多元函数基本概念(已打)
高等数学中的多元函数的基础概念详解
高等数学中的多元函数的基础概念详解在高等数学中,多元函数是一种非常重要的概念。
它是研究多变量之间关系的数学工具,广泛应用于自然科学、工程技术和经济管理等领域。
本文将从多元函数的定义、连续性、导数、微分、偏导数和泰勒展开等方面进行详细的讲解。
一、多元函数的定义多元函数是指在数学上,将多个自变量与一个或多个因变量联系起来的一种函数。
通常表示为$f(x_1,x_2,\dots,x_n)=y$,表示存在一种从输入向输出的映射关系。
例如,$f(x,y)=x^2+y^2$就是一个简单的多元函数,它将平面上的点$(x,y)$映射到一个实数值$z=x^2+y^2$上。
多元函数的定义域和值域分别是自变量的取值范围和因变量的取值范围。
二、多元函数的连续性多元函数的连续性是指当自变量发生微小变化时,函数值的变化也应该非常微小。
具体来说,如果在多元函数$f(x_1,x_2,\dots,x_n)$的某一点$(a_1,a_2,\dots,a_n)$附近,对于任意的$\epsilon>0$,都存在一个$\delta>0$,使得当$(x_1,x_2,\dots,x_n)$满足$|x_i-a_i|<\delta$时,有$|f(x_1,x_2,\dots,x_n)-f(a_1,a_2,\dots,a_n)|<\epsilon$,那么就称$f(x_1,x_2,\dots,x_n)$在点$(a_1,a_2,\dots,a_n)$处连续。
这与一元函数的连续性概念是类似的。
三、多元函数的导数多元函数的导数在概念上和一元函数的导数是类似的,它描述的是函数在某一点上的变化率。
但是多元函数的导数有一些特殊的性质,如方向导数、梯度等。
在二元函数的情况下,如果函数$f(x,y)$在点$(x_0,y_0)$处可导,则有:$$\frac{\partial f}{\partial x}(x_0,y_0)=\lim_{h\to0}\frac{f(x_0+h,y_0)-f(x_0,y_0)}{h}$$$$\frac{\partial f}{\partial y}(x_0,y_0)=\lim_{h\to0}\frac{f(x_0,y_0+h)-f(x_0,y_0)}{h}$$这两个导数称为函数$f(x,y)$在点$(x_0,y_0)$处的偏导数。
多元函数的基本概念
多元函数的基本概念
一、多元函数的基本概念
多元函数是一种把多个变量结合起来的函数。
它的定义由一个有限个变量的有限个自变量组成,而这些变量所表达的函数又是满足某种关系式的。
多元函数由以下三个特征来定义:
1. 自变量个数:多元函数可以由一个自变量,也可以由多个自变量组成,而多元函数的具体形式由自变量个数决定。
2. 函数形式:多元函数可以是一元函数、二元函数、三元函数、四元函数和多元函数。
3. 变量关系:多元函数的定义就是根据一定的关系式,把多个自变量结合起来构成的函数。
二、多元函数的性质
多元函数的性质也就是函数的一些性质,这些性质对于函数的理解和应用都非常重要,在学习多元函数时,一定要掌握这些性质。
性质1:多元函数可以变换形式,但其多项式整体的幂次不变。
性质2:多元函数可以拆开成多个小函数,但总体的变量不变。
性质3:多元函数可以进行拟合,但只能用更加简单的函数拟合更加复杂的函数。
性质4:多元函数的单调性与函数的极值分布有关,函数的极值也是多元函数的最重要的一种性质。
三、多元函数的应用
多元函数在工程和科学中都有着广泛的应用,比如在机器学习、机器人控制学、信号处理、经济学、生物学等领域中都有着广泛的应用,以及在财务和统计学中的应用,例如多元回归分析,协方差分析等。
此外,多元函数也在计算机科学中有实际的应用,比如在计算机图形学中,可以用多元函数来描述三维空间中的形体,在模拟技术中,也可以用多元函数来模拟真实的系统。
10-1 多元函数的基本概念
E-mail: xuxin@
二元函数定义
平面上的一个点集,即 设D是xy平面上的一个点集 即 D R2, 是 平面上的一个点集 若对任意的点 X = (x, y)∈D R2, 按照某个 ∈ 对应规则 f , 总有唯一确定的实数 z 与之对 上的二元实值函数, 应, 则称 f 是定义在 D 上的二元实值函数 记作 f : D → R, X = (x, y) → z
E-mail: xuxin@
长方体体积 V = xyz V 随 x, y, z 的变化而变化 或者说 任给 的变化而变化. 或者说, 一组数(x, y, z), 就有唯一的一个V与之对应 一组数 就有唯一的一个 与之对应. 与之对应 这些都是多元函数的例子. 有二个自变量 这些都是多元函数的例子 的称为二元函数. 的称为二元函数 有三个自变量的称为三元函 元函数. 数, …, 有 n 个自变量的称为 n 元函数 与一元函数类似, 与一元函数类似 我们有
E-mail: xuxin@
注4. 定义中,当x,y的值取定后,z的取值 定义中, 的值取定后, 的值取定后 的取值
就根据f的方程来定 . 通常情况下, 就根据 的方程来定. 通常情况下 , 这个值是 的方程来定 唯一的,这时我们称z=f(x,y)为单值函数; 唯一的,这时我们称 为单值函数; 但有时候取值是不唯一的, 但有时候取值是不唯一的,这时我们称之 为多值函数; 为多值函数; 例如 x 2 + y 2 + z 2 = 9 一般情况,我们讨论的函数都是单值函数, 一般情况,我们讨论的函数都是单值函数, 如果是多值函数我们会特别说明或者用多个单值 函数来处理. 函数来处理.
E-mail: xuxin@
称 z 为点 X = (x, y) 在 f 下的像 记作 f (X) 下的像, 或 f (x, y), 即z = f (X ) = f (x, y). 也称作 X = (x, y)所对应的函数值 所对应的函数值. 所对应的函数值 称 D 为函数 f 的定义域 D 在 f 下的像集 的定义域. f (D)={ f (X )| X∈D }称为 f 的值域 ∈ 称为 的值域. 习惯上, 称 z = f (X ) = f (x, y) 为二元函数, 习惯上 为二元函数 另外, 为自变量, 为因变量. 另外 称 x, y 为自变量 z 为因变量 比如 z = sinx +cosy , z = 3x2 + ey .
多元函数基本概念
多元函数基本概念多元函数是数学中常见的概念,它与一元函数相比具有更加复杂的性质和表达方式。
在本文中,将介绍多元函数的基本概念,包括定义域、值域、级数、偏导数以及极值等。
一、定义域和值域在讨论多元函数之前,我们首先需要明确定义域和值域的概念。
对于一个多元函数,其定义域是指所有自变量可以取值的集合,通常用D表示。
而值域则是函数在定义域上所有可能取到的函数值的集合,通常用R表示。
例如,考虑一个二元函数f(x, y),其定义域可以是实数集合R,而值域也可以是实数集合R。
二、偏导数偏导数是多元函数的一种导数形式,用于描述函数在某个给定自变量上的变化率。
对于一个具有多个自变量的函数f(x1, x2, ..., xn),其关于第i个自变量的偏导数表示为∂f/∂xi。
偏导数的计算方法与一元函数的导数类似,只需将其他自变量视为常数,对目标自变量求导即可。
需要注意的是,对于每个自变量,都要分别计算其对应的偏导数。
三、级数多元函数的级数是指将多个单变量函数按照一定方式组合而成的函数序列。
常见的多元函数级数有泰勒级数和傅里叶级数等。
泰勒级数是指将一个多元函数在某个点附近展开成幂级数的形式。
通过选择适当的展开点和级数项,可以将函数在该点附近近似表示。
泰勒级数在数学和物理学中有广泛的应用,特别是用于函数的近似计算和数据拟合等方面。
傅里叶级数是指将一个局部有界的周期函数分解成一组正弦和余弦函数的级数。
通过傅里叶级数的展开,可以将周期函数在全局范围内表示,并进行频谱分析和信号处理等操作。
四、极值多元函数的极值是指函数在定义域上取得的最大值或最小值。
与一元函数不同的是,多元函数的极值可能在某些特定点取得,也可能在边界或无穷远处取得。
求解多元函数的极值通常需要使用极值判定条件。
常见的方法有利用偏导数等于零来确定驻点,然后通过二阶偏导数判定极值类型。
同时,还要考虑定义域的边界条件,以确定是否存在边界极值。
总结在本文中,我们介绍了多元函数的基本概念,包括定义域和值域、偏导数、级数以及极值。
多元函数的基本概念
sin xy lim ( x , y )( 0 , 2 ) x 2 sin( x y) (2) lim ( x , y ) ( 0 , 0 ) x 2 y 2
(1)
1 (3) lim ( x y ) sin 2 ( x , y ) ( 0 , 0 ) x y2
二 多元函数的极限
(一)有关概念 (二)多元函数极限的定义
二元函数的图形 对于在z=f(x,y)的定义域内任意取定的点P(x,y),对应的
函数值为z=f(x,y). 当(x,y)遍取D上的一切点时,得到的空间点集
z
M
{( x, y, z ) | z f ( x, y ), ( x, y ) D}
称为二元函数的图形. 二元函数的图形通常是一张曲面. 二元函数的定义域
0
x2 y (2) f ( x , y ) 4 x y2
当 ( x , y ) (0,0) 时
多元函数的基本概念
一、多元函数的概念
二、多元函数的极限 三、多元函数的连续性
多元函数的基本概念
