考研数学复习知识点

合集下载

考研数学知识点汇总

考研数学知识点汇总

考研数学知识点汇总1. 高等数学部分- 函数、极限与连续- 函数的概念与性质- 极限的定义与性质- 连续函数的性质与应用- 导数与微分- 导数的定义与计算- 微分的概念与应用- 高阶导数- 一元函数积分学- 不定积分与定积分- 积分技巧(换元法、分部积分法等)- 积分在几何与物理中的应用- 空间解析几何- 平面与直线的方程- 空间曲面的方程- 空间向量及其运算- 多元函数微分学- 偏导数与全微分- 多元函数的极值问题- 梯度、方向导数与切平面- 多元函数积分学- 二重积分与三重积分- 重积分的计算方法- 曲线积分与曲面积分- 无穷级数- 级数的基本概念与性质- 正项级数与收敛性- 幂级数与泰勒级数- 常微分方程- 一阶微分方程- 二阶微分方程- 线性微分方程的解法2. 线性代数部分- 行列式- 行列式的定义与性质- 行列式的计算方法- 行列式的应用- 矩阵- 矩阵的概念与运算- 矩阵的逆- 矩阵的秩- 向量空间- 向量空间的定义与性质 - 基与维数- 向量的内积与正交性- 线性方程组- 线性方程组的解的结构 - 高斯消元法- 线性方程组的应用- 特征值与特征向量- 特征值与特征向量的定义 - 矩阵的对角化- 实对称矩阵的性质- 二次型- 二次型的定义与性质- 二次型的标准化- 二次型的分类与应用3. 概率论与数理统计部分- 随机事件与概率- 随机事件的概念与运算- 概率的定义与性质- 条件概率与独立性- 随机变量及其分布- 随机变量的定义- 离散型与连续型分布- 常见分布的性质与应用- 多维随机变量及其分布- 联合分布与边缘分布- 条件分布与独立性- 随机向量的期望与方差- 随机变量的数字特征- 数字特征的定义与性质- 数字特征的计算- 大数定律与中心极限定理- 大数定律的概念与应用- 中心极限定理的条件与结论 - 数理统计的基本概念- 总体与样本- 统计量与抽样分布- 参数估计- 点估计与估计量的性质- 区间估计的原理与方法- 假设检验- 假设检验的基本步骤- 显著性水平与P值- 常见检验方法的应用请注意,这个列表是基于一般性的考研数学考试大纲制作的,具体的考试内容可能会根据不同的学校和专业有所差异。

考研数学必考的知识点总结

考研数学必考的知识点总结

考研数学必考的知识点总结一、高等数学在考研数学中,高等数学是必考的一个重点,主要包括以下几个部分:1.极限和连续极限和连续是高等数学中的基础知识,也是考研数学中的重点。

在考研数学中,常常涉及到函数的极限和连续性的问题,因此考生需要熟练掌握极限和连续的相关概念和定理,包括函数极限的定义、性质、计算技巧和判定方法,以及函数的连续性的概念、性质和相关定理。

2.导数和微分导数和微分是高等数学中的重要内容,也是考研数学中的必考知识点。

在考研数学中,常常涉及到函数的导数和微分的相关问题,因此考生需要掌握导数和微分的相关概念和定理,包括导数的概念、性质、计算方法和应用,以及微分的概念、性质和计算方法。

3.积分积分是高等数学中的重要内容,也是考研数学中的必考知识点。

在考研数学中,常常涉及到定积分和不定积分的相关问题,因此考生需要掌握积分的相关概念和定理,包括定积分和不定积分的定义、性质、计算方法和应用。

4.级数级数是高等数学中的重要内容,也是考研数学中的必考知识点。

在考研数学中,常常涉及到级数的收敛性和性质的相关问题,因此考生需要掌握级数的相关概念和定理,包括级数的收敛性判定方法、级数的性质和级数的运算法则。

5.常微分方程常微分方程是高等数学中的重要内容,也是考研数学中的必考知识点。

在考研数学中,常常涉及到常微分方程的解的存在唯一性和解的性质的相关问题,因此考生需要掌握常微分方程的相关概念和定理,包括常微分方程的基本概念、常微分方程的解的存在唯一性定理和解的性质定理。

总之,高等数学是考研数学中的重要内容,考生需要充分掌握高等数学的相关知识,扎实掌握高等数学的基本概念和定理,熟练掌握高等数学的计算方法和应用技巧,提高解题能力和应试能力。

二、线性代数在考研数学中,线性代数是必考的一个重点,主要包括以下几个部分:1.矩阵矩阵是线性代数中的重要内容,也是考研数学中的必考知识点。

在考研数学中,常常涉及到矩阵的相关问题,因此考生需要掌握矩阵的相关概念和定理,包括矩阵的基本概念、矩阵的运算法则、矩阵的秩和行列式的性质。

考研数学一每年必考的知识点

考研数学一每年必考的知识点

考研数学一每年必考的知识点考研数学一每年必考的重点一元函数微分学:隐函数求导、曲率圆和曲率半径;一元积分学:旋转体的侧面积、平面曲线的弧长、功、引力、压力、质心、形心等;向量代数与空间解析几何:向量、直线与平面、旋转曲面、球面、柱面、常用的二次曲面方程及其图形、投影曲线方程;多元函数微分学:方向导数和梯度、空间曲线的切线与法平面、曲面的切平面和法线;隐函数存在定理;多元函数积分学:三重积分、第一型曲线积分、第二型曲线积分、第一型曲面积分、第二型曲面积分、格林公式、高斯公式、斯托克斯公式、散度、旋度;无穷级数:傅里叶级数;微分方程:伯努利方程、全微分方程、可降阶的高阶微分方程、欧拉方程。

以上内容为数学一单独考查的内容,是数学一特有的内容,所以这些内容每年必考。

其中:多元函数积分学中曲线曲面积分三重积分几乎每年必考,常与空间解析几何一起考查,尤见于大题,2017年考查了第一型曲面积分及投影曲线,散度旋度常见于小题。

无穷级数中的傅里叶级数考过解答题也考过小题,31年真题中考过4次大题,6次小题。

多元函数微分学中考点常见于小题,切线和法平面,切平面和法线尤其喜欢出填空题,隐函数存在定理考过选择题。

微分方程中可降阶出现频率较高,常在微分方程的应用题中出现,欧拉方程单独直接考查出现过1次。

一元微分学中的曲率常见于小题如选择题填空题,隐函数求导属于常考题型,是一种计算工具,常与其他考点结合考查,如与极值、拐点相结合。

一元积分学中的物理应用:功、压力、质心等考频不高,考过3次。

由于这些考点属于数一单有的,也是考官比较青睐的内容,难度不大,只要我们复习到了就能拿分,所以希望大家引起重视。

考研数学线性代数考点预测:向量的数学定义首先回顾一下,在中学我们是如何表示向量的。

中学数学中主要讨论平面上的向量。

平面上的向量是可以平行移动的。

两个相互平行且长度相等的向量我们认为是相等的。

好,假设在平面直角坐标系中,对于平面上的任何一个向量,我们总是可以将其平移至起点坐标原点重合。

考研大学的数学知识点总结

考研大学的数学知识点总结

考研大学的数学知识点总结
一、数学分析
1. 函数的极限与连续
2. 函数的导数与微分
3. 不定积分与定积分
4. 微分方程
5. 级数
6. 多元函数微分学
二、线性代数
1. 行列式与矩阵
2. 线性方程组
3. 矩阵的特征值与特征向量
4. 空间解析几何
5. 线性空间
三、概率统计
1. 随机变量与概率分布
2. 多个随机变量的概率分布
3. 统计推断
4. 假设检验
5. 相关与回归分析
四、离散数学
1. 集合与逻辑
2. 图论
3. 树与树的应用
4. 排列组合
5. 代数系统
五、常微分方程
1. 一阶常微分方程的基础理论
2. 高阶常微分方程与常系数齐次线性微分方程
3. 变系数线性微分方程
4. 高阶线性常系数齐次线性微分方程
5. 常微分方程的应用
六、数学建模
1. 数学建模的基本概念
2. 数学建模的基本方法
3. 实际问题的数学建模
4. 建立模型的思路与方法
5. 数学建模的应用
七、复变函数
1. 复数的基本概念
2. 复变函数的基本概念
3. 复变函数的解析性
4. 几何意义与应用
5. 复变函数的应用
以上是考研大学数学知识点的总结。

