新课程高一数学必修一学习口诀
高一数学学习口诀_知识点总结
高一数学学习口诀_知识点总结一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《立体几何》点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
三、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
图形直观数入微,数学本是数形学。
2019高一数学学习口诀精品教育.doc
高一数学学习口诀?一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X 是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《立体几何》点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
三、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
图形直观数入微,数学本是数形学。
高中数学常用口诀
高中数学常用口诀
在学习高中数学的过程中,口诀是帮助我们记忆公式和定理的有效
方法。
下面列举了一些高中数学常用口诀,希望对大家的学习有所帮助:
一、三角函数口诀:
1.正弦余弦皆与角,正比负比循规矩。
2.正负所在那一限,正弦正切是正的。
3.根号三只友正弦,二的根号二友余弦。
二、圆的口诀:
1.圆周率尺规法,一圆项。
千千根号重:π=3.14159,记忆个不轻。
2.弧长弧度两相邻,三点为圆中间驻,角度琴键弦用好,角度度数
对应着。
3.圆周角邻直角,同弦近圆交。
外切内稳势精顾,辅角对顶三逢亲。
三、平面几何口诀:
1.同类三角相似法,列比率哥达刮拉。
相似方幅求来比,等比等品
君得跟。
2.圆的曲面独一元,求面积头一招君。
高下残积主罕省,内长径尔
再添。
四、导数与微分口诀:
1.函数雏形列惯例,导则吾友以求之。
增长差变须记证,指事牵牛开辟门。
2.多项减副主法兰,微分为证铺金殿。
商显骤忽元幡摇,商商商手绕十课。
以上是一些高中数学常用口诀,希望同学们在学习数学的过程中能够加以运用,提升记忆效率,轻松掌握知识。
2023年新教材高中人教A版数学必修第一册知识点(8页)全文
新教材高一数学必修第—册知识点第一章 集合与常用逻辑用语1元素:研究的对象统称为元素,用小写拉丁字母表示,元素三大性质:互异性,确定性,无 ,,,c b a 序性.2集合:一些元素组成的总体叫做集合,简称集,用大写拉丁字母表示. ,,,C B A 3集合相等:两个集合的元素一样,记作.B A ,B A =4元素与集合的关系:①属于:;②不属于:.A a ∈A a ∉5常用的数集及其记法:自然数集;正整数集;整数集;有理数集;实数集.N +N N 或*Z Q R 6集合的表示方法:①列举法:把集合中的全部元素一一列举出来,并用花括号括起来表示集合的方法;②描述法:把集合中全部具有共同特征的元素所组成的集合表示为的方法; )(x P x })(|{x P A x ∈③图示法(图):用平面上封闭曲线的内部代表集合的方法.Venn 7集合间的根本关系:子集:对于两个集合,如果集合中任意一个元素都是集合中的元素,就B A ,A B 称集合为集合的子集,记作,读作包含于;真子集:如果,但存在元素,且A A A B B A ⊆B x ∈A x ∉,就称集合是集合的真子集,记作,读作真包含于.A B A B A B 8空集:不含任何元素的集合,用表示,空集的性质,空集是任何集合的子集,是任何集合的真子∅集.9集合的根本运算:并集;交集; },|{B x A x x B A ∈∈=或 },|{B x A x x B A ∈∈=且 补集(为全集,全集是含有所研究问题中涉及的全部元素). },|{A x U x x A C U ∉∈=且U 运算性质:;;;;B A B B A ⊆⇔= B A A B A ⊆⇔= A A =∅ ∅=∅ A ,.∅==∅=U C U C A A C C U U U U ,,)()()()(),()()(B A C B C A C B A C B C A C U U U U U U ==10充分条件与必要条件:一般地,“假设p ,则q 〞为真命题,p 可以推出q ,记作,称p 是q 的q p ⇒充分条件,q 是p 的必要条件;p 是q 的条件的四种类型:假设,则p 是q 的充分不必要q q p ,⇒p 条件;假设,则p 是q 的必要充分不条件;假设,则p 是q 的充要条件;p p q ,⇒q q p ⇔假设,,则p 是q 的既不充分也不必要条件. pq q p 11全称量词及全称量词命题:短语“全部的〞,“任意一个〞在逻辑中叫做全称量词,并用符号表∀示,含有全称量词的命题成为全称量词命题.12存在量词及存在量词命题:短语“存在一个〞,“至少有一个〞在逻辑中叫做存在量词,并用符号∃表示,含有存在量词的命题成为存在量词命题.13全称量词命题与存在量词命题的否认:全称量词命题的否认是存在量词命题;存在量词命题的否认是全称量词命题.第二章一元二次函数、方程不等式1不等式的性质不等式的性质: ①对称性;②传递性;③可加性a b b a >⇔<,a b b c a c >>⇒>;④可乘性,;a b a c b c >⇒+>+,0a b c ac bc >>⇒>,0a b c ac bc ><⇒<⑤同向可加性;⑥同向可乘性; ,a b c d a c b d >>⇒+>+0,0a b c d ac bd >>>>⇒>⑦可乘方性;()0,1n n a b a b n n >>⇒>∈N >⑧可开方性.⑨可倒数性. )0,1a b n n >>⇒>∈N >ba b a 110<⇒>>2重要不等式:假设,则,当且仅当时等号成立.R b a ∈,ab b a 222≥+b a =3根本不等式:假设,,则,即,当且仅当时等号成立. 0a >0b >a b +≥2a b+≥b a =4不等式链:假设,,则,当且仅当时等号成立;一正0a >0b >ba ab b a b a 1122222+≥≥+≥+b a =二定三相等.5一元二次不等式:只含有一个未知数,并且未知数的最gao 次数是的不等式. 26第三章 函数的概念与性质1函数的概念:一般地,设是非空的实数集,如果对于集合中的任意一个数x ,按照某种确定的B A ,A 对应关系,在集合中都有唯—确定的数y 与它对应,那么就称为从集合到集合的一f B B A f →:A B 个函数,记作,其中,x 叫做自变量,x 的取值范围叫做函数的定义域,与x 的值相对A x x f y ∈=),(A 应的y 值叫做函数值,函数值的集合叫做函数的值域,值域是集合的子集. }|)({A x x f ∈B 2函数的三要素:定义域、对应关系、值域. 