++e e e⨯=A B 123041xyz-=-e e e 1014x y z ---e e e所以 ()⨯=A B C (23)x y z +-e e e (8520)4x y z ++=-e e e ()⨯=A B C (1014)x y z ---e e e (52)42x z -=-e e (8)()⨯⨯=A B C 1014502xyz---=-e e e 2405x y z -+e e e()⨯⨯=A B C 1238520x y z -=e e e 554411x y z --e e e1.2 三角形的三个顶点 为1(0,1,2)P -、2(4,1,3)P -和3(6,2,5)P 。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

况下,电场和磁场可以独立进行分析。( √ )
12、静电场和恒定磁场都是矢量场,在本质上也是相同的。( × )
13、静电场是有源无旋场,恒定磁场是有旋无源场。( √ ) 14、位移电流是一种假设,因此它不能象真实电流一样产生磁效应。(
×)
15、法拉第电磁感应定律反映了变化的磁场可以产生变化的电场。( √ ) 16、物质被磁化问题和磁化物质产生的宏观磁效应问题是不
D.有限差分法
6、对于静电场问题,仅满足给定的泊松方程和边界条件,
而形式上不同的两个解是不等价的。( × )
7、研究物质空间内的电场时,仅用电场强度一个场变量不能完全反映物 质内发生的静电现象。( √ )
8、泊松方程和拉普拉斯方程都适用于有源区域。( × )
9、静电场的边值问题,在每一类的边界条件下,泊松方程或拉普拉斯方 程的解都是唯一的。( √ )
是( D )。
A.镜像电荷是否对称
B.电位所满足的方程是否未改变
C.边界条件是否保持不变 D.同时选择B和C
5、静电场边值问题的求解,可归结为在给定边界条件下,对拉普拉斯
方程的求解,若边界形状为圆柱体,则宜适用( B )。
A.直角坐标中的分离变量法
B.圆柱坐标中的分离变量法
C.球坐标中的分离变量法
两个基本方程:
3、写出麦克斯韦方程组,并简述其物理意义。
答:麦克斯韦方程组的积分形式:
麦克斯韦方程组的微分形式:
每个方程的物理意义: (a) 安培环路定理,其物理意义为分布电流和时变电场均为磁
场的源。 (b) 法拉第电磁感应定律,表示时变磁场产生时变电场,即动
磁生电。 (c) 磁场高斯定理,表明磁场的无散性和磁通连续性。 (d)高斯定理,表示电荷为激发电场的源。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案第1章 矢量分析1、如果矢量场F 的散度处处为0,即0F∇⋅≡,则矢量场是无散场,由旋涡源所产生,通过任何闭合曲面S 的通量等于0。

2、如果矢量场F 的旋度处处为0,即0F ∇⨯≡,则矢量场是无旋场,由散度源所产生,沿任何闭合路径C 的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:散度(高斯)定理:SVFdV F dS ∇⋅=⋅⎰⎰和斯托克斯定理:sCF dS F dl∇⨯⋅=⋅⎰⎰。

4、在有限空间V 中,矢量场的性质由其散度、旋度和V 边界上所满足的条件唯一的确定。

( √ )5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

( √ )6、标量场的梯度运算和矢量场的旋度运算都是矢量。

( √ )7、梯度的方向是等值面的切线方向。

(× )8、标量场梯度的旋度恒等于0。

( √ ) 9、习题1.12, 1.16。

第2章 电磁场的基本规律(电场部分)1、静止电荷所产生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD d S d V Q ρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:V D ρ∇⋅=和0E∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量B 1n -B 2n =0。

7、在介电常数为e 的均匀各向同性介质中,电位函数为 2211522x y z ϕ=+-,则电场强度E=5x y zxe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体表面为等位面;在导体表面只有电场的法向分量。

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》习题参考答案

《电磁场与电磁波》知识点及参考答案之宇文皓月创作第1章矢量分析10,则矢量场是无散场,由旋涡源所发生,通过任何闭合曲面S的通量等于0。

20,则矢量场是无旋场,由散度源所发生,沿任何闭合路径的环流等于0。

3、矢量分析中的两个重要定理分别是散度定理(高斯定理)和斯托克斯定理, 它们的表达式分别是:4、在有限空间V中,矢量场的性质由其散度、旋度和V鸿沟上所满足的条件唯一的确定。