一、多元函数的概念
二、多元函数的极限 三、多元函数的连续性
三、 多元函数的连续性
(一)多元函数连续性的概念
空间点集
平面点集的有关概念 二维空间:
二元有序实数组(x,y)的全体, 即: {( x , y ) | x R, y R}
记作: R 2或 R R
注 (1) 二维空间的几何意义—坐标平面
(2) 二维空间的元素— P ( x, y ) 坐标平面内的点 平面点集: 二维空间的任一子集, 记作: E R2 注 平面点集E通常是具有某种性质的点的集合, 记作: E={(x,y)|(x,y)具有性质P}
多元函数的基本概念
多元函数的基本概念
多元函数的基本概念
多元函数是数学中一种重要的概念,它是在多个变量之间写成的函数,能表示多变量间的关系。
为了便于描述,这里使用z来表示变量的总体,用x, y, u等来索引。
例如,多元函数可以使用表达式
z=f(x,y,u)来表示,这里z是函数的输出,x, y和u是函数的输入。
通过多元函数,可以将多变量之间的关系表示出来,从而更加清楚地理解问题。
在数学中,多元函数的应用比较广泛,可以用来描述物理学中的各种力,比如重力,电力等,也可以用来描述量子力学中的任意力。
此外,还可以用多元函数来描述数学计算机科学中的几何图形,从而研究几何图象的形状及相关的物理量。
总之,多元函数可以为人们提供更丰富的信息,以便更好地理解事物,解决实际问题。
多元函数也可以用来计算极限值,也就是极限的函数值的限制,这可以帮助我们在实际应用中研究函数的极限值。
极限值的计算可以帮助我们找到函数的极值点,从而获得函数的最大值和最小值,从而更好地实现函数的优化。
总之,多元函数是数学中重要的概念,它可以用来描述物理学中的各种力,也可以用来描述数学计算机科学中的几何图形,还可以用来计算函数的极限值,从而更好地解决实际问题。
- 1 -。
高等数学——81多元函数的基本概念-文档资料
解 lim sin(xy) lim sin(xy) y lim sin(xy) lim y
x0 x
x0 xy
x0 xy
x0
y2
y2
y2
y2
2 lim sin(xy) 2. xy0 xy
四.多元函数的连续性
二元函数连续性定义:
设函数f (x,y)在开区域(或闭区域)D内有定义,P0(x0,y0)
z
O
y
P0
x
性质1 (最大值和最小值定理): 在有界闭区域D上的多元连续函数,在D上一定有最大值和
最小值.
性质2 (介值定理): 在有界闭区域D上的多元连续函数,如果在D上取得两个不
同的函数值,则它在D上取得介于这两个值之间的任何值至少 一次.
多元连续函数的和、差、积、商(分母不为零)均为连续 函数,多元连续函数的复合函数也是连续函数.
P2
E2 P2
P1
E1和E2都是连通的. D = E1E2是不连通的. E1和E2都是区域. D = E1E2是不区域.
E3
E3是闭区域.
有界点集和无界点集: 对于点集E如果存在正数K,使一切点PE与某一定点A间的
距离|AP|不超过K,即 |AP|K
对一切PE与成立,则称E为有界点集,否则称为无界点集.
2
y2
例7 求 lim xy 1 1 .
x0
xy
y0
解 lim xy 1 1 lim ( xy 1 1)( xy 1 1)
x0
xy
x0 xy( xy 1 1)
y0
y0
lim 1 1 . x0 xy 1 1 2
y0
z=f(x,y)(或z=f(P))
8-1 多元函数的基本概念
其中:D称为定义域 f ( D)称为值域 ,
w 类似地可定义三元函数. f ( x , y , z )
n元函数 y f ( x ) f ( x1 , x2 ,, xn )
多元函数两点说明:
(1)多元函数uf(x)定义域指自然定义域
arcsin( 3 x 2 y 2 ) f ( x, y) 例1 求定义域 x y2 的. 3 x2 y2 1 解 x y2 0 2 x 2 y 2 4 2 x y
n U n维空间邻域: ( P0 , ) P | PP0 | , P R
内点、边界点、区域、聚点等概念也可定义.
1.4 二元函数的定义
定义:设区域 R 2 D 映射f : D R称为二元函数 记为:z f ( P ) f ( x, y ) P ( x , y ) D
lim
x3 y4
xy 1 x y
2 2
2
闭区域上连续函数的性质
(1)最大值和最小值D
使得:f(P1) max{f(P )|PD }
f(P2) min{f(P )|PD } .
(2)介值定理
有界闭区域D上的多元连续函数,必取得介于最大值 和最小值之间的任何值
2 2
去心邻域:( P , ) { P | 0 | PP0 | } U
不需要考虑邻域半径时 简记为: (P ) U
0
P
1.2 区域
E
P
P
(1)设 E 是平面 点集,点 E P 如果存 在U ( P ) E , 则称 P 为 E 的内点 . ( 2)设 E 是平面点集,点 E P 如果存在U ( P ) E , 则称 P 为 E 的外点 . ( 3)如 果 U ( P ) E 且U ( P ) E E 称P 为 E 的 边 界 点 .
多元函数的基本概念汇总
§10–2 多元函数的基本概念基础知识导学1.多元函数⑴二元函数 设D 是平面上的一个非空点集,如果有一个对应规律f ,使每一个点D y x ∈),(都对应于惟一确定的值z ,则称z 为D 上的二元函数.记做),(y x f z =,其中y x 与称为自变量,函数z 也称为因变量,D 称为该函数的定义域.⑵点函数 设Ω是一个点集,对任意的点Ω∈P ,变量u 按某一法则总有惟一确定的值与之对应,则称u 是Ω上的点函数,记作)(P f u =.当Ω是x 轴上的点集时,点函数)(P f u =是一元函数;当Ω是xOy 平面上的点集时,点函数)(P f u =是二元函数; 当Ω是n 维空间上的点集时,点函数)(P f u =是n 元函数; 当Ω是三维空间上的点集时,点函数)(P f u =是三元函数.自变量多于一个的函数统称为多元函数.⑶二元函数的几何意义 函数),(y x f z =的几何图形一般在空间直角坐标系中表示一张曲面,而其定义域D 就是此曲面在xOy 坐标面上的投影.2. 二元函数的极限与连续⑴二元函数的极限设函数),(y x f z =在点),(000y x P 的某个邻域内有定义(在点),(000y x P 处可以无定义),如果当点),(y x P 以任意方式趋向于点),(000y x P 时,相应的函数值),(y x f 无限接近于一个确定的常数A ,则称当→),(y x ),(00y x 时,函数),(y x f 以A 为极限,记作),(lim 0A y x f y y x x =→→或A y x f →),( ),(00y y x x →→.⑵二元函数的连续性① 在一点连续的两个等价的定义定义1 设有二元函数),(y x f z =,如果),(lim 0y x f y y x x →→=),(00y x f ,则称二元函数),(y x f z =在点),(000y x P 处连续.定义2 设),(),(0000y x f y y x x f z -∆+∆+=∆(称z ∆为函数),(y x f 的全增量),若0lim 00=∆→∆→∆z y x ,则称二元函数),(y x f z =在点),(000y x P 处连续.②如果),(y x f 在区域D 内的每一点都连续,则称),(y x f 在区域D 上连续.③如果),(y x f 在点),(000y x P 不连续,则称点),(000y x P 是二元函数),(y x f z =的不连续点或间断点.解题方法指导1. 求二元函数定义域的方法例1 求下列函数的定义域并画出定义域的图形.(1)221)(ln x y x y z --+-=,(2)y x y x z --=24 .解 (1)要使函数有意义,需满足条件⎩⎨⎧≥-->-,01,022x y x y 即 221x y x -≤<. 因此定义域为2x y =与21x y -=围成的部分,包括曲线21x y -=.(2)要使函数有意义,需满足条件 ⎪⎩⎪⎨⎧≥>-≥-,0,0,042y y x y x 即⎩⎨⎧<≤≤,0,422x y x y 定义域如图所示另外,求函数y x y x z --=24的定义域时,也可把z 看成两个函数214y x z -=与2xy x z -=12的乘积,214y x z -=的定义域是042≥-y x ,即 x y 42≤,y x z -=12的定义域是⎩⎨⎧≥>-,0,0y y x 因此函数y x y x z --=24的定义域是1z 与2z 的定义域的公共部分,即⎩⎨⎧<≤≤.0,422x y x y 小结 多元函数的定义域的求法与一元函数的定义域的求法完全相同。
多元函数的基本概念
| f ( x, y) A |
成立,则称常数A为二元函数f (x, y)当PP0 (或xx0, yy0)时的极限,记作
P P0
lim f ( P) A或 lim f ( x, y ) A
x x0 y y0
首页
上页
下页
注1:二元函数的极限称为二重极限;
二重极限存在是指点P(x, y)以任何方式趋于
首页 上页
下页
3. 多元初等函数 (1) 二元基本初等函数 考虑一个变量x或y的基本初等数,将它们当成 二元函数. 如:C, x , y , sinx, siny,…… 称为二元基本初等函数.