求函数定义域的原则:(1)假设为整式,则其定义域是;()f x R (2)假设为分式,则其定义域是使分母不为0的实数集合;()f x (3)假设是二次根式(偶次根式),则其定义域是使根号内的式子不小于0的实数集合; ()f x (4)假设,则其定义域是; ()0f x x =}{0x x ≠(5)假设,则其定义域是;()()0,1x f x a a a =>≠R (6)假设,则其定义域是; ()()log 0,1a f x x a a =>≠}{0x x >(7)假设,则其定义域是;x x f tan )(=},2|{Z k k x x ∈+≠ππ求函数值域的方法:配方法,换元法,图象法,单调性法等;求函数的解析式的方法:待定系数法,换元法,配凑法,方程组法等;3函数的表示方法:解析法(用函数表达式表示两个变量之间的对应关系)、图象法(用图象表达两个变量之间的对应关系)、列表法(列出表格表示两个变量之间的对应关系).4分段函数:在定义域内,对于自变量x 的不同取值区间,有不同对应关系的函数. 6函数的单调性:(1)单调递增:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x <函数在它的定义域上单调递增时,该函数称为增函数;(2)单调递减:设任意(,I 是的定义域),当时,有.特别的,当D x x ∈21,I D ⊆()f x 12x x <12()()f x f x >函数在它的定义域上单调递增时,该函数称为减函数.7单调区间:如果函数在区间上单调递增或单调递减,那么就说函数在这一区间有(严格的)单调性,区间就叫做函数的单调区间,单调区间分为单调增区间和单调减区间. 8复合函数的单调性:同增异减.9函数的最大值、最小值:一般地,设函数的定义域为,如果存在实数满足:,都有)(x f y =I M I x ∈∀;使得,那么称是函数的最大(小)值. ))(()(M x f M x f ≥≤I x ∈∃0M x f =)(0M10函数的奇偶性:偶函数:一般地,设函数的定义域为,如果,都有,且,那么函)(x f y =I I x ∈∀I x ∈-)()(x f x f =-数叫做偶函数;偶函数的图象关于y 轴对称;偶函数满足;)(x f y =|)(|)()(x f x f x f ==-奇函数:一般地,设函数的定义域为,如果,都有,且,那么)(x f y =I I x ∈∀I x ∈-)()(x f x f -=-函数叫做奇函数;奇函数的图象关于原点对称;假设奇函数的定义域中有零,则其函数图象必过原点,即)(x f y =.(0)0f =11幂函数:一般地,函数叫做幂函数,其中是自变量,是常数. αx y =x α12幂函数的性质:()f x x α=①全部的幂函数在都有定义,并且图象都通过点;()0,+∞()1,1②如果,则幂函数的图象过原点,并且在区间上是增函数;0α>[)0,+∞③如果,则幂函数的图象在区间上是减函数,在第—象限内,当从右边趋向于原点时,0α<()0,+∞x 图象在轴右方无限地逼近轴,当趋向于时,图象在轴上方无限地逼近轴; y y x +∞x x ④在直线的右侧,幂函数图象“指大图高〞; 1=x ⑤幂函数图象不出现于第四象限. 第四章 指数函数与对数函数1n 次方根与分数指数幂、指数幂运算性质(1)假设,则;; n x a =))n x n=⎪⎩为奇数为偶数()()a n a n ⎧⎪=⎨⎪⎩为奇数为偶数(3);(4);na =*0,,,1)m na a m n N n =>∈>且(5);*0,,1)m naa m n N n -=>∈>,且(6)的正分数指数幂为,的负分数指数幂没有意义.000(7);()0,,r s r sa a a a r s R +⋅=>∈(8);()()0,,r s rsa a a r s R =>∈(9).()()0,0,,rrrab a b a b r s R =⋅>>∈2对数、对数运算性质(1);(2); ()log 0,1xa a N x N a a =⇔=>≠()log 100,1a a a =>≠(3);(4);;()log 10,1a a a a =>≠()log 0,1a Na N a a =>≠(5);()log 0,1m a a m a a =>≠(6);()log ()log log 0,1,0,0a a a MN M N a a =+>≠M >N >(7); ()log log log 0,1,0,0aa a MM N a a N=->≠M >N >(8);()log log 0,1,0n a a M n M a a =⋅>≠M >(9)换底公式; ()log log 0,1,0,0,1log c a c bb a a bc c a=>≠>>≠(10); ()log log 0,1,,*m na a nb b a a n m N m =>≠∈(11);()1log log 0,1,0,aa M a a M n R n=>≠>∈(12). ()log log log 10,1,0,1,0,1a b c b c a a a b b c c ⋅⋅=>≠>≠>≠3指数函数及其性质:)1,0(≠>=a a a y x 且①定义域为; ②值域为;③过定点;(),-∞+∞()0,+∞()0,1④单调性:当时,函数在上是增函数;当时,函数在上是减函数; 1a >()f x R 01a <<()f x R ⑤在y 轴右侧,指数函数的图象“底大图高〞. 4对数函数及其性质:)1,0(log ≠>=a a x y a 且①定义域为;②值域为;③过定点;()0,+∞(),-∞+∞()1,0④单调性:当时,函数在上是增函数;当时,函数在上是减函1a >()f x ()0,+∞01a <<()f x ()0,+∞数;⑤在直线的右侧,对数函数的图象“底大图低〞.1=x 5指数函数与对数函数互为反函数,它们的图象关于直线对称. x a y =)1,0(log ≠>=a a x y a 且x y =6不同函数增长的差异:线性函数模型的增长特点是直线上升,其增长速度不变;指数)0(>+=k b kx y 函数模型的增长特点是随着自变量的增大,函数值增大的速度越来越快,呈“指数爆炸〞状)1(>=a a y x 态;对数函数模型的增长特点是随着自变量的增大,函数值增大速度越来越慢,即增长)1(log >=a x y a 速度平缓;幂函数模型的增长速度介于指数函数和对数函数之间.)0(>=n x y n 7函数的零点:在函数的定义域内,使得的实数叫做函数的零点.)(x f y =0)(=x f x 8零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,且有,()f x [],a b ()()0f a f b ⋅<那么函数在区间内至少有一个零点,即存在,使得,这个也就是方程()y f x =(),a b (),c a b ∈()0f c =c 的根.