(√)5、描绘物理状态空间分布的标量函数和矢量函数,在时间为一定值的情况下,它们是唯一的。

(√)6、标量场的梯度运算和矢量场的旋度运算都是矢量。

(√)7、梯度的方向是等值面的切线方向。

(×)8、标量场梯度的旋度恒等于0。

(√)9、习题1.12, 1.16。

第2章电磁场的基本规律(电场部分)1、静止电荷所发生的电场,称之为静电场;电场强度的方向与正电荷在电场中受力的方向相同。

2、在国际单位制中,电场强度的单位是V/m(伏特/米)。

3、静电系统在真空中的基本方程的积分形式是:V V sD dS dV Qρ⋅==⎰⎰和0lE dl ⋅=⎰。

4、静电系统在真空中的基本方程的微分形式是:VD ρ∇⋅=和0E ∇⨯=。

5、电荷之间的相互作用力是通过电场发生的,电流与电流之间的相互作用力是通过磁场发生的。

6、在两种媒质分界面的两侧,电场→E 的切向分量E 1t -E 2t =0;而磁场→B 的法向分量 B 1n -B 2n =0。

7、在介电常数为的均匀各向同性介质中,电位函数为2211522x y zϕ=+-,则电场强度E =5x y z xe ye e --+。

8、静电平衡状态下,导体内部电场强度、磁场强度等于零,导体概况为等位面;在导体概况只有电场的法向分量。

9、电荷只能在分子或原子范围内作微小位移的物质称为( D )。

A.导体B.固体 C.液体D.电介质10、相同的场源条件下,真空中的电场强度是电介质中的( C )倍。

A.ε0εrB. 1/εεrC. εrD.1/εr11、导体电容的大小( C )。

电磁场与电磁波第三版答案第四章

电磁场与电磁波第三版答案第四章

《电磁场与电磁波》——习题详解第四章 静态场的解4-1 一个点电荷 Q 与无穷大导体平面相距为 d ,如果把它移动到无穷远处,需要 作多少功? 解: 用镜像法, 相当于两个电荷关于 y = 0 平面向相反方向离开,当 Q 移到 y 处时,受到 的电场力为:y Qdy y xdF= Q2 4πε 0 (2 y ) 2-Q 此时移动 d y 需对电荷做功图 4-1dw = Fd y =移到无穷远处做的总功为:Q2 16πε 0 y 2dyW = dw = Fd y =d∫∫∞∫∞ dQ216πε 0 y 2dy=Q2 16πε 0 d当用外力将电荷 Q 移动到无穷远处时,同时也要将镜像电荷移动到无穷远处,所以在整个过程中,外力作的总功为Q2 8πε 0 d也可以用静电能计算,在移动以前,系统的静电能等于两个点电荷之间的相互 作用能:W=1 1 1 1 Q Q Q2 + (Q) q11 + q2 2 = Q = 2 2 2 4π ε 0 (2d ) 2 4π ε 0 (2d ) 8π ε 0 d移动点电荷到无穷远以后,系统的静电能为零.因此,在这个过程中,外力作 功等于系统静电能的增量,即外力作功为Q2 8πε 0 d.43习题四4-2 一个点电荷放在直角导体内部(如图 4-2),求出所有镜像电荷的位置和大小y-q r2 d r3O r1 r4rq ax -qq图 4-2 解:假设如图所示三个镜像电荷,则空间电荷分布为φ (r ) =v1 1 1 1 ( + ) 4πε 0 r1 r2 r3 r4q经检验:在 y = 0 平面上 φ ( r ) = 0 ,在 x = 0 平面上vφ (r ) = 0所以上述解为原问题的解.因此求得镜像电荷的位置和大小如图 4-2 所示,即vq 2 = q 位置 ( a, d ) , q3 = q 位置 ( a, d ) , q 4 = q 位置 (a, d )4-3 证明:一个点电荷 q 和一个带有电荷 Q ,半径为 R 的导体球之间的作用力为Rq Q + D q DRq F= 2 4π ε 0 D 2 (D R 2 ) 2 其中 D 是 q 到球心的距离 ( D > R ) . 证明:使用镜像法分析.由于导体球不接地,本身又带电 Q ,必须在导体球内 加上两个镜像电荷来等效导体球对外的影响.在距离球心 b = R / D 处,镜像电荷2为 q′ = Rq / D ;在球心处,镜像电荷为 q2 = Q q′ = Q + Rq / D .点电荷 q 受导 体球的作用力就等于球内两个镜像电荷对 q 的作用力,即44《电磁场与电磁波》——习题详解F= q2 q′ D 2 + ( D b) 2 4π ε 0 q Rq Rq Q + D q D = + R2 2 4π ε 0 D 2 2 (D ) D Rq Q + D DRq = 2 4π ε 0 D 2 (D R 2 ) 2 q4-4 两个点电荷 + Q 和 Q 位于一个半径为 a 的接地导体球的直径的延长线上, 分 别距离球心 D 和 D . (1) (2) 证明:镜像电荷构成一电偶极子,位于球心,偶极矩为 2a Q / D . 令 Q 和 D 分别趋于无穷,同时保持 Q / D 不变,计算球外的电场. 使用导体球面的镜像法和叠加原理分析.在球内加上两个镜像电荷:2 2 3 2解:(1)一个是 Q 在球面上的镜像电荷, 1 = aQ / D , q 距离球心 b1 = a / D ; 第二个是 Q 在球面上的镜像电荷, q2 = aQ / D ,距离球心 b2 = a / D .当距离较大时,镜像2电荷间的距离很小,等效为一个电偶极子,电偶极矩为p = q 1 (b1 b2 ) =(2) 2a 3Q D2球外任意点的电场等于四个点电荷产生的电场的叠加.设 + Q 和 Q 位于2坐标 z 轴上,当 Q 和 D 分别趋于无穷,同时保持 Q / D 不变时,由 + Q 和 Q 在空 间产生的电场相当于均匀平板电容器的电场,是一个均匀场,均匀场的大小为v 2Q / 4π ε 0 D 2 ,方向在 ez ,由镜像电荷产生的电场可以由电偶极子的公式计算.v E=p 4π ε 0 r3v v (er 2 cos θ + eθ sin θ )45习题四=4-5 2 a 3Q v v (er 2 cos θ + eθ sin θ ) 3 2 4π ε 0 r D接地无限大导体平板上有一个半径为 a 的半球形突起,在点 (0,0, d ) 处有一个 点电荷 q (如图 4-3),求导体上方的电z dq a bq2 -bq3-dq1 图 4-3位. 解:计算导体上方的电位时,要保持导 体平板部分和半球部分的电位都为零.先找平 面导体的镜像电荷 q1 = q ,位于 (0,0, d ) 处.再找球面镜像电荷 q2 = aq / d ,位于(0,0, b) 处,b = a 2 / d .当叠加这两个镜像电荷和原电荷共同产生的电位时,在导体平面上位于 (0,0,b) 处. 和球面上都不为零, 应当在球内再加上一个镜像电荷 q3 = aq / d , 这时,三个镜像电荷和原电荷共同产生的电位在导体平面和球面上都为零,而且三 个镜像电荷在要计算的区域以外. 导体上方的电位为四个点电荷电位的叠加,即=其中 q q1 q2 q3 + + + 4π ε 0 R r1 r2 r3 1R = [ x 2 + y 2 + ( z d ) 2 ]1 2 r1 = [ x 2 + y 2 + ( z + d ) 2 ]1 2 r2 = [ x 2 + y 2 + ( z b) 2 ]1 2 r3 = [ x 2 + y 2 + ( z + b) 2 ]1 24-6 求截面为矩形的无限长区域( 0 < x < a , 0 < y < b )的电位,其四壁的电位 为 ( x,0) = ( x, b) = 0 ,46《电磁场与电磁波》——习题详解 (0, y ) = 0U 0 y b , ( a, y ) = y U 0 (1 ), b 0 < y ≤ b/ 2 b/ 2 < y < b解:法一:由边界条件 ( x,0) = ( x, b) = 0 知,方程的基本解在 y 方向应该 为周期函数,且仅仅取正弦函数,即Yn = sin k n y(k n =nπ ) b在 x 方向,考虑到是有限区域,选取双曲正弦函数和双曲余弦函数,使用边界 (0, y ) = 0 条件,得出仅仅选取双曲正弦函数,即X n = sh nπ x b将基本解进行线性组合,得 = ∑ Cn shn =1∞nπ x nπ y sin b b待定常数由 x = a 处的边界条件确定,即 (a, y ) = ∑ Cn