首页
上页
下页
(2) 二元初等函数 将二元基本初等函数经有限次四则运算与复合 所组成的函数,称为二元初等函数.
U(P) E
则称点P为点集E的内点.
o
P
E
x y o
1 x
下页
注: 若点集E的点都是内点, 则称E为开集.
例如: 点集 E1= {(x,y)| x2 + y2 < 1}是开集.
点集 E2= {(x,y)| x2 + y2 1}不是开集.
首页 上页
(2) 边界点: 设E为一平面点集, P1为一点, 不论P1点 是否属于 E, 如果 P1 的任何邻域内 , 既 有属于E的点, 也有不属于E的点, 则称 点P1为点集E的边界点.y P1 注: 点集E的全体边界点
所成的点集, 称为点 集E的边界. 例如: 点集 E= {(x, y)| 1 x2 + y2 < 4} 的边界点是圆 x2 + y2 = 1和 x2 + y2 = 4 .
首页
多元函数的基本概念课件
曲面积分是计算曲面上的函数值累积的 数学工具,分为第一类曲面积分和第二 类曲面积分。
曲线积分和曲面积分在物理、工程等领 域有广泛应用,如计算力矩、功等物理 量。
06 多元函数的应用
在物理中的应用
热力学
多元函数可以用来描述热力学中的状态方程,如压力、温度和体 积之间的关系。
多元函数的基本概念课件
目录
• 多元函数的定义与表示 • 多元函数的极限与连续性 • 多元函数的导数与微分 • 多元函数的极值与最值 • 多元函数的积分 • 多元函数的应用
01 多元函数的定义与表示
定义与性质
定义
多元函数是指定义在两个或更多 个变量上的数学函数。例如,三 维空间中的函数f(x, y, z)定义了x 、y和z的每一个值对。
多元函数的最值
定义
多元函数的最值是指函数在某个 区域内的最大值和最小值。
求解方法
通过求导数找到可能的极值点, 然后通过比较这些点的函数值来
找到最大值和最小值。
应用
在优化问题中,最值的概念被用 来确定某个目标函数的最大或最
小值。
条件极值与无约束最值问题
定义
条件极值是指在满足某些约束条件下求函数的极值;无约束最值问 题则没有约束条件。
02
二重积分的计算通常通 过直角坐标系或极坐标 系进行。
03
04
二重积分可以应用于面 积、体积、质量等的计 算。
二重积分的计算公式为: ∫∫D f(x,y) dxdy,其中 D是积分区域。
三重积分
01
02
03
04
三重积分是计算三维空间区域 上的函数值累积的数学工具。
多元函数基本概念
[ , ] 到
的一个映射,即一元
r r (t ), t [ , ]
r (t ) ( x(t ), y (t ), z (t )) R
3
其中
目录
上页
下页
返回
结束
二、多元函数的极限和连续性
定义2. 3 设 n 元函数f ( P ), P D R n , P0 是 D 的聚 点 , 若存在常数 A , 对任意正数 , 总存在正数 , 对一
等值线 : 另一种表示函数z=f(x,y)的方法是利用
所谓的等值线f(x,y)=C, 其中C为常数。它表示
xOy面上的曲线族。
当点(x,y)在其中每一
条曲线 f ( x, y) C0 上变化时. 函数
f(x,y)都取相同的值
C0
目录 上页 下页 返回 结束
容易看出,等值线 f(x,y)=C实际上就是曲 面 z=f(x,y) 与 平 面 z=C 的交线在xOy平面上的 投影。因此,将等值线 f(x,y)=C族中各曲线升 到相应得高度z=C处就 不难想象出曲面z=f(x,y) 的图像
和
y y0 x x0
lim
lim f ( x , y )
例 . 求累次极限
x y x2 y2 lim lim 和 x 0 y 0 x y x y x2 y2 lim lim y 0 x 0 x y
解:
x y x2 y2 x x2 lim lim lim 1. x 0 y 0 x 0 x y x x y x2 y2 y y2 lim lim lim 1 . y 0 x 0 y 0 x y y
1 y
又如, z sin( x y ) , ( x, y ) R 2
多元函数的基本概念
一、多元函数的定义
定义1 平面区域 由平面 xOy 上的一条或几条曲线所围成的一部
分平面或整个平面,称为平面区域,简称区域.
边界
y 有界区域 y
闭区域
O
x
O
x
开区域
一、多元函数的定义
定义2 邻域
在平面 xOy 上,以点 P0 x0, y0 为中心, 为半径
的开区域,称为点 P0 的 邻域. 记作
xx0 y y0
注释: 二重极限存在, 是指 Px, y以任意方式趋于
点 P0 x0, y0 时,f x, y 都无限接近于 A .
当Px, y以某一特殊方式趋于点 P0 x0, y0 时,f x, y
无限接近于 A , 无法确定函数的极限值.
若Px, y以不同方式趋于点 P0 x0, y0 时,f x, y 趋于
例2
判断函数
xy
f
x,
y
x2
y
2
,
0,
的极限是否存在? 极限不存在
x2 y2 0 在 0,0
x2 y2 0
解: 当点Px, y沿x轴y轴趋向于0,0时,
lim f x, y lim f x,0 0
x, y 0,0
x0
y0
lim f x, y lim f 0, y 0
x, y 0,0
z f x, y x, y D
因变量
自变量
定义域
一、多元函数的定义
定义3 二元函数
注释1:
z f x, y x, y D
二元函数 z f x, y 在几何上的图形是一个曲面.
z
z
y
O
y
x x2 y2 z2 r2
多元函数基本概念梳理
多元函数基本概念梳理在数学领域中,多元函数是一个重要的概念,它在各个学科领域中都有广泛的应用。
本文将对多元函数的基本概念进行梳理,包括多元函数的定义、定义域和值域、偏导数、全微分以及多元函数的极值等内容。
一、多元函数的定义多元函数是指含有多个自变量的函数。
一元函数只有一个自变量,如f(x),而多元函数可以有多个自变量,如f(x, y)、f(x, y, z)等。
多元函数的定义通常为f:D→R,其中D是定义域,R是函数的值域。
二、定义域和值域多元函数的定义域是指所有自变量的取值范围的集合。
在定义域内,函数有定义和有意义。
值域是指函数的所有可能的取值集合。
定义域和值域的确定对于研究函数的性质和特点非常重要。
三、偏导数偏导数是对多元函数中的某一个自变量求导数时,将其他自变量视为常数而进行的求导运算。
偏导数以∂f/∂x或∂f/∂y表示,其中∂表示偏导符号。
偏导数的求导方法与一元函数中的求导类似,但需要注意将其他自变量视为常数。
四、全微分全微分是将多元函数进行变量分离后对各个变量的微分进行求和的过程。
全微分可表示为df = ∂f/∂x dx +∂f/∂y dy。
全微分可以帮助研究者对多元函数的变化率进行分析和研究。
五、多元函数的极值多元函数的极值是指函数在一定范围内取得的最大值或最小值。
多元函数的极值点可以通过偏导数或二阶导数的方法求解。
通过求取偏导数并使其等于0,我们可以得到多元函数的临界点。
通过对临界点进行判断,即可确定多元函数的极值点。
综上所述,多元函数是含有多个自变量的函数,其定义域和值域的确定对于研究函数的性质和特点非常重要。
偏导数是对多元函数中的某一个自变量求导数时,将其他自变量视为常数。
全微分是将多元函数进行变量分离后对各个变量的微分进行求和。
多元函数的极值可以通过求取偏导数并使其等于0,再通过对临界点进行判断来确定。
对于研究多元函数的性质和特点,掌握这些基本概念是非常重要的。
多元函数的基本概念
多元函数的基本概念一、平面点集n 维空间1.平面点集由平面解析几何知道, 当在平面上引入了一个直角坐标系后, 平面上的点P 与有序二元实数组(x , y )之间就建立了一一对应. 于是, 我们常把有序实数组(x , y )与平面上的点P 视作是等同的. 这种建立了坐标系的平面称为坐标平面.二元的序实数组(x , y )的全体, 即R 2=R ⨯R ={(x , y )|x , y ∈R }就表示坐标平面. 坐标平面上具有某种性质P 的点的集合, 称为平面点集, 记作 E ={(x , y )| (x , y )具有性质P }.例如, 平面上以原点为中心、r 为半径的圆内所有点的集合是C ={(x , y )| x 2+y 2<r 2}.如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成 C ={P | |OP |<r }.邻域:设P 0(x 0, y 0)是xOy 平面上的一个点, δ是某一正数. 与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体, 称为点P 0的δ邻域, 记为U (P 0, δ), 即}|| |{),(00δδ<=PP P P U 或} )()( |) ,{(),(20200δδ<-+-=y y x x y x PU . 邻域的几何意义: U (P 0, δ)表示xOy 平面上以点P 0(x 0, y 0)为中心、δ >0为半径的圆的内部的点P (x , y )的全体.点P 0的去心δ邻域, 记作) ,(0δP U, 即 }||0 |{) ,(00δδ<<=P P P P U.注: 如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U.点与点集之间的关系:任意一点P ∈R 2与任意一个点集E ⊂R 2之间必有以下三种关系中的一种:(1)内点: 如果存在点P 的某一邻域U (P ), 使得U (P )⊂E , 则称P 为E 的内点; (2)外点: 如果存在点P 的某个邻域U (P ), 使得U (P )⋂E =∅, 则称P 为E 的外点;(3)边界点: 如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.E 的边界点的全体, 称为E 的边界, 记作∂E .E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . 聚点: 如果对于任意给定的δ>0, 点P 的去心邻域),(δP U内总有E 中的点, 则称P 是E 的聚点.由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E .例如, 设平面点集 E ={(x , y )|1<x 2+y 2≤2}.满足1<x 2+y 2<2的一切点(x , y )都是E 的内点; 满足x 2+y 2=1的一切点(x , y )都是E 的边界点, 它们都不属于E ; 满足x 2+y 2=2的一切点(x , y )也是E 的边界点, 它们都属于E ; 点集E 以及它的界边∂E 上的一切点都是E 的聚点.开集: 如果点集E 的点都是内点, 则称E 为开集. 闭集: 如果点集的余集E c 为开集, 则称E 为闭集.开集的例子: E ={(x , y )|1<x 2+y 2<2}. 闭集的例子: E ={(x , y )|1≤x 2+y 2≤2}.集合{(x , y )|1<x 2+y 2≤2}既非开集, 也非闭集.连通性: 如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.区域(或开区域): 连通的开集称为区域或开区域. 例如E ={(x , y )|1<x 2+y 2<2}.闭区域: 开区域连同它的边界一起所构成的点集称为闭区域. 例如E = {(x , y )|1≤x 2+y 2≤2}.有界集: 对于平面点集E , 如果存在某一正数r , 使得E ⊂U (O , r ), 其中O 是坐标原点, 则称E 为有界点集.无界集: 一个集合如果不是有界集, 就称这集合为无界集.例如, 集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域; 集合{(x , y )| x +y >1}是无界开区域; 集合{(x , y )| x +y ≥1}是无界闭区域.2. n 维空间设n 为取定的一个自然数, 我们用R n表示n 元有序数组(x 1, x 2, ⋅ ⋅ ⋅ , x n )的全体所构成的集合, 即 R n=R ⨯R ⨯⋅ ⋅ ⋅⨯R ={(x 1, x 2, ⋅ ⋅ ⋅ , x n )| x i ∈R , i =1, 2, ⋅ ⋅ ⋅, n }.R n中的元素(x 1, x 2, ⋅ ⋅ ⋅ , x n )有时也用单个字母x 来表示, 即x =(x 1, x 2, ⋅ ⋅ ⋅ , x n ). 当所有的x i (i =1, 2, ⋅ ⋅ ⋅, n )都为零时, 称这样的元素为R n中的零元, 记为0或O . 在解析几何中, 通过直角坐标, R 2(或R 3)中的元素分别与平面(或空间)中的点或向量建立一一对应, 因而R n 中的元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )也称为R n 中的一个点或一个n 维向量, x i 称为点x 的第i 个坐标或n 维向量x 的第i 个分量. 特别地, R n 中的零元0称为R n 中的坐标原点或n 维零向量. 为了在集合R n 中的元素之间建立联系, 在R n 中定义线性运算如下: 设x =(x 1, x 2, ⋅ ⋅ ⋅ , x n ), y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )为R n 中任意两个元素, λ∈R , 规定 x +y =(x 1+ y 1, x 2+ y 2, ⋅ ⋅ ⋅ , x n + y n ), λx =(λx 1, λx 2, ⋅ ⋅ ⋅ , λx n ).这样定义了线性运算的集合R n称为n 维空间.R n 中点x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )和点 y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )间的距离, 记作ρ(x , y ), 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ.显然, n =1, 2, 3时, 上术规定与数轴上、直角坐标系下平面及空间中两点间的距离一至. R n 中元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中, 通常将||x ||记作|x |), 即 22221 ||||n x x x ⋅⋅⋅++=x .采用这一记号, 结合向量的线性运算, 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x . 在n 维空间R n中定义了距离以后, 就可以定义R n中变元的极限: 设x =(x 1, x 2, ⋅ ⋅ ⋅ , x n ), a =(a 1, a 2, ⋅ ⋅ ⋅ , a n )∈R n. 如果 ||x -a ||→0, 则称变元x 在R n 中趋于固定元a , 记作x →a .显然, x →a ⇔ x 1→a 1, x 2→a 2, ⋅ ⋅ ⋅ , x n →a n .在R n 中线性运算和距离的引入, 使得前面讨论过的有关平面点集的一系列概念, 可以方便地引入到n (n ≥3)维空间中来, 例如,设a =(a 1, a 2, ⋅ ⋅ ⋅ , a n )∈R n, δ是某一正数, 则n 维空间内的点集 U (a , δ)={x | x ∈ R n , ρ(x , a )<δ}就定义为R n中点a 的δ邻域. 以邻域为基础, 可以定义点集的内点、外点、边界点和聚点, 以及开集、闭集、区域等一系列概念. 二. 多元函数概念例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系V =πr 2h .这里, 当r 、h 在集合{(r , h ) | r >0, h >0}内取定一对值(r , h )时, V 对应的值就随之确定. 例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系 VRT p =,其中R 为常数. 这里, 当V 、T 在集合{(V ,T ) | V >0, T >0}内取定一对值(V , T )时, p 的对应值就随之确定.例3 设R 是电阻R 1、R 2并联后的总电阻, 由电学知道, 它们之间具有关系 2121R R R R R +=.这里, 当R 1、R 2在集合{( R 1, R 2) | R 1>0, R 2>0}内取定一对值( R 1 , R 2)时, R 的对应值就随之确定.定义1 设D 是R 2的一个非空子集, 称映射f : D →R 为定义在D 上的二元函数, 通常记为z =f (x , y ), (x , y )∈D (或z =f (P ), P ∈D ),其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量.上述定义中, 与自变量x 、y 的一对值(x , y )相对应的因变量z 的值, 也称为f 在点(x , y )处的函数值, 记作f (x , y ), 即z =f (x , y ).值域: f (D )={z | z =f (x , y ), (x , y )∈D }.函数的其它符号: z =z (x , y ), z =g (x , y )等.类似地可定义三元函数u =f (x , y , z ), (x , y , z )∈D 以及三元以上的函数.一般地, 把定义1中的平面点集D 换成n 维空间R n内的点集D , 映射f : D →R 就称为定义在D 上的n 元函数, 通常记为 u =f (x 1, x 2, ⋅ ⋅ ⋅ , x n ), (x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D ,或简记为 u =f (x ), x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D , 也可记为 u =f (P ), P (x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D .关于函数定义域的约定: 在一般地讨论用算式表达的多元函数u =f (x )时, 就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域. 因而, 对这类函数, 它的定义域不再特别标出. 例如,函数z =ln(x +y )的定义域为{(x , y )|x +y >0}(无界开区域);函数z =arcsin(x 2+y 2)的定义域为{(x , y )|x 2+y 2≤1}(有界闭区域).二元函数的图形: 点集{(x , y , z )|z =f (x , y ), (x , y )∈D }称为二元函数z =f (x , y )的图形, 二元函数的图形是一张曲面.例如 z =ax +by +c 是一张平面, 而函数z =x 2+y 2的图形是旋转抛物面.与一元函数的极限概念类似, 如果在P (x , y )→P 0(x 0, y 0)的过程中, 对应的函数值f (x , y )无限接近于一个确定的常数A , 则称A 是函数f (x , y )当(x , y )→(x 0, y 0)时的极限.定义2 设二元函数f (P )=f (x , y )的定义域为D , P 0(x 0, y 0)是D 的聚点. 如果存在常数A , 对于任意给定的正数ε总存在正数δ, 使得当),(),(0δP U D y x P⋂∈时, 都有 |f (P )-A |=|f (x , y )-A |<ε成立, 则称常数A 为函数f (x , y )当(x , y )→(x 0, y 0)时的极限, 记为A y x f y x y x =→),(l i m ),(),(00, 或f (x , y )→A ((x , y )→(x 0, y 0)),也记作 A P f P P =→)(l i m 0或f (P )→A (P →P 0). 