希望能对大家的学习有所帮助。

考研数学二知识点总结

考研数学二知识点总结

考研数学二知识点总结基础概念与性质:包括函数的概念及表示法,函数的有界性、单调性、周期性和奇偶性,复合函数、反函数、分段函数和隐函数,基本初等函数的性质及其图形,初等函数的概念,函数的运算等。

极限与连续:理解极限的概念,掌握极限的性质及四则运算法则;掌握极限存在的两个准则,会利用两个准则求极限;掌握利用洛必达法则求未定式极限的方法;理解函数连续性的概念,会判别函数间断点的类型;了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质。

导数与微分:理解导数和微分的概念,理解导数与微分的关系,理解函数的可导性与连续性之间的关系;掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式;了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。

中值定理与导数的应用:理解罗尔定理、拉格朗日定理的几何意义,了解泰勒定理的结论;掌握利用导数研究函数的单调性和极值的方法,掌握函数图形的描绘方法,会求平面曲线的切线方程和法线方程。

不定积分:理解不定积分的概念,掌握不定积分的基本性质;掌握不定积分的基本公式,掌握不定积分的换元积分法与分部积分法。

定积分:理解定积分的概念和基本性质,了解定积分中值定理;掌握牛顿-莱布尼茨公式,掌握定积分的换元积分法与分部积分法;会利用定积分求平面图形的面积、旋转体的体积和函数的平均值。

多元函数微分学:了解多元函数的概念,了解二元函数的几何意义;了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质;理解多元函数偏导数和全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,会求多元隐函数的偏导数;了解方向导数与梯度的概念,并会计算;了解二元函数的泰勒公式;理解并会应用多元函数的极值和条件极值、最大值和最小值、鞍点等概念。

二重积分:了解二重积分的概念与性质,掌握二重积分(直角坐标、极坐标)的计算方法。

考研数学知识点总结归纳

考研数学知识点总结归纳

考研数学知识点总结归纳考研数学知识点第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定考研数学必备知识点总结高等数学部分第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的`计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)线性代数部分第一章行列式1、行列式的定义2、行列式的性质3、特殊行列式的值4、行列式展开定理5、抽象行列式的计算第二章矩阵1、矩阵的定义及线性运算2、乘法3、矩阵方幂4、转置5、逆矩阵的概念和性质6、伴随矩阵7、分块矩阵及其运算8、矩阵的初等变换与初等矩阵9、矩阵的等价10、矩阵的秩第三章向量1、向量的概念及其运算2、向量的线性组合与线性表出3、等价向量组4、向量组的线性相关与线性无关5、极大线性无关组与向量组的秩6、内积与施密特正交化7、n维向量空间(数学一)第四章线性方程组1、线性方程组的克莱姆法则2、齐次线性方程组有非零解的判定条件3、非齐次线性方程组有解的判定条件4、线性方程组解的结构第五章矩阵的特征值和特征向量1、矩阵的特征值和特征向量的概念和性质2、相似矩阵的概念及性质3、矩阵的相似对角化4、实对称矩阵的特征值、特征向量及其相似对角矩阵第六章二次型1、二次型及其矩阵表示2、合同变换与合同矩阵3、二次型的秩4、二次型的标准型和规范型5、惯性定理6、用正交变换和配方法化二次型为标准型7、正定二次型及其判定概率论与数理统计部分第一章随机事件和概率1、随机事件的关系与运算2、随机事件的运算律3、特殊随机事件(必然事件、不可能事件、互不相容事件和对立事件)4、概率的基本性质5、随机事件的条件概率与独立性6、五大概率计算公式(加法、减法、乘法、全概率公式和贝叶斯公式)7、全概率公式的思想8、概型的计算(古典概型和几何概型)第二章随机变量及其分布1、分布函数的定义2、分布函数的充要条件3、分布函数的性质4、离散型随机变量的分布律及分布函数5、概率密度的充要条件6、连续型随机变量的性质7、常见分布(0-1分布、二项分布、几何分布、超几何分布、泊松分布、均匀分布、指数分布、正态分布)8、随机变量函数的分布(离散型、连续型)第三章多维随机变量及其分布1、二维离散型随机变量的三大分布(联合、边缘、条件)2、二维连续型随机变量的三大分布(联合、边缘和条件)3、随机变量的独立性(判断和性质)4、二维常见分布的性质(二维均匀分布、二维正态分布)5、随机变量函数的分布(离散型、连续型)第四章随机变量的数字特征1、期望公式(一个随机变量的期望及随机变量函数的期望)2、方差、协方差、相关系数的计算公式3、运算性质(期望、方差、协方差、相关系数)4、常见分布的期望和方差公式第五章大数定律和中心极限定理1、切比雪夫不等式2、大数定律(切比雪夫大数定律、辛钦大数定律、伯努利大数定律)3、中心极限定理(列维—林德伯格定理、棣莫弗—拉普拉斯定理)第六章数理统计的基本概念1、常见统计量(定义、数字特征公式)2、统计分布3、一维正态总体下的统计量具有的性质4、估计量的评选标准(数学一)5、上侧分位数(数学一)第七章参数估计1、矩估计法2、最大似然估计法3、区间估计(数学一)第八章假设检验(数学一)1、显著性检验2、假设检验的两类错误3、单个及两个正态总体的均值和方差的假设检验考研数学复习之拿高分方法一、理性分析三个组成部分,各个击破我们知道数学整个试卷的组成部分是:高数82分+线代34分+概率论34分;很明显微积分占了绝大部分;另外概率论里面很多题目要用到微积分的工具,实际上微积分的分数比82分要高,应该是能到100分左右。

2023-2024年考研《数学》必备知识点考点汇编

2023-2024年考研《数学》必备知识点考点汇编

考研数学公式整理1 1.等价代换的补充2.泰勒公式3.基本导数公式4.几个常用函数的高阶导数5.不定积分的基本积分公式6.定积分性质7.渐近线8.微分中值定理考研数学公式整理2 ⚫二重积分的性质⚫对称性⚫ 莱布尼茨判别法则⚫麦克劳林级数⚫狄利克雷收敛定理⚫奇偶函数的傅里叶级数⚫常用的二次曲面考研数学公式整理31.行列式的性质()()()11121311121321222321222331323331323311111212131321222331.0,0.,.,.T A A k k ka ka ka a a a a a a k a a a a a a a a a a b a b a b a a a a ==+++行列互换,其值不变,即某行列全为则行列式的值为某行列有公因子则可把提到行列式外面某行列每个元素都是两个数之和则可拆成两个行列式之和性质1 性质2 性质3 性质4 ()()()11121311121321222321222332333132333132331112131112132122231121122213313233..0..a a ab b b a a a a a a a a a a a a a a k a a a a a a a a a ka a ka a ka a a a =+=++两行列互换,行列式的值变号两行列元素相等或对应成比例,则行列式的值为某行列倍加到另一行(列),行列式的值不变性质5 性质6 性质7 23313233a a a a +2.抽象型行列式—解法解题思路:对抽象型行列式,计算方法主要是利用行列式的性质,矩阵的性质,特征值及相似等。