shn =1∞nπ a nπ y sin b b使用正弦函数的正交归一性质,有b nπ a C n sh = 2 b∫ (a, y) sin0bnπ y dy bb/2∫b/2 02 U0 y U b nπ y by nπ y nπ y sin d y = 0 cos sin b b b nπ b nπ b 0=U0 b b nπ b2 nπ cos sin 2 2nπ 2 nπ 2∫y nπ y U 0 1 sin dy b b/2 bb47习题四b 2 b nπ y U b nπ y by nπ y 0 = U 0 cos cos sin nπ b b / 2 b nπ b nπ b bb/2b nπ U 0 b nπ = U 0 sin + cos nπ cos 2 b nπ 2 nπ +化简以后得2U 0 b2 U b b nπ cos nπ 0 cos 2 b nπ b nπ 2b nπ a = C n sh b 2∫ (a, y) sin0bnπ y b nπ d y = 2U 0 2 2 sin b 2 nπ求出系数,代入电位表达式,得nπ 4U 2 sin nπ y sh nπ x = ∑ 2 02 nπ a b b n =1 n π sh b 4-7 一个截面如图 4-4 所示的长槽,向 y 方向无限延伸,两侧的电位是零,槽内∞siny → ∞ , → 0 ,底部的电位为 ( x,0) = U 0求槽内的电位. 解:法一:令 ( x, y ) = X ( x)Y ( y ) = 0 , 因边界条件y =0 =0 = U0 (0, y ) = (a, y ) = 0a图 4-4x所以 X(x) = Acos K x x + B sin K x xQ X ( x) = X (a) = 0求得A = 0 , Kx =nπ a( n = 1,2,3L )X ( x) = Bn sinnπ x ( n = 1,2,3L ) a48《电磁场与电磁波》——习题详解由 Kx + Ky = 0 得 所以 Y ( y ) = C n enπ y a22K y = K x K y = ± j22nπ a( n = 1,2,3L )+ Dn e nπ y a nyπ a nyπ a ( x, y ) =∑n =1 ∞∞(C n e+ Dn e )Bn sinnπ x a=∑n =1 ′ (C n enyπ a′ + Dn e nyπ a) sinnπ x a′ 由边界条件 ( x,+∞) = 0 可得 C n = 0所以 ( x, y ) =∑n =1∞′ Dn enπ y asinnπ x a再由边界条件 ( x,0) = U 0 代入可得∑n =1∞′ Dn e nπ 0 asinnπ x= a∑ D′ sinn n =1∞nπ x = U0 a再两边同乘以 sinmπ x ,并从 0 到 a 积分得 a 4U 0 2U 0 ′ Dn = (1 cos mπ ) = mπ mπ 0 所以槽内电位为∞m = 1,3,5L m = 2,4,6L ( x, y ) =4U 0 myπ mπ e a sin x mπ a m =1, 3, 5....∑=∑n =1∞( 2 n 1) yπ 4U 0 (2n 1)π a x e sin a (2n 1)π法二:由于在 x = 0 和 x = a 两个边界的电位为零,故在 x 方向选取周期解, 且仅仅取正弦函数,即X n = sin k n xnπ kn = a 49习题四在 y 方向,区域包含无穷远处,故选取指数函数,在 y → ∞ 时,电位趋于零,所以 选取Yn = e kn y由基本解的叠加构成电位的表示式为nπ x nπa y e = C n sin a n =1∑∞待定系数由 y = 0 的边界条件确定.在电位表示式中,令 y = 0 ,得U 0 = ∑ Cn sinn =1∞nπ x aCna = 2∫a0U 0 sinaU 0 nπ x dx = (1 cos nπ ) nπ a当 n 为奇数时, Cn =4U 0 ,当 n 为偶数时, Cn = 0 .最后,电位的解为 nπnπ y a=4-84U nπ x ∑,5 nπ0 sin a e n =1, 3∞若上题的底部的电位为 ( x,0) = U 0 sin重新求槽内的电位3π x a解:同上题,在 x 方向选取正弦函数,即 X n = sin k n x , k n = 向选取 Yn = e kn y nπ ,在 y 方 a .由基本解的叠加构成电位的表示式为 = ∑ Cn sinn =1∞nπ x e anπ y a将 y = 0 的电位代入,得 U 0 sinnπ x 3π x ∞ = ∑ Cn sin a a n =1其余系数 Cn = 0 , 应用正弦级数展开的惟一性, 可以得到 n = 3 时,C3 = U 0 ,50《电磁场与电磁波》——习题详解所以 = U 0 sin4-93π x e a3π y a一个矩形导体槽由两部分构成, 如图 4-5 所示, 两个导体板的电位分别是 U 0 和 零,求槽内的电位. 解: 将原问题的电位看成是两个电位的叠加. 一个电位与平行板电容器的电位相同(上板电位为 U 0 ,下板电位为零 ),另一个电位为 U ,即=U0 y +U a y = 0 ,U = 0 y = a ,U = 0 a a 2y其中,U 满足拉普拉斯方程,其边界条件为 = U0 =0x图 4-5x = 0 时, U0 U 0 a y, U0 y= U = (0, y ) U a 0 y, a a < y<a 2 a 0< y< 2x → ∞ 时,电位 U 应该趋于零. U 的形式解为 nπ y e U = ∑ Cn sin a n =1待定系数用 x = 0 的条件确定.∞ ∞ nπ x aU (0, y ) = ∑ Cn sinn =1nπ y anπ y dy aa/2a C = 2 n∫a 0U (0, y ) sin∫a/2 02 U0 y U 0 a nπ y nπ y a nπ y sin dy = y cos sin a a a nπ a nπ a 051习题四U = 0 a a 2 nπ a 2 nπ cos + sin 2 2nπ 2 nπ a∫y nπ y a nπ y U 0 1 sin d y = U 0 cos a a/2 nπ a aaa/2 aU 0 a a 2 nπ y ay nπ y cos sin a nπ a nπ nπ U0 a sin + 2 a nπ 2a/2= U 0a nπnπ cos nπ cos 2 +化简后,得到U a a U0 a2 nπ cos nπ 0 cos 2 a nπ 2 a nπ U a nπ y nπ d y = 0 cos a nπ 2a C = 2 n∫a0U (0, y ) sin只有偶数项系数不为零.将系数求出,代入电位的表达式,得=4-10∞ U0 y 2U 0 nπ nπ y + ∑ cos sin e a a 2 n = 2 , 4 ,L nπnπ x a将一个半径为 a 的无限长导体管平分成两半,两部分之间互相绝缘,上半(0 < φ < π ) 接电压 U 0 ,下半 (π < φ < 2π ) 电位为零,如图 4-6,求管内的电位. 解:圆柱坐标的通解为 (r , φ ) = ( A0φ + B0 )(C0 ln r + D0 ) + ∑ r n ( An cos nφ + Bn sin nφ )n =1∞+ ∑ r n (Cn cos nφ + Dn sin nφ )n =1∞由于柱内电位在 r = 0 点为有限值,通解中不能有 ln r 和 rn项,即有52《电磁场与电磁波》——习题详解Cn = 0 , Dn = 0 , C0 = 0 (n = 1,2, L)柱内电位是角度的周期函数, A0 = 0 .