()0f x =9二分法:对于区间上图象连续不断且的函数,通过不断把它的零点所在],[b a ()()0f a f b ⋅<)(x f y =区间一分为二,使得区间的两个端点逐渐逼近零点,进而得到零点近似值的方法.10给定准确度,用二分法求函数零点近似值的步骤: ε)(x f y =0x ⑴确定零点的初始区间,验证; 0x [],a b ()()0f a f b ⋅<⑵求区间的中点;[],a b c ⑶计算,并进一步确定零点所在的区间; )(c f ①假设,则就是函数的零点;0)(=c f c ②假设(此时),则令; 0)()(<c f a f ),(0c a x ∈c b =③假设(此时),则令;0)()(<b f c f ),(0b c x ∈c a =⑷推断是否到达准确度:假设,则得到零点的近似值(或);否则重复上面的⑵至⑷. εa b ε-<a b 第五章 三角函数1任意角的分类:按终边的旋转方向分: ⎧⎪⎨⎪⎩正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角2象限角:角的顶点与原点重合,角的始边与轴的非负半轴重合,终边落在第几象限,则称为第αx α几象限角.第—象限角的集合为;{}36036090,k k k αα⋅<<⋅+∈Z 第二象限角的集合为;{}36090360180,k k k α⋅+<⋅+∈Z第三象限角的集合为; {}360180360270,k k k αα⋅+<<⋅+∈Z第四象限角的集合为{}360270360360,k k k αα⋅+<<⋅+∈Z角的终边不在任何一个象限,就称这个角不属于任何一个象限 α终边在轴非负半轴的角的集合; x },2|{Z k k ∈=παα终边在轴非正半轴的角的集合; x },2|{Z k k ∈+=ππαα终边在轴非负半轴的角的集合;y },22|{Z k k ∈+=ππαα终边在轴非正半轴的角的集合;y },22|{Z k k ∈+-=ππαα终边在轴的角的集合;x },|{Z k k ∈=παα终边在轴的角的集合;y },2|{Z k k ∈+=ππαα终边在坐标轴的角的集合; },2|{Z k k ∈=παα2终边相同的角:与角终边相同的角的集合为.α{}360,k k ββα=⋅+∈Z 3弧度制:长度等于半径长的弧所对的圆心角叫做弧度.14角度与弧度互化公式:,,.2360π=1180π=180157.3π⎛⎫=≈ ⎪⎝⎭5扇形公式:半径为的圆的圆心角所对弧的长为,则角的弧度数的绝对值是.假设扇形r αl αlrα=的圆心角为,半径为,弧长为,周长为,面积为,则,,()αα为弧度制r l C S l r α=2C r l =+.21122S lr r α==6三角函数的概念:设是一个任意大小的角,的终边上任意一点P 的坐标是,它与原点的距αα(),x y离是,则,,. ()0r r =>sin y r α=cos x r α=()tan 0yx xα=≠7三角函数的符号:一全正二正弦三正切四余弦. 8记忆特别角的三角函数值:α 15 30 45 60 75 90 120 135 150180 270 360 α 12π 6π 4π 3π 125π 2π 32π 43π 65π π 23ππ2 αsin 426- 21 22 23 426+ 1 23 22 210 1-0 αcos 426+ 23 22 21 426-0 21- 22- 23-1-01 αtan 32- 1 3 32+不存在 3- 1- 33-0 不存在9同角三角函数的根本关系:,;()221sin cos 1αα+=()2222sin 1cos ,cos 1sin αααα=-=- .()sin 2tan cos ααα=sin sin tan cos ,cos tan αααααα⎛⎫==⎪⎝⎭10诱导公式口诀:奇变偶不变,符号看象限.,,.()()1sin 2sin k παα+=()cos 2cos k παα+=()()tan 2tan k k παα+=∈Z ,,. ()()2sin sin παα+=-()cos cos παα+=-()tan tan παα+=,,.()()3sin sin αα-=-()cos cos αα-=()tan tan αα-=-,,. ()()4sin sin παα-=()cos cos παα-=-()tan tan παα-=-,.,. ()5sin cos 2παα⎛⎫-=⎪⎝⎭cos sin 2παα⎛⎫-= ⎪⎝⎭()6sin cos 2παα⎛⎫+= ⎪⎝⎭cos sin 2παα⎛⎫+=- ⎪⎝⎭11三角函数的图象与性质:sin y x = cos y x =tan y x =图象定义域RR,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域[]1,1-[]1,1-R 函数性质12两角和差的正弦、余弦、正切公式:(1);(2); ()cos cos cos sin sin αβαβαβ-=+()cos cos cos sin sin αβαβαβ+=-(3);(4);()sin sin cos cos sin αβαβαβ-=-()sin sin cos cos sin αβαβαβ+=+(5);()tan tan tan 1tan tan αβαβαβ--=+()()tan tan tan 1tan tan αβαβαβ-=-+(6). ()tan tan tan 1tan tan αβαβαβ++=-()()tan tan tan 1tan tan αβαβαβ+=+-13二倍角公式:(1);(2);sin 22sin cos ααα=2222cos 2cos sin 2cos 112sin ααααα=-=-=-(,);(3);2cos 21cos 2αα+=21cos 2sin 2αα-=22tan tan 21tan ααα=-14半角公式:(1);(2);(3);(4)2cos 12sin αα-±=2cos 12cos αα+±=αααcos 1cos 12tan +-±=αααααcos 1sin sin cos 12tan +=-=15辅助角公式:.的终边上在角点其中ϕϕϕ),(,tan ),sin(cos sin 22b a abx b a x b x a =±+=±16函数的图象与性质:b x A y ++=)sin(ϕω图象变换:先平移后伸缩:函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x =ϕ的图象;再将函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐()sin y x ϕ=+()sin y x ϕ=+1ω标不变),得到函数的图象;再将函数的图象上全部点的纵坐标伸长(缩()sin y x ωϕ=+()sin y x ωϕ=+短)到原来的倍(横坐标不变),得到函数的图象. A ()sin y x ωϕ=A +先伸缩后平移:函数的图象上全部点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函sin y x =1ω最值当时,22x k ππ=+()k ∈Z ;当max1y =22x k ππ=-时,.