主要的公式有:11112121.,2.,3.,4.5.6.,,,,7..T T n n n n A n A A A A A n kA k A A B n AB A B A n A AA n A A n A A n AB A B λλλλλλ−*−−=======L L 若是阶矩阵是的转置矩阵,则;若是阶矩阵则;若都是阶矩阵,则;若是阶矩阵,则;若是阶可逆矩阵,则;若是阶矩阵的特征值则;若阶矩阵与相似,则4.逆矩阵的性质()()111111111111;10;;.A A kA A k k AB B A AA AB A B −−−−−−−−−−−−==≠==+≠+1)()2)()3)();4) 没公式特别注意:5.逆矩阵—解法()()()()111111111110,..,,,.0000.0000A A A AA E E A AB n AB E A B A B AB A A A B B BB A*−−−−−−−−−−−≠=→==+⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦若则都是阶矩阵则对型化为型.;方法一:用伴随方法二:用初等变换方法三:用定义方法四:用单位矩阵恒等变形方法五:用分块公式6.矩阵的秩定理8.具体向量组如何判定相关无关()()1212121212,,,,,,0,,,1.,,,,,,00.m m m n n x r m m n n n n ααααααααααααααα⇔=⇔<=+⇔=≠L L L L L 对具体(含参数)向量组如何判定相关无关?向量组相关(无关)齐次方程组有非零解(只有零解)(向量个数)((向量个数)).个维向量必相关个维向量相关(无关)()定理1推论1推论21212112121212,,,,,,,,,,,,,,,,,,,,,m m m m nm m m r m ααααααααβββααααααβββ++−⎧⎨⎩⎧⎨⎩L L L L L L L 若向量组相关,增加个数后的向量组则仍相关;对应减少向量坐标后的向量组若向量组无关,减少个数后的向量组则仍无关.对应增加向量坐标后的向量组定理29.抽象向量组如何证明无关10.特征值和特征向量的性质11.相似矩阵的性质()()111,.A B nnii ii i i A B A B r A r B E A E B a b λλλλ==⇒=⇒=⇒−=−=⇒=∑∑:()(必要条件);;即;()()()11112,,,,,,,.n n n n n n A B P AP B P A kE P B kE P A P B A B A kE B kE A kE B kE r A kE r B kE A B A B A PB P −−−−=+=+=+++=++=+=:::::()如设则因此由要想到进而;由要想到进而可用相似求 12.矩阵相似对角化的条件()()11,0.n i i nTn ii i A A n A i i n r E A i A n A r A A A a λλαβ=Λ⇔⇔−−=⇐⇐==Λ⇔≠∑::有个线性无关的特征向量;的重特征值有个无关的特征向量,即;有个不同的特征值;是实对称阵.对或的矩阵注:13.正定定理()12,,,0,0000,T n T ii f x x x x Ax x x Ax A A A a A =⇔∀≠>⇔⇔≤L 二次型正定有;的特征值都大于;的全部顺序主子式大于.若的主对角线某元素则必不正定.定理4注:14.等价、相似、合同()(),.,.A B A B A B A B A B P Q PAQ B r A r B ≅⇔=⇔=两个同型矩阵与,若可经过初等变换变成称与等价,记作同型矩阵矩阵与等价存在可逆矩阵和使;判定1,,,.,,A B P P AP B A B A B A B A B A B A B A B A B −=ΛΛΛ::::两个方阵与若存在可逆矩阵使称与相似,记作若与的迹或秩或行列式或特征值不相等,则与不相似;若,但不能对角化则与不相似;若,且则与相似.判定,,,..T T T A B C C AC B A B A B A B x Ax x Bx A B =⇔⇔:两个实对称矩阵与若存在可逆矩阵使称与合同,记作实对称矩阵与合同二次型和有相同的正、负惯性指数;实对称矩阵与有相同的正、负特征值个数判定考研数学公式整理41.概率基本公式()()()()()()()()()()()()()()()()()()1.=.3.=..P A P A P A B P A P B P AB P A B C P A P B P C P AB P AC P BC P ABC P A B P A P AB P AB =−+−=++−−−+−−=U U U 正面直接求概率困难时可考虑此公式,比如涉及"至少、至多"等字眼.超过个事件的加法公式往往会有两两互斥的条件考减法公式是考试的重点;(1)逆事件的概率(2)加法公式(3)减法公式注:注:注: ()()()()()()()()()()()()0,,=.1;.P A A B P AB P B A P B A P A P B A P B A P B A P B C A P B A P BC A P BC A >=−−=−= 若称在发生的条件下,发生的概率为条件概率记为,且条件概率也是概率,满足概率的一切性质与公式,如(4)条件概率注:()()()()0,=.P A P AB P A P B A >⋅如果则 (5)乘法公式()()()()121=,,1,,.,.n i j ni i i i A A A A A i j n B P B P A P B A B A B P B =Ω=Φ≤≠≤=∑U UL U I 若且则对任一事件有如果某个事件的发生总是与某些原因或前一阶段的某些结果有关则总是使用全概率公式把各种导致发生的可能性(概率)加起来求(6)全概率公式 注:()()()()()()()121=,,1,0,.,,.n i j i jj niii j j A A A A A i j n P A P B A B P B P A B P A P B A B A P A B =Ω=Φ≤≠≤>=∑U UL U I 若且,则对任一事件只要则如果已知发生了去探求是某原因导致发生的可能性(概率)则总是使用贝叶斯公式看这一原因占总的原因的比例注(7)贝叶斯公式 :2. 独立与互斥、包含的关系()()01,01,,P A P B A B A B <<<<设如果与互斥或存在包含关系则与不独立.3.常见的分布{}()(){}()()()1011,0,1.0101,1,.1,0,1,,.,01,,.12,,kk n k k kn X P X k p p k X p p X B p X P X k C p p k n X n p p X B n p n X X B n p −−−==−=<<−==−=<<:L ::1.分布如果随机变量的分布律为则称服从参数为()的分布记为2.二项分布如果随机变量的分布律为则称服从参数为()的二项分布记为()次伯努利试验中试验成功的次数服从二项分布;()对最可能发生(成注:()(){}(){}()()1111.,0,1,2,!0,.1,1,2,1,.k k k n p k n p e X P X k k k X X P X P X k p p k X p p X G p X λλλλλ−−+−≤≤+===>==−=<<L:L:功)的次数满足3.泊松分布如果随机变量的分布律为则称服从参数为()的泊松分布记为4.几何分布如果随机变量的分布律为则称服从参数为(0)的几何分布记为伯努利试验中首次成功所需的试验次数服从几何分布.注:()()()()(){}5.1,,0,0,,,,.,.1,,,,.a x b X f x b a x a x a X a b X U a b X F x a x b b a x b d cX U a b a c d b P c X d b a⎧<<⎪=−⎨⎪⎩<⎧⎪−⎪=≤<⎨−⎪≥⎪⎩−≤<≤<<=−::均匀分布如果随机变量的概率密度为其他则称服从上的均匀分布记为的分布函数为若对则注: ()()()(){}{}{}o o ,0,00,1,0..0,0,10,;2,0,.x x a e x X f x e x X X E X F x x X E a P X a e t s P X t s X s P X t λλλλλλλλ−−−⎧>=>⎨⎩⎧−≥=⎨<⎩∀>≥=∀>≥+≥=≥::6.指数分布如果随机变量的概率密度为其中为参数;其他则称服从参数为的指数分布,记为的分布函数为若则对则对则注:()()()()()()()()()()()()()222222222o 2o ,.,,,.,0,10,1;,;.1,,0,1;21,0x x x x x X f x x X X N X N x x x t dt dt X X N N x x μσμσμσμσϕϕμμσσ−−−−−∞=−∞<<+∞===−∞<<+∞Φ==−Φ−=−ΦΦ=⎰⎰::::7.正态分布如果随机变量的概率密度为:则称服从参数为的正态分布记为特别地当时称为记为概率密度分布函数若则标准化标准正态分布,注:()()o 222o 1;23,,,;4,X N aX b N a b a X Y aX bY μσμσ+++::若则若分别服从正态分布,且相互独立,则服从正态分布.4. 两个常见的二维连续型随机变量1.