因此,该题的通 解取为 r = U0 φx (r , φ ) = B0 D0 + ∑ r ( An cos nφ + Bn sin nφ )n n =1∞ =0图 4-6各项系数用 r = a 处的边界条件来定. (a, φ ) = B0 D0 + ∑ a n ( An cos nφ + Bn sin nφ ) = n =1∞ U0, 0 < φ < π 0, π < φ < 2πB 0 D0 =a n An =U 1 2π (a, φ ) d φ = 0 2π 0 2∫1π1∫ ∫0 (a, φ ) cos nφ d φ = 02π2πa n Bn =柱内的电位为π0 (a, φ ) sin nφ d φ =U0 (1 cos nπ ) nπ2U U (r , φ ) = 0 + 0 2 π4-111r ∑5L n a sin nφ n =1, 3,∞n半径为无穷长的圆柱面上,有密度为 ρ S = ρ S 0 cos φ 的面电荷,求圆柱面内, 外的电位. 解:由于面电荷是余弦分布,所以柱内,外的电位也是角度的偶函数.柱外的电位不应有 r 项,柱内电位不应有 r 是角度的周期函数.故柱内电位选为nn项.柱内,外的电位也不应有对数项,且1 = A0 + ∑ r n An cos nφn =1∞柱外电位选为 2 = C0 + ∑ r nCn cos nφn =1∞53习题四假定无穷远处的电位为零,定出系数 C0 = 0 . 在界面 r = a 上, 1 = 2 , ε0∞ 2 + ε0 1 = ρ S 0 cos φ r r∞即A0 + ∑ a n An cos nφ = ∑ a nCn cos nφn =1 n =1 ε0 ∑ na n 1Cn cos nφ + ε0 ∑ na n 1 An cos nφ = ρ S 0 cos φn =1 n =1∞∞解之得A0 = 0 , A1 =ρS 0 a2 ρS 0 , C1 = 2ε 2ε 0(n > 1)An = 0 , Cn = 0最后的电位为 ρS0 2ε r cos φ , = 2 0 a ρ S 0 cos φ , 2ε 0 r 3-12r<a r>a将一个半径为 a 的导体球置于均匀电场 E0 中,求球外的电位,电场. 解:采用球坐标系求解,设均匀电场沿正 z 方向,并设原点为电位零点(如图v4-7) . 因 球 面 是 等 位 面 , 所 以 在 r = a 处 , = 0 ; 在 r → ∞ 处 , 电 位 应 是 = E0 r cos θ ,球坐标中电位通解具有如下形式: (r ,θ ) = ∑ ( An r n + Bn r n 1 ) Pn (cos θ )n =0∞用无穷远处的边界条件 r → ∞ 及 = E0 r cos θ ,得到 A1 = E0 ,其余An = 0 .再使用球面上 ( r = a ) 的边界条件54《电磁场与电磁波》——习题详解∞ (a,θ ) = E0 a cos θ + ∑ Bn a n 1 Pn (cos θ ) = 0n =0上式可以改写为E0 a cos θ = ∑ Bn a n 1 Pn (cos θ )n =0∞因为勒让德多项式是完备的,即将任意的函数展开成勒让德多项式的系数是 惟 一 的 , 比 较 上 式 左 右 两 边 , 并 注 意 P (cos θ ) = cos θ , 得 E0 a = B1a 12,即B1 = E0 a 3 ,其余的 Bn = 0 .故导体球外电位为 = 1 电场强度为a3 E0 r cos θ r3 rE0θz图 4-7Er = 2a 3 = E0 1 + 3 cos θ r r a = E0 1 3 sin θ r rθ 3Eθ = 4-13将半径为 a , 介电常数为 ε 的无限长介质圆柱放置于均匀电场 E0 中, E0 沿 设vvx 方向,柱的轴沿 z 轴,柱外为空气,如图 4-8,求任意点的电位,电场.解: 选取原点为电位参考点, 1 表示柱内电位, 2 表示柱外电位. r → ∞ 用 在 处,电位 2 = E0 r cos φ因几何结构和场分布关于 y = 0 平面对称, 故电位表 示式中不应有 φ 的正弦项.令rE0φε ε0图 4-8x1 = A0 + ∑ ( An r n + Bn r n ) cos nφn =1∞55习题四∞ 2 = C0 + ∑ (Cn r n + Dn r n ) cos nφn =1因在原点处电位为零,定出 A0 = 0 , Bn = 0 .用无穷远处边界条件 r → ∞ 及 2 = E0 r cos φ ,定出 C1 = E0 ,其余 Cn = 0 .这样,柱内,外电位简化为 1 = ∑ An r n cos nφn =1∞ 2 = C1r cos φ + ∑ Dn r n cos nφn =1∞再用介质柱和空气界面 ( r = a ) 的边界条件 1 = 2 及 ε 1 = ε 0 2 ,得 r r∞ ∞ n n ∑ An a cos nφ = E0 a cos φ + ∑ Dn a cos nφ n =1 n =1 ∞ ∞ ∑ εnAn a n 1 cos nφ = ε 0 E0 cos φ ∑ ε 0 nDn a n 1 cos nφ n =1 n =1 比较左右 n = 1 的系数,得A1 解之得D1 D1 = E0 , ε A1 + ε 0 2 = ε 0 E0 2 a aA1 = 2ε 0 ε ε0 E0 , D1 = E0 a 2 ε + ε0 ε + ε0比较系数方程左右 n > 1 的各项,得An Dn D = 0 , ε An + ε 0 2n = 0 2n a a n由此解出 An = Dn = 0 .最终得到圆柱内,外的电位分别是1 = E02ε 0 r cos φ , ε + ε0ε ε0 a2 2 = E0 r cos φ + E0 cos φ ε + ε0 r56《电磁场与电磁波》——习题详解电场强度分别为v v 2ε 0 v 2ε 0 E1 = 1 = er E0 cos φ eφ E0 sin φ ε + ε0 ε + ε0v v ε ε 0 a2 v ε ε 0 a2 1 + E0 cos φ eφ 1 E2 = 2 = er ε + ε r 2 E0 sin φ ε + ε0 r2 0 4-14 在均匀电场中,设置一个半径为 a 的介质球,若电场的方向沿 z 轴,求介质 球内,外的电位,电场(介质球的介电常数为 ε ,球外为空气). 解:设球内,外电位解的形式分别为1 = ∑ ( An r n + Bn r n 1 ) Pn (cos nθ ) ,n =0 ∞∞ 2 = ∑ (Cn r n + Dn r n 1 ) Pn (cos nθ )n =0在 选取球心处为电位的参考点, 则球内电位的系数中 A0 = 0 ,Bn = 0 . r → ∞ 处,电位 2 = E0 r cos θ ,则球外电位系数 Cn 中,仅仅 C1 不为零,即 C1 = E0 , 其余为零.因此,球内,外解的形式分别简化为1 = ∑ An r n Pn (cos nθ ) ,n =0∞ 2 = E0 r cos θ + ∑ Dn r n 1 Pn (cos nθ )n =0∞再用介质球面 ( r = a ) 的边界条件 1 = 2 及 ε1 = ε 0 2 ,得 r r∞ ∞ n An a Pn (cos nθ ) = E 0 a cos θ + Dn a n 1 Pn (cos nθ ) n =1 n =1 ∞ ∞ εnA a n 1 P (cos nθ ) = ε E cos θ ε 0 (n + 1) Dn a n 2 Pn (cos nθ ) n n 0 0 n =1 n =1 ∑ ∑∑∑比较上式的系数,可以知道,除了 n = 1 以外,系数 An , Dn 均为零,且A1a = E0 a + D1a 2 , ε A1 = ε 0 E0 2ε 0 D1a 357习题四由此,解出系数A1 = 3ε 0 ε ε0 E0 , D1 = E0 a 3 ε + 2ε 0 ε + 2ε 0 3ε 0 r cos θ , ε + 2ε 0最后得到电位,电场1 = E0 2 = E0 r cos θ + E0v v E1 = 1 = erε ε 0 a3 cos θ ε + 2ε 0 r 23ε 0 v 3ε 0 E0 cos θ eθ E0 sin θ ε + 2ε 0 ε + 2ε 0v ε ε 0 a3 ε ε 0 a3 v v 1 + 2 E0 cos θ eθ 1 E2 = 2 = er ε + 2ε r 3 E0 sin θ ε + 2ε 0 r 3 0 4-15 已知球面 ( r = a ) 上的电位为 = U 0 cos θ ,求球外的电位. 解:设球外电位解的形式为 = ∑ ( An r n + Bn r n 1 ) Pn (cos nθ )n =0∞在无穷远处,应该满足自然边界条件,即电位趋于零.