()k ∈Z min 1y =-当时,()2x k k π=∈Z ;当max 1y =2x k ππ=+时,.()k ∈Z min 1y =-既无最大值也无最小值周期性 2π 2ππ奇偶性奇函数 偶函数奇函数单调性在 2,222k k ππππ⎡⎤-+⎢⎥⎣⎦上是增函数;在()k ∈Z 32,222k k ππππ⎡⎤++⎢⎥⎣⎦上是减函数.()k ∈Z 在上是[]()2,2k k k πππ-∈Z 增函数;在[]2,2k k πππ+上是减函数.()k ∈Z 在,22k k ππππ⎛⎫-+ ⎪⎝⎭上是增函数.()k ∈Z 对称性对称中心()(),0k k π∈Z 对称轴()2x k k ππ=+∈Z 对称中心 (),02k k ππ⎛⎫+∈Z ⎪⎝⎭对称轴()x k k π=∈Z 对称中心 (),02k k π⎛⎫∈Z⎪⎝⎭无对称轴数的图象;再将函数的图象上全部点向左(右)平移个单位长度,得到函数sin y x ω=sin y x ω=ϕω的图象;再将函数的图象上全部点的纵坐标伸长(缩短)到原来的倍(横()sin y x ωϕ=+()sin y x ωϕ=+A 坐标不变),得到函数的图象. ()sin y x ωϕ=A +五点法画图函数的性质:()()sin 0,0y x ωϕω=A +A >>①定义域为R ;②值域为;③单调性:依据函数的单调区间求函数的单调区间; ],[A A -x y sin =④奇偶性:当时,函数是奇函数;当时,函数Z k k ∈=,πϕ()sin y x ωϕ=A +Z k k ∈+=,2ππϕ是偶函数;⑤周期:;⑥对称性:依据函数的对称性研究函数的对称()sin y x ωϕ=A +ωπ2=T x y sin =性12π17函数的应用B x A y ++=)sin(ϕω①振幅:A ;②周期:;③频率:;④相位:;⑤初相:.2πωT =12f ωπ==T x ωϕ+ϕ⑥最值:函数,当时,取得最小值为 ;当时,取得最大值为B x A y ++=)sin(ϕω1x x =min y 2x x =maxy ,则,,.()max min 12y y A =-()max min 12y y B =+()21122x x x x T=-<。
高一数学各知识点解题技巧口诀总结
高一数学各知识点解题技巧口诀总结摘要:只有各科成绩提高了,总成绩才能提高,在平时的复习中一定要注意积累方法,本店铺带来高一数学各知识点解题技巧,供大家参考!高一数学技巧多,总结规律繁化简;概括知识难变易,高中数学巧记忆。
言简意赅易上口,结合课本胜一筹。
始生之物形必丑,抛砖引得白玉出。
一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《立体几何》点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
三、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者一来对应,开创几何新两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
图形直观数入微,数学本是数形学。
总结:高一数学各知识点解题技巧就为大家介绍到这里了,希望同学们找到自己高效的复习方法,在高考中取得优异的成绩!。
高中(必修一)数学口诀
高中数学口诀人教A 版必修一第一章 集合篇1、集合三个特性:确定性、互异性、无序性(互异性:求出答案记得带回去检验看是否出现重复)2、常见数集表示方法:(1)、N ——自然数数集(自然的英语nature) (2)、Z ——整数集(拼音zheng )(3)、Q ——有理数集 (4)、R ——实数集3、一个集合有n 个元素,则其子集的个数为n 2,真子集个数为12-n ,非空子集个数为12-n ,非空真子集个数为22-n .4、元素与集合之间用∉∈或,集合于集合之间用⊆。
5、空集是任何集合的子集,是任何非空集合的真子集。
6、口诀:看到子集,首先考虑空集,然后才是画数轴列不等式。
7、两个重要公式:∁U (A ∪B )=(∁U A )∩(∁U B );∁U (A ∩B )=(∁U A )∪(∁U B ).(口诀:拆开变号)人教A 版必修一第一章 函数篇1、区间是一种特殊的数集表达形式,只能用于表示数集,而且不管开闭,必须左小右大。
2、形成函数的三个要求:每一性、唯一性、允许多对一不能一对多。
3、函数三要素:定义域、值域和对应关系(函数问题,不管啥题定义域优先)4、函数的表示方法:解析法、图像法、列表法5、判断两个函数是否相等只需要判断定义域和对应关系是否相等即可。
6、求定义域口诀(1)、先求定义域再化简; (2)、分式要求分母不为0.(3)、偶次根式要求被开方数≥0; (4)、0次方和负数次方要求底数不为0;(5)、指数要求底数>0且≠1; (6)、对数(log )要求真数>0,底数>0且≠1;(7)、复合函数定义域的求法:(口诀:简单算复杂“放”,复杂算简单“代”。
) 若()x f 定义域为[]b a , ,则复合函数()[]x g f 定义域由()b x g a ≤≤解出; 若()[]x g f 定义域为[]b a , ,则()x f 定义域相当于[]b a x ,∈时()x g 的值域.7、函数值域的求法(求值域也要先求定义域)(1)、图像法:能画图的坚决画图(2)、单调性法:有增减就可以代两端求最值得到值域;(3)、换元法:(口诀:次方出现两倍关系就可以使用换元法,设低次为t )操作步骤:第一步:求定义域并设t ; 第二步:马上求出t 的范围;第三步:用t 表示出x ; 第四步:求出新函数值域即为原函数的值域。
高一数学知识点复习口诀
高一数学知识点复习口诀在高一的数学学习中,我们学习了许多重要的数学知识点,这些知识点是我们日后学习更高级数学的基础。
为了帮助大家更好地理解和记忆这些知识点,我整理了一些口诀,希望能够帮助大家巩固复习,提高数学成绩。
第一章函数与导数函数是关系,图象是证明,导数展趋势。
一、函数的定义域要先定,有理函数除零同禁。
二、关于函数的奇偶性,点对称与轴对称。
三、函数图象与映射图,一一对应是必须。
四、导数的定义要记牢,变化率要了解清楚。
第二章三角函数三角函数有正弦,余弦,正切和余切。
一、单位圆带你穿,往视角看全开天。
二、正弦值和余弦比相等,正切值和余切比相等。
三、辅助角要学好,和角差角别算错。
四、求解三角方程,看式子取特殊。
第三章数列与数学归纳法数列的发展与抽象,数学归纳法是证明。
一、等差数列步步增,等比数列错错增。
二、求和公式记在心,先差乘后和填。
三、斐波那契迭代快,通项公式记牢不晃。
四、数学归纳法过程详,首项成立结后当。
第四章一元二次函数与二次方程一元二次函数与二次方程,齐平截距形式好推。
一、顶点坐标意义大,开口向上和向下。
二、一元二次方程求根公式,实根虚根记好坡。
三、判别式对齐好,正负零一定了。