二维均匀()()()()(){},,1,,,0,,,,,D D GDX Y D X Y DS f x y S D S X Y D G D P X Y G S ⎧∈⎪=⎨⎪⎩⊂∈=在平面区域上服从均匀分布则,其中是的面积.其他设在区域上服从均匀分布若则;注:2.二维正态()()()()()222212121212221122,,,,;.,,,;1,1.,,,,,,,,0.X Y N EX EY DX DY X N Y N X Y aX bY X Y X Y μμσσρμμσσρμσμσρ====∈−+⇔=:::其中(1)反之不对(独立时可以);(2)的条件分布都是正态分布;(3)服从正态分布;(4)独立不相关即注:5.期望{}()()()()()()()()()()111,2,,.,.i i i i i i i i X P X x p i Y g X X EX x p Eg X g x p X f x Y g X X EX xf x dx Eg X g x f x dx ∞∞==+∞+∞−∞−∞=========∑∑⎰⎰L 设离散型随机变量的分布律为是的函数,则;设连续型随机变量的概率密度为是的函数,则;(1)一维离散型(2)一维连续型(){}()()()()()()()()()()()()11,,,1,2,,,,,,.,,,,,,,,.i j iji j ij i j X Y P X x Y y p i j Z g X Y X Y Eg X Y g x y p X Y f x y Z g X Y X Y Eg X Y g x y f x y dxdy ∞∞==+∞+∞−∞−∞========∑∑⎰⎰L 设二维离散型随机变量的联合分布为是的函数,则设二维连续型随机变量的联合概率密度为是的函数,则(3)二维离散型(4)二维连续型()()()o o o o 1234,,.Ec c E aX c aEX c E X Y EX EY X Y E XY EX EY =+=+±=±=⋅;;;若独立则(5)性质6.方差()()222.DX E X EX EX EX =−=−(1)定义()()()()()()()()2o 2o o 2o o 2210,;20342,5,,,.DX EX EX DX Dc D aX b a DX D X Y DX DY Cov X Y X Y D X Y DX DY D XY DXDY DX EY DY EX ≥=+=+=±=+±±=+=++;;;若独立则(2)性质7.常用分布的数学期望和方差()()()()()()()()()()()o o o o 22o o 2o 22o 11,,12,,13,114,5,,212116,7,,280,11.X B p EX p DX p p X B n p EX np DX np p X P EX DX p X G p EX DX p pb a a bX U a b EX DX X E EX DX X N EX DX X N E X D X λλλλλλμσμσπ==−==−==−==−+========−::::::::如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则;如果,则8.协方差()()()()()()()()()()()()()()()o oo o 121211122122,.1,,,,2,03,,,,,,,.Cov X Y E X EX Y EY E XY EX EY Cov X Y Cov Y X Cov X X DX Cov X c Cov aX bY abCov X Y Cov aX bX cY dY acCov X Y adCov X Y bcCov X Y bdCov X Y =−−=−⋅⎡⎤⎣⎦====++=+++;;;4(1)定义(2)性质9.相关系数,0,.XY XY Cov X Y X Y ρρ==如果称和不相关(1)定义{}oo o o 1123=1,11,04,1,0XY YX XX XY XY XYa b P Y aX b a Y aX b a ρρρρρρ==≤⇔=+=>⎧=+=⎨−<⎩;;1;存在使;如果则.(2)性质10.大数定律1.依概率收敛{}1212,,,,,,0,lim 1,,,,,,,.n n n Pn n X X X a P X a X X X a X a εε→∞>−<=⎯⎯→L L L L 对随机变量序列和常数如果对任意的有则称随机变量序列依概率收敛于记为2.切比雪夫大数定律1211,,,,,,,1,2,,110,lim 1.n k k k n ni i n i i X X X EX DX DX k P X EX n n εε→∞===⎧⎫>−<=⎨⎬⎩⎭∑∑L L L 设独立,期望方差都存在,方差有一致上界则对任意的有3.伯努利大数定律(),,,,0,lim 1.n X n A A p X X B n p P p n εε→∞⎧⎫>−<=⎨⎬⎩⎭:设是重伯努利试验中事件发生的次数每次试验事件发生的概率为即则对任意的有4.辛钦大数定律1211,,,,,,0,lim 1.n n k i n i X X X EX P X n μεμε→∞=⎧⎫=>−<=⎨⎬⎩⎭∑L L 设独立同分布,期望存在则对任意的有11.中心极限定理1.列维—林德伯格中心极限定理()22122,,,,,,,,lim .n k k n t i x n X X X EX DX X n x P x dt x μσμ−−∞→∞==⎧⎫−⎪⎪⎪≤==Φ⎬⎪⎪⎪⎩⎭∑⎰L L 设独立同分布期望方差都存在,则对任意的有2.拉普拉斯中心极限定理()()22,,lim .t x n X B n p x P x dt x −→∞⎧⎫⎪≤==Φ⎬⎪⎭⎰:设,则对任意的有12.三大抽样分布()()()()(){}()()()()()()()2122222222212122222222,,,01,,.01,,,2;n n n n X X X N X X X n X X X n P n n f x dx f x n n n X n EX n DX n X ααχαχχααχχαχχχαχχ+∞++++++<<>====⎰L L L :::设相互独立且都服从标准正态,则服从自由度为的分布记为对于给定的()称满足(是的概率密度)的数为的上分位点.若则若221.χn 分布(1)定义:(2)上α分位点(3)χ分布的性质()()()221212,,,.n Y n X Y X Y n n χχ++::,且独立则()()()()(){}()()()()()()()()()()()()21201,,,,.01,,,01,1,t n X N Y n X Y n t t n P t n t n fx dx fx t n t n t n t f x t n t n n t n N t t n t F αααααχαααα+∞−<<>===−⎰:::::设,且独立,的分布对于给定的()称满足(是的概率密度)的数为的上分位点.分布的概率密度是偶函数故,且当自由度充分大时分布近似于,;则2.t 分布(1)定义:(2)上α分位点(3)t 分布的性质().n()()()()(){}()()()()()()()122212111212221212,12121212,,,,,.01,,,,,,1,,F n n X n Y n X Y X Xn n n n F F n n Y Y n n P F n n F n n f x dx f x F n n F n n F n n F F n n F Fαααχχαααα+∞<<>==⎰:::::设且独立,则服从第一自由度为,第二自由度为的分布记为对于给定的()称满足(是的概率密度)的数为的上分位点.若则3.F 分布(1)定义:(2)上α分位点(3)F 分布的性质()()()()211211221,1,,,.,n n F F n n F n n F n n αα−=:;若则13.矩估计的求法1222111,...11()n kk k k i i n ni ii i A X EX n X EX X EX X EX X EX X X DX n n α======⎧⎧==⎪⎪⎨⎨=−=⎪⎪⎩⎩∑∑∑:用样本矩替换总体矩——即:对一个未知参数的情形 令对两个未知参数的情形 令或原理步骤14.最大似然估计的求法()()()()121121.,,,;,,,,;,.ln ln .0,.ln 0,ln .i nn i i i nn i i a L x x x f x L x x x p x b Ld L c d d L L d θθθθθθθθ=====⎡⎤⎣⎦=⎡⎤⎣⎦==∏∏L L :写出样本的似然函数取对数得求导解出即可若无解即单调,则应该用定义法找出的最大似然估计量步骤连续型离散型15.估计量的评价标准121212,.,,,.0,lim 1,,Pn E D D P θθθθθθθθθθθεθθεθθθθ∧∧∧∧∧∧∧∧∧∧∧→∞=<⎧⎫>−<=⎯⎯→⎨⎬⎩⎭若则称是的无偏估计量设都是的无偏估计量若则称比更有效若对任意的有即则称是的一致估计量.(1)无偏性(2)有效性(3)一致性16. 求置信区间的步骤{}1212,,12:,,.T a b P a T b a T b ααθθθθθθ∧∧∧∧<<=−⎛⎫<<<< ⎪⎝⎭(1)构造统计量并确定其分布;(2)给定,确定常数使得;(3)由()反解出的范围得置信区间。