这样确定系数 An = 0 ,球外 电位的形式解简化为 = ∑ Bn r n 1 Pn (cos nθ )n =0∞使用球面 ( r = a ) 的边界条件,有U 0 cos θ = ∑ Bn a n 1 Pn (cos nθ )n =0∞由于勒让德多项式 Pn (cos nθ ) 是线性无关的,考虑到 P (cos θ ) = cos θ ,比较上式 1 左右的系数,得到 B1 = U 0 a , Bn = 02(n = 0,2,3,L) .所以,球外的电位分布为58《电磁场与电磁波》——习题详解 = U04-16a2 cos θ r2求无限长矩形区域 (0 < x < a,0 < y < b) 第一类边值问题的格林函数(即矩形 槽的四周电位为零,槽内有一与槽平行的单位线源,求槽内电位,如图 4-9). 解:这个问题的格林函数满足的方程为 2G 2G 1 + 2 = δ( x x′) δ( y y′) 2 x y ε0格林函数的边界条件是,在矩形区域的四周为零,即 x = 0 或 x = a , G = 0 ,y = 0 或 b = 0 , G = 0 .用分离变量法求这个问题的格林函数.考虑到格林函数在x = 0 , x = a 时的边界条件,将格林函数表示为y b(x',y')G = ∑Ψ n ( y ) sinn =1∞nπ x a将其代入格林函数方程,得a x 2 nπ 2 nπ x 1 = δ( x x′) δ( y y′) Ψ n ( y ) sin 图 4-9 ∑ y 2 a ε0 a n =1 nπ x 上式左右乘以 sin , 并在 0 < x < a 区间积分, 利用正弦函数的正交性和 δ 函数 a∞的积分性质,得函数Ψ n ( y ) 满足的微分方程为2 d2 nπ x ′ 2 nπ sin δ( y y ′) Ψn ( y ) = 2 a ε 0a dy a 在确定函数Ψ n ( y ) 时,将原来的区域分为两个区域,并注意到边界条件,设nπ An sh a (b y ), Ψ n ( y) = nπ Bn sh y, a 在 y = y′ 处,电位连续,即y > y′ y < y′An shnπ nπ (b y′) = Bn sh y′ a a59习题四对于函数Ψ n ( y ) 满足的微分方程,在点源附近积分,得∫y′+ 0 y′0d2 nπ Ψn ( y ) d y 2 dy a 2∫y′+ 0 y′0Ψ0 ( y ) d y = nπ x 2 sin ε 0a a因为电位连续,故上式左边第二项的积分为零,从而有d d nπ x′ 2 sin Ψ n ( y) Ψ n ( y) = dy dy a ε 0a y = y′ y = y′ + 代入函数Ψ n ( y ) 的形式,得nπ nπ nπ nπ x′ nπ 2 (b y′) sin An ch Bn ch y′ = a a a a ε 0a a将上式与 An shnπ nπ (b y′) = Bn sh y′ 相互联立求解,得 a a nπ 2 1 An = sh y′ , nπ ε 0 sh nπ b a a nπ 2 1 Bn = sh (b y′) nπ ε 0 sh nπ b a asin最后得到矩形区域的格林函数为nπ x ′ n π x nπ nπ sin y ≤ y′ sh a (b y′) sh a y, 2 a a = G= nπ ∑ nπ nπ b ε 0π n =1 sh y′ sh (b y ), y ≥ y′ n sh a a a 4-17 推导无限长圆柱区域内(半径为 a )第一类边值问题的格林函数. 解:使用镜像法及其格林函数的定义计算.在半径为 a 的导体圆柱内部离轴 线 r ′ 处,放置一个线密度为 1 单位,与导体圆柱平行的无穷长线电荷,并且维持导∞体柱面的电位为零,求出柱内的电位,这个电位就是柱内的格林函数.当原电荷位 于 r 处,需要在 r ′ 的镜像位置 r ′′ 处,加一个线密度为 1 的线电荷.此时,圆柱内 的电位是v v G (r , r ′) =1 2π εln1 1 1 ln +C R1 2π ε R2R1 和 R2 分别是从 r ′ 和 r ′′ 到 r 的距离(如图 4-10),C 是常数.由柱面上的电位为零,60《电磁场与电磁波》——习题详解可以定出这个常数的值.最后得到柱内的格林函数为v v G (r , r ′) =1 2π εlnR2 r ′ R1 a yrR1 r'R2 r'' x =0 = U0图 4-10 4-18d图 4-11x两个无限大导体平板间距离为 d ,其间有体密度 ρ =ρ 0 x / d 的电荷,极板的电位如图 4-11 所求,用格林函数法求极板之间的电位. 解:先用直接积分法求解.电位仅仅是 x 的函数,故其满足如下方程:ρ x d2 ρ = = 0 2 dx ε0 ε 0d对以上方程积分得ρ x2 ρ x3 d = C1 0 , = C2 + C1 x 0 dx 2ε 0 d 6ε 0 d由 x = 0 及 = 0 , 可 定 出 系 数 C2 = 0 ; 由 x = d 及 = U 0 , 可 定 出 系 数C1 =U 0 ρ0d + ,从而,得到电容器内的电位为 d 6ε 0 =ρ0 x3 6ε 0 dU ρ d + 0 + 0 x d 6ε 0 再用格林函数法求解.这个问题的格林函数为 d x′ x < x′ ε d x, 0 G ( x, x′) = x′ (d x), x > x′ ε 0d 为了计算方便,将这个问题分解为两个:一个是平板电容器内有电荷,而两极板的61习题四电位为零,即奇次边界条件,记电位 1 ;另一个是无电荷分布,极板的电位维持原 来的电位,记电位 2 .用格林函数法计算奇次边界条件时的电位 1 :1 = ρ ( x ′)G ( x, x ′) d x ′0∫d= ρ ( x ′)G ( x, x ′) d x ′ + ρ ( x ′)G ( x, x ′) d x ′0 x∫x∫d=∫x 0ρ 0 x ′ x ′(d x) d x′ + d ε 0d∫d xρ 0 x ′ (d x ′) x d x′ d ε 0dρ 0 (d x) x 3 ρ 0 x 1 2 2 1 (d x )d + (d 3 x 3 ) = + 2 2 3 ε 0d 2 3 ε 0d =ρ0 3 ρ0d x + x 6ε 0 d 2 6ε 0至于电位 2 ,容易得出 2 = (U 0 / d ) x .故所求电位为 = 1 + 2 = 4-192ρ0 2 U 0 ρ0d x + d + 6ε x 6ε 0 d 0 分析复变函数 w = z 能够表示的静电场. 解: w = u + j v = z = ( x + j y ) = x y + j 2 xy2 2 2 2u = x 2 y 2 , v = 2 xy实部的等值线是双曲线 x y = C1 ;虚部的等值线也是双曲线,其方程为2 22 xy = C2 .因此,这个函数能够表示极板形状为双曲线的导体附近的静电场.如果用虚部表示电位函数,在 x = 0 或 y = 0 处,电位为零,可以表示接地的直角导体拐 角附近的静电场. 4-20 分析复变函数 w = arccos z 能够表示哪些情形的静电场.62《电磁场与电磁波》——习题详解解: z = x + j y = cos(u + j v) = cos u ch v j sin u sh vx = cos u ch v , y = sin u sh vx2 y2 x2 y2 + 2 = 1, 2 =1 ch 2 v sh v cos 2 u sin u可见,虚部的等值线是一簇椭圆,实部的等值线是一簇双曲线.当用虚部表示 电位时,能够表示两个共焦点的椭圆柱体之间的场;当用实部表示电位时,能够表 示两个共焦点的双曲线柱体之间的场. 4-21 用有限差分法求图 4-12 所示区域中各个节点的电位. 解:1 4 1 2 = (1 + 4 + 100) 4 1 3 = (1 + 4 ) 4 1 4 = ( 2 + 3 ) 41 = ( 2 + 3 + 100)解这一方程组,得到1 = 2 = 37.5 V , 3 = 4 = 12.5 V100V 1 0V 3 4 2 0V0V 图 4-1263。