上述定义的极限也称为二重极限.例4. 设22221sin )(),(y x y x y x f ++=, 求证0),(lim )0,0(),(=→y x f y x .证 因为 2222222222 |1sin ||| |01sin )(||0),(|y x y x y x y x y x y x f +≤+⋅+=-++=-,可见∀ε >0, 取εδ=, 则当 δ<-+-<22)0()0(0y x ,即),(),(δO U D y x P⋂∈时, 总有|f (x , y )-0|<ε, 因此0),(lim )0,0(),(=→y x f y x .必须注意:(1)二重极限存在, 是指P 以任何方式趋于P 0时, 函数都无限接近于A .(2)如果当P 以两种不同方式趋于P 0时, 函数趋于不同的值, 则函数的极限不存在.讨论: 函数⎪⎩⎪⎨⎧=+≠++=000 ),(222222y x y x y x xy y x f 在点(0, 0)有无极限?提示: 当点P (x , y )沿x 轴趋于点(0, 0)时, 00lim )0 ,(lim ),(lim 0)0,0(),(===→→→x x y x x f y x f ;当点P (x , y )沿y 轴趋于点(0, 0)时,00lim ) ,0(lim ),(lim 0)0,0(),(===→→→y y y x y f y x f .当点P (x , y )沿直线y =kx 有22222022 )0,0(),(1lim lim k k x k x kx y x xy x kxy y x +=+=+→=→.因此, 函数f (x , y )在(0, 0)处无极限.极限概念的推广: 多元函数的极限.多元函数的极限运算法则: 与一元函数的情况类似. 例5 求x xy y x )sin(lim)2,0(),(→. 解:y xy xy x xy y x y x ⋅=→→)sin(lim )sin(lim)2,0(),()2,0(),(y xy xy y x y x )2,0(),()2,0(),(lim )sin(lim→→⋅==1⨯2=2.定义3 设二元函数f (P )=f (x , y )的定义域为D , P 0(x 0, y 0)为D 的聚点, 且P 0∈D . 如果),(),(lim00),(),(00y x f y x f y x y x =→,则称函数f (x , y )在点P 0(x 0, y 0)连续.如果函数f (x , y )在D 的每一点都连续, 那么就称函数f (x , y )在D 上连续, 或者称f (x , y )是D 上的连续函数.二元函数的连续性概念可相应地推广到n 元函数f (P )上去.例6设f (x ,y )=sin x , 证明f (x , y )是R 2上的连续函数.证 设P 0(x 0, y 0)∈ R 2. ∀ε>0, 由于sin x 在x 0处连续, 故∃δ>0, 当|x -x 0|<δ时, 有 |sin x -sin x 0|<ε.以上述δ作P 0的δ邻域U (P 0, δ), 则当P (x , y )∈U (P 0, δ)时, 显然 |f (x , y )-f (x 0, y 0)|=|sin x -sin x 0|<ε,即f (x , y )=sin x 在点P 0(x 0, y 0) 连续. 由P 0的任意性知, sin x 作为x , y 的二元函数在R 2上连续 类似的讨论可知, 一元基本初等函数看成二元函数或二元以上的多元函数时, 它们在各自的定义域内都是连续的.定义4设函数f (x , y )的定义域为D , P 0(x 0, y 0)是D 的聚点. 如果函数f (x , y )在点P 0(x 0, y 0)不连续, 则称P 0(x 0, y 0)为函数f (x , y )的间断点.例如函数⎪⎩⎪⎨⎧=+≠++=000 ),(222222y x y x y x xy y x f ,其定义域D =R 2, O (0, 0)是D 的聚点. f (x , y )当(x , y )→(0, 0)时的极限不存在, 所以点O (0, 0)是该函数的一个间断点. 又如, 函数11sin22-+=y x z , 其定义域为D ={(x , y )|x 2+y 2≠1}, 圆周C ={(x , y )|x 2+y 2=1}上的点都是D 的聚点, 而f (x , y )在C 上没有定义, 当然f (x , y )在C 上各点都不连续, 所以圆周C 上各点都是该函数的间断点.注: 间断点可能是孤立点也可能是曲线上的点.可以证明, 多元连续函数的和、差、积仍为连续函数; 连续函数的商在分母不为零处仍连续; 多元连续函数的复合函数也是连续函数.多元初等函数: 与一元初等函数类似, 多元初等函数是指可用一个式子所表示的多元函数, 这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的.例如2221y y x x +-+, sin(x +y ), 222z y x e ++都是多元初等函数.一切多元初等函数在其定义区域内是连续的. 所谓定义区域是指包含在定义域内的区域或闭区域.由多元连续函数的连续性, 如果要求多元连续函数f (P )在点P 0处的极限, 而该点又在此函数的定义区域内, 则 )()(l i m 00P f P f p p =→.例7 求xy yx y x +→)2,1(),(lim.解: 函数xyyx y x f +=),(是初等函数, 它的定义域为 D ={(x , y )|x ≠0, y ≠0}. P 0(1, 2)为D 的内点, 故存在P 0的某一邻域U (P 0)⊂D , 而任何邻域都是区域, 所以U (P 0)是f (x , y )的一个定义区域, 因此23)2,1(),(l i m )2,1(),(==→f y x f y x .一般地, 求)(lim 0P f P P →时, 如果f (P )是初等函数, 且P 0是f (P )的定义域的内点, 则f (P )在点P 0处连续, 于是 )()(l i m 00P f P f P P =→.例8 求xyxy y x 11lim)0 ,0(),(-+→. 解:)11()11)(11(lim11lim)0 ,0(),()0 ,0(),(++++-+=-+→→xy xy xy xy xy xy y x y x 21111lim )0 ,0(),(=++=→xy y x .多元连续函数的性质:性质1 (有界性与最大值最小值定理)在有界闭区域D 上的多元连续函数, 必定在D 上有界, 且能取得它的最大值和最小值.性质1就是说, 若f (P )在有界闭区域D 上连续, 则必定存在常数M >0, 使得对一切P ∈D , 有|f (P )|≤M ; 且存在P 1、P 2∈D , 使得f (P 1)=max{f (P )|P ∈D }, f (P 2)=min{f (P )|P ∈D },性质2 (介值定理) 在有界闭区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值.。
多元函数的基本概念
多 元 函 数 的 基 本 概 念
纯数学问题的函数: 定义域为使运算有意义的 定义域为使运算有意义 运算有意义的
自变量取值的全体. 自变量取值的全体
10
例 求下面函数的定义域
多 元 函 数 的 基 本 概 念
1. z =
xy
x ≥ 0 x ≤ 0 解 xy ≥ 0, 即定义域为 和 y ≥ 0 y ≤ 0
•M
多 元 函 数 的 基 本 概 念
y
O
y
P
x
x
D
二元函数的图形通常是一张曲面 曲面.
13
由空间解析几何知, 由空间解析几何知 函数 如,
多 元 函 数 的 基 本 概 念
z = R2 − x2 − y2
的图形是以原点为中心, 为半径的上半球面 的图形是以原点为中心 R为半径的上半球面 为半径的上半球面. 最后指出, 从一元函数到二元函数, 在内容 最后指出 从一元函数到二元函数 和方法上都会出现一些实质性的差别, 和方法上都会出现一些实质性的差别 而多元 函数之间差异不大. 因此研究多元函数时, 函数之间差异不大 因此研究多元函数时 将以 二元函数为主. 二元函数为主
25
多
同一元函数一样, 多元函数的和、 同一元函数一样 多元函数的和、差、 积、商(分母不为零)及复合仍是连续的. 分母不为零)及复合仍是连续的 每个自变量的基本初等函数经有限次四则 运算和有限次复合, 运算和有限次复合, 由一个式子表达的函数 称为多元初等函数, 在它们的定义域的内点 称为多元初等函数 处均连续. 处均连续
P → P0
0 , y0 )
f ( x , y ) = A 或 lim f ( x, y )
x → x0 y → y0
6-1多元函数的基本概念56759 共36页
(x ,y ) (0 ,0 )
x (x ,y ) (0 ,2 )
xy2 sin1
(3) lim (x,y)(0,0)
xy x2 y2
(3 )法x 一 2y2: 2x,yx2xy y2sin x1y2xxyy1 2
y为无, 穷 原小 式 0 量 = 有界变量乘无穷小量
法二 0: x2xy2y2sinx1y
设E是平面上的一P个 是点 平集 面, 上的 一个点.如果 P的 存某 在一 点邻 U(P域 )E, 则称 P为E的内.E点的内点属E于.
如果点集 E的点都是内点,
则称E为开集 .
P
例如,E 1 {x ( ,y )1 x 2 y 2 4 }
即为开集.
E
如果P点的任一个邻域内 于E既 的有 点属 ,
有界闭区域;
o
x
{x ,(y )|x y 0 }
无界开区域.
(3)聚点
设 E是 平 面 上 的 一 个 点 集 , P 是 平 面 上 的 一 个 点 , 如 果 点 P的 任 何 一 个 去 心 邻 域 内 总 有 无 限 多 个 点 属 于 点 集 E , 则 称 P为 E的 聚 点 . 说明:
边界上的点都是聚点也都属于集合.