四、二次函数图象锋芒露,对称轴判断交点处。
第五章平面向量平面向量是有方向的,表示物理量和量无关。
一、向量加减靠平行四边形,减法注意方向即可。
二、向量数量积带点积,模的乘积计算轻松。
三、向量在直角坐标轴中,坐标和平行便分明。
四、向量共线、垂直、夹角度,根据定义进行度量。
第六章空间向量与立体几何空间向量,计算更复杂,灵活运用图象逼。
一、平面与空间两种处理,观察图象加深理解。
二、空间直线方程一寻找,点向式和一般式需熟练。
三、点到直线、点到平面,求距、求垂线。
四、空间曲线有直线与圆,解析几何要记清。
通过这些口诀,我们可以将复杂且抽象的数学知识点转化成易于记忆和理解的形式,从而加深对数学知识的掌握和运用能力。
当然,口诀只是辅助工具,理解和掌握概念才是关键。
高一知识点口诀
高一知识点口诀一、数学1. 二次函数的形状记得,a的正负影响对称性。
2. 三角函数要熟悉,sin、cos、tan记在心。
3. 不同数列求通项,等差、等比要熟练。
4. 三视图排列好,俯视、前视、侧视交叉瞧。
5. 几何图形要认识,正方形、圆形都铭记。
6. 集合运算考细微,交集、并集别混为一。
7. 群论要理解,同态、同构费心思。
二、物理1. 力的合成应予以留心,平行、共点都要论证。
2. 光的反射、折射要弄懂,密度不同光会弯。
3. 电路连线要牢记,电流、电阻要算清。
4. 动量守恒不可忽,碰撞、爆炸都要算。
5. 热传导规律要了解,同温、等热都要推敲。
6. 电磁感应需谨记,法拉第定律掌握准。
三、化学1. 元素周期表烂熟记,周期性趋势细琢磨。
2. 化学方程式要平衡,氧化还原别混淆。
3. 溶液浓度计算捋意思,溶解度规律要掌握。
4. 酸碱滴定要准确,指示剂配色别掉链。
5. 电化学反应需留心,电解、电池都追根。
6. 有机化合物要辨清,官能团分类牢固。
四、生物1. 细胞结构要牢记,质体、核膜别混淆。
2. 遗传规律要熟悉,基因组配别弄错。
3. 免疫系统要了解,抗体、抗原别忽略。
4. 生态系统要关注,食物链别忽视。
5. 植物繁殖要认识,有性、无性都掌握。
6. 生物进化要追溯,自然选择不能混。
五、英语1. 词汇背好要经常,读、写、听和说齐全。
2. 语法知识不可少,时态、被动记在脑。
3. 阅读技巧要提升,细节、推断别生懵。
4. 写作要练习准确,段落、逻辑别丢掉。
5. 听力理解要提高,语速、重音别受困。
6. 翻译要灵活机动,结构、意义别拗口。
这是高一常见知识点的口诀,通过这些口诀的记忆,希望能帮助你更好地掌握这些重要的知识内容。
记住口诀,掌握知识,成功的道路就会更加坦然。
高中数学知识点顺口溜速记口诀
高中数学知识点顺口溜速记口诀高中数学知识点顺口溜速记口诀高中数学是大家感到比较难的,因为它需要掌握的内容非常多,而且内容也比较深奥。
然而,在面对这些知识点时,我们可以使用一些口诀来帮助我们掌握这些知识点,从而更好地应对数学考试。
接下来,我将为大家分享一些高中数学知识点顺口溜,让大家轻松记忆。
一、函数篇1、差商公式:差商的结果求值,上下都是相邻f(x)减f(x-1),下标依次减f(x-1)减f(x-2),再取一遍差2、函数图像形状:一次线性就是直线走,二次平方就是开口形,幂函数基数大于1,往上凸,幂函数基数小于1,往下略。
三角函数多角形,都是周期图像形,正弦函数在零度,最低处,余弦函数在零度,最高出。
二、三角篇1、正弦、余弦变换:正弦相量纵轴界,余弦相量横轴解。
2、三角函数图像:正弦函数开口向上,余弦函数开口向下,正交坐标轴描点,周期二洞三抬半。
3、最值判断:正弦最大为1,余弦最小为-1,正切不存在,余切不存在。
三、导数篇1、求导方法:幂函数,古不变,指数函数,右上挂负号,对数函数,左下挂倒数,三角函数,横纵貌相同,反三角,倒数相应关。
2、高中数学一些特别记:自然对数微分,下来还是他自己,绝对值微分,根据正负分两步。
四、行列式篇1、二阶行列式求值:对角线相乘,反对角线相减。
2、三阶行列式求值:按行或按列,每行或每列视为二阶式。
三阶行列式一个箭头去,四阶行列式两箭头正,五阶行列式三箭头,六阶行列式四足占。
五、概率篇1、全概率公式:设A1,A2…,An构成一个样本空间S的一个划分,则对S中任一事件B,有公式:2、贝叶斯定理:样本空间S和一组事件B1,…,Bn,设p(Bi)≠0,对i=1,...,n,且B1,…,Bn构成S的一个划分, 若A是任意一个事件,且p(A)≠0,则有公式:P(Bi|A) = P(A|Bi) P(Bi) / [Σj P(A|Bj)P(Bj)]6、期望的性质(1)恒等性质:E(c)=c;(2)线性性质:E(cX+dY)=cE(X)+dE(Y) ;(3)可加性质(离散):若X和Y是离散型随机变量,则E(X+Y)=E(X)+E(Y) ;以上只是其中的几个口诀,高中数学涉及的知识面非常广泛,如果想要掌握更多的知识点,就要不断地复习和总结。
高中数学知识点顺口溜
高中数学知识点顺口溜高中数学知识点(顺口溜)导语:数学是利用符号语言研究数量、结构、变化以及空间模型等概念的.一门学科。
以下是小编为大家精心整理的高中数学知识点(顺口溜),欢迎大家参考!一.数学思想方法总论中学数学一线牵,代数几何两珠连;三个基本记心间,四种能力非等闲。
常规五法天天练,策略六项时时变,精研数学七思想,诱思导学乐无边。
一线:函数一条主线(贯穿教材始终)二珠:代数、几何珠联璧合(注重知识交汇)三基:方法(熟) 知识(牢) 技能(巧)四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)五法:换元法、配方法、待定系数法、分析法、归纳法。
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。
七思想:函数方程最重要,分类整合常用到,数形结合千般好,化归转化离不了;有限自将无限描,或然终被必然表,特殊一般多辨证,知识交汇步步高。
二.数学知识方法分论集合与逻辑集合逻辑互表里,子交并补归全集。
对错难知开语句,是非分明即命题; 纵横交错原否逆,充分必要四关系。
真非假时假非真,或真且假运算奇。
函数与数列数列函数子母胎,等差等比自成排。
数列求和几多法?通项递推思路开; 变量分离无好坏,函数复合有内外。
同增异减定单调,区间挖隐最值来。
三角函数三角定义比值生,弧度互化实数融; 同角三类善诱导,和差倍半巧变通。
解前若能三平衡,解后便有一脉承; 角值计算大化小,弦切相逢异化同。
方程与不等式函数方程不等根,常使参数范围生; 一正二定三相等,均值定理最值成。
参数不定比大小,两式不同三法证; 等与不等无绝对,变量分离方有恒。
解析几何联立方程解交点,设而不求巧判别; 韦达定理表弦长,斜率转化过中点。
选参建模求轨迹,曲线对称找距离; 动点相关归定义,动中求静助解析。
立体几何多点共线两面交,多线共面一法巧; 空间三垂优弦大,球面两点劣弧小。
线线关系线面找,面面成角线线表;等积转化连射影,能割善补架通桥。
高中数学知识点顺口溜
高中数学知识点顺口溜高中数学知识点顺口溜:
一元二次方程解,求根公式不忘。
判别式大于零,有两个实根。
判别式等于零,有一个实根。
判别式小于零,无实根。
三角函数记清楚,正弦、余弦、正切。
角的定义要牢记,弧度制要懂。
特殊角要记一下,30°、45°、60°。
函数图像要了解,关键点要找准。
单调性要判断清,最值也要找准。
对称性要考虑,转移式要运用。
数列类型别搞混,等差等比要区分。
通项公式要记住,前n项和要计算。
概率统计要掌握,事件概率要计算。
条件概率要理解,贝叶斯公式要用。
正态分布要认识,标准差要计算。
平面几何要熟悉,相似与全等要分辨。
平行四边形要了解,梯形、菱形要区分。
圆的性质要熟记,弦长与弧度要计算。
此为数学知识点顺口溜,可以帮助记忆和复习数学知识点。
以上只是部分数学知识点的概述,具体的内容还需要结合教材进行学习和理解。
高一数学必修一知识点口诀
高一数学必修一知识点口诀数学是一门需要极大记忆力和思维能力的学科。
在学习中,掌握并记忆各个知识点是非常重要的。
为了帮助大家更好地记忆高一数学必修一的知识点,下面我将为大家编写一些口诀来帮助记忆。
一、集合与函数公理一公理二公理三,集合论的基本概念。
集合是个泛指,元素有它的依据。
空集无上帝,全集谁也代表。
集合之间的关系,交并差嵌套。
函数一一映射,图象域真特殊。
函数是一个规则,一点只能一个象。
给定两个集合,函数才有定义。
象的集合叫作值域,映射满定义域。
二、数量关系等差是个固定概念,限度同样是固定。
无穷等差二项式,首项末项有三定。
等比数列是个规则,比值永恒不变。
前项乘了同样的数,后项变得正规则。
角度关系要好理解,垂角是个特殊。
对顶角同大小,邻补角互为维。
同位角过平行,同旁内外及规则。
平角是个特殊角,对应角是等势。
三、平面向量平面向量是有模有方向,百变千变都不分。
向量可以平移,规定位移的结果。
向量加减是法则,坐标差才靠谱。
数乘法是无聊,长度只变不方向。
点积有法则,向量强求交乘法是特例,三者垂直为例子。
两个向量交乘法,结果是个新向量。
交乘符号在线外,右手规则求解题。
四、三角函数正弦是轻松型,定义简单好记。
角度≈1时弱一些,π/2强势超过。
圆周率是个常数,无理数多繁琐。
还有两倍角三倍角,弦公式最方便。
余弦函数相对容易,定义和正弦相似。
角度≈1时强一些,π/2弱小多点。
正弦的亲兄弟,变异的另一面。
还有两倍角三倍角,余弦是个好伴。
正弦除以余弦,是个双曲函数。
角度≈1时强准确,π/2互调角度。
双曲函数无界限,和双曲轴相关。
还有两倍角三倍角,用双曲特还原。
五、平面解析几何直线上斜率,射线四个象限。
共线在一直线,不共线是凹函数。
两点距离都相同,到直线最小特殊。
两直线相交角度,相关关系好表达。
六、立体几何长方体体积,底面积乘高度。
正方体体积,边长立方不变。
棱台的体积,底面积乘高度三分之一。
棱锥的体积,底面积乘高度三分之一。
高中数学重要知识点巧记口诀
高中数学重要知识点巧记口诀推荐文章人教版高中数学知识点热度:高中数学高一数学必修一知识点热度:高中数学推理知识点总结热度:高中必修一数学知识点归纳热度:高中数学必修1知识点总结热度:在人类历史发展和社会生活中,数学也发挥着不可替代的作用,也是学习和研究现代科学技术必不可少的。
今天小编给大家带来高中数学重要知识点巧记口诀,欢迎大家参考学习。
数学思想方法总论中学数学一线牵,代数几何两珠连;三个基本记心间,四种能力非等闲。
常规五法天天练,策略六项时时变;精研数学七思想,诱思导学乐无边。
一线:函数一条主线(贯穿教材始终)二珠:代数、几何珠联璧合(注重知识交汇)三基:方法(熟)知识(牢)技能(巧)四能力:概念运算(准确)、逻辑推理(严谨)、空间想象(丰富)、分解问题(灵活)五法:换元法、配方法、待定系数法、分析法、归纳法。
六策略:以简驭繁,正难则反,以退为进,化异为同,移花接木,以静思动。
七思想:函数方程最重要,分类整合常用到,数形结合千般好,化归转化离不了;有限自将无限描,或然终被必然表,特殊一般多辨证,知识交汇步步高。
数学知识方法分论集合与逻辑集合逻辑互表里,子交并补归全集。
对错难知开语句,是非分明即命题;纵横交错原否逆,充分必要四关系。
真非假时假非真,或真且假运算奇。
函数与数列数列函数子母胎,等差等比自成排。
数列求和几多法?通项递推思路开; 变量分离无好坏,函数复合有内外。
同增异减定单调,区间挖隐最值来。
三角函数三角定义比值生,弧度互化实数融; 同角三类善诱导,和差倍半巧变通。
解前若能三平衡,解后便有一脉承; 角值计算大化小,弦切相逢异化同。
方程与不等式函数方程不等根,常使参数范围生; 一正二定三相等,均值定理最值成。
参数不定比大小,两式不同三法证; 等与不等无绝对,变量分离方有恒。
解析几何联立方程解交点,设而不求巧判别; 韦达定理表弦长,斜率转化过中点。
选参建模求轨迹,曲线对称找距离; 动点相关归定义,动中求静助解析。
高一数学知识点巧记口诀
高一数学知识点巧记口诀初中时期,我们接触到的数学知识还比较简单,但进入高中后,数学知识将变得更加深入和复杂。
为了帮助大家更好地记忆高一数学知识点,下面我为大家列举了一些巧记口诀。
一、代数与函数1. 二次函数的顶点公式:横坐标记为 a,纵坐标只要见,横坐标写成 -b/2a,再带入方程的 a、b、c。
2. 平移变换的规律:向右平移,横坐标减一个负数;向左平移,横坐标加一个负数;向上平移,纵坐标加一个正数;向下平移,纵坐标减一个正数。
3. 最值问题的求解:一元一次方程,解不等式;二元一次方程,代入消元;二次函数,判别式求值;指数函数,函数值大小比较。
二、平面几何1. 相似三角形的性质:对位角相等,对应边成比例;边对边成比例,角对角相等;角对角相等,三边成比例;三边成比例,两角相等;两角相等,全等三角形。
2. 圆锥曲线的特点:椭圆对称轴较短,双曲线对称轴较长,抛物线对称轴上有焦距。
3. 圆的性质:切线垂直半径,弦分弧两半;弧长角分,同心定比例。
三、概率与统计1. 事件的概率计算:试验总数在名分里,事件数在选分里;拉普拉斯概型,相对频率可得。
2. 统计图的绘制:条形图高度表示频数,饼图面积反映相对;折线图连在一起,温度变化一目了然。
3. 排列组合的规则:排列除以阶乘,组合除以重复;容斥原理求不同,相容性则加起来。
四、解析几何1. 极坐标的换算:目标点在四象限,角度加负号出;若角度超四象限,加上2π即可。
2. 向量的性质记口诀:顺次不变,自己正;改变方向,负数往;线性组合,合结果;单位向量,过程话。
3. 平面向量的基本定理:添加向量符号,数量划上斜线;将三角求面积,用到叉乘外。
通过以上的巧记口诀,相信大家可以更加轻松地记忆高一数学知识点,并在数学学习中取得更好的成绩。
记得多做练习,不断巩固知识,相信你会成为一名优秀的数学学习者!。
高一数学解题技巧口诀介绍
高一数学解题技巧口诀介绍
高一数学解题技巧口诀介绍
:也许同学们正迷茫于怎样复习,查字典数学网小编为大家带来高一数学解题技巧口诀,希望大家认真阅读,巩固复习学过的知识!