电磁场与电磁波(第四版)课后答案 第四章习题

电磁场与电磁波(第四版)课后答案  第四章习题

∫Байду номын сангаас
2π / ω
0
r 2650 cos (ωt − kz )dt = ez 1325 W / m 2
2
(3)任一时刻流入长为1m横截面积为0.25平方米的 平行六面体中的净功率。 r r r r r r P = − ∫ S en dS = − S ( −ez ) |z =0 + S ez |z =1 × 0.25
试求(1)瞬时坡印廷矢量 (2)平均坡印廷矢量 (3)任一时刻流入长为1m横截面积为0.25平方米的 平行六面体中的净功率。 解:(1)瞬时坡印廷矢量 r r r r S = E × H = ez 2650 cos 2 (ωt − kz ) W / m 2 (2)平均坡印廷矢量
r r ω S av = ez 2π
式中
k0 =

µ0
A/ m
λ0
试求(1)
c λ0 λ0 各点处的瞬时坡印廷矢量 z = 0, , 8 4
=
ω
C为真空的光速,λ0是波长。
(2)以上各点处的平均坡印廷矢量 解:(1)E和H的瞬时矢量为
r r r ex jE0 sin ( k0 z ) e jωt = −ex E0 sin ( k0 z ) sin (ωt ) V / m E ( z , t ) = Re r r ε0 r ε0 jωt H ( z , t ) = Re e y E0 cos ( k0 z ) e = ey E0 cos ( k0 z ) cos (ωt ) µ0 µ0 A/ m
s
= 2650 × 0.25 cos 2 (ωt ) − cos 2 (ωt − 0.42 ) = −270.2sin ( 2ωt − 0.42 )W

电磁场与电磁波课后习题答案第四章

电磁场与电磁波课后习题答案第四章

4.3若半径为a 、电流为I 的无线长圆柱导体置于空气中,已知导体的磁导率为0μ,求导体内、外的磁场强度H 和磁通密度B 。

解:(1)导体内:0≤ρ<a由安培环路定理,⎰•ll d H='I'I =22.I a πρπ=22I a ρ 所以,21.22I H a ρπρ=,122I H a ρπ=,122I H e a ϕρπ→→=,011022I B H e a ϕμρμπ→→→==(2)导体外:a ≤ρ<+∞⎰•l l d H =I, 所以2.2H I πρ=,22I H e ϕπρ→→=,022I B e ϕμπρ→→=4.5 在下面的矢量中,哪些可能是磁通密度B ?如果是,与它相应的电流密度J 为多少? (1)F a ρρ→→=解:1..()F F ρρρρ→∂∇=∂=1.2ρρ=2≠0所以F →不是磁通密度 (2)F →=-x a →y+y a →x 解:∇.F →=y x ∂-∂+xy ∂∂=0 所以F 是磁通密度 B →∇⨯=0μJ →=|x y ze e e x y zy x 0→→→∂∂∂∂∂∂-=2z e → 所以 J →=02μz e →(3)F →=x a →x —y a →y∇.F →=0F →是磁通密度B →∇⨯=0μJ →=|x y ze e e x y zx y→→→∂∂∂∂∂∂-=0所以J →=0 (4)F →=a ϕ→-r∇.F →=0所以F →是磁通密度B →∇⨯=r 2a a a r sin r sin rr 20r sin 0ϕθθθθϕθ→→→∂∂∂∂∂∂-=r a →-θcot +2a θ→=0μJ →所以J →=0cot θμ-r a →+02μa θ→ 4.6已知某电流在空间产生的磁矢位是A →=x a →2x y+y a →x 2y +z a →(2y —2z ) 求磁感应强度B →解:B →=A →∇⨯=|x y z2e e e x y z222x y xy y z →→→∂∂∂∂∂∂-=2y x e →+z e →(2y —2z )4.13已知钢在某种磁饱和情况下的磁导率为1μ=20000μ,当钢中的磁通密度为B 1=0.5×102T ,1θ= 75°时,试求此时的磁力线由钢进入自由空间一侧后,磁通密度2B 的大小与2B 与法线的夹角2θ。

电磁场与电磁波课后习题及答案四章习题解答

电磁场与电磁波课后习题及答案四章习题解答

四章习题解答4.1如题4.1图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的 盖板,槽的电位为零,上边盖板的电位为 U o ,求槽内的电位函数。

解根据题意,电位 (0, y) (x,0) (x,b)电位y b ( x )。

上板和薄片保持电位 U °,下板保持零电位,求板间电位的解。

设在薄片平面上,从y 0到y d ,电位线性变化,(0, y) U 0y d 。

解 应用叠加原理,设板间的电位为(x,y )1(x, y) 2(x, y)其中,1 (x, y)为不存在薄片的平行无限大导体平面间(电压为(x, y) n 1aa两边同乘以 题4.1图由条件③,有sin(nA nU oAsinh(— b)sin( n x)aa2U on sinh( n ba)(1 x―),并从 a cos n 0到a 对x 积分,得到an xsin( -- )dxasinh( n b a) 0 a4U 02U o ) n sinh(n ,n b a)1,3,5,L2,4,6,L sin h(^^)s135,L nsinh(n b a) aa4.2两平行无限大导体平面,距离为b ,其间有故得到槽内的电位分布(x,y)型 n y a 极薄的导体片由y d 到 (x, y)满足的边界条件为 (a, y) 0 0U 。

(x, y)的通解应取为 ① ② ③ 根据条件①和②, ②2(x,y) 0 (x )U°)的电位,即1(x,y) U0yb ;2(x,y)是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为:①2(x,0) 2(x,b) 0根据条件①和②, 由条件③有 U o③ 2(0, y) (0,y) 可设 2(x, y )的通解为 2(x,y ) U o n y A sin(- 1 b U T yU E y(0 (d 1(o, y) Un y )e A V )eA n Sin( 1d) b) by(0 (dy d) y b)n y两边同乘以sin(- b 2U o d b o ),并从 o 到b 对y 积分,得到b )ysin( / 、U o 2bU o El L 厂求在上题的解中,除开 2W e 故得到 4.3 C f 厂定出边缘电容。

电磁场与电磁波(第四版)课后答案 第四章习题

电磁场与电磁波(第四版)课后答案  第四章习题
试计算通过以坐标原点为球心,r0为半径的球面s的总功率。
P a v sS a vd s 0 2 0 2 1 0 E r 0 2 s in 2• r 2 s indd E 9 0 0 2 W /m 2
A
9
A
2

•E•A t
2•A
t
2
令 •A0
代入1和2式,得 2A2AJ
t2
t
2
A
3
4.9在自由空间中的电磁场为
Ez,tex1000costkz V/m Hz,tey2.65costkz A/m
式中 k000.42 rad/m
试求(1)瞬时坡印廷矢量 (2)平均坡印廷矢量 (3)任一时刻流入长为1m横截面积为0.25平方米的 平行六面体中的净功率。
0 , 0 各点处的瞬时坡印廷矢量
84
(2)以上各点处的平均坡印廷矢量
解:(1)E和H的瞬时矢量为
E z,t R e e xjE 0sin k0zej t e xE 0sin k0 zsin t V /m
H z,t R eey
0E 0c o sk0 zej t ey
0
0 0E 0c o sk0 zc o s t
解:(1)瞬时坡印廷矢量
S E H e z 2 6 5 0 c o s 2 t k z W / m 2
(2)平均坡印廷矢量
S a v e z20 2 / 2 6 5 0 c o s 2 A t k z d t e z 1 3 2 5 W /m 2 4
(3)任一时刻流入长为1m横截面积为0.25平方米的 平行六面体中的净功率。
试计算通过以坐标原点为球心,
r0为半径的球面s的总功率。
解:将E和H写成复矢量形式

电磁场与电磁波课后习题答案全-杨儒贵

电磁场与电磁波课后习题答案全-杨儒贵

第一章矢量分析第一章 题 解1-1已知三个矢量分别为z y e e e A x 32-+=;z y e e e B x 23++=;z e e C x -=2。

试求①|| |,| |,|C B A ;②单位矢量c b a e e e , ,;③B A ⋅;④B A ⨯;⑤C B A ⨯⨯)(及B C A ⨯⨯)(;⑥B C A ⋅⨯)(及C B A ⋅⨯)(。