考研数学总结知识点

考研数学总结知识点

考研数学总结知识点一、数学分析1. 极限与连续(1)定义极限和连续是数学分析中非常重要的概念。

极限指的是当自变量趋于某个值时,函数的取值接近于一个确定的值;连续则指的是函数在定义域内没有断点,函数图形没有间断。

(2)性质极限与连续有一系列重要的性质,比如极限的唯一性、极限运算的性质、连续函数的性质等,对于数学分析的求解非常有帮助。

(3)应用极限与连续的概念在微积分、微分方程等数学分析的领域中有着广泛的应用,比如求解函数的极限值、证明函数的连续性等。

2. 导数与微分(1)定义导数是函数的变化率,也可以理解为函数图形在某一点的切线斜率。

微分则是函数在某一点的局部线性逼近。

(2)性质导数与微分有一系列重要的性质,比如导数的求导法则、微分的性质和运算法则等。

(3)应用导数与微分的概念在微积分领域中有广泛应用,比如求解函数的极值、函数的凹凸性、函数的泰勒展开等。

3. 积分与定积分(1)定义积分表示函数在一定区间上的累积效应,定积分则是积分的一种特殊形式,表示函数在一个区间上的面积。

(2)性质积分与定积分有一系列重要的性质,比如定积分的性质、变量代换法则、分部积分法则等。

积分和定积分的概念在微积分领域中有广泛应用,比如求解曲线下的面积、求解定积分、计算定积分等。

4. 级数和幂级数(1)定义级数是指把无穷多项相加得到的和,幂级数则是一种特殊形式的级数,其中每一项都是一个幂函数。

(2)性质级数和幂级数有一系列重要的性质,比如级数收敛和发散的判别法则、幂级数的收敛半径等。

(3)应用级数和幂级数的概念在数学分析中有广泛的应用,比如求解函数的幂级数展开、证明级数的收敛性等。

5. 函数空间(1)定义函数空间是指一组满足一定条件的函数的集合,其中函数之间可以定义一些特殊的运算。

(2)性质函数空间中常见的性质包括线性空间的性质、内积空间的性质和赋范空间的性质等。

(3)应用函数空间的概念在泛函分析中有着广泛的应用,比如证明函数序列的收敛性、求解特定函数空间上的最优逼近问题等。

考研数学常考知识点整理

考研数学常考知识点整理

考研数学常考知识点整理一、代数部分1.1 数学基础知识1.1.1 函数与方程1.1.1.1 基本函数与其性质1.1.1.2 方程与不等式1.1.2 数列与数列极限1.1.2.1 等差数列与等比数列1.1.2.2 数列极限的定义与性质1.1.3 概率与统计1.1.3.1 随机事件与概率计算1.1.3.2 排列组合与基本统计知识二、微积分部分2.1 极限与连续2.1.1 极限的定义与性质2.1.2 连续的概念与判定2.2 导数与微分2.2.1 导数的定义与性质2.2.2 微分的概念与计算2.3 积分2.3.1 不定积分与定积分的概念2.3.2 基本积分公式与常见积分方法2.3.3 几何应用与物理应用三、线性代数部分3.1 矩阵与行列式3.1.1 矩阵的基本运算与性质3.1.2 行列式的定义与计算3.2 向量空间与线性变换3.2.1 向量空间与子空间的概念3.2.2 线性变换的定义与性质四、概率论与数理统计部分4.1 随机变量与概率分布4.1.1 随机变量的定义与常见概率分布 4.1.2 期望与方差的计算4.2 参数估计与假设检验4.2.1 参数估计的方法与性质4.2.2 假设检验的基本原理与步骤五、常微分方程部分5.1 一阶常微分方程5.1.1 可分离变量与线性方程5.1.2 齐次方程与一阶线性方程 5.2 高阶常微分方程5.2.1 二阶常系数线性齐次方程5.2.2 二阶非齐次线性方程六、离散数学部分6.1 图论与树6.1.1 图的基本概念与性质6.1.2 树的定义与常见性质6.2 排列组合与离散概率6.2.1 排列与组合的基本计算6.2.2 离散概率的计算与应用以上是考研数学常考知识点的整理,希望对你的学习有所帮助。

记得多做练习题,夯实基础,理解概念及性质,注重对解题方法的掌握与应用。

加油!。

考研数学备考建议重点知识点整理与解题技巧

考研数学备考建议重点知识点整理与解题技巧

考研数学备考建议重点知识点整理与解题技巧考研数学备考对于大多数考研学子来说是一项极为重要的任务。

作为考研数学考试的一部分,数学一直被认为是难度较大的科目之一。

为了帮助广大考生更好地备考数学,本文将围绕重点知识点整理和解题技巧两个方面进行论述。

一、重点知识点整理1. 高等代数高等代数是考研数学中较为基础的部分,考生需要掌握线性方程组、矩阵、行列式等内容。

在备考过程中,考生应重点关注以下知识点:(1)行列式的性质与初等变换:掌握行列式的基本性质以及通过初等变换求解行列式的方法;(2)矩阵的运算:重点理解矩阵的加法、减法、乘法等运算规则;(3)特征值与特征向量:了解特征值与特征向量的定义及其求解方法。

2. 高等几何高等几何是考研数学中的重要组成部分,考生需要掌握平面解析几何、空间解析几何等内容。

在备考过程中,应重点关注以下知识点:(1)平面解析几何:熟悉平面上直线和曲线的方程表示及其性质;(2)空间解析几何:重点了解空间直线和平面的方程表示以及相关性质;(3)曲面方程:熟悉曲面的方程表示,如球面、柱面、锥面等。

3. 数学分析数学分析是考研数学中较为复杂的一部分,备考过程中需要加强对函数、极限、连续性等内容的理解。

重点知识点整理如下:(1)函数的极限:理解极限的定义及求解方法,包括左极限、右极限和无穷极限;(2)连续性:掌握函数连续性的定义及常见连续函数的性质;(3)导数与微分:熟悉导数的定义、导数的计算方法及微分的概念。

二、解题技巧1. 多做题做题是备考数学的关键环节,通过大量的练习能够更好地熟悉知识点并掌握解题技巧。

建议考生选择一些经典的考研数学习题集进行刷题,同时要注意做题的方法和步骤。

2. 分类总结题型考研数学中常见的题型包括选择题、填空题、计算题和证明题等。

考生在备考过程中应对这些题型进行分类总结,针对不同题型制定相应的解题策略。

3. 注意分析解题过程在解题过程中,考生需要注意分析问题,搞清题目的要求,并结合已知条件进行思考。

考研 高等数学必看知识点

考研 高等数学必看知识点

考研高等数学必看知识点不能因为提分不显著,就在最后关头放弃数学的复习,11月死磕这些知识点,你的数学也许会让你惊喜!一起看看高数部分应该跟哪些知识点“较劲”到底吧!第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表:“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二))第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