(4)n维空间
设 n为 取 定 的 一 个 自 然 数 , 我 们 称 n元 数 组 (x1,x2, ,xn)的 全 体 为 n维 空 间 , 而 每 个 n元 数 组 (x1,x2, ,xn)称 为 n维 空 间 中 的 一 个 点 , 数 xi称 为 该 点 的 第 i个 坐 标 .
lim
y)(0,0)
x2y
u
x2 y
lim
u0
sin u
多元函数的基本概念
在其他领域中的应用
化学反应动力学
在化学反应动力学中, 多元函数可以用来描述 反应速率与反应物浓度 之间的关系。
生物种群动态
在生物种群动态中,多 元函数可以用来描述种 群数量随时间的变化趋 势,如Logistic增长模 型。
图像卷 积操作和滤波器设计。
THANKS
感谢观看
可微性
总结词
可微性是指函数在某一点或某一方向上 的导数存在。
VS
详细描述
在多元函数中,如果一个函数在某一点或 某一方向上的导数存在,则称该函数在该 点或该方向上可微。可微性是多元函数的 重要性质之一,它揭示了函数在某一点或 某一方向上的局部变化率。
偏导数
总结词
详细描述
偏导数是指在多元函数的某个自变量固定时, 该函数对其他自变量的导数。
在经济中的应用
供需模型
多元函数可以用来描述商品价格与供需量之 间的关系,通过求导数来分析价格变动对供 需量的影响。
投资组合优化
多元函数可以用来描述投资组合的预期收益与风险 之间的关系,通过优化算法来找到最优的投资组合 。
生产成本分析
在生产成本分析中,多元函数可以用来描述 不同生产要素之间的成本关系,帮助企业进 行成本控制和优化。
多元函数的基本概念
• 引言 • 多元函数的定义与表示 • 多元函数的性质 • 多元函数的极限 • 多元函数的积分 • 多元函数的应用
01
引言
多元函数的概念
多元函数是数学中的一个概念,它是 一个函数,其自变量和因变量都是多 个。在多元函数中,因变量的值依赖 于多个自变量的取值。
多元函数的定义域是一个点的集合, 这些点在各个自变量的取值范围内。 而函数的值域则是一组因变量的值, 这些值由各个自变量的取值确定。
多元函数的基本概念
多元函数的基本概念一、平面点集n 维空间1.平面点集由平面解析几何知道, 当在平面上引入了一个直角坐标系后, 平面上的点P 与有序二元实数组(x , y )之间就建立了一一对应. 于是, 我们常把有序实数组(x , y )与平面上的点P 视作是等同的. 这种建立了坐标系的平面称为坐标平面.二元的序实数组(x , y )的全体, 即R 2=R ⨯R ={(x , y )|x , y ∈R }就表示坐标平面.坐标平面上具有某种性质P 的点的集合, 称为平面点集, 记作E ={(x , y )| (x , y )具有性质P }.例如, 平面上以原点为中心、r 为半径的圆内所有点的集合是C ={(x , y )| x 2+y 2<r 2}.如果我们以点P 表示(x , y ), 以|OP |表示点P 到原点O 的距离, 那么集合C 可表成C ={P | |OP |<r }.邻域:设P 0(x 0, y 0)是xOy 平面上的一个点, δ是某一正数. 与点P 0(x 0, y 0)距离小于δ的点P (x , y )的全体, 称为点P 0的δ邻域, 记为U (P 0, δ), 即}|| |{),(00δδ<=PP P P U 或} )()( |) ,{(),(20200δδ<-+-=y y x x y x P U .邻域的几何意义: U (P 0, δ)表示xOy 平面上以点P 0(x 0, y 0)为中心、δ >0为半径的圆的内部的点P (x , y )的全体.点P 0的去心δ邻域, 记作) ,(0δP U , 即}||0 |{) ,(00δδ<<=P P P P U .注: 如果不需要强调邻域的半径δ, 则用U (P 0)表示点P 0的某个邻域, 点P 0的去心邻域记作)(0P U.点与点集之间的关系:任意一点P ∈R 2与任意一个点集E ⊂R 2之间必有以下三种关系中的一种:(1)内点: 如果存在点P 的某一邻域U (P ), 使得U (P )⊂E , 则称P 为E 的内点;(2)外点: 如果存在点P 的某个邻域U (P ), 使得U (P )⋂E =∅, 则称P 为E 的外点;(3)边界点: 如果点P 的任一邻域内既有属于E 的点, 也有不属于E 的点, 则称P 点为E 的边点.E 的边界点的全体, 称为E 的边界, 记作∂E .E 的内点必属于E ; E 的外点必定不属于E ; 而E 的边界点可能属于E , 也可能不属于E . 聚点: 如果对于任意给定的δ>0, 点P 的去心邻域),(δP U 内总有E 中的点, 则称P 是E 的聚点.由聚点的定义可知, 点集E 的聚点P 本身, 可以属于E , 也可能不属于E .例如, 设平面点集 E ={(x , y )|1<x 2+y 2≤2}.满足1<x 2+y 2<2的一切点(x , y )都是E 的内点; 满足x 2+y 2=1的一切点(x , y )都是E 的边界点, 它们都不属于E ; 满足x 2+y 2=2的一切点(x , y )也是E 的边界点, 它们都属于E ; 点集E 以及它的界边∂E 上的一切点都是E 的聚点.开集: 如果点集E 的点都是内点, 则称E 为开集.闭集: 如果点集的余集E c 为开集, 则称E 为闭集.开集的例子: E ={(x , y )|1<x 2+y 2<2}.闭集的例子: E ={(x , y )|1≤x 2+y 2≤2}.集合{(x , y )|1<x 2+y 2≤2}既非开集, 也非闭集.连通性: 如果点集E 内任何两点, 都可用折线连结起来, 且该折线上的点都属于E , 则称E 为连通集.区域(或开区域): 连通的开集称为区域或开区域. 例如E ={(x , y )|1<x 2+y 2<2}.闭区域: 开区域连同它的边界一起所构成的点集称为闭区域. 例如E = {(x , y )|1≤x 2+y 2≤2}.有界集: 对于平面点集E , 如果存在某一正数r , 使得E ⊂U (O , r ), 其中O 是坐标原点, 则称E 为有界点集.无界集: 一个集合如果不是有界集, 就称这集合为无界集.例如, 集合{(x , y )|1≤x 2+y 2≤2}是有界闭区域; 集合{(x , y )| x +y >1}是无界开区域; 集合{(x , y )| x +y ≥1}是无界闭区域.2. n 维空间设n 为取定的一个自然数, 我们用R n 表示n 元有序数组(x 1, x 2, ⋅ ⋅ ⋅ , x n )的全体所构成的集合, 即 R n =R ⨯R ⨯⋅ ⋅ ⋅⨯R ={(x 1, x 2, ⋅ ⋅ ⋅ , x n )| x i ∈R , i =1, 2, ⋅ ⋅ ⋅, n }.R n 中的元素(x 1, x 2, ⋅ ⋅ ⋅ , x n )有时也用单个字母x 来表示, 即x =(x 1, x 2, ⋅ ⋅ ⋅ , x n ). 当所有的x i (i =1, 2, ⋅ ⋅ ⋅, n )都为零时, 称这样的元素为R n 中的零元, 记为0或O . 在解析几何中, 通过直角坐标, R 2(或R 3)中的元素分别与平面(或空间)中的点或向量建立一一对应, 因而R n 中的元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )也称为R n 中的一个点或一个n 维向量, x i 称为点x 的第i 个坐标或n 维向量x 的第i 个分量. 特别地, R n 中的零元0称为R n 中的坐标原点或n 维零向量.为了在集合R n 中的元素之间建立联系, 在R n 中定义线性运算如下:设x =(x 1, x 2, ⋅ ⋅ ⋅ , x n ), y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )为R n 中任意两个元素, λ∈R , 规定x +y =(x 1+ y 1, x 2+ y 2, ⋅ ⋅ ⋅ , x n + y n ), λx =(λx 1, λx 2, ⋅ ⋅ ⋅ , λx n ).这样定义了线性运算的集合R n 称为n 维空间.R n 中点x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )和点 y =(y 1, y 2, ⋅ ⋅ ⋅ , y n )间的距离, 记作ρ(x , y ), 规定2222211)( )()(),(n n y x y x y x -+⋅⋅⋅+-+-=y x ρ.显然, n =1, 2, 3时, 上术规定与数轴上、直角坐标系下平面及空间中两点间的距离一至. R n 中元素x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )与零元0之间的距离ρ(x , 0)记作||x ||(在R 1、R 2、R 3中, 通常将||x ||记作|x |), 即 22221 ||||nx x x ⋅⋅⋅++=x . 采用这一记号, 结合向量的线性运算, 便得),()( )()(||||2222211y x y x ρ=-+⋅⋅⋅+-+-=-n n y x y x y x .在n 维空间R n 中定义了距离以后, 就可以定义R n 中变元的极限:设x =(x 1, x 2, ⋅ ⋅ ⋅ , x n ), a =(a 1, a 2, ⋅ ⋅ ⋅ , a n )∈R n . 如果 ||x -a ||→0,则称变元x 在R n 中趋于固定元a , 记作x →a .显然, x →a ⇔ x 1→a 1, x 2→a 2, ⋅ ⋅ ⋅ , x n →a n .在R n 中线性运算和距离的引入, 使得前面讨论过的有关平面点集的一系列概念, 可以方便地引入到n (n ≥3)维空间中来, 例如,设a =(a 1, a 2, ⋅ ⋅ ⋅ , a n )∈R n , δ是某一正数, 则n 维空间内的点集U (a , δ)={x | x ∈ R n , ρ(x , a )<δ}就定义为R n 中点a 的δ邻域. 以邻域为基础, 可以定义点集的内点、外点、边界点和聚点, 以及开集、闭集、区域等一系列概念.二. 多元函数概念例1 圆柱体的体积V 和它的底半径r 、高h 之间具有关系V =πr 2h .这里, 当r 、h 在集合{(r , h ) | r >0, h >0}内取定一对值(r , h )时, V 对应的值就随之确定. 例2 一定量的理想气体的压强p 、体积V 和绝对温度T 之间具有关系VRT p =, 其中R 为常数. 这里, 当V 、T 在集合{(V ,T ) | V >0, T >0}内取定一对值(V , T )时, p 的对应值就随之确定.例3 设R 是电阻R 1、R 2并联后的总电阻, 由电学知道, 它们之间具有关系2121R R R R R +=. 