解 ① ()14321222222=-++=++=z y x A A A A14213222222=++=++=z y x B B B B()5102222222=-++=++=z y x C C C C② ()z y e e e A A A e x a 3214114-+===()z y e e e B B B e x b 2314114++===()z e e C C C e x c -===2515 ③ 1623-=-+=++=⋅z z y y x x B A B A B A B A④ z y zy z y xz y xz y B B B A A A e e e e e e e e e B A x x x5117213321--=-==⨯ ⑤ ()z y z y e e e e e e C B A x x22311125117+-=---=⨯⨯因z y zy zyxz y xC C C A A A e e e e e e e e e C A x x x x x45212321---=--==⨯则()z y z y e e e e e e B C A x x 1386213452+--=---=⨯⨯⑥ ()()()152131532=⨯+⨯-+⨯-=⋅⨯B C A()()()1915027=-⨯-++⨯=⋅⨯C B A 。

1-2 已知0=z 平面内的位置矢量A 与X 轴的夹角为α,位置矢量B 与X 轴的夹角为β,试证βαβαβαsin sin cos cos )cos(+=-证明 由于两矢量位于0=z 平面内,因此均为二维矢量,它们可以分别表示为ααsin cos A A y e e A x += ββsin cos B B y e e B x +=已知()βα-=⋅c o s B A B A ,求得()BA B A B A βαβαβαsin sin cos cos cos +=-即 βαβαβαsin sin cos cos )cos(+=-1-3 已知空间三角形的顶点坐标为)2 ,1,0(1-P ,)3 ,1 ,4(2-P 及)5 ,2 ,6(3P 。

工程电磁场与电磁波_丁君版_答案第四章习题答案

工程电磁场与电磁波_丁君版_答案第四章习题答案

第四章 习题4-1解:选柱坐标系,在所求无源区内电位函数满足: 2=∇φφ只和r 相关0=∂∂ϕφ0=∂∂zφ方程化为 0)(1=∂∂∂∂rrrr φ 21ln C r C +=φ 为常数21,C C由 006.0==φ时r 501.0-==φ时 r得 88.27588.9721=-=C C88.275ln 88.97+-=r φr a rE ˆ188.97=-∇=φ 4—2:解:图一根据边界条件:⎪⎩⎪⎨⎧====021R R R R U φφ0可得:⎪⎪⎩⎪⎪⎨⎧--=-=00U R R R B U R R R R A 1211221 ∴)120112021R R U R RR R U R R ---=φ(2) ()R R a R R R U R R a RE ˆ1ˆ212021⋅-=∂∂-=-∇=φφ (3) ()R R R aR R R U R ED ˆ12102001-⋅===εε内表 (1) 如图一,根据题意可知:电位函数φ满足拉普拉斯方程。

采用球坐标系:2=∇φ0=∂∂θφ0=∂∂ϕφR 相关 只于 φ,方程化为:0)(122=∂∂∂∂R RRR φφ积分得:B RA +⋅=1φSS d D s Sρ=⋅⎰内表SS D s ρ=内表 ∴)(12102R R R U R D s -==ερ内表4—3:解:选择直角坐标如图,由恒定电场的泊松方程可得:xy设两板间距离为d,代入边界条件⎪⎩⎪⎨⎧====00U dz z φφ⎪⎪⎩⎪⎪⎨⎧+=+==⇒ερερ22002012d d U d d U C C ∴)2()2(2002ερερφερερφddU z E zddU z +-=-∇=++-=4—4:解:选择柱坐标系,根据恒定电磁场的拉普拉斯方程,(1) 02=∇m φ,m φ只在ϕ方向上有变化,所以:BA rm m +==∂∂ϕφϕφ:,01222积分得由 0=ϕ时:0,0==B m 得φ ∴ϕφA m =lm m a dld H φφ-=-∇=l d H d m⋅-=φ⎰⎰-=⋅-=ππφ2020I l d H d mBA I m m+=-==ϕφφπϕ代入,20,0,2=∂∂=∂∂-=∇xyφφερφ方程可化为:,22ερφ-=∂∂z2122:C z C z ++-=ερφ积分得π2⋅=-A I π2I A -= ϕπφ2I m -=(2)ϕϕπϕφφφa rI a d d r a dl d H m l m m 21==-=-∇=可见,利用拉普拉斯方程与安培环路定理求出来的结果一样。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题解答如题图所示为一长方形截面的导体槽,槽可视为无限长,其上有一块与槽相绝缘的盖板,槽的电位为零,上边盖板的电位为U ,求槽内的电位函数。

解 根据题意,电位(,)x y ϕ满足的边界条件为 ① (0,)(,)0y a y ϕϕ== ② (,0)0x ϕ= ③0(,)x b U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sinh()sin()n n n y n xx y A a a ππϕ∞==∑由条件③,有01sinh()sin()n n n b n x U A a a ππ∞==∑两边同乘以sin()n x a π,并从0到a 对x 积分,得到002sin()d sinh()an U n xA x a n b a aππ==⎰02(1cos )sinh()U n n n b a πππ-=04,1,3,5,sinh()02,4,6,U n n n b a n ππ⎧=⎪⎨⎪=⎩,故得到槽内的电位分布1,3,5,41(,)sinh()sin()sinh()n U n y n xx y n n b a a aππϕππ==∑两平行无限大导体平面,距离为b ,其间有一极薄的导体片由d y =到b y =)(∞<<-∞x 。

上板和薄片保持电位0U ,下板保持零电位,求板间电位的解。

设在薄片平面上,从0=y 到0Uyx aabo题图d y =,电位线性变化,0(0,)y U y d ϕ=。

解 应用叠加原理,设板间的电位为(,)x y ϕ=12(,)(,)x y x y ϕϕ+其中,1(,)x y ϕ为不存在薄片的平行无限大导体平面间(电压为U )的电位,即10(,)x y U y b ϕ=;2(,)x y ϕ是两个电位为零的平行导体板间有导体薄片时的电位,其边界条件为: ①22(,0)(,)0x x b ϕϕ==②2(,)0()x y x ϕ=→∞③002100(0)(0,)(0,)(0,)()U U y y d by y y U U y y d y b d b ϕϕϕ⎧-≤≤⎪⎪=-=⎨⎪-≤≤⎪⎩根据条件①和②,可设2(,)x y ϕ的通解为 21(,)sin()en x bn n n y x y A b ππϕ∞-==∑由条件③有00100(0)sin()()n n U U y y d n y b A U U b y yd y b d b π∞=⎧-≤≤⎪⎪=⎨⎪-≤≤⎪⎩∑两边同乘以sin()n yb π,并从0到b 对y 积分,得到0002211(1)sin()d ()sin()d dbn d U U y n y n y A y y y b b b b d b b ππ=-+-=⎰⎰022sin()()U b n d n d b ππ故得到 (,)x y ϕ=0022121sin()sin()e n x bn U bU n d n y y b d n b b ππππ∞-=+∑求在上题的解中,除开0U y b一项外,其他所有项对电场总储能的贡献。