考研数学3知识点总结

考研数学3知识点总结

考研数学3知识点总结一、实变函数1. 极限和连续实变函数的极限是指当自变量逼近某个确定值时,函数的取值也逼近一个确定值。

极限的概念是实变函数中最为基础的概念之一,它是后续讨论的连续性、导数等概念的基础。

连续性是一个函数在某一点上的性质,如果这个函数在这一点可导,那么它在这一点也是连续的。

连续的函数具有一些良好的性质,如介值定理、零点定理等。

2. 导数和微分导数是实变函数中的一个重要概念,它描述了函数在某一点上的变化率。

导数的概念与实际问题密切相关,例如速度、加速度等概念都可以通过导数来描述。

微分是导数的几何意义,微分可以看作是对函数在某点上的局部线性逼近,这对于研究函数的增长趋势、凹凸性等问题有很大的帮助。

微分也是求解微分方程的一种工具。

3. 级数级数是一种无穷序列的和的形式,级数的收敛性和敛散性是实变函数中的一个重要问题。

级数的收敛性可以通过不同的方法来判断,比如比较法、根值法、积分法等。

4. 泰勒级数和泰勒展开泰勒级数是一个函数在某一点附近的一种无穷级数表示。

泰勒级数的性质决定了当自变量足够靠近展开点时,函数的值可以用泰勒级数来近似表示。

泰勒展开是对函数的泰勒级数的一种应用,它可以用来求解函数的近似值,研究函数的性质等。

5. 不定积分不定积分是函数积分的一种形式,它可以用来描述函数的原函数。

不定积分的计算方法有很多,比如换元法、分部积分法、积分表法等,学习不定积分需要掌握这些方法的应用。

6. 定积分定积分是函数在一个区间上的积分,它可以用来描述函数在这个区间上的累积效应,比如曲线所围成的面积、质量、能量等。

定积分有很多重要的性质,比如微积分基本定理、平均值定理等。

7. 微分方程微分方程是一种包含未知函数及其导数的方程,它在自然科学、工程技术等领域中有着广泛的应用。

微分方程的求解方法有很多,比如常数变易法、特征方程法、拉普拉斯变换法等。

二、复变函数1. 复数和复变函数复数是实数集的扩充,它具有形式为a+bi的特点,其中a和b为实数,i为虚数单位。

考研数学一知识点总结

考研数学一知识点总结

考研数学一知识点总结数学一是考研数学科目中的一部分,主要考察学生对高等数学基础知识的掌握程度。

而备考数学一,需要掌握的知识点也是很多的,包括微积分、线性代数、概率论与数理统计等内容。

本文将对数学一的知识点进行总结,希望对考生有所帮助。

一、微积分微积分是数学一中最为重要的知识点之一,它是数学的重要分支,也是其他学科的重要工具。

微积分主要包括函数、极限与连续、导数与微分、定积分与反常积分、微分方程等内容。

1.1 函数函数是微积分的基础,也是数学的基础之一。

在考研数学一中,需要掌握函数的定义、性质、基本初等函数及其性质、函数的图像与性态分析等知识点。

1.2 极限与连续极限是微积分的重要概念之一,也是微积分中的重要工具。

它是研究函数在某一点附近的变化规律的一种数学工具。

在考研数学一中,需要掌握极限的定义、性质、计算方法,以及连续的定义、性质、中值定理等内容。

1.3 导数与微分导数是微积分的关键内容之一,它是函数在某一点的变化率。

在考研数学一中,需要掌握导数的定义、性质、计算方法,以及高阶导数、隐函数与参数方程的导数求导等内容。

1.4 定积分与反常积分定积分和反常积分是微积分的重要内容之一,它是研究函数在某一区间上的变化规律。

在考研数学一中,需要掌握定积分的定义、性质、计算方法,以及反常积分的定义、性质、计算方法等内容。

1.5 微分方程微分方程是微积分的应用之一,它是研究变化规律的数学工具。

在考研数学一中,需要掌握微分方程的基本概念、解的存在唯一性定理、解的性质、解的求解方法等内容。

二、线性代数线性代数是数学一中的另一个重要知识点,它是数学的一个重要分支,主要研究向量空间、线性变换、矩阵等内容。

2.1 向量空间向量空间是线性代数的基础,也是线性代数中的重要内容之一。

在考研数学一中,需要掌握向量空间的定义、性质、子空间、基与维数、坐标与矩阵表示等知识点。

2.2 线性变换线性变换是线性代数的重要内容之一,它是指一个数学结构到另一个数学结构的线性映射。

考研数学知识点总结

考研数学知识点总结

考研数学知识点总结一、数学分析。

1. 极限与连续。

数列极限、函数极限、无穷小量、无穷大量、函数连续性等概念及相关定理。

2. 导数与微分。

函数的导数与微分、高阶导数、隐函数与参数方程求导、微分中值定理、泰勒公式等内容。

3. 微分方程。

常微分方程的解法、一阶线性微分方程、高阶线性微分方程、常系数齐次线性微分方程等。

4. 不定积分。

不定积分的概念、基本积分法、换元积分法、分部积分法、有理函数积分、三角函数积分等。

5. 定积分。

定积分的概念、定积分的性质、定积分的计算、变限积分、定积分的应用等内容。

二、线性代数。

1. 行列式。

行列式的概念、性质、行列式的计算、克拉默法则、行列式的应用等。

2. 矩阵与向量。

矩阵的概念、矩阵的运算、矩阵的秩、矩阵的逆、向量的线性相关性、向量空间等内容。

3. 线性方程组。

线性方程组的概念、线性方程组的解法、矩阵求解线性方程组、线性方程组的应用等。

4. 特征值与特征向量。

矩阵的特征值与特征向量、特征值与特征向量的性质、对角化、二次型等内容。

5. 线性空间。

线性空间的概念、线性子空间、线性变换、线性空间的基与维数、线性空间的同构等。

三、概率论与数理统计。

1. 随机事件与概率。

随机事件的概念、概率的基本性质、古典概型、条件概率、独立性等内容。

2. 随机变量及其分布。

随机变量的概念、离散型随机变量、连续型随机变量、随机变量的分布函数、常见分布等。

3. 多维随机变量及联合分布。

多维随机变量的概念、联合分布函数、边缘分布、条件分布、独立性等内容。

4. 数理统计。

统计量、抽样分布、参数估计、假设检验、方差分析、相关分析等内容。

5. 随机过程。

随机过程的概念、马尔可夫链、泊松过程、布朗运动等内容。

以上是考研数学知识点的总结,希望对大家复习备考有所帮助。

祝各位考生取得理想的成绩!。

考研数二知识点总结

考研数二知识点总结

考研数二知识点总结一、线性代数1. 行列式行列式是矩阵的一个重要性质,它可以用于求解线性方程组的解。

行列式的定义是一个数学函数,用来将一个矩阵转换为一个标量。

行列式的计算方法有代数余子式法、拉普拉斯展开法和行列式性质法等。

2. 矩阵矩阵是线性代数中的一个重要概念,它是由数域上的元素组成的矩形阵列。

矩阵有加法、数量乘法和矩阵乘法的运算法则。

矩阵的转置、逆矩阵、行列式以及特征值和特征向量都是矩阵的重要性质。

3. 向量向量是线性代数中的另一个重要概念,它是一个具有方向和大小的量。

向量的基本运算有加法、数量乘法和点积。

向量的线性相关性、线性无关性以及向量的表示都是考研数学中的重要知识点。

4. 矩阵的特征值和特征向量矩阵的特征值和特征向量是矩阵运算中的重要概念,它们可以用来描述矩阵的性质和特征。

特征值和特征向量在物理学、工程学和经济学等领域都有重要的应用。

5. 矩阵的相似性矩阵的相似性是指对于两个矩阵A和B,如果存在一个非奇异矩阵P,使得P^-1AP=B成立,则称矩阵A与B相似。

相似矩阵具有相同的特征值,但不一定有相同的特征向量。

6. 线性空间线性空间是线性代数的一个重要概念,它是指一个集合,它满足一些线性运算的性质。

线性空间中的向量可以进行线性组合和线性相关的运算。

7. 线性变换线性变换是指一个向量空间到另一个向量空间的映射,它保持了向量空间的线性运算性质。

线性变换可以用矩阵来描述,它在计算机图形学、物理学和工程学中都有重要的应用。

二、概率论1. 概率空间概率空间是概率论的一个重要概念,它由一个样本空间和一个事件的集合组成。

概率空间中的事件有概率分布,它描述了事件发生的可能性大小。

2. 随机变量随机变量是描述随机现象的数学变量,它可以是离散型随机变量或连续型随机变量。

随机变量的分布函数、密度函数以及期望和方差都是概率论中的重要知识点。

3. 事件的独立性事件的独立性是指两个事件的发生不受到另一个事件的影响。

考研数学的基础知识点总结

考研数学的基础知识点总结

考研数学的基础知识点总结
一、集合论
1. 集合、元素、子集、空集、全集的概念
2. 集合的运算:并集、交集、差集、余集
3. 集合的基本性质
4. 常用的集合:自然数集、整数集、有理数集、实数集
5. 集合的表示方法
二、函数与映射
1. 函数的概念与性质
2. 函数的图像
3. 函数的运算:复合函数、反函数
4. 常用函数:线性函数、指数函数、对数函数、三角函数
5. 映射的概念与性质
三、数列与级数
1. 数列的概念与表示
2. 数列的极限
3. 等差数列、等比数列
4. 级数的概念与性质
5. 常见级数:等差级数、等比级数、调和级数
四、极限与连续
1. 极限的概念与性质
2. 极限的运算法则
3. 无穷小量与无穷大量
4. 函数的连续性
5. 连续函数的性质
五、导数与微分
1. 导数的概念与性质
2. 导数的计算:基本函数求导、复合函数求导
3. 高阶导数
4. 微分的概念与性质
5. 微分的应用:泰勒公式、极值与拐点
六、积分与定积分
1. 不定积分的概念与性质
2. 基本积分法
3. 定积分的概念与性质
4. 定积分的计算:换元积分法、分部积分法
5. 积分的应用:面积、体积、曲线长度、曲线弧长
七、常微分方程
1. 微分方程的基本概念
2. 一阶微分方程的求解
3. 高阶微分方程的求解
4. 常系数齐次线性微分方程的求解
5. 变参数线性微分方程的求解
以上就是考研数学的基础知识点总结,考生可以对这些知识点进行仔细复习,加强自己的数学基础,为考研数学顺利通过打下坚实的基础。

考研必看考研数学基础知识点梳理(高数篇)

考研必看考研数学基础知识点梳理(高数篇)