高一数学技巧多,总结规律繁化简;概括知识难变易,高中数学巧记忆。
言简意赅易上口,结合课本胜一筹。
始生之物形必丑,抛砖引得白玉出。
一、《集合与函数》
内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;
正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X 是对称轴;
求解非常有规律,反解换元定义域;反函数的定义域,原来
方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
解析几何是几何,得意忘形学不活。
图形直观数入微,数学本是数形学。
总结:高一数学解题技巧口诀就为大家分享到这里了,希望能帮助同学们巩固复习学过的知识,供大家参考!。
高一数学函数顺口溜
高一数学函数顺口溜
高一数学函数顺口溜有:
1.性质奇偶与增减,观察图象最明显。
2.指数与对数函数,两者互为反函数。
3.底数非1的正数,1两边增减变故。
4.函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数
无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
5.两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对
称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
6.幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子
奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
希望以上顺口溜能帮助到您。
高一数学知识点顺口溜
高一数学知识点顺口溜一阶导数求,固定间隔步长逐。
两个函数值相减,除以这个步长去。
这个极限存在且一致,说明函数可导计。
二阶导数求,先一阶再跟之后。
一阶的导数做差,除以此步长去。
极限存在且一致,说明函数二次可导。
导数的运算规则,熟记在脑。
常数倍、和与差,积商规则要了解。
复合函数运算,链式法则要用得着。
迭代法求根,用函数递推法。
先选个初始值,根的值要保留。
不断代入迭代式,精确度逐渐提升。
当改变不再变化,迭代次数可停。
误差公式原,主要有二种。
绝对误差相除以真值,百分误差是它除以真值而减。
一致重叠法,是最佳估计法。
主值的大小,观察相邻是关键。
有序观察相邻数,取出相对中。
没有多少数据,先想个方案。
个数较多数据,组织好详细表。
分析观测数据,画出统计图。
精确程度反映出,显示的数据类。
重心坐标法,支持点求一极。
横纵坐标的乘积,求和后再与求积相除。
得到的结果就是,重心所在位置。
中学数学平均,有三种情况。
算术平均就是加和建数除以个数。
和这不整相加后除,再减网格的个数。
体会如何选取,应对不同求平。
背单元二十条,统计概率题可稳住。
平均值标准差,要会计算。
频数频率直方图,统计表要会存。
以上是高一数学知识点顺口溜,希望对你有所帮助!。
高一数学解题技巧口诀
导语:初中升入高中后,数学学习的难度增大了好多。
首先便表现在知识点的增多,好多同学刚上高中后,抱怨在课堂上听得挺明白,但是课下便不会做题,很大程度上就是因为知识点太多而又不熟练的原因。
因此,在这里推荐一篇高一数学解题技巧口诀,涵盖了高一绝大部分知识点,简单易懂,希望能帮助大家。
高一数学技巧多,总结规律繁化简;概括知识难变易,高中数学巧记忆。
言简意赅易上口,结合课本胜一筹。
始生之物形必丑,抛砖引得白玉出。
一、《集合与函数》内容子交并补集,还有幂指对函数。
性质奇偶与增减,观察图象最明显。
复合函数式出现,性质乘法法则辨,若要详细证明它,还须将那定义抓。
指数与对数函数,两者互为反函数。
底数非1的正数,1两边增减变故。
函数定义域好求。
分母不能等于0,偶次方根须非负,零和负数无对数;正切函数角不直,余切函数角不平;其余函数实数集,多种情况求交集。
两个互为反函数,单调性质都相同;图象互为轴对称,Y=X是对称轴;求解非常有规律,反解换元定义域;反函数的定义域,原来函数的值域。
幂函数性质易记,指数化既约分数;函数性质看指数,奇母奇子奇函数,奇母偶子偶函数,偶母非奇偶函数;图象第一象限内,函数增减看正负。
二、《立体几何》点线面三位一体,柱锥台球为代表。
距离都从点出发,角度皆为线线成。
垂直平行是重点,证明须弄清概念。
线线线面和面面、三对之间循环现。
方程思想整体求,化归意识动割补。
计算之前须证明,画好移出的图形。
立体几何辅助线,常用垂线和平面。
射影概念很重要,对于解题最关键。
异面直线二面角,体积射影公式活。
公理性质三垂线,解决问题一大片。
三、《平面解析几何》有向线段直线圆,椭圆双曲抛物线,参数方程极坐标,数形结合称典范。
笛卡尔的观点对,点和有序实数对,两者—一来对应,开创几何新途径。
两种思想相辉映,化归思想打前阵;都说待定系数法,实为方程组思想。
三种类型集大成,画出曲线求方程,给了方程作曲线,曲线位置关系判。
四件工具是法宝,坐标思想参数好;平面几何不能丢,旋转变换复数求。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新课程高一数学必修一学习口诀集合的概念与运算:集合元素有三性,确定无序还互异。
表示方法有三种,列举描述韦恩图。
代表元素要认准,从属包含要分清。
子集别把空集忘,2的n次是总数。
交集两个都要有,并集沾边就能行,补集全把本身抛,图形运算更直观。
反演律、很重要,运算性质常回忆。
函数的概念:函数如同子与母,每人只有一个娘。
三个要素离不了,函数关系要理清。
定义域、是灵魂,研究函数莫忘了。
对应关系解析式,求法花样还不少。
观察配凑或换元,基本方法常常用。
假如知道啥类型,待定系数求最好。
对称周期用代入,抽象函数用赋值。
函数值域是傀儡,常用单调来解决。
复合函数虽不讲,却是处处少不了。
其中性质慢慢品,熟练应用有奥妙。
函数的性质:单调性、区间上,任意变量都满足。
作差变形定符号,简单明了才最好。
奇减则减偶减增,内外函数要看清。
比大小,化同间,实在不行找中介。
奇偶性,看对称,定义千万不要丢。
否定一个全盘翻,奇偶判定要耐心。
解析式、代入求,构造函数来求值。
对称区间单调性,奇同偶反方便用。
基本初等函数:一二三、反指对,基本函数就几类。
定义域、单调性,函数性质需记清。
指数都过零一点,对数则是过一零,幂函数,花样多,但是全都过一一。
大增小减很相似,区间不同值相异。
常数大小要比较,画条直线看交点。
a在前y在后,中间夹着爱可丝。
指数药灵药,对数药药灵,幂函数是零要咬。
同大同小一定大,一大一小则变小。
分段组合加复合,函数花样变化多。
化归思想很重要,难化简来生变熟。
函数方程与应用:零点就是方程根,联系函数画图像。
等号两边俩函数,同一坐标各画图。
画出图像看交点,几个交点几个根。
区间两端若异号,中间有根跑不了。
近似根,二分法,事半功倍真奇妙。
函数模型没几种,审清题意认真算。
第一章集合与函数概念一、集合有关概念1、集合的含义:某些指定的对象集在一起就成为一个集合,其中每一个对象叫元素。
2、集合的中元素的三个特性:1.元素的确定性;2.元素的互异性;3.元素的无序性说明:(1)对于一个给定的集合,集合中的元素是确定的,任何一个对象或者是或者不是这个给定的集合的元素。