并按202U W C ef =定0Uy xo x ybo x yd x y 题 图出边缘电容。

解 在导体板(0=y )上,相应于2(,)x y ϕ的电荷面密度002200121sin()en x by n U n d yd n b πεϕπσεπ∞-==∂=-=-∂∑则导体板上(沿z 方向单位长)相应的总电荷2220d 2d q x x σσ∞∞-∞===⎰⎰001022sin()e d n x b n U n d x n d b πεππ∞∞-=-=∑⎰0022141sin()n U b n d d n b εππ∞=-∑相应的电场储能为20020221211sin()2e n bU n dW q U d n b εππ∞===-∑ 其边缘电容为022210241sin()e f n W b n dC U d n b εππ∞===∑ 如题图所示的导体槽,底面保持电位U ,其余两面电位为零,求槽内的电位的解。

解 根据题意,电位(,)x y ϕ满足的边界条件为 ① (0,)(,)0y a y ϕϕ==② (,)0()x y y ϕ→→∞ ③0(,0)x U ϕ=根据条件①和②,电位(,)x y ϕ的通解应取为1(,)sin()n n n y a n xx y A e a ππϕ∞-==∑由条件③,有01sin()n n n xU A a π∞==∑两边同乘以sin()n xa π,并从0到a 对x 积分,得到题图0Uyxa ao002sin()d an U n x A x a a π==⎰02(1cos )U n n ππ-=04,1,3,5,02,4,6,U n n n π⎧=⎪⎨⎪=⎩,故得到槽内的电位分布为1,3,5,41(,)sin()n y a n U n xx y e n a ππϕπ-==∑一长、宽、高分别为a 、b 、c 的长方体表面保持零电位,体积内填充密度为()sin()sin()xzy y b ac ππρ=-的电荷。

求体积内的电位ϕ。

解 在体积内,电位ϕ满足泊松方程22222201()sin()sin()x zy y b x y z a c ϕϕϕππε∂∂∂++=--∂∂∂ (1)长方体表面S 上,电位ϕ满足边界条件Sϕ=。

由此设电位ϕ的通解为1111(,,)sin()sin()sin()mnp m n p m x n y p zx y z A a b c πππϕε∞∞∞====∑∑∑代入泊松方程(1),可得222111[()()()]mnp m n p m n p A a b c πππ∞∞∞===++⨯∑∑∑sin()sin()sin()m x n y p z a b c πππ=()sin()sin()x z y y b a c ππ-由此可得mnp A = (1m ≠或1)p ≠222111[()()()]sin()n p n n y A a b c b ππππ∞=++=∑()y y b - (2) 由式(2),可得2221102[()()()]()sin()d bn n n yA y y b y a b c b b ππππ++=-=⎰34()(cos 1)b n b n ππ-=2381,3,5,()02,4,6,b n n n π⎧-=⎪⎨⎪=⎩故2532221,3,5,81(,,)sin()sin()sin()11[()()()]n b x n y zx y z n a b c n a b c πππϕπε∞==-++∑如题图所示的一对无限大接地平行导体板,板间有一与z 轴平行的线电荷lq ,其位置为),0(d 。

求板间的电位函数。

解 由于在(0,)d 处有一与z 轴平行的线电荷lq ,以0x =为界将场空间分割为0x >和0x <两个区域,则这两个区域中的电位1(,)x y ϕ和2(,)x y ϕ都满足拉普拉斯方程。

而在0x =的分界面上,可利用δ函数将线电荷lq 表示成电荷面密度0()()l y q y y σδ=-。

电位的边界条件为①11(,0)(,)0x x a ϕϕ==22(,0)(,)0x x a ϕϕ==②1(,)0x y ϕ→()x →∞2(,)0x y ϕ→()x →-∞③12(0,)(0,)y y ϕϕ=21()()lx q y d x xϕϕδε=∂∂-=--∂∂由条件①和②,可设电位函数的通解为11(,)sin()n n n x n y x y A e a ππϕ∞=-=∑ (0)x >21(,)sin()n n n x a n yx y B e a ππϕ∞==∑ (0)x <由条件③,有 xyoadl q题 图1sin()nn n y A a π∞==∑1sin()n n n yB a π∞=∑ (1)1sin()n n n n yA a a ππ∞=--∑1sin()nn n n yB a a ππ∞=∑ 0()l q y d δε=- (2)由式(1),可得n nA B = (3)将式(2)两边同乘以sin()m ya π,并从0到a 对y 积分,有n nA B +02()sin()d a l q n y y d y n a πδπε=-=⎰02sin()l q n d n a ππε (4) 由式(3)和(4)解得sin()l n n q n dA B n a ππε==故111(,)sin()sin()ln n x q n d n yx y e n a a πππϕπε∞=-=∑ (0)x >2101(,)sin()sin()ln n x a q n d n yx y e n a a πππϕπε∞==∑ (0)x < 如题图所示的矩形导体槽的电位为零,槽中有一与槽平行的线电荷lq 。

求槽内的电位函数。

解 由于在),(00y x 处有一与z 轴平行的线电荷lq ,以x x =为界将场空间分割为00x x <<和0x x a<<两个区域,则这两个区),(00y x 域中的电位1(,)x y ϕ和2(,)x y ϕ都满足拉普拉斯方程。

而在0x x =的分界面上,可利用δ函数将线电荷l q 表示成电荷面密度0()()l y q y y σδ=-,电位的边界条件为yxo a l qb题图① 1(0,)0y =ϕ,2(,)0a y ϕ=② 11(,0)(,)0x x b =ϕϕ=22(,0)(,)0x x b =ϕϕ= ③1020(,)(,)x y x y ϕϕ=2100()()lx x q y y x xϕϕδε=∂∂-=--∂∂由条件①和②,可设电位函数的通解为11(,)sin()sinh()n n n y n xx y A b b ππϕ∞==∑ )0(0x x << 2(,)x y ϕ=1sin()sinh[()]n n n y n B a x b b ππ∞=-∑ )(0a x x <<由条件③,有0011sin()sinh()sin()sinh[()]n n n n n x n y n y n A B a x b b b b ππππ∞∞===-∑∑ (1) 01sin()cosh()nn n x n n yA b b b πππ∞=-∑01sin()cosh[()]n n n n y n B a x b b b πππ∞=-∑ )(00y y q l -δε= (2)由式(1),可得00sinh()sinh[()]0n n n x n A B a x b b ππ--= (3)将式(2)两边同乘以sin()m yb π,并从0到b 对y 积分,有)](cosh[)cosh(00x a bn B b x n A n n -π+π0002()sin()d b l q n yy y y n bπδπε=-=⎰02sin()l q n y n b ππε (4)由式(3)和(4)解得00021sinh[()]sin()sinh()l n q n y n A a x n a b n b b ππππε=-00021sinh()sin()sinh()l n q n x n y B n a b n b b ππππε=故101021(,)sinh[()]sinh()ln q n x y a x n n a b b πϕπεπ∞==-∑ 0sin()sinh()sin()n y n x n yb b b πππ⋅ )0(0x x <<021021(,)sinh()sinh()ln q n x x y n n a b b πϕπεπ∞==∑ 0sin()sinh[()]sin()n y n n ya xb b b πππ⋅- )(0a x x << 若以y y =为界将场空间分割为0y y <<和0y y b<<两个区域,则可类似地得到101021(,)sinh[()]sinh()ln q n x y b y n n b a a πϕπεπ∞==-∑ 0sin()sinh()sin()n x n y n xa a a πππ⋅ 0(0)y y <<021021(,)sinh()sinh()ln q n y x y n n b a a πϕπεπ∞==∑ 0sin()sinh[()]sin()n x n n xb y a a a πππ⋅- 0()y y b <<如题图所示,在均匀电场00x E E e =中垂直于电场方向放置一根无限长导体圆柱,圆柱的半径为a 。

相关文档
最新文档