这里, 当R 1、R 2在集合{( R 1, R 2) | R 1>0, R 2>0}内取定一对值( R 1 , R 2)时, R 的对应值就随之确定.定义1 设D 是R 2的一个非空子集, 称映射f : D →R 为定义在D 上的二元函数, 通常记为z =f (x , y ), (x , y )∈D (或z =f (P ), P ∈D ),其中点集D 称为该函数的定义域, x , y 称为自变量, z 称为因变量.上述定义中, 与自变量x 、y 的一对值(x , y )相对应的因变量z 的值, 也称为f 在点(x , y )处的函数值, 记作f (x , y ), 即z =f (x , y ).值域: f (D )={z | z =f (x , y ), (x , y )∈D }.函数的其它符号: z =z (x , y ), z =g (x , y )等.类似地可定义三元函数u =f (x , y , z ), (x , y , z )∈D 以及三元以上的函数.一般地, 把定义1中的平面点集D 换成n 维空间R n 内的点集D , 映射f : D →R 就称为定义在D 上的n 元函数, 通常记为 u =f (x 1, x 2, ⋅ ⋅ ⋅ , x n ), (x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D , 或简记为 u =f (x ), x =(x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D ,也可记为 u =f (P ), P (x 1, x 2, ⋅ ⋅ ⋅ , x n )∈D .关于函数定义域的约定: 在一般地讨论用算式表达的多元函数u =f (x )时, 就以使这个算式有意义的变元x 的值所组成的点集为这个多元函数的自然定义域. 因而, 对这类函数, 它的定义域不再特别标出. 例如,函数z =ln(x +y )的定义域为{(x , y )|x +y >0}(无界开区域);函数z =arcsin(x 2+y 2)的定义域为{(x , y )|x 2+y 2≤1}(有界闭区域).二元函数的图形: 点集{(x , y , z )|z =f (x , y ), (x , y )∈D }称为二元函数z =f (x , y )的图形, 二元函数的图形是一张曲面.例如 z =ax +by +c 是一张平面, 而函数z =x 2+y 2的图形是旋转抛物面.与一元函数的极限概念类似, 如果在P (x , y )→P 0(x 0, y 0)的过程中, 对应的函数值f (x , y )无限接近于一个确定的常数A , 则称A 是函数f (x , y )当(x , y )→(x 0, y 0)时的极限.定义2 设二元函数f (P )=f (x , y )的定义域为D , P 0(x 0, y 0)是D 的聚点. 如果存在常数A , 对于任意给定的正数ε总存在正数δ, 使得当),(),(0δP U D y x P⋂∈时, 都有|f (P )-A |=|f (x , y )-A |<ε成立, 则称常数A 为函数f (x , y )当(x , y )→(x 0, y 0)时的极限, 记为A y x fy x y x =→),(lim ),(),(00, 或f (x , y )→A ((x , y )→(x 0, y 0)),也记作 A P f P P =→)(lim 0或f (P )→A (P →P 0).上述定义的极限也称为二重极限.例4. 设22221sin )(),(y x y x y x f ++=, 求证0),(lim )0,0(),(=→y x f y x .证 因为 2222222222 |1sin ||| |01sin )(||0),(|y x y x y x y x y x y x f +≤+⋅+=-++=-,可见∀ε >0, 取εδ=, 则当 δ<-+-<22)0()0(0y x ,即),(),(δO U D y x P⋂∈时, 总有|f (x , y )-0|<ε, 因此0),(lim )0,0(),(=→y x f y x .必须注意:(1)二重极限存在, 是指P 以任何方式趋于P 0时, 函数都无限接近于A .(2)如果当P 以两种不同方式趋于P 0时, 函数趋于不同的值, 则函数的极限不存在.讨论: 函数⎪⎩⎪⎨⎧=+≠++=000 ),(222222y x y x y x xyy x f 在点(0, 0)有无极限?提示: 当点P (x , y )沿x 轴趋于点(0, 0)时, 00lim )0 ,(lim ),(lim 00)0,0(),(===→→→x x y x x f y x f ; 当点P (x , y )沿y 轴趋于点(0, 0)时, 00lim ) ,0(lim ),(lim 00)0,0(),(===→→→y y y x y f y x f .当点P (x , y )沿直线y =kx 有 22222022 )0,0(),(1lim lim k kx k x kx y x xy x kx y y x +=+=+→=→.因此, 函数f (x , y )在(0, 0)处无极限.极限概念的推广: 多元函数的极限.多元函数的极限运算法则: 与一元函数的情况类似.例5 求x xy y x )sin(lim )2,0(),(→.解: y xy xy x xy y x y x ⋅=→→)sin(lim )sin(lim )2,0(),()2,0(),(y xy xy y x y x )2,0(),()2,0(),(lim )sin(lim →→⋅==1⨯2=2.定义3 设二元函数f (P )=f (x , y )的定义域为D , P 0(x 0, y 0)为D 的聚点, 且P 0∈D . 如果 ),(),(lim 00),(),(00y x f y x f y x y x =→,则称函数f (x , y )在点P 0(x 0, y 0)连续.如果函数f (x , y )在D 的每一点都连续, 那么就称函数f (x , y )在D 上连续, 或者称f (x , y )是D 上的连续函数.二元函数的连续性概念可相应地推广到n 元函数f (P )上去.例6设f (x ,y )=sin x , 证明f (x , y )是R 2上的连续函数.证 设P 0(x 0, y 0)∈ R 2. ∀ε>0, 由于sin x 在x 0处连续, 故∃δ>0, 当|x -x 0|<δ时, 有 |sin x -sin x 0|<ε.以上述δ作P 0的δ邻域U (P 0, δ), 则当P (x , y )∈U (P 0, δ)时, 显然|f (x , y )-f (x 0, y 0)|=|sin x -sin x 0|<ε,即f (x , y )=sin x 在点P 0(x 0, y 0) 连续. 由P 0的任意性知, sin x 作为x , y 的二元函数在R 2上连续 类似的讨论可知, 一元基本初等函数看成二元函数或二元以上的多元函数时, 它们在各自的定义域内都是连续的.定义4设函数f (x , y )的定义域为D , P 0(x 0, y 0)是D 的聚点. 如果函数f (x , y )在点P 0(x 0, y 0)不连续, 则称P 0(x 0, y 0)为函数f (x , y )的间断点.例如函数⎪⎩⎪⎨⎧=+≠++=000 ),(222222y x y x y x xy y x f ,其定义域D =R 2, O (0, 0)是D 的聚点. f (x , y )当(x , y )→(0, 0)时的极限不存在, 所以点O (0, 0)是该函数的一个间断点.又如, 函数11sin 22-+=y x z , 其定义域为D ={(x , y )|x 2+y 2≠1}, 圆周C ={(x , y )|x 2+y 2=1}上的点都是D 的聚点, 而f (x , y )在C 上没有定义, 当然f (x , y )在C 上各点都不连续, 所以圆周C 上各点都是该函数的间断点.注: 间断点可能是孤立点也可能是曲线上的点.可以证明, 多元连续函数的和、差、积仍为连续函数; 连续函数的商在分母不为零处仍连续; 多元连续函数的复合函数也是连续函数.多元初等函数: 与一元初等函数类似, 多元初等函数是指可用一个式子所表示的多元函数, 这个式子是由常数及具有不同自变量的一元基本初等函数经过有限次的四则运算和复合运算而得到的.例如2221yy x x +-+, sin(x +y ), 222z y x e ++都是多元初等函数. 一切多元初等函数在其定义区域内是连续的. 所谓定义区域是指包含在定义域内的区域或闭区域.由多元连续函数的连续性, 如果要求多元连续函数f (P )在点P 0处的极限, 而该点又在此函数的定义区域内, 则)()(lim 00P f P f p p =→.例7 求xy y x y x +→)2,1(),(lim. 解: 函数xy y x y x f +=),(是初等函数, 它的定义域为 D ={(x , y )|x ≠0, y ≠0}. P 0(1, 2)为D 的内点, 故存在P 0的某一邻域U (P 0)⊂D , 而任何邻域都是区域, 所以U (P 0)是f (x , y )的一个定义区域, 因此 23)2,1(),(lim)2,1(),(==→f y x f y x . 一般地, 求)(lim 0P f P P →时, 如果f (P )是初等函数, 且P 0是f (P )的定义域的内点, 则f (P )在点P 0处连续, 于是 )()(lim 00P f P f P P =→. 例8 求xyxy y x 11lim )0 ,0(),(-+→. 解: )11()11)(11(lim 11lim )0 ,0(),()0 ,0(),(++++-+=-+→→xy xy xy xy xy xy y x y x 21111lim )0 ,0(),(=++=→xy y x .多元连续函数的性质:性质1 (有界性与最大值最小值定理)在有界闭区域D 上的多元连续函数, 必定在D 上有界, 且能取得它的最大值和最小值.性质1就是说, 若f (P )在有界闭区域D 上连续, 则必定存在常数M >0, 使得对一切P ∈D , 有|f (P )|≤M ; 且存在P 1、P 2∈D , 使得f (P 1)=max{f (P )|P ∈D }, f (P 2)=min{f (P )|P ∈D },性质2 (介值定理) 在有界闭区域D 上的多元连续函数必取得介于最大值和最小值之间的任何值.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
o
x
{( x , y ) | x y 0}
无界开区域.