考研数学基础知识点梳理(高数篇) 第一章函数、极限与连续1、函数的有界性2、极限的定义(数列、函数)3、极限的性质(有界性、保号性)4、极限的计算(重点)(四则运算、等价无穷小替换、洛必达法则、泰勒公式、重要极限、单侧极限、夹逼定理及定积分定义、单调有界必有极限定理)5、函数的连续性6、间断点的类型7、渐近线的计算第二章导数与微分1、导数与微分的定义(函数可导性、用定义求导数)2、导数的计算(“三个法则一个表”:四则运算、复合函数、反函数,基本初等函数导数表;“三种类型”:幂指型、隐函数、参数方程;高阶导数)3、导数的应用(切线与法线、单调性(重点)与极值点、利用单调性证明函数不等式、凹凸性与拐点、方程的根与函数的零点、曲率(数一、二)) 第三章中值定理1、闭区间上连续函数的性质(最值定理、介值定理、零点存在定理)2、三大微分中值定理(重点)(罗尔、拉格朗日、柯西)3、积分中值定理4、泰勒中值定理5、费马引理第四章一元函数积分学1、原函数与不定积分的定义2、不定积分的计算(变量代换、分部积分)3、定积分的定义(几何意义、微元法思想(数一、二))4、定积分性质(奇偶函数与周期函数的积分性质、比较定理)5、定积分的计算6、定积分的应用(几何应用:面积、体积、曲线弧长和旋转面的面积(数一、二),物理应用:变力做功、形心质心、液体静压力)7、变限积分(求导)8、广义积分(收敛性的判断、计算)第五章空间解析几何(数一)1、向量的运算(加减、数乘、数量积、向量积)2、直线与平面的方程及其关系3、各种曲面方程(旋转曲面、柱面、投影曲面、二次曲面)的求法第六章多元函数微分学1、二重极限和二元函数连续、偏导数、可微及全微分的定义2、二元函数偏导数存在、可微、偏导函数连续之间的关系3、多元函数偏导数的计算(重点)4、方向导数与梯度5、多元函数的极值(无条件极值和条件极值)6、空间曲线的切线与法平面、曲面的切平面与法线第七章多元函数积分学(除二重积分外,数一)1、二重积分的计算(对称性(奇偶、轮换)、极坐标、积分次序的选择)2、三重积分的计算(“先一后二”、“先二后一”、球坐标)3、第一、二类曲线积分、第一、二类曲面积分的计算及对称性(主要关注不带方向的积分)4、格林公式(重点)(直接用(不满足条件时的处理:“补线”、“挖洞”),积分与路径无关,二元函数的全微分)5、高斯公式(重点)(不满足条件时的处理(类似格林公式))6、斯托克斯公式(要求低;何时用:计算第二类曲线积分,曲线不易参数化,常表示为两曲面的交线)7、场论初步(散度、旋度)第八章微分方程1、各类微分方程(可分离变量方程、齐次方程、一阶线性微分方程、伯努利方程(数一、二)、全微分方程(数一)、可降阶的高阶微分方程(数一、二)、高阶线性微分方程、欧拉方程(数一)、差分方程(数三))的求解2、线性微分方程解的性质(叠加原理、解的结构)3、应用(由几何及物理背景列方程)第九章级数(数一、数三)1、收敛级数的性质(必要条件、线性运算、“加括号”、“有限项”)2、正项级数的判别法(比较、比值、根值,p级数与推广的p级数)3、交错级数的莱布尼兹判别法4、绝对收敛与条件收敛5、幂级数的收敛半径与收敛域6、幂级数的求和与展开7、傅里叶级数(函数展开成傅里叶级数,狄利克雷定理)。

考研数学备考:数三中常考知识点

考研数学备考:数三中常考知识点

考研数学备考:数三中常考知识点1500字考研数学备考中,数学三是一个非常重要的科目。

它涵盖了较多的知识点,需要我们进行系统的学习和复习。

下面我将介绍一些数三中常考的知识点,供大家参考。

1. 极限与连续:- 函数极限的概念和性质,如极限存在准则、函数极限的四则运算、夹逼定理等。

- 数列极限的概念和性质,如数列极限的四则运算、夹逼定理等。

- 连续函数的定义和性质,如连续函数的四则运算、连续函数的复合、连续函数的保号性等。

2. 一元函数微分学:- 函数的导数和导数的基本运算法则,如常数函数、幂函数、指数函数、对数函数、三角函数、反三角函数等的导数计算。

- 高阶导数的计算和应用,如泰勒公式、极值、凹凸性等。

- 隐函数的导数计算,如隐函数定理等。

3. 一元函数积分学:- 积分的基本概念和性质,如定积分的定义、定积分的性质、积分中值定理等。

- 基本积分公式和换元积分法、分部积分法的应用。

- 微积分基本定理,如牛顿—莱布尼茨公式等。

4. 多元函数微分学:- 多元函数的偏导数和偏导数的应用,如多元函数的全微分、多元函数的极值、隐函数偏导数计算等。

- 多元函数的方向导数和梯度,如方向导数的计算公式、梯度的计算公式等。

5. 多元函数积分学:- 二重积分和三重积分的概念和性质,如积分的可加性、积分的线性性质等。

- 二重积分和三重积分的计算方法,如极坐标法、累次积分法等。

- 曲线积分和曲面积分的概念和计算方法,如格林公式、斯托克斯公式等。

6. 常微分方程:- 常微分方程的基本概念和性质,如初值问题、解的存在唯一性等。

- 一阶常微分方程的求解方法,如分离变量法、齐次方程法、一阶线性常微分方程法等。

- 高阶常微分方程的求解方法,如常系数齐次线性方程、常系数非齐次线性方程等。

以上是考研数学三中常考的知识点的简单介绍。

备考过程中,我们需要系统地学习这些知识点,并进行大量的练习和习题训练,以提高自己的解题能力和应试水平。

同时,要善于总结归纳,将学过的知识点整理成思维导图或笔记,方便复习时查阅和回顾。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章.函数变量。

在函数的概念之前,首先人们从对事物的变化发展的观察中,抽象出来变量的概念,在数学的历史上,正是变量的出现导致代数学的发展。

因为在没有变量概念的时候,人们进行算术运算,只会做到对具体的数值进行运算。

每次遇到稍微不同一些的数值,都必须很费劲地重新考虑计算方法,只有在抽象出来变量的概念后,才能对一般的数值计算抽象出来一般的计算方法,从而彻底地解决数值地计算问题。

而代数学正是为了发展一般的数值计算方法而发展起来的。

因此可以说变量概念的出现是数学发展历史上的第一个里程碑。

函数。

自然界里的观察量都可以看成是变量,然后我们从自然界里归纳出的自然规律常常表现为变量与变量之间的依赖关系。

而函数实际上就是为了表述这些变量与变量之间的依赖关系而抽象出来的数学观念。

我们常常把相互之间具有依赖关系的一些变量区分为两类,一类被称为自变量,一类被称为因变量。

因此这个依赖关系就可以理解为因变量如何被自变量决定的关系。

函数从一般的依赖关系中抽象出三个要素作为函数的基本要素。

首先就是依赖关系本身,也即一个或几个变量(自变量)是如何决定另一个变量(因变量)的,这种决定关系还必须是唯一的,因为我们研究的这种依赖关系总是一种具有确定性的关系。

也就是说,从一些自变量的数值,能够唯一地得到另一个因变量的数值。

这是函数概念里的一个关键所在。

也是初学者常常犯错误的地方。

要表示一种依赖关系,可以有很多的方式。

最直截了当的就是一一列出变量之间的所对应的数值。

例如我们常用的数学用表,列车时刻表,税单,等第,这种表示方法的好处就是一目了然,能让你很快的查到你所需要的变量的值,甚至是精确的值,而无须进行另外的计算,缺点就是只能处理很有限的数值,对于可以取大量,甚至无穷的数值的变量,这种方法就不行了。

另外还不能容易地让人理解变量之间地对应规律。

要想能容易地让人理解变量之间的对应规律,可以使用图示的方式。

对于一元函数y=f(x),它的变量相应地在平面上的直角坐标系的X轴和Y轴上取值,在一定条件下,就能得一个几何图象,表达了函数的数值分布。

用图来表示变量之间的依赖关系,可以很直观地说明这种依赖关系的很多性质。

在高等数学的学习中,我们也应该善于通过画图来培养对于抽象概念的直观能力,而初学者往往忽略这点,甚至不屑于此,这是我们应该极力避免的。

图示的缺点就是不能精确地给出数值,也不能精确地表达函数的性质。

最精确的表达方式是给出函数关系的解析表达式。

有了解析表达式,就可以对已知数值进行确定的数学计算,从而得到未知量的精确数值。

更进一步,通过对解析表达式的数学分析,可以得到函数性质的精确的表达。

而我们学习微积分的主要目的,就是掌握这种分析方法。

当然还可以有其他的表示函数的依赖关系的方法,总之只要能说明一个变量如何由另外的变量唯一决定就行。

表示了依赖关系之后,还必须说明其中自变量的取值范围。

因为在实际问题中,有时候并不能从依赖关系本身就得到自变量的取值范围。

因此还必须单独规定。

这个取值范围被称为定义域。

有了自变量的取值范围,加上函数的对应关系,就可以得到因变量的取值范围,这就是函数的第三个要素,被称为值域。

总结一下,函数概念最关键的地方,就是它的对应关系,或者说依赖关系,必须是因变量由自变量唯一确定。

尽管我们可以考虑一对多的多值函数,比方说解析几何里的一些曲线方程,要对它们应用微积分的方法,那种情形必须给予特别的处理,或者把它们分割为多个函数,总之为了统一地发展我们后面要讨论地微积分技术,我们总是坚持这一点为函数的必要条件。