(2)任何一个给定的集合中,任何两个元素都是不同的对象,相同的对象归入一个集合时,仅算一个元素。
(3)集合中的元素是平等的,没有先后顺序,因此判定两个集合是否一样,仅需比较它们的元素是否一样,不需考查排列顺序是否一样。
(4)集合元素的三个特性使集合本身具有了确定性和整体性。
3、集合的表示:{ … } 如{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}1. 用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}2.集合的表示方法:列举法与描述法。
注意啊:常用数集及其记法:非负整数集(即自然数集)记作:N正整数集N*或N+ 整数集Z 有理数集Q 实数集R关于“属于”的概念集合的元素通常用小写的拉丁字母表示,如:a是集合A的元素,就说a属于集合A 记作a∈A ,相反,a不属于集合A 记作a??A列举法:把集合中的元素一一列举出来,然后用一个大括号括上。
描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
用确定的条件表示某些对象是否属于这个集合的方法。
①语言描述法:例:{不是直角三角形的三角形}②数学式子描述法:例:不等式x-3>2的解集是{x??R| x-3>2}或{x| x-3>2}4、集合的分类:1.有限集含有有限个元素的集合2.无限集含有无限个元素的集合3.空集不含任何元素的集合例:{x|x2=-5}<br>二、集合间的基本关系<br>1.“包含”关系—子集<br>注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
<br>反之: 集合A不包含于集合B,或集合B不包含集合A,记作A B或B A<br>2.“相等”关系(5≥5,且5≤5,则5=5)<br>实例:设A={x|x2-1=0} B={-1,1} “元素相同”结论:对于两个集合A与B,如果集合A的任何一个元素都是集合B的元素,同时,集合B的任何一个元素都是集合A 的元素,我们就说集合A等于集合B,即:A=B① 任何一个集合是它本身的子集。
A??A②真子集:如果A??B,且A?? B那就说集合A是集合B的真子集,记作A B(或B A)③如果A??B, B??C ,那么A??C④ 如果A??B 同时B??A 那么A=B3. 不含任何元素的集合叫做空集,记为Φ规定: 空集是任何集合的子集,空集是任何非空集合的真子集。
三、集合的运算1.交集的定义:一般地,由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作A∩B(读作”A交B”),即A∩B={x|x∈A,且x∈B}.2、并集的定义:一般地,由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集。
记作:A∪B(读作”A 并B”),即A∪B={x|x∈A,或x∈B}.3、交集与并集的性质:A∩A = A, A∩φ= φ, A∩B = B∩A,A∪A = A,A∪φ= A ,A∪B = B∪A.4、全集与补集(1)补集:设S是一个集合,A是S的一个子集(即),由S中所有不属于A的元素组成的集合,叫做S中子集A 的补集(或余集)记作:CSA 即CSA ={x ?? x??S且x??A}(2)全集:如果集合S含有我们所要研究的各个集合的全部元素,这个集合就可以看作一个全集。
通常用U来表示。
(3)性质:⑴CU(C UA)=A ⑵(C UA)∩A=Φ ⑶(CUA)∪A=U二、函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3 函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1. (5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注意:求出不等式组的解集即为函数的定义域。
)构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域. (2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础。
3. 函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x) , (x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x ∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上. 即记为C={ P(x,y) | y= f(x) , x∈A }图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成。
(2) 画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x, y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。
提高解题的速度。
发现解题中的错误。
4.快去了解区间的概念(1)区间的分类:开区间、闭区间、半开半闭区间;(2)无穷区间;(3)区间的数轴表示.5.什么叫做映射一般地,设A、B是两个非空的集合,如果按某一个确定的对应法则f,使对于集合A中的任意一个元素x,在集合B 中都有唯一确定的元素y与之对应,那么就称对应f:A B为从集合A到集合B的一个映射。
记作“f:A B”给定一个集合A到B的映射,如果a∈A,b∈B.且元素a和元素b对应,那么,我们把元素b叫做元素a的象,元素a 叫做元素b的原象说明:函数是一种特殊的映射,映射是一种特殊的对应,①集合A、B及对应法则f是确定的;②对应法则有“方向性”,即强调从集合A到集合B的对应,它与从B到A的对应关系一般是不同的;③对于映射f:A→B来说,则应满足:(Ⅰ)集合A中的每一个元素,在集合B中都有象,并且象是唯一的;(Ⅱ)集合A中不同的元素,在集合B中对应的象可以是同一个;(Ⅲ)不要求集合B中的每一个元素在集合A中都有原象。
常用的函数表示法及各自的优点:○1 函数图象既可以是连续的曲线,也可以是直线、折线、离散的点等等,注意判断一个图形是否是函数图象的依据;○2 解析法:必须注明函数的定义域;○3 图象法:描点法作图要注意:确定函数的定义域;化简函数的解析式;观察函数的特征;○4 列表法:选取的自变量要有代表性,应能反映定义域的特征.注意啊:解析法:便于算出函数值。
列表法:便于查出函数值。
图象法:便于量出函数值补充一:分段函数(参见课本P24-25)在定义域的不同部分上有不同的解析表达式的函数。
在不同的范围里求函数值时必须把自变量代入相应的表达式。
分段函数的解析式不能写成几个不同的方程,而就写函数值几种不同的表达式并用一个左大括号括起来,并分别注明各部分的自变量的取值情况.(1)分段函数是一个函数,不要把它误认为是几个函数;(2)分段函数的定义域是各段定义域的并集,值域是各段值域的并集.补充二:复合函数如果y=f(u),(u∈M),u=g(x),(x∈A),则y=f[g(x)]=F(x),(x∈A) 称为f、g的复合函数。