上页 下页 返回
(3)聚点
设 E 是平面上的一个点集,P 是平面上的 一个点,如果点 P 的任何一个邻域内总有无限 多个点属于点集 E,则称 P 为 E 的聚点.
说明: 内点一定是聚点; 边界点可能是聚点; 例 {( x , y ) | 0 x 2 y 2 1} (0,0)既是边界点也是聚点.
上页 下页 返回
点集E的聚点可以属于E,也可以不属于E. 例如, {( x , y ) | 0 x y 1}
2 2
(0,0) 是聚点但不属于集合.
2 2 {( x , y ) | x y 1} 例如,
边界上的点都是聚点也都属于集合.
上页
下页
返回
(4)n维空间
n 元数组 设n 为取定的一个自然数,我们称 n 维空间,而每个 n 元数 ( x1 , x 2 , , x n ) 的全体为 n 维空间中的一个点,数 组 ( x 1 , x 2 , , x n ) 称为 x i 称为该点的第 i 个坐标.
如果点集 E 的点都是内点, 则称 E 为开集.
2 2 例如,E1 {( x , y ) 1 x y 4}
P
即为开集.
上页
E
下页 返回
如果点 P 的任一个邻域内既有属 于 E 的点, 也有不属于 E 的点(点 P 本身可以属于 E ,也 可以不属于 E ),则称 P 为 E 的边界点.
邻域: U ( P0 , ) P | PP0 | , P R n
返回
内点、边界点、区域、聚点等概念也可定义.
上页 下页
(5)二元函数的定义
设 D 是平面上的一个点集,如果对于每个点 z 按照一定的法则总有确定的 P ( x , y ) D ,变量 z 是变量x , y 的二元函数,记为 值和它对应,则称 z f ( x , y ) (或记为z f ( P ) ).
0
上页
下页
返回
三、多元函数的连续性
定义3
设函数 f ( x, y ) 在开区域(或闭区域) D 内
0 0 0
有定义,P ( x , y )是D 的内点或边界点且P0 D 。 如果lim f ( x, y ) f ( x , y ) ,则称函数 f ( x, y ) 在点
x x0 y y0 0 0
证
3 y kx , 取
x3 y x 3 kx 3 k lim 6 lim 6 , 2 2 2 6 x 0 x y x 0 x k x 1 k 3 y0
y kx
其值随k的不同而变化, 故极限不存在.
上页 下页 返回
x y x y lim 图形 , 观察 z 6 6 2 不存在. 2 x 0 x y x y y 0
o
y
z a2 x2 y2 .
上页
下页
返回
二、多元函数的极限
D 内 定义 1 设函数 f ( x, y ) 在开区域(或闭区域) D 的内点或边界点,如果对于 有定义, P ( x , y ) 是 ,总存在正数 ,使得对于适合 任意给定的正数 2 2 0 | PP | ( x x ) ( y y ) 的 不等式 0 0 0 一切点 P ( x, y ) D , 都有| f ( x , y ) A | 成立, 则 称 A 为函数 z f ( x , y ) 当x x 0 , y y 0 时的极 lim f ( x , y ) A 限,记为 x x
(如下页图)
上页 下页 返回
二元函数的图形通常是一张曲面.
上页 下 返回
例如, z sin xy
图形如右图.
例如, x 2 y 2 z 2 a 2 左图球面.
z
D {( x , y ) x 2 y 2 a 2 }.
单值分支: z a 2 x 2 y 2
x
2 2
1 ( x y ) sin 2 0 2 x y
2 2
原结论成立.
上页 下页 返回
sin( x 2 y ) . 例3 求极限 lim 2 2 x 0 x y y0
解
sin( x 2 y ) lim 2 x0 x y 2 y0
sin( x 2 y) x 2 y lim 2 , 2 2 x 0 x y x y y0
E 的边界点的全体称为E 的边界.
P
设 D 是开集.如果对于 D 内 任何两点,都可用折线 连结起来, 且该折线上的点都属于D ,则称 开集 D 是连通的.
上页
E
下页
返回
连通的开集称为区域或开区域.
y
例如, {( x, y ) | 1 x 2 y 2 4}.
o
x
开区域连同它的边界一起称为闭区域.
3
3
播放
上页
下页
返回
确定极限不存在的方法:
(1)令 P ( x , y ) 沿 y kx 趋向于P0 ( x 0 , y 0 ) ,若
k 有关,则可断言极限不存在; 极限值与
(2) 找两种不同趋近方式,使 lim f ( x , y ) 存在,
x x0 y y0
但两者不相等,此时也可断言 f ( x , y ) 在点
说明:
n R n维空间的记号为 ;
n维空间中两点间距离公式
上页 下页 返回
设两点为 P ( x1 , x2 ,, xn ), Q( y1 , y2 ,, yn ),
| PQ | ( y1 x1 )2 ( y2 x2 )2 ( yn xn )2 .
特殊地当 n 1, 2, 3 时,便为数轴、平面、 空间两点间的距离. n维空间中邻域、区域等概念
故函数在(0,0)处不连续.
上页 下页 返回
闭区域上连续函数的性质
(1)最大值和最小值定理 在有界闭区域D上的多元连续函数,在D 上至少取得它的最大值和最小值各一次. (2)介值定理 在有界闭区域D上的多元连续函数,如 果在D上取得两个不同的函数值,则它在D上 取得介于这两值之间的任何值至少一次.
P0 ( x 0 , y0 ) 处极限不存在.
上页 下页 返回
利用点函数的形式有n 元函数的极限
定义 2 设n 元函数 f ( P ) 的定义域为点集 D , P0 是 ,总 其内点或边界点,如果对于任意给定的正数 存在正数 ,使得对于适合不等式0 | PP0 | 的 一切点 P D ,都有| f ( P ) A | 成立,则称 A 为n 元函数 f ( P ) 当 P P0 时的极限,记为 lim f ( P ) A . PP
2 x y 4 2 x y
2 2
所求定义域为 D {( x, y ) | 2 x 2 y 2 4, x y 2 }.
上页 下页 返回
(6) 二元函数 z f ( x , y )的图形
D ,对于任意 设函数 z f ( x , y ) 的定义域为 取定的 P ( x , y ) D ,对应的函数值为 y 为纵坐 x 为横坐标、 z f ( x , y ) ,这样,以 标、 z 为竖坐标在空间就确定一点M ( x , y , z ) , 当 x 取遍D 上一切点时,得一个空间点集 {( x , y , z ) | z f ( x , y ), ( x , y ) D },这个点集称 为二元函数的图形.
类似地可定义三元及三元以上函数.
n 元函数统称为多元函数. 当n 2 时,
多元函数中同样有定义域、值域、自变量、 因变量等概念.
上页 下页 返回
arcsin( 3 x y ) 例1 求 f ( x , y ) 的定义域. 2 x y
2 2
解
2 2 3 x y 1 2 x y 0
U ( P0 , ) P | PP0 |
( x , y ) | ( x x0 )2 ( y y0 )2 .
上页 下页 返回
P0
(2)区域
设 E 是平面上的一个点集, P 是平面上的 一个点.如果存在点P 的某一邻域 U ( P ) E , 则称 P 为 E 的内点. E 的内点属于 E .
P ( x , y ) 处连续.
0 0 0
如果 f ( x, y )在开区域(或闭区域)D内的每一点
连续,则称 f ( x, y )在 D内连续。
P0 是函数 如果 f ( x, y ) 在点P ( x , y ) 处不连续, 则称 f ( x, y ) 的间断点.
0 0 0
上页
下页
返回
例 讨论函数
一般地,求 lim f ( P ) 时,如果 f ( P ) 是初等函
P P0
数,且 P0 是 f ( P ) 的定义域的内点,则 f ( P ) 在 点 P0 处连续,于是 lim f ( P ) f ( P0 ).
P P0
xy 1 1 例7 求 lim . x 0 xy y0
上页
下页
返回
(3)一致连续性定理
在有界闭区域D上的多元连续函数必定 在D上一致连续.
多元初等函数:由多元多项式及基本初等函数 经过有限次的四则运算和复合步骤所构成的可 用一个式子所表示的多元函数叫多元初等函数
一切多元初等函数在其定义区域内是连续的.
定义区域是指包含在定义域内的区域或闭区域.
上页 下页 返回
xy 1 1 1 解 原式 lim lim x 0 xy( xy 1 1) x 0 xy 1 1 y0 y0