第二点需要特别用心的地方就是根据函数关系由定义域求值域。

或者是只是根据函数关系的数学表达式本身,来求出具有数学意义的定义域和值域,或者还要求具有实际意义而不只是具有数学意义的定义域和值域。

这就要求我们熟练掌握各种函数的数学性质,特别是我们下面要讨论的几种基本初等函数的性质。

我们将在下面结合例题更详细地讨论这点,并且希望读者多作练习。

并不是说我们需要把一个函数用某种方式给出,就可以说是已经掌握了这个函数。

因为对于一个函数的了解,并不是知道了这个函数所代表的所有数值对应,就能判断这个函数的行为与性质,在实际问题当中,我们更加需要得到的是一个函数的性质,因为某种变化规律所具有的性质,往往表达了某个概念,而我们人类对于事物的了解最终是基于概念的理解,而不是一堆数据本身。

下面我们就来讨论函数所可能具有的几种性质。

这几种性质都具有非常直观的意义,只需要用初等的方式就可以表达出来。

(一)函数的单调性。

从直观的感觉来看,所谓单调表明了函数在某点附近具有平滑的变化,如果把函数的自变量与因变量分别在平面上的直角坐标系的两个坐标轴上取值,得到函数的图象,就可以看到函数在某点附近的单调性,意味着函数在这点附近没有剧烈的震荡,或者这点左边的点的函数值比右边的点的函数值大,或者反过来右边的点的函数值比左边的点的函数值大。

这样在一个区间内每个点都具有同样的一个性质,就可以定义这个区间的单调性。

精确地说,函数y=f(x)在区间K内的任意两点a,b,只要a<b,就有f(a)<f(b).或者是f(a)>f(b).那么就称这个函数在区间K具有单调性,如果是f(a)<f(b)的情形,则称为单调增加,如果是f(a)>f(b)的情形,则称为是单调减少。

这是严格的情形,如果上面的大于和小于分别是大于或等于和小于或等于,则是非严格的单调性。

注意上面定义里的任意两个字,应该说这是一个很严格的条件。

也是单调性定义里的关键所在。

设想一下,如果我们有一个函数,完全由所有的数值的对应来表达,那么要判断这个函数在一个区间内的单调性,则需要对这个区间内的所有数值顺序进行比较,显然,如果是对于一般的函数,这是非常困难的事。

不过如果是用我们常见的一般的解析表达式给出的函数,通过直接对解析表达式进行比较,则是非常容易判断的。

这里的关键是我们常见的一般的解析表达式给出的是变化比较平滑的函数,而如果函数的图象如下所示,则只有在极其小的区间内才有可能考虑函数的单调性。

(二)函数的有界性;从直观的感觉来看,函数的有界性就是函数图形在某个特定范围或者是在整个定义域的上下“高度”有限。

或者就说是函数在某个特定区间或者在整个定义域都不存在函数取值为正无穷大或负无穷大的点。

精确地说,就是取函数f(x)有定义的一个集合K,如果存在一个确定的正数M,无论M可能有多么大,只要对于集合K内的所有的点x,都有Mxf)(成立,那么就称函数f(x)在集合K上有界。

注意上面定义中函数外面的绝对值符号,这表明有界性是同时在上下加以限制的。

这个性质是非常好理解的。

之所以提出这么一个性质出来,倒不是因为有界性具有什么特别的趣味,而是反过来,不具有有界性的函数常常是我们必须加以注意和分析的对象,因此我们提出函数的有界性,正是为了用于判断函数是否存在无界的性质。

从上面的定义可以看到,我们是无法直接应用这个定义来证明某个函数是否有界的,因为这是一个存在性定义,我们必须通过其他的方法,来找到这么一个M,才能得到证明,而如何找到这个M,则是这个定义所没有给出的。

另外,对于这个M,只是要求其存在性,而没有要求其唯一性,实际上,这个M不可能具备唯一性,因为只要存在一个M满足条件,由于M是一个有限大小的正数,那么任何一个比M大的数同样可以作为函数的界。

下面是用图象表示的有界性的两种典型情况:(三)函数的奇偶性;同样可以从图象方面得到对于奇偶性的很好的理解,就是看在某个区间内,整个函数图形是否具有对于Y轴的镜象对称或者对于原点的中心对称性。

这样我们至少可以知道,首先这个函数的定义域必须是X轴上关于原点对称的。

精确地说,就是取函数有定义的一个关于原点对称的区间(-L,L),(1)(1)如果对于在区间(-L,L)内任意的一点x,都有f(-x)=-f(x),那么f(x)就是这个区间内的奇函数。

(2)(2)如果对于在区间(-L,L)内任意的一点x,都有f(-x)=f(x),那么f(x)就是这个区间内的偶函数。

我们可以看到,这个定义是与有界性的定义不同的一种定义方式,就是我们一般可以直接应用这个定义来证明某个函数的奇偶性,这种定义方式就是属于构造性的定义方式。

也就是直接给出了符合定义的对于如何构造出来。

在今后的学习当中,我们应该注意到这两种定义方式的差别所在。

这里我们还应该体会到在坐标系里,对函数进行反射变化实际上就是进行如下变量代换:关于原点的中心对称变换:⎩⎨⎧-=-=``y y x x关于Y 轴的镜面反射变换: ⎩⎨⎧=-=y y x x `而如果在这样的变换之下,函数的形式并没有变化,那么对于关于原点的中心对称变换,就是奇函数;对于Y 轴的镜面反射变换,就是偶函数。

那么我们在证明某个函数是否具有奇偶性,或者是奇函数还是偶函数,就可以直接应用这个变量变换,从而得到判据。

(四)函数的周期性。

从直观上来看,就是整个函数图形是否可以通过沿着X 轴,无论是朝哪个方向,平移一个有限大小的距离,得到的函数图象与原来的函数图象可以完全重合。

也就是说具有沿着X 轴的平移不变性质。

把这个意思精确表达出来,就是周期性的定义:对于实数上定义的函数y=f (x ),如果存在一个非零的实数a ,使得f (x )=f (x+a )总是成立,那么就说函数y=f (x )是实数上的周期函数,周期为a 。

注意,这里a 的正负无所谓,因为函数在整个X 轴上定义,a 为正数,只是表明函数沿着X 轴向右平移a 的距离,a 为负数,只是表明函数沿着X 轴向左平移a 的距离,这两种平移方式是等价的。

可以看到,严格的平移不变性要求函数在整个X 轴上都有定义,否则,进行平移必定会使得函数超出本来的定义域。

不过,在某些情况下,也可以定义在有限区间内的周期性,只是这时候就不能应用这个定义了,而只能具体地规定函数有限的周期性。

一般我们不考虑这样的函数。

在周期性的定义里,我们还可以看到,这个定义也是属于存在性定义,也就是说,直接从定义出发,我们无法得到具体的周期,尽管要证明一个函数的周期性,并不一定需要求出具体的周期a 是多少,但无论如何,我们必须从别的地方入手来证明周期的存在性。

周期函数的一个特例是y=a ,其中a 是一个常数。

这个函数的周期是任意的实数。

函数的反函数。

我们从函数的定义可以很自然地得到非常有意义的反函数的概念。

所谓函数无非就是自变量与因变量的数值对应,因此这种对应也可以在相反的方向上成立,即因变量的数值与自变量的数值的对应。

当然,如果要想使得得到的这个新的数值对应仍然还是一个函数,就必须还满足一个条件,就是因变量的每一个数值,对应于唯一的一个自变量的数值,再把这个条件和本来的要求自变量的每一个数值,对应于因变量的唯一一个数值加起来,就得到了一个函数存在反函数的充要条件是:自变量和因变量必须一一对应